US20170121815A1 - Apparatus for distributing gas and apparatus for processing substrate including the same - Google Patents

Apparatus for distributing gas and apparatus for processing substrate including the same Download PDF

Info

Publication number
US20170121815A1
US20170121815A1 US15/301,717 US201515301717A US2017121815A1 US 20170121815 A1 US20170121815 A1 US 20170121815A1 US 201515301717 A US201515301717 A US 201515301717A US 2017121815 A1 US2017121815 A1 US 2017121815A1
Authority
US
United States
Prior art keywords
gas
passages
processing
buffering
injection module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/301,717
Inventor
Suk Chul JUNG
Young-Rok Kim
Jong Kuk HAN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jusung Engineering Co Ltd
Original Assignee
Jusung Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jusung Engineering Co Ltd filed Critical Jusung Engineering Co Ltd
Assigned to JUSUNG ENGINEERING CO., LTD. reassignment JUSUNG ENGINEERING CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HAN, JONG KUK, JUNG, SUK CHUL, KIM, YOUNG-ROK
Publication of US20170121815A1 publication Critical patent/US20170121815A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45574Nozzles for more than one gas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber

Abstract

Disclosed is an apparatus for distributing gas which is capable of uniformly injecting processing gas into a plurality of gas passages being communicated with a plurality of gas distribution holes, and an apparatus for processing substrate including the same, wherein the apparatus for distributing gas may include a body including a plurality of gas passages connected with a plurality of gas distribution holes for distributing processing gas; and at least one gas injection module connected with at least one lateral surface of the body and respectively communicated with the plurality of gas passages, wherein the gas injection module firstly buffers the processing gas supplied from the external, secondly buffers the firstly buffered processing gas, and injects the buffered processing gas into the plurality of gas passages.

Description

    TECHNICAL FIELD
  • The present invention relates to an apparatus for distributing gas and an apparatus for processing substrate including the same.
  • BACKGROUND ART
  • Generally, in order to manufacture a solar cell, a semiconductor device and a flat panel display device, it is necessary to form a predetermined thin film layer on a surface of a substrate. Thus, a semiconductor manufacturing process may be carried out, for example, a thin film deposition process of depositing a thin film of a predetermined material on the substrate, a photo process of selectively exposing the thin film by the use of photosensitive material, and an etching process of forming a pattern by selectively removing an exposed portion of the thin film.
  • The semiconductor manufacturing process is performed inside a substrate processing apparatus designed to be suitable for optimal circumstances. Recently, a substrate processing apparatus using plasma is generally used to carry out a deposition or etching process.
  • This semiconductor manufacturing process using plasma may be a PECVD (Plasma Enhanced Chemical Vapor Deposition) apparatus, wherein the PECVD apparatus may use a gas distribution apparatus for introducing gas into the inside of a chamber.
  • The gas distribution apparatus is provided to distribute various processing gases onto the surface of the substrate through a plurality of gas distribution holes formed in a plate-shaped body. Generally, the gas distribution apparatus may be formed of aluminum in consideration of workability and reactivity on the processing gas.
  • As shown in FIG. 1, a related art gas distribution apparatus may include a plate-shaped body 10, a plurality of gas passages 20 which are provided by forming a plurality of holes along a predetermined direction of the body 10 at fixed intervals inside the body 10 by a machinery working using a drill and sealing both ends of each hole by welding 22, and a plurality of gas distribution holes 30 which are respectively connected with the plurality of gas passages 20 and are formed vertically to a lower surface of the body 10. In this related art gas distribution apparatus, processing gas, which is injected into the center of each of the plurality of gas passages 20 through a gas supply pipe 40, is downwardly distributed through the plurality of gas distribution holes 30.
  • In case of the related art gas distribution apparatus, the processing gas is injected into each of the plurality of gas passages 20, whereby it is difficult to realize uniformity on injection of the processing gas into the plurality of gas passages 20. Also, both ends of each of the plurality of gas passages 20 are permanently sealed by welding, whereby it is difficult to clean the gas passages 20 and the gas distribution holes 30.
  • DISCLOSURE Technical Problem
  • Accordingly, the present invention is directed to an apparatus for distributing gas and an apparatus for processing substrate including the same that substantially obviates one or more problems due to limitations and disadvantages of the related art.
  • An aspect of the present invention is to provide an apparatus for distributing gas and an apparatus for processing substrate including the same, which is capable of uniformly injecting processing gas into a plurality of gas passages being communicated with a plurality of gas distribution holes.
  • Another aspect of the present invention is to provide an apparatus for distributing gas and an apparatus for processing substrate including the same, which facilitates to clean a plurality of gas distribution holes and a plurality of gas passages.
  • Additional advantages and features of the invention will be set forth in part in the description which follows and in part will become apparent to those having ordinary skill in the art upon examination of the following or may be learned from practice of the invention.
  • Technical Solution
  • To achieve these and other advantages and in accordance with the purpose of the invention, as embodied and broadly described herein, there is provided an apparatus for distributing gas that may include a body including a plurality of gas passages connected with a plurality of gas distribution holes for distributing processing gas; and at least one gas injection module connected with at least one lateral surface of the body and respectively communicated with the plurality of gas passages, wherein the gas injection module includes a first gas buffering space for firstly buffering the processing gas supplied from the external; and a second gas buffering space for secondly buffering the processing gas firstly buffered in the first gas buffering space, and injecting the secondly buffered processing gas into the plurality of gas passages.
  • In another aspect of the present invention, there is provided an apparatus for processing substrate that may include a processing chamber; a chamber lid for covering an upper side of the processing chamber; a substrate supporting means for supporting a substrate, the substrate supporting means provided inside the processing chamber; and a gas distribution means confronting the substrate supporting means, the gas distribution means connected with a lower surface of the chamber lid, wherein the gas distribution means includes the above apparatus for distributing gas.
  • Advantageous Effect
  • According to the present invention, the processing gas is uniformly injected into the plurality of gas passages so that it is possible to easily clean the plurality of gas passages and the plurality of gas distribution holes. Also, the processing gas is uniformly distributed onto the surface of the substrate, which enables the uniform substrate processing.
  • DESCRIPTION OF DRAWINGS
  • FIG. 1 is a cross sectional view illustrating a related art gas distribution apparatus;
  • FIG. 2 is a rear perspective view illustrating an apparatus for distributing gas according to the first embodiment of the present invention;
  • FIG. 3 is a vertical cross sectional view along I-I′ of FIG. 2;
  • FIG. 4 is a horizontal cross sectional view along II-II′ of FIG. 2;
  • FIG. 5 is a cross sectional view for explaining a plurality of communication holes shown in FIG. 4;
  • FIG. 6 illustrates a flow of processing gas in the apparatus for distributing gas according to the first embodiment of the present invention;
  • FIG. 7 illustrates an apparatus for distributing gas according to the second embodiment of the present invention;
  • FIG. 8 is a cross sectional view for explaining a gas injection hole shown in FIG. 7;
  • FIG. 9 illustrates a modified example of the apparatus for distributing gas according to the second embodiment of the present invention;
  • FIG. 10 illustrates an apparatus for distributing gas according to the third embodiment of the present invention;
  • FIG. 11 illustrates an apparatus for distributing gas according to the fourth embodiment of the present invention;
  • FIG. 12 illustrates a modified example of the apparatus for distributing gas according to the fourth embodiment of the present invention;
  • FIG. 13 is a rear perspective view illustrating an apparatus for distributing gas according to the fifth embodiment of the present invention;
  • FIG. 14 is a vertical cross sectional view along III-III′ of FIG. 13;
  • FIG. 15 is a horizontal cross sectional view along IV-IV′ of FIG. 13; and
  • FIG. 16 is a cross sectional view illustrating an apparatus for processing substrate according to an embodiment of the present invention.
  • MODE FOR INVENTION
  • On explanation about the embodiments of the present invention, the following details about the terms should be understood.
  • The term of a singular expression should be understood to include a multiple expression as well as the singular expression if there is no specific definition in the context.
  • If using the term such as “the first” or “the second”, it is to separate any one element from other elements. Thus, a scope of claims is not limited by these terms. Also, it should be understood that the term such as “include” or “have” does not preclude existence or possibility of one or more features, numbers, steps, operations, elements, parts or their combinations. It should be understood that the term “at least one” includes all combinations related with any one item. For example, “at least one among a first element, a second element and a third element” may include all combinations of the two or more elements selected from the first, second and third elements as well as each element of the first, second and third elements. Also, if it is mentioned that a first element is positioned “on or above” a second structure, it should be understood that the first and second elements may be brought into contact with each other, or a third element may be interposed between the first and second elements.
  • Hereinafter, an apparatus for distributing gas (hereinafter, referred to as ‘gas distribution apparatus’) according to the present invention and an apparatus for processing substrate including the same will be described with reference to the accompanying drawings.
  • FIG. 2 is a rear perspective view illustrating a gas distribution apparatus according to the first embodiment of the present invention, FIG. 3 is a vertical cross sectional view along I-I′ of FIG. 2, and FIG. 4 is a horizontal cross sectional view along II-II′ of FIG. 2.
  • Referring to FIGS. 2 to 4, the gas distribution apparatus 100 according to the first embodiment of the present invention may include a body 110, a first gas injection module 120 a, and a second gas injection module 120 b.
  • The body 110 may be formed of a plate-shaped metal material with a predetermined thickness, for example, aluminum or aluminum alloy. The body 110 is detachably provided in a lower surface of a chamber lid for covering an upper side of a processing chamber (not shown), whereby the body 110 confronts a substrate supporting means (not shown) provided on a bottom surface of the processing chamber.
  • The body 110 is provided with a plurality of gas passages 111 and a plurality of gas distribution holes 113.
  • The plurality of gas passages 111 are provided at fixed intervals in parallel to a horizontal direction (X) or vertical direction (Y) inside the body 110. For example, the plurality of gas passages 111 may be provided by forming a plurality of holes penetrating the body 110 from its one surface to the other surface through a gun drilling working. Herein, processing gas is injected into the plurality of gas passages 111 from the first and second gas injection modules 120 a and 120 b.
  • The plurality of gas distribution holes 113 are vertically formed on a rear surface of the body 110 at fixed intervals, and are communicated with the plurality of gas passages 111, respectively. The plurality of gas distribution holes 113 downwardly distribute the processing gas, which is injected into the plurality of gas passages 111, at a constant pressure. The plurality of gas distribution holes 113 may include at least one distribution nozzle to be optimized for at least one among a distribution area of the processing gas, a distribution angle of the processing gas, and a distribution amount of the processing gas.
  • Each of the plurality of gas distribution holes 113 according to one embodiment of the present invention may be formed in a cylinder shape whose diameter is smaller than that of the gas passage 111.
  • Although not shown, each of the plurality of gas distribution holes 113 according to another embodiment of the present invention may be formed of a funnel shape with a first distribution part having a first diameter in communication with the gas passage 111, and a second distribution part in communication with the first distribution part, wherein a diameter of the second distribution part is gradually increased from the first distribution part having the first diameter to the rear surface of the body 110.
  • Although not shown, each of the plurality of gas distribution holes 113 according to another embodiment of the present invention may be formed of a predetermined shape with a first distribution part having a first diameter in communication with the gas passage 111, a second distribution part having a second diameter being smaller than the first diameter in communication with the first distribution part, and a third distribution part in communication with the second distribution part, wherein a diameter of the third distribution part is gradually increased from the second distribution part having the second diameter to the rear surface of the body 110.
  • The first gas injection module 120 a is connected with one lateral surface of the body 110, wherein the first gas injection module 120 a injects the processing gas supplied through at least one of first gas supply pipe 130 a to each of the plurality of gas passages 111. The first gas injection module 120 a according to one embodiment of the present invention may include a first gas buffering space (GB S1) for firstly buffering the processing gas supplied from the first gas supply pipe 130 a, and a second gas buffering space (GBS2) for secondly buffering the processing gas supplied from the first gas buffering space (GBS1) and injecting the buffered processing gas into one side of each of the plurality of gas passages 111. For example, the first gas injection module 120 a may include a first gas buffering member 121 having the first gas buffering space (GBS1), and a second gas buffering member 123 having the second gas buffering space (GBS2).
  • The first gas buffering member 121 includes the first gas buffering space (GBS1) for firstly buffering the processing gas supplied through the first gas supply pipe 130 a, and the first gas buffering member 121 is connected with one lateral surface of the body 110 so as to cover one side of each of the plurality of gas passages 111. For example, the first gas buffering member 121 may be formed in a case shape whose inner lateral surface facing toward the plurality of gas passages 111 is opened so as to include the first gas buffering space (GBS1) surrounded by an outer lateral surface and each lateral sidewall being vertical to the outer lateral surface. Accordingly, the first gas buffering member 121 firstly buffers or diffuses the processing gas supplied through the first gas supply pipe 130 a in the first gas buffering space (GBS1).
  • A gas supply hole 120 h being in communication with the first gas supply pipe 130 a is formed in a lateral surface of the first gas buffering member 121, for example, an upper lateral surface of the first gas buffering member 121. In this case, a sealing member may be provided between the upper lateral surface of the first gas buffering member 121 and the first gas supply pipe 130 a. In addition, a connection part between the first gas supply pipe 130 a and the gas supply hole 120 h may be sealed by a sealing jacket 131. Herein, the first gas buffering member 121 may be provided with the two or more first gas supply pipes 130 a. In this case, the two or more first gas supply pipes 130 a may be individually connected with a gas supply means (not shown), or may be diverged from a main supply pipe connected with the gas supply means (not shown).
  • A sealing member 125 is provided between each sidewall of the first gas buffering member 121 and one lateral surface of the body 110. The sealing member 125 may be an O-ring or pad, wherein the O-ring or pad may be formed of a material which is not damaged by the processing gas.
  • The second gas buffering member 123 includes the second gas buffering space (GBS2) for secondly buffering the processing gas which is firstly buffered in the first gas buffering space (GBS1) of the first gas buffering member 121, and injecting the secondly-buffered processing gas into the plurality of gas passages 111. Also, the second gas buffering member 123 is disposed inside the first gas buffering member 121, and is connected with one lateral surface of the body 110 so as to cover one side of each of the plurality of gas passages 111. For example, the second gas buffering member 123 may be formed in a case shape whose inner lateral surface facing toward the plurality of gas passages 111 is opened so as to include the second gas buffering space (GBS2) surrounded by an outer lateral surface and each lateral sidewall.
  • According to one embodiment of the present invention, a size of the second gas buffering space (GBS2) may be the same as a size of the first gas buffering space (GBS1).
  • According to another embodiment of the present invention, a size of the second gas buffering space (GBS) may be relatively smaller than a size of the first gas buffering space (GBS1) since the processing gas firstly buffered in the first gas buffering space (GBS1) is secondly buffered in the second gas buffering space (GBS2). In this case, it is possible to decrease a width of the first gas injection module 120 a.
  • A plurality of communication holes 123 h are provided at fixed intervals in the outer lateral surface of the second gas buffering member 123, that is, a confronting surface which confronts the outer lateral surface of the first gas buffering member 121, and are communicated with the first gas buffering space (GBS1). Herein, the plurality of communication holes 123 h form the passage of the processing gas, which is buffered and diffused in the first gas buffering space (GBS1), to the second gas buffering space (GBS2).
  • Through the plurality of communication holes 123 h, the processing gas whose pressure is lowered by the first diffusion in the first gas buffering space (GBS1) is distributed at a constant pressure toward the second gas buffering space (GBS2), whereby the firstly-diffused processing gas is secondly diffused in the second gas buffering space (GBS2) with smoothness.
  • The plurality of communication holes 123 h according to one embodiment of the present invention may be provided at fixed intervals in the outer lateral surface of the second gas buffering member 123, wherein the plurality of the communication holes 123 h may have the same diameter (or size).
  • As shown in (a) of FIG. 5, in consideration of a flow distance of the processing gas, a diameter (D1, D2, D3) of each of the plurality of communication holes 123 h according to another embodiment of the present invention may be gradually increased from the center of the second gas buffering member 123 toward both ends of the second gas buffering member 123 with respect to the outer lateral surface of the second gas buffering member 123 (or both ends of the body 110 with respect to a longitudinal direction of one lateral surface of the body 110) . In this case, the processing gas supplied from the first gas buffering space (GBS1) to the second gas buffering space (GBS2) may be buffered or diffused more uniformly.
  • As shown in (b) of FIG. 5, in consideration of a flow distance of the processing gas, each of the plurality of communication holes 123 h according to another embodiment of the present invention may have the same diameter, and an interval (S1, S2) between the center of each of the neighboring communication holes 123 h may be gradually decreased from the center of the second gas buffering member 123 toward both ends of the second gas buffering member 123 with respect to the outer lateral surface of the second gas buffering member 123. In this case, the processing gas supplied from the first gas buffering space (GBS1) to the second gas buffering space (GBS2) may be buffered or diffused more uniformly. Additionally, although not shown, in consideration of a flow distance of the processing gas, the diameter (D1, D2, D3) of each of the plurality of communication holes 123 h may be gradually increased from the center of the second gas buffering member 123 toward both ends of the second gas buffering member 123 with respect to the outer lateral surface of the second gas buffering member 123, and the interval (51, S2) between the center of each of the neighboring communication holes 123 h may be gradually decreased from the center of the second gas buffering member 123 toward both ends of the second gas buffering member 123 with respect to the outer lateral surface of the second gas buffering member 123.
  • Referring once again to FIGS. 2 to 4, the second gas injection module 120 b is connected with the other lateral surface of the body 110 in the opposite side of one lateral surface of the body 110, whereby the processing gas supplied through at least one of second gas supply pipe 130 b is injected into each of the plurality of gas passages 111 by the second gas injection module 120 b. The second gas injection module 120 b according to one embodiment of the present invention may include a first gas buffering space (GBS1) for firstly buffering the processing gas supplied from the second gas supply pipe 130 b, and a second gas buffering space (GBS2) for secondly buffering the processing gas supplied from the first gas buffering space (GBS1) and injecting the buffered processing gas into the plurality of gas passages 111. For example, the first gas injection module 120 a may include the first gas buffering member 121 with the first gas buffering space (GBS1), and the second gas buffering member 123 with the second gas buffering space (GBS2). Except that the processing gas supplied from the second gas supply pipe 130 b is injected into the other side of each of the plurality of gas passages 111, the second gas injection module 120 b is identical in structure to the first gas injection module 120 a, whereby the same reference numbers will be used throughout the drawings to refer to the same or like parts, and a detailed description for the same parts will be omitted.
  • FIG. 6 illustrates a flow of the processing gas in the gas distribution apparatus according to the first embodiment of the present invention.
  • Referring to FIG. 6 in connection with FIG. 4, in case of the gas distribution apparatus according to the first embodiment of the present invention, the processing gas (PG) supplied through the first and second gas supply pipes 130 a and 130 b is firstly buffered and diffused in the first gas buffering space (GBS1) of the first and second gas injection modules 120 a and 120 b, and then the firstly-buffered processing gas is supplied to the second gas buffering space (GBS2) via the communication hole 123 h of the first and second gas injection modules 120 a and 120 b, secondly buffered and diffused in the second gas buffering space (GBS2), and then injected into the plurality of gas passages 111. Then, the processing gas injected into the plurality of gas passages 111 is thirdly buffered and diffused in the plurality of gas passages 111, and is then downwardly distributed through the plurality of gas distribution holes 113.
  • In the aforementioned description, the processing gas is buffered in each of the first and second gas injection modules 120 a and 120 b, and is injected into both sides of each of the plurality of gas passages 111, to thereby realize the uniform injection of the processing gas into the plurality of gas passages 111 with smoothness, but not limited to this structure. It is possible to omit the second gas injection module 120 b. In this case, the other end of each of the plurality of gas passages 111 is not permanently sealed by welding, but closed by the use of detachable sealing cap for a easy cleaning process.
  • In the gas distribution apparatus according to the first embodiment of the present invention, the gas injection modules 120 a and 120 b are detachably connected with one lateral surface and the other lateral surface of the body 110 provided with the plurality of gas passages 111 and the plurality of gas distribution holes 113, and the processing gas is injected into the plurality of gas passages 111 being in communication with the plurality of gas distribution holes 113 through the first and second buffering processes in the gas injection modules 120 a and 120 b, whereby it is possible to uniformly inject the processing gas into the plurality of gas passages 111, and to easily clean the plurality of gas passages 111 and the plurality of gas distribution holes 113 through the detachment of the gas injection modules 120 a and 120 b.
  • FIG. 7 illustrates a gas distribution apparatus according to the second embodiment of the present invention. Except that a gas injection member is additionally provided in each of first and second gas injection modules shown in FIG. 4, the gas distribution apparatus according to the second embodiment of the present invention is identical in structure to the gas distribution apparatus according to the first embodiment of the present invention. Hereinafter, only the gas injection member will be described in detail.
  • First, a first gas injection member 127 a of a first gas injection module 120 a injects (or distributes) processing gas which is secondly buffered and diffused in a second gas buffering space (GBS2) into one side of each of a plurality of gas passages 111 at a constant pressure. To this end, the first gas injection member 127 a is formed in a plate shape with a constant thickness, and is then connected with one lateral surface of a body 111 for covering one side of each of the plurality of gas passages 111. A plurality of gas injection holes 127 h are provided in the first gas injection member 127 a, and the plurality of gas injection holes 127 h are respectively overlapped with the plurality of gas passages 111 in one-to-one correspondence, whereby the processing gas secondly buffered in the second gas buffering space (GBS2) is injected at a constant pressure into one side of each of the plurality of gas passages 111.
  • Each of the plurality of gas injection holes 127 h may has a diameter and/or a cross sectional shape for increasing a pressure of the processing gas injected into the plurality of gas passages 111 in the second gas buffering space (GBS2). For example, a diameter in each of the plurality of gas injection holes 127 h may be relatively smaller than a diameter in each of the plurality of gas passages 111.
  • Additionally, in consideration of a flow of the processing gas secondly buffered in the second gas buffering space (GBS2), a diameter (or size, D1 to D5) of each of the plurality of gas injection holes 127 h may be gradually increased from the center of the body 110 toward both ends of the body 110 with respect to a longitudinal direction of one lateral surface of the body 110, whereby the processing gas may be uniformly injected into each of the plurality of gas passages 111, as shown in FIG. 8.
  • Preferably, a sealing member (not shown) is provided between the first gas injection member 127 a and one lateral surface of the body 110 except the periphery of one side of each of the plurality of gas passages 111 and the periphery of the plurality of gas injection holes 127 h.
  • A second gas injection member 127 b of a second gas injection module 120 b injects (or distributes) the processing gas which is secondly buffered and diffused in the second gas buffering space (GBS2) into the other side of each of the plurality of gas passages 111 at a constant pressure. To this end, the second gas injection member 127 b is formed in a plate shape with a constant thickness, and is then connected with the other lateral surface of the body 111 for covering the other side of each of the plurality of gas passages 111. A plurality of gas injection holes 127 h are provided in the second gas injection member 127 b, and the plurality of gas injection holes 127 h are respectively overlapped with the plurality of gas passages 111 in one-to-one correspondence, whereby the processing gas secondly buffered in the second gas buffering space (GBS2) is injected at a constant pressure into the other side of each of the plurality of gas passages 111. Each of the plurality of gas injection holes 127 h provided in the second gas injection module 120 b is identical in structure to that of the first gas injection module 120 a, whereby the same reference numbers will be used throughout the drawings to refer to the same or like parts, and a detailed description for the same parts will be omitted.
  • Preferably, a sealing member (not shown) is provided between the second gas injection member 127 b and the other lateral surface of the body 110 except the periphery of the other side of each of the plurality of gas passages 111 and the periphery of the plurality of gas injection holes 127 h.
  • Meanwhile, as shown in FIG. 9, the aforementioned first gas injection member 127 a may be inserted into and connected with a first insertion groove 115 a which is provided at a predetermined depth in one lateral surface of the body 110. In this case, the first gas injection member 127 a is not protruding out of one lateral surface of the body 110, preferably. In the same manner, the second gas injection member 127 b may be inserted into and connected with a second insertion groove 115 b which is provided at a predetermined depth in the other lateral surface of the body 110. In this case, the second gas injection member 127 b is not protruding out of the other lateral surface of the body 110, preferably. Accordingly, the first and second gas injection members 127 a and 127 b are respectively inserted into one lateral surface of the body 110 and the other lateral surface of the body 110, whereby it facilitates sealing between the body 110 and each of first and second gas buffering members 121 and 123.
  • The gas distribution apparatus 200 according to the second embodiment of the present invention provides the same effect as the first gas distribution apparatus according to the first embodiment of the present invention. Furthermore, the gas distribution apparatus 200 according to the second embodiment of the present invention increases the pressure of processing gas injected into each of the plurality of gas passages 111 from the second gas buffering space (GBS2), and thus to uniformly inject the processing gas into each of the plurality of gas passages 111.
  • FIG. 10 illustrates a gas distribution apparatus according to the third embodiment of the present invention. Except a structure of a second gas buffering member in each of first and second gas injection modules shown in FIGS. 1 to 4, the gas distribution apparatus according to the third embodiment of the present invention is identical in structure to the gas distribution apparatus according to the first embodiment of the present invention. Hereinafter, only the second gas buffering member will be described in detail.
  • First, a plurality of gas passages 111 are formed in a body 110, and a plurality of gas passage groups (GPG1, GPG2) are formed by grouping the plurality of gas passages 111, wherein each of the gas passage groups (GPG1, GPG2) includes the adjacent two or more gas passages 111. For example, if the body 110 includes the ten of gas passages 111, it is possible to form the first and second gas passage groups (GPG1, GPG2), wherein each of the first and second gas passage groups (GPG1, GPG2) includes the adjacent five gas passages 111.
  • A second gas buffering member 123 in each of first and second gas injection modules 120 a and 120 b may include a plurality of group buffering members 123 a and 123 b for secondly buffering processing gas supplied from a first gas buffering space (GBS1) and injecting the secondly-buffered processing gas into each of the gas passage groups (GPG1, GPG2).
  • Each of the plurality of group buffering members 123 a and 123 b may include at least one communication hole 123 h and a second gas buffering space (GBS2) for secondly buffering the processing gas firstly buffered in the first gas buffering space (GBS1), and injecting the buffered processing gas into the corresponding gas passages 111 of the corresponding gas passage group (GPG1, GPG2) in common Each of the group buffering members 123 a and 123 b is identical in structure to the second gas buffering member 123 shown in FIGS. 1 to 4, whereby the same reference numbers will be used throughout the drawings to refer to the same or like parts, and a detailed description for the same parts will be omitted.
  • The gas distribution apparatus 300 according to the third embodiment of the present invention provides the same effect as the first gas distribution apparatus according to the first embodiment of the present invention. In case of the gas distribution apparatus 300 according to the third embodiment of the present invention, the second gas buffering space (GBS2) is divided into the plurality of parts, and the processing gas is injected into the plurality of gas passages 111 through each divided part, whereby it is possible to uniformly inject the processing gas into the plurality of gas passages 111. The gas distribution apparatus 300 according to the third embodiment of the present invention may further include a gas injection member (not shown) which is disposed in the inside of each of the group buffering members 123 a and 123 b, and is connected with one lateral surface of the body 110 and the other lateral surface of the body 110 corresponding to each of the plurality of gas passage groups (GPG1, GPG2). The gas injection member is identical in structure to the gas injection members 127 a and 127 b shown in FIGS. 8 to 10, whereby a detailed description for the structure of the gas injection member will be omitted.
  • FIG. 11 illustrates a gas distribution apparatus according to the fourth embodiment of the present invention, which shows a change of processing gas supplied to a plurality of gas passages shown in FIGS. 1 to 4. Hereinafter, only the plurality of gas passages and the processing gas will be described in detail.
  • First, a plurality of gas passages 111 are formed in a body 110. Among the plurality of gas passages 111 formed in the body 110, one side of each of some gas passages 111 o, that is, the odd-numbered gas passage 111 o is communicated with a second gas buffering space (GBS2) of a first gas injection module 120 a, and the other side of the odd-numbered gas passage 111 o is closed by a detachable sealing cap 140. Herein, first processing gas (PG1) is injected into the odd-numbered gas passage 111 o through first and second buffering of the first gas injection module 120 a.
  • Among the plurality of gas passages 111 formed in the body 110, one side of each of the remaining gas passages 111 e, that is, the even-numbered gas passage 111 e is closed by a detachable sealing cap 140, and the other side of each of the even-numbered gas passages 111 e is communicated with a second gas buffering space (GBS2) of a second gas injection module 120 b. Herein, second processing gas (PG2), which is the same as or different from the first processing gas (PG1), is injected into the even-numbered gas passage 111 e through first and second buffering of the second gas injection module 120 b.
  • In detail, a first gas injection member 127 a is connected with one lateral surface of the body 110 so as to cover one side of the plurality of gas passages 111, wherein the first gas injection member 127 a includes a plurality of gas injection holes 127 h which are respectively overlapped with only one side of some gas passages 111 o among the plurality of gas passages 111. Thus, while one side of each of some gas passages 111 o is communicated with the second gas buffering space (GBS2) of the first gas injection module 120 a through the plurality of gas injection holes 127 h, one side of each of the remaining gas passages 111 e is closed by the first gas injection member 127 a.
  • Meanwhile, the second gas injection member 127 b is connected with the other lateral surface of the body 110 so as to cover the other side of the plurality of gas passages 111, wherein the second gas injection member 127 b includes a plurality of gas injection holes 127 h which are respectively overlapped with only the other side of the remaining gas passages 111 e among the plurality of gas passages 111. Thus, while the other side of each of some gas passages 111 o is closed by the first gas injection member 127 a, the other side of each of the remaining gas passages 111 e is communicated with the second gas buffering space (GBS2) of the second gas injection module 120 b through the plurality of gas injection holes 127 h.
  • In the gas distribution apparatus 400 according to the fourth embodiment of the present invention, if the first processing gas and the second processing gas (PG1, PG2) are the same, the first processing gas (PG1) and the second processing gas (PG2) are respectively injected into some gas passages 1110 and the remaining gas passages 111 e from the opposite directions so that it is possible to uniformly inject the processing gas into the plurality of gas passages 111.
  • Even though the first processing gas (PG1) is different from the second processing gas (PG2) in the gas distribution apparatus 400 according to the fourth embodiment of the present invention, some gas passages 111 o are spatially separated from the remaining gas passages 111 e so that it is possible to prevent the first processing gas (PG1) and the second processing gas (PG2) from being mixed inside the body 110, and to uniformly distribute the first processing gas (PG1) and the second processing gas (PG2) which are different from each other.
  • FIG. 13 is a rear perspective view illustrating a gas distribution apparatus according to the fifth embodiment of the present invention. FIG. 14 is a vertical cross sectional view along of FIG. 13. FIG. 15 is a horizontal cross sectional view along IV-IV′ of FIG. 13.
  • Referring to FIGS. 13 to 15, the gas distribution apparatus 500 according to the fifth embodiment of the present invention may include a body 110, and first to fourth gas injection modules 120 a, 120 b, 120 c and 120 d.
  • The body 110 may be formed of a plate-shaped metal material with a predetermined thickness, for example, aluminum or aluminum alloy. The body 110 is detachably provided in a lower surface of a chamber lid for covering an upper side of a processing chamber (not shown), whereby the body 110 confronts a substrate supporting means (not shown) provided on a bottom surface of the processing chamber.
  • The body 110 is provided with a plurality of first and second gas passages 116 and 117, and a plurality of first and second gas distribution holes 118 and 119.
  • The plurality of first gas passages 116 are provided at fixed intervals in parallel to a vertical direction (Y) inside the body 110, and the plurality of second gas passages 117 are provided at fixed intervals in parallel to a horizontal direction (X) inside the body 110, wherein each of the second gas passages 117 is disposed at a predetermined interval from each of the first gas passages 116 in a thickness direction (Z) of the body 110. In the same manner as the aforementioned first embodiment of the present invention, the plurality of first and second gas passages 116 and 117 may be formed through a gun drill working.
  • The plurality of fist gas distribution holes 118 are vertically formed on a rear surface of the body 110 at fixed intervals. Also, the plurality of fist gas distribution holes 118 are communicated with the plurality of first gas passages 116, respectively, to thereby downwardly distribute first processing gas (PG1), which is injected into the plurality of first gas passages 116, at a constant pressure. The plurality of second gas distribution holes 119 are vertically formed on the rear surface of the body 110 at fixed intervals, and are disposed to avoid the first gas passages 116. Also, the plurality of second gas distribution holes 119 are communicated with the plurality of second gas passages 117, respectively, to thereby downwardly distribute second processing gas (PG2), which is injected into the plurality of second gas passages 117, at a constant pressure. In this case, the second processing gas (PG2) may be the same as or different from the first processing gas (PG1). In the same manner as the first embodiment of the present invention, the plurality of first and second gas distribution holes 118 and 119 may include at least one distribution nozzle.
  • The first gas injection module 120 a is connected with a first lateral surface of the body 110. The first gas injection module 120 a injects the first processing gas (PG1), which is supplied through at least one of first gas supply pipe 130 a, into one side of each of the first gas passages 116. This first gas injection module 120 a is identical to the first gas injection module 120 a according to the first embodiment of the present invention, whereby a detailed description for the first gas injection module 120 a will be omitted.
  • The second gas injection module 120 b is connected with a second lateral surface being opposite to the first lateral surface of the body 110. The second gas injection module 120 b injects the first processing gas (PG1), which is supplied through at least one of second gas supply pipe 130 b, into the other side of each of the first gas passages 116. This second gas injection module 120 b is identical to the second gas injection module 120 b according to the first embodiment of the present invention, whereby a detailed description for the second gas injection module 120 b will be omitted.
  • The third gas injection module 120 c is connected with a third lateral surface of the body 110. The third gas injection module 120 c injects the second processing gas (PG2), which is supplied through at least one of third gas supply pipe 130 c, into one side of each of the second gas passages 117. In this case, the second processing gas (PG2) may be the same as or different from the first processing gas (PG1). The third gas injection module 120 c according to one embodiment of the present invention may include a first gas buffering space (GBS1) for firstly buffering the second processing gas supplied from the third gas supply pipe 130 c, and a second gas buffering space (GBS2) for secondly buffering the second processing gas (PG2) supplied from the first gas buffering space (GBS1) and injecting the second processing gas (PG2) into one side of each of the plurality of second gas passages 117. For example, the third gas injection module 120 c may include a first gas buffering member 121 with the first gas buffering space (GBS1), and a second gas buffering member 123 with the second gas buffering space (GBS2). Except that the second processing gas (PG2) supplied from the third gas supply pipe 130 c is injected into one side of each of the plurality of second gas passages 117, the third gas injection module 120 c is identical in structure to the aforementioned first gas injection module 120 a, whereby a detailed description for the structure of the third gas injection module 120 c will be omitted.
  • The fourth gas injection module 120 d is connected with a fourth lateral surface being opposite to the third lateral surface of the body 110. The fourth gas injection module 120 d injects the second processing gas (PG2), which is supplied through at least one of fourth gas supply pipe 130 d, into the other side of each of the second gas passages 117. In the same manner as the third gas injection module 120 c, the fourth gas injection module 120 d may include a first gas buffering member 121 with a first gas buffering space (GBS1), and a second gas buffering member 123 with a second gas buffering space (GBS2). Except that the second processing gas (PG2) supplied from the fourth gas supply pipe 130 d is injected into the other side of each of the plurality of second gas passages 117, the fourth gas injection module 120 d is identical in structure to the aforementioned third gas injection module 120 c, whereby a detailed description for the fourth gas injection module 120 d will be omitted.
  • In the gas distribution apparatus 500 according to the fifth embodiment of the present invention, if the first processing gas and the second processing gas (PG1, PG2) are the same, the first processing gas (PG1) and the second processing gas (PG2) are respectively injected into the both sides of each of the first and second gas passages 116 and 117 intersecting each other so that it is possible to uniformly inject the processing gas into the plurality of gas passages 116 and 117.
  • Even though the first processing gas (PG1) is different from the second processing gas (PG2) in the gas distribution apparatus 500 according to the fifth embodiment of the present invention, the plurality of first gas passages 116 are spatially separated from the plurality of second gas passages 117 so that it is possible to prevent the first processing gas (PG1) and the second processing gas (PG2) from being mixed inside the body 110, and to uniformly distribute the first processing gas (PG1) and the second processing gas (PG2) which are different from each other.
  • For the more uniform injection of the processing gas (PG1, PG2) into the plurality of first and second gas passages 116 and 117, the gas distribution apparatus 500 according to the fifth embodiment of the present invention may further include the structure of the gas injection member 127 a and 127 b shown in FIGS. 7 to 9, the structure of the plurality of group buffering members 123 a and 123 b shown in FIG. 10, the structure of the sealing cap 140 shown in FIG. 11, or the structure of the gas injection member 127 a and 127 b shown in FIG. 12, wherein the above structures may be disposed in each of the first to fourth lateral surfaces of the body 110. For example, if the gas distribution apparatus 500 according to the fifth embodiment of the present invention includes the gas injection member 127 a and 127 b shown in FIG. 12, the processing gas injected into the plurality of first and second gas passages 116 and 117 will be described as follows. The first processing gas (PG1) may be supplied to some of the first gas passages among the plurality of first gas passages 116 through the first gas injection member 127 a, the second processing gas (PG2) may be supplied to the remaining first gas passages through the second gas injection member 127 b, the third processing gas which is the same as or different from the second processing gas may be supplied to some of the second gas passages among the plurality of second gas passages 117 through the third gas injection member (not shown) which is the same as the aforementioned first gas injection member 127 a, and the fourth processing gas which is the same as or different from the third processing gas may be supplied to the remaining second gas passages through the fourth gas injection member (not shown) which is the same as the aforementioned second gas injection member 127 b.
  • FIG. 16 is a cross sectional view illustrating an apparatus for processing substrate according to one embodiment of the present invention.
  • Referring to FIG. 16, the apparatus for processing substrate 700 may include a processing chamber 710, a chamber lid 730, a substrate supporting means 750, and a gas distribution means 770.
  • The processing chamber 710 is formed in shape of “U” whose upper side is opened. A substrate inlet (not shown), through which a substrate is loaded or unloaded, is formed at one side of the processing chamber 710, and at least one exhaust port 712 for discharging the processing gas is formed on a bottom surface of the processing chamber 710.
  • The chamber lid 730 is provided at an upper side of the processing chamber 710, to thereby cover the upper side of the processing chamber 710. In this case, an insulating member 720 such as O-ring is provided between a connection part between the processing chamber 710 and the chamber lid 730. The insulating member 720 seals a space between the processing chamber 710 and the chamber lid 730, and electrically separates the processing chamber 710 and the chamber lid 730 from each other.
  • The chamber lid 730 is connected with an external power supply means 790 via a power cable 792, and is supplied with a plasma power from the power supply means 790. In this case, an impedance matching circuit 794 may be provided in the power cable 792. The impedance matching circuit 794 may include at least two impedance devices (not shown) for matching a source impedance and a load impedance of the plasma power supplied to the chamber lid 730. The impedance device may be formed of at least one of variable capacitor and variable inductor.
  • The substrate supporting means 750, which is provided in the processing chamber 710, supports the substrate (S) which is loaded into a processing space by the use of substrate transferring apparatus (not shown). The substrate supporting means 750 may be movably provided in the processing chamber 710. In this case, the substrate supporting means 750 is movably provided by the use of elevating axis 752 penetrating through the bottom surface of the processing chamber 710 so that the substrate supporting means 750 is moved to a processing position or a substrate loading and unloading position by the movement of the elevating axis 752 in accordance with the driving of elevating apparatus (not shown). Herein, a space between the elevating axis 752 and the processing chamber 710 is sealed by a bellows 754.
  • The gas distribution means 770 confronting the substrate supporting means 750 is connected with a lower surface of the chamber lid 730. The gas distribution means 770 distributes the processing gas supplied from an external gas supply apparatus onto the substrate (S). The gas distribution means 770 may be formed of any one of the gas distribution apparatuses 100, 200, 300, 400 and 500 according to the first to fifth embodiments of the present invention shown in FIGS. 2 to 15, wherein a detailed description for the gas distribution means 770 will be omitted.
  • Hereinafter, a thin film deposition process using the above substrate processing apparatus 700 according to the embodiment of the present invention will be described as follows.
  • First, a plurality of substrates (S) or a large-sized substrate (S) may be loaded and placed onto the substrate supporting means 750.
  • According as the processing gas is injected into the gas injection module of the gas distribution means 770 through the gas supply pipe 130 a and 130 b, the injected processing gas is firstly and secondly buffered (or diffused) by the first and second gas buffering spaces of the gas injection module, and is injected into the plurality of gas passages, and then the processing gas is downwardly distributed onto the substrate (S) through the plurality of gas distribution holes. At the same time, the plasma power is applied to the chamber lid 730 through the power supply means 790, whereby the plasma power is applied to the gas distribution means 770 through the chamber lid 730. Thus, the plasma is formed between the substrate supporting means 750 and the gas distribution means 770.
  • Accordingly, the processing gas distributed from the gas distribution means 770 is activated by the plasma, and is distributed onto the substrate (S), to thereby deposit a predetermined thin film onto the upper surface of the substrate (S) by the activated processing gas.
  • In the substrate processing apparatus 700 according to the present invention, the processing gas is firstly and secondly buffered and diffused in the gas injection module connected with the body of the gas distribution means 770, and is then injected into the gas passages, whereby the processing gas is uniformly distributed onto the substrate (S), to thereby enable the uniform substrate processing. For cleaning the gas distribution means 770, both ends of each of the plurality of gas passages are exposed to the external by the detachment of the gas injection module, which is detachably provided in the body of the gas distribution means 770, so that it is possible to facilitate the cleaning of the gas passages and the gas distribution holes, and to reduce the cleaning time.
  • It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the inventions. Thus, it is intended that the present invention covers the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.

Claims (20)

1. An apparatus for distributing gas comprising:
a body including a plurality of gas passages connected with a plurality of gas distribution holes for distributing processing gas; and
at least one gas injection module connected with at least one lateral surface of the body and respectively communicated with the plurality of gas passages,
wherein the gas injection module includes:
a first gas buffering space for firstly buffering the processing gas supplied from the external; and
a second gas buffering space for secondly buffering the processing gas firstly buffered in the first gas buffering space, and injecting the secondly buffered processing gas into the plurality of gas passages.
2. The apparatus according to claim 1, wherein the gas injection module includes:
a first gas buffering member provided with the first gas buffering space being communicated with at least one gas supply pipe, and connected with one lateral surface of the body; and
a second gas buffering member communicated with the first gas buffering space, and provided with the second gas buffering space being communicated with the plurality of gas passages.
3. The apparatus according to claim 2, wherein the gas injection module further includes a sealing member for sealing a space between the first gas buffering member and the lateral surface of the body.
4. The apparatus according to claim 2, wherein the second gas buffering member is provided with a plurality of communication holes being communicated with the first gas buffering space.
5. The apparatus according to claim 4, wherein a diameter of each of the plurality of communication holes is gradually increased from the center of the body toward both ends of the body with respect to a longitudinal direction of the lateral surface of the body.
6. The apparatus according to claim 4, wherein an interval between the center of each of the adjacent communication holes is gradually decreased from the center of the body toward both ends of the body with respect to a longitudinal direction of the lateral surface of the body.
7. The apparatus according to claim 2, wherein,
the gas injection module further includes a gas injection member disposed inside the second gas buffering member, and connected with the lateral surface of the body so as to cover the plurality of gas passages being communicated with the second gas buffering space, and
the gas injection member is provided with a plurality of gas injection holes for injecting the processing gas secondly buffered in the second gas buffering space into the plurality of gas passages.
8. The apparatus according to claim 7, wherein the gas injection hole is smaller than the gas passage.
9. The apparatus according to claim 7, wherein a diameter of each of the plurality of gas injection holes is gradually increased from the center of the body toward both ends of the body with respect to a longitudinal direction of the lateral surface of the body.
10. The apparatus according to claim 7, wherein the lateral surface of the body is provided with an insertion groove into which the gas injection member is to be inserted, and the gas injection member is inserted into and connected with the insertion groove while being detachably provided in the insertion groove.
11. The apparatus according to claim 2, wherein,
the plurality of gas passages are grouped into a plurality of gas passage groups, wherein each gas passage group includes the adjacent two or more gas passages, and
the second gas buffering member includes a plurality of group buffering members which secondly buffer the processing gas supplied from the first gas buffering space and inject the secondly-buffered processing gas into the plurality of gas passage groups.
12. The apparatus according to claim 1, wherein the gas injection module includes:
a first gas injection module connected with one lateral surface of the body, wherein the first gas injection module includes first and second gas buffering spaces for injecting first processing gas into some of the gas passages among the plurality of gas passages, and
a second gas injection module connected with the other lateral surface of the body in the opposite side of one lateral surface of the body, wherein the second gas injection module includes first and second gas buffering spaces for injecting second processing gas, which is the same as or different from the first processing gas, into the remaining gas passages among the plurality of gas passages.
13. The apparatus according to claim 12, wherein,
one side of each of some gas passages among the plurality of gas passages is communicated with the second gas buffering space of the first gas injection module, and the other side of each of some gas passages is closed, and
one side of each of the remaining gas passages among the plurality of gas passages is closed, and the other side of each of the remaining gas passages is communicated with the second gas buffering space of the second gas injection module.
14. The apparatus according to claim 12, wherein,
the first gas injection module further includes a first gas injection member for injecting the first processing gas secondly buffered in the second gas buffering space into some of the gas passages among the plurality of gas passages, and
the second gas injection module further includes a second gas injection member for injecting the second processing gas secondly buffered in the second gas buffering space into the remaining gas passages among the plurality of gas passages.
15. The apparatus according to claim 1, wherein the plurality of gas passages include:
a plurality of first gas passages provided at fixed intervals in parallel to a first longitudinal direction of the body; and
a plurality of second gas passages disposed at a predetermined interval from the plurality of first gas passages in a thickness direction of the body, and provided at fixed intervals in parallel to a second longitudinal direction being perpendicular to the first longitudinal direction of the body.
16. The apparatus according to claim 15, wherein the gas injection module includes:
a first gas injection module connected with a first lateral surface of the body, wherein the first gas injection module includes the first and second gas buffering spaces for injecting first processing gas into one side of the plurality of first gas passages;
a second gas injection module connected with a second lateral surface of the body in the opposite side of the first lateral surface, wherein the second gas injection module includes the first and second gas buffering spaces for injecting the first processing gas into the other side of the plurality of first gas passages;
a third gas injection module connected with a third lateral surface of the body, wherein the first and second gas buffering spaces for injecting second processing gas, which is the same as or different from the first processing gas, into one side of the plurality of second gas passages; and
a fourth gas injection module connected with a fourth lateral surface of the body in the opposite side of the third lateral surface, wherein the fourth gas injection module includes the first and second gas buffering spaces for injecting the second processing gas into the other side of the plurality of second gas passages.
17. The apparatus according to claim 16, wherein each of the first to fourth gas injection modules further includes a gas injection member with a plurality of gas injection holes for injecting the corresponding processing gas secondly buffered in the second gas buffering space into the corresponding gas passage.
18. The apparatus according to claim 15, wherein the gas injection module includes:
a first gas injection module connected with a first lateral surface of the body, wherein the first gas injection module includes the first and second gas buffering spaces for injecting first processing gas into some of first gas passages among a plurality of first gas passages;
a second gas injection module connected with a second lateral surface of the body in the opposite side of the first lateral surface, wherein the second gas injection module includes the first and second gas buffering spaces for injecting second processing gas, which is the same as or different from the first processing gas, into the remaining first gas passages among the plurality of first gas passages;
a third gas injection module connected with a third lateral surface of the body, wherein the third gas injection modules includes the first and second gas buffering spaces for injecting third processing gas, which is the same as or different from the second processing gas, into some of second gas passages among a plurality of second gas passages; and
a fourth gas injection module connected with a fourth lateral surface of the body in the opposite side of the third lateral surface, wherein the fourth gas injection module includes the first and second gas buffering spaces for injecting fourth processing gas, which is the same as or different from the third processing gas, into the remaining second gas passages among the plurality of second gas passages.
19. The apparatus according to claim 18, wherein each of the first to fourth gas injection modules further includes a gas injection member with a plurality of gas injection holes for injecting the corresponding processing gas secondly buffered in the second gas buffering space into the corresponding gas passage.
20. An apparatus for processing substrate comprising:
a processing chamber;
a chamber lid for covering an upper side of the processing chamber;
a substrate supporting means for supporting a substrate, the substrate supporting means provided inside the processing chamber; and
a gas distribution means confronting the substrate supporting means, the gas distribution means connected with a lower surface of the chamber lid,
wherein the gas distribution means includes an apparatus for distributing gas,
wherein the apparatus for distributing gas includes:
a body including a plurality of gas passages connected with a plurality of gas distribution holes for distributing processing gas; and
at least one gas injection module connected with at least one lateral surface of the body and respectively communicated with the plurality of gas passages,
wherein the gas injection module includes:
a first gas buffering space for firstly buffering the processing gas supplied from the external; and
a second gas buffering space for secondly buffering the processing gas firstly buffered in the first gas buffering space, and injecting the secondly buffered processing gas into the plurality of gas passages.
US15/301,717 2014-04-11 2015-04-03 Apparatus for distributing gas and apparatus for processing substrate including the same Abandoned US20170121815A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020140043632A KR102215965B1 (en) 2014-04-11 2014-04-11 Apparatus for injection gas and apparatus for processing substrate including the same
KR10-2014-0043632 2014-04-11
PCT/KR2015/003343 WO2015156542A1 (en) 2014-04-11 2015-04-03 Gas spraying apparatus and substrate processing apparatus including same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/003343 A-371-Of-International WO2015156542A1 (en) 2014-04-11 2015-04-03 Gas spraying apparatus and substrate processing apparatus including same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/593,931 Division US11293097B2 (en) 2014-04-11 2019-10-04 Apparatus for distributing gas and apparatus for processing substrate including the same

Publications (1)

Publication Number Publication Date
US20170121815A1 true US20170121815A1 (en) 2017-05-04

Family

ID=54288068

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/301,717 Abandoned US20170121815A1 (en) 2014-04-11 2015-04-03 Apparatus for distributing gas and apparatus for processing substrate including the same
US16/593,931 Active 2035-11-27 US11293097B2 (en) 2014-04-11 2019-10-04 Apparatus for distributing gas and apparatus for processing substrate including the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/593,931 Active 2035-11-27 US11293097B2 (en) 2014-04-11 2019-10-04 Apparatus for distributing gas and apparatus for processing substrate including the same

Country Status (5)

Country Link
US (2) US20170121815A1 (en)
KR (1) KR102215965B1 (en)
CN (1) CN106415789B (en)
TW (1) TWI658167B (en)
WO (1) WO2015156542A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11293097B2 (en) 2014-04-11 2022-04-05 Jusung Engineering Co., Ltd. Apparatus for distributing gas and apparatus for processing substrate including the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102415319B1 (en) * 2015-11-12 2022-07-01 세메스 주식회사 Gas supply unit and substrate treating apparatus including the same
CN107099784B (en) * 2017-05-13 2019-05-07 华中科技大学 A kind of modularization spray head and device for space isolation atomic layer deposition
US11149350B2 (en) * 2018-01-10 2021-10-19 Asm Ip Holding B.V. Shower plate structure for supplying carrier and dry gas
CN114959650B (en) * 2022-05-18 2023-10-20 江苏微导纳米科技股份有限公司 Semiconductor device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4096822A (en) * 1975-09-29 1978-06-27 Nippondenso Co., Ltd. Gaseous atmosphere control apparatus for a semiconductor manufacturing system
US5551982A (en) * 1994-03-31 1996-09-03 Applied Materials, Inc. Semiconductor wafer process chamber with susceptor back coating
US5916369A (en) * 1995-06-07 1999-06-29 Applied Materials, Inc. Gas inlets for wafer processing chamber
US6007633A (en) * 1997-04-09 1999-12-28 Tokyo Electron Limited Single-substrate-processing apparatus in semiconductor processing system
US6189485B1 (en) * 1998-06-25 2001-02-20 Anelva Corporation Plasma CVD apparatus suitable for manufacturing solar cell and the like
US6486081B1 (en) * 1998-11-13 2002-11-26 Applied Materials, Inc. Gas distribution system for a CVD processing chamber
US20140174362A1 (en) * 2012-12-21 2014-06-26 Chien-Teh Kao Apparatus And Methods For Symmetrical Gas Distribution With High Purge Efficiency
US8771418B2 (en) * 2009-07-08 2014-07-08 Eugene Technology Co., Ltd. Substrate-processing apparatus and substrate-processing method for selectively inserting diffusion plates
US20140216577A1 (en) * 2013-02-01 2014-08-07 Adpv Technology Limited Gas release device for coating process
US20140284404A1 (en) * 2013-03-20 2014-09-25 Asm Technology Singapore Pte Ltd. Chemical vapour deposition injector
US20150093883A1 (en) * 2013-10-02 2015-04-02 Nuflare Technology, Inc. Manufacturing apparatus for semiconductor device and manufacturing method for semiconductor device

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69127609T2 (en) * 1990-07-18 1998-01-22 Sumitomo Electric Industries DEVICE AND METHOD FOR PRODUCING DIAMONDS
JP2669168B2 (en) * 1991-03-29 1997-10-27 住友金属工業株式会社 Microwave plasma processing equipment
FI100409B (en) * 1994-11-28 1997-11-28 Asm Int Method and apparatus for making thin films
FI972874A0 (en) * 1997-07-04 1997-07-04 Mikrokemia Oy Foerfarande och anordning Foer framstaellning av tunnfilmer
FR2882064B1 (en) * 2005-02-17 2007-05-11 Snecma Propulsion Solide Sa PROCESS FOR THE DENSIFICATION OF THIN POROUS SUBSTRATES BY CHEMICAL VAPOR PHASE INFILTRATION AND DEVICE FOR LOADING SUCH SUBSTRATES
KR100824418B1 (en) * 2005-12-22 2008-04-23 엘지.필립스 엘시디 주식회사 Chemical Vapor Deposition of Electro luminescence device
US8652259B2 (en) * 2008-10-09 2014-02-18 Silevo, Inc. Scalable, high-throughput, multi-chamber epitaxial reactor for silicon deposition
KR101044010B1 (en) * 2008-11-27 2011-06-24 세메스 주식회사 Plasma processing apparatus
JP2012519956A (en) * 2009-03-03 2012-08-30 ジュソン エンジニアリング カンパニー リミテッド Gas distribution apparatus and substrate processing apparatus having the same
US8486191B2 (en) * 2009-04-07 2013-07-16 Asm America, Inc. Substrate reactor with adjustable injectors for mixing gases within reaction chamber
JP2011035201A (en) * 2009-08-03 2011-02-17 Sumitomo Electric Ind Ltd Gas-phase treatment device, gas-phase treatment method, and substrate
JP2011222592A (en) * 2010-04-05 2011-11-04 Sharp Corp Vapor phase deposition apparatus and vapor phase deposition method
WO2012051485A1 (en) * 2010-10-16 2012-04-19 Cambridge Nanotech Inc. Ald coating system
JP6097742B2 (en) * 2011-05-27 2017-03-15 クリスタル・ソーラー・インコーポレーテッド Silicon wafer by epitaxial deposition
JP6134522B2 (en) * 2013-01-30 2017-05-24 株式会社ニューフレアテクノロジー Vapor growth apparatus and vapor growth method
US9117670B2 (en) * 2013-03-14 2015-08-25 Sunedison Semiconductor Limited (Uen201334164H) Inject insert liner assemblies for chemical vapor deposition systems and methods of using same
US9328420B2 (en) * 2013-03-14 2016-05-03 Sunedison Semiconductor Limited (Uen201334164H) Gas distribution plate for chemical vapor deposition systems and methods of using same
US20140273503A1 (en) * 2013-03-14 2014-09-18 Memc Electronic Materials, Inc. Methods of gas distribution in a chemical vapor deposition system
JP6157942B2 (en) * 2013-06-13 2017-07-05 株式会社ニューフレアテクノロジー Vapor growth apparatus and vapor growth method
JP6199619B2 (en) * 2013-06-13 2017-09-20 株式会社ニューフレアテクノロジー Vapor growth equipment
JP6153401B2 (en) * 2013-07-02 2017-06-28 株式会社ニューフレアテクノロジー Vapor growth apparatus and vapor growth method
JP6180208B2 (en) * 2013-07-08 2017-08-16 株式会社ニューフレアテクノロジー Vapor growth apparatus and vapor growth method
KR102215965B1 (en) 2014-04-11 2021-02-18 주성엔지니어링(주) Apparatus for injection gas and apparatus for processing substrate including the same
US20150361555A1 (en) * 2014-06-12 2015-12-17 Crystal Solar Inc. Cvd epitaxial reactor chamber with resistive heating, three channel substrate carrier and gas preheat structure
JP6386901B2 (en) * 2014-12-17 2018-09-05 株式会社ニューフレアテクノロジー Vapor growth apparatus and vapor growth method
US10947640B1 (en) * 2016-12-02 2021-03-16 Svagos Technik, Inc. CVD reactor chamber with resistive heating for silicon carbide deposition

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4096822A (en) * 1975-09-29 1978-06-27 Nippondenso Co., Ltd. Gaseous atmosphere control apparatus for a semiconductor manufacturing system
US5551982A (en) * 1994-03-31 1996-09-03 Applied Materials, Inc. Semiconductor wafer process chamber with susceptor back coating
US5599397A (en) * 1994-03-31 1997-02-04 Applied Materials Inc. Semiconductor wafer process chamber with suspector back coating
US5725673A (en) * 1994-03-31 1998-03-10 Applied Materials Inc. Semiconductor wafer process chamber with susceptor back coating
US5916369A (en) * 1995-06-07 1999-06-29 Applied Materials, Inc. Gas inlets for wafer processing chamber
US6007633A (en) * 1997-04-09 1999-12-28 Tokyo Electron Limited Single-substrate-processing apparatus in semiconductor processing system
US6189485B1 (en) * 1998-06-25 2001-02-20 Anelva Corporation Plasma CVD apparatus suitable for manufacturing solar cell and the like
US6486081B1 (en) * 1998-11-13 2002-11-26 Applied Materials, Inc. Gas distribution system for a CVD processing chamber
US8771418B2 (en) * 2009-07-08 2014-07-08 Eugene Technology Co., Ltd. Substrate-processing apparatus and substrate-processing method for selectively inserting diffusion plates
US20140174362A1 (en) * 2012-12-21 2014-06-26 Chien-Teh Kao Apparatus And Methods For Symmetrical Gas Distribution With High Purge Efficiency
US20140216577A1 (en) * 2013-02-01 2014-08-07 Adpv Technology Limited Gas release device for coating process
US20140284404A1 (en) * 2013-03-20 2014-09-25 Asm Technology Singapore Pte Ltd. Chemical vapour deposition injector
US20150093883A1 (en) * 2013-10-02 2015-04-02 Nuflare Technology, Inc. Manufacturing apparatus for semiconductor device and manufacturing method for semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11293097B2 (en) 2014-04-11 2022-04-05 Jusung Engineering Co., Ltd. Apparatus for distributing gas and apparatus for processing substrate including the same

Also Published As

Publication number Publication date
TW201604313A (en) 2016-02-01
US20200032393A1 (en) 2020-01-30
US11293097B2 (en) 2022-04-05
KR102215965B1 (en) 2021-02-18
TWI658167B (en) 2019-05-01
CN106415789A (en) 2017-02-15
KR20150118251A (en) 2015-10-22
WO2015156542A1 (en) 2015-10-15
CN106415789B (en) 2019-06-04

Similar Documents

Publication Publication Date Title
US11293097B2 (en) Apparatus for distributing gas and apparatus for processing substrate including the same
KR101223489B1 (en) Apparatus for Processing Substrate
US10190214B2 (en) Deposition apparatus and deposition system having the same
KR100779118B1 (en) Display Panel Manufacturing System
CN106337169A (en) Thin film deposition apparatus
US20090017637A1 (en) Method and apparatus for batch processing in a vertical reactor
KR20100114717A (en) Apparatus for processing substarate
KR101478151B1 (en) Atommic layer deposition apparatus
KR20120028963A (en) Gas injection apparatus
KR101467195B1 (en) Gas sprayer and thin film depositing apparatus having the same
KR101248918B1 (en) Gas supplying method
KR101351399B1 (en) Apparatus and method of processing substrate
KR101698021B1 (en) A ald apparatus for large substrate
KR101661097B1 (en) The apparatus for depositing a atomic layer
KR102331779B1 (en) Apparatus for injection gas and apparatus for processing substrate including the same
KR102260370B1 (en) Full-area counter-flow heat exchange substrate support
JP2015137415A (en) Large-area atomic layer deposition apparatus
KR101219061B1 (en) Gas distribution module for narrow interval of spin nozzle unit and upright type deposition apparatus having the gas distribution module
KR101206833B1 (en) Deposition Apparatus for Substrate
KR102328847B1 (en) Apparatus for treating a large area substrate
KR101237772B1 (en) Upright type deposition apparatus having shower plate
KR20220082228A (en) Apparatus for Processing Substrate
KR20200057951A (en) A horizontal type apparatus for depositing the atomic layer on the large substrate
KR20170096296A (en) The plasma deposition device
KR20100033628A (en) Appratus for treatmenting substrate

Legal Events

Date Code Title Description
AS Assignment

Owner name: JUSUNG ENGINEERING CO., LTD., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JUNG, SUK CHUL;KIM, YOUNG-ROK;HAN, JONG KUK;REEL/FRAME:039969/0883

Effective date: 20160920

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION