US20170073487A1 - High temperature non-crosslinked polyethylene-based foam and method of making the same - Google Patents

High temperature non-crosslinked polyethylene-based foam and method of making the same Download PDF

Info

Publication number
US20170073487A1
US20170073487A1 US15/123,554 US201515123554A US2017073487A1 US 20170073487 A1 US20170073487 A1 US 20170073487A1 US 201515123554 A US201515123554 A US 201515123554A US 2017073487 A1 US2017073487 A1 US 2017073487A1
Authority
US
United States
Prior art keywords
low density
density polyethylene
linear low
foam
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/123,554
Other languages
English (en)
Inventor
Debabrata Kundu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hickory Springs Manufacturing Co
Original Assignee
Hickory Springs Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hickory Springs Manufacturing Co filed Critical Hickory Springs Manufacturing Co
Priority to US15/123,554 priority Critical patent/US20170073487A1/en
Publication of US20170073487A1 publication Critical patent/US20170073487A1/en
Assigned to HICKORY SPRINGS MANUFACTURING COMPANY reassignment HICKORY SPRINGS MANUFACTURING COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KUNDU, Debabrata
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/36Feeding the material to be shaped
    • B29C44/46Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length
    • B29C44/50Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length using pressure difference, e.g. by extrusion or by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/56After-treatment of articles, e.g. for altering the shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • B29K2023/0608PE, i.e. polyethylene characterised by its density
    • B29K2023/0625LLDPE, i.e. linear low density polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0063Density
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/03Extrusion of the foamable blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene

Definitions

  • Polymer-based foams can have a variety of different applications. In one particular application, certain polymer-based foams are used as insulation. However, the specific application in which polymer-based foam can be used as insulation is generally limited by the maximum operating temperature of the foam material. For example, non-crosslinked low density polyethylene (LDPE) foam insulation is only rated for use at operating temperatures of about 200° F. and therefore cannot be used as insulation in applications where the maximum operating temperatures are above 200° F.
  • LDPE low density polyethylene
  • polyethylene-based foam insulation has the potential to be drastically less expensive than, for example, elastomeric PVC-nitrile foam insulation
  • high density polyethylene (HDPE) and linear low density polyethylene (LLDPE) resins have higher melt temperatures than LDPE resins, but efforts to produce foams from these polyethylene resin materials have generally failed due to HDPE and LLDPE resins lacking the long branched molecular structure and the melt strength that is generally required to form a foam material having the desired maximum operating temperature.
  • the present application relates to LLPDE-based foams having a maximum operating temperature of about 220° F., and methods of manufacturing foam insulation from LLDPE resins.
  • the LLDPE-based foam has a maximum operating temperature of about 220° F. and a density in the range of from 0.6 to 10.0 lbs/ft 3 .
  • the LLDPE foam meets the ASTM C411 standard for hot-surface performance of high-temperature thermal insulation when tested at 220° F.—and/or achieves a rating of 25/50 when tested by the ASTM E 84 standard for surface burning characteristics of building materials.
  • methods of manufacturing LLDPE-based foams generally include a step wherein a LLDPE resin material is processed to create a long branch molecular structure in the LLDPE resin and increase the melt strength of the LLDPE resin.
  • a LLDPE resin material is processed to create a long branch molecular structure in the LLDPE resin and increase the melt strength of the LLDPE resin.
  • the LLDPE foam described herein is softer and more stretchable than low density polyethylene foam insulation and is 30 to 50% less expensive than elastomeric PVC-nitrile foam insulation.
  • the LLDPE foam is also recyclable, whereas elastomeric PVC-nitrile foam insulation is not.
  • the LLDPE foam is tougher and has a higher puncture resistance than some conventional foams (e.g., more difficult to tear and puncture than some conventional foams and has higher elongation before breaking than some conventional foams).
  • FIG. 1 is a flow chart illustrating a method for manufacturing high temperature polyethylene foam insulation according to various embodiments described herein;
  • FIG. 2 is a flow chart illustrating a method for manufacturing high temperature polyethylene foam insulation according to various embodiments described herein.
  • a high-temperature linear low density polyethylene foam is described.
  • the linear low density polyethylene foam can have a maximum operating temperature of about 220° F. Further, the linear low density polyethylene foam can have a density in the range of from 0.6 to 10.0 lbs/ft 3 .
  • the linear low density polyethylene foam meets the ASTM C411 standard for hot-surface performance of high-temperature thermal insulation when tested at temperatures up to 220° F. In some embodiments, the linear low density polyethylene foam has a 25/50 flame/smoke rating when tested according to the ASTM E 84 standard test method for surface burning characteristics of building materials.
  • the LLDPE foam generally comprises a LLDPE resin that is processed prior to undergoing a foaming process to create a long branch molecular structure in the LLDPE resin.
  • unprocessed LLDPE resin has a linear structure with a number of short branches.
  • Creating a long branch molecular structure in the LLDPE resin generally results in the LLDPE having improved melt strength.
  • the long branch molecular structure created in the LLPDE resin does not result in the LLDPE resin losing its thermoplastic properties.
  • the thermoplastic properties of the LLDPE are retained after creating a long branch molecular structure in the LLDPE resin by preventing crosslinking amongst the branches of the LLDPE.
  • the LLDPE resin processed to have a long branch molecular structure is free of crosslinking, and can be referred to as non-crosslinked LLDPE resin.
  • the linear low density polyethylene foam is prepared from a LLDPE resin having a high melt temperature.
  • the LLDPE resin is selected from those LLDPE resins having a melt temperature of around 255° F.
  • the LLDPE resin is selected from those LLDPE resins having a melt index in the range of from 15 to 25 at 190° C.
  • Suitable LLDPE resins can be obtained from a variety of manufacturers, including, but not limited to, ExxonMobil Chemical Company of Houston, Tex. and Dow Chemical Company of Midland, Mich.
  • the LLDPE foam described herein can include other components in addition to the processed LLDPE resin. Any additional components typically used in the foam manufacturing process and/or present in foam insulation products can be included. Exemplary additional components include, but are not limited to, flame retardant, color pigments, nucleating agents, diffusion blockers, blowing agents, and any combinations thereof. Any other additives that improve any particular properties of the foam can also be included.
  • the linear low density polyethylene foam can have a maximum operating temperature of about 220° F.
  • Maximum operating temperature is the maximum temperature to which the material can be exposed for 96 hours or longer while exhibiting less than 5% linear shrinkage at the expiration of 96 hours.
  • Maximum operating temperature is generally related to the ASTM C411 standard for hot-surface performance of high-temperature thermal insulation (discussed in greater detail below), which tests foam pipe insulation for warpage and other qualitative changes in the physical properties of the foam insulation. While the ASTM C411 standard is specific to foam pipe insulation, the maximum operating temperature described herein applies to the LLDPE foam regardless of the shape and specific application in which it is used.
  • the LLDPE foam described herein exceeds the standards for maximum operating temperature and/or the ASTM C411 standard. In some embodiments, the LLDPE foam exhibits less than less than 3% linear shrinkage when subjected to a temperature of 220° F. for 96 hours or longer. In some embodiments, the LLDPE foam exhibits less than less than 0.7% linear shrinkage when subjected to a temperature of 220° F. for 96 hours or longer. In some embodiments, the LLDPE foam exhibits less than 5% linear shrinkage even when exposed to temperatures of up to 220° F. for longer than 96 hours, such as longer than 637 hours.
  • the LLDPE foam described herein may exhibit limited or no cracking, delamination, and/or warpage when exposed to temperatures of 220° F. for 96 hours or longer. In some embodiments, the LLDPE foam described here exhibits no cracking when exposed to a temperature of 220° F. for 96 hours.
  • the linear low density polyethylene foam having a maximum operating temperature of about 220° F. makes the low linear density polyethylene foam suitable for insulation applications requiring a higher operating temperature than provided by, e.g., LDPE insulation.
  • the LLDPE foam can have a density in the range of from 0.6 to 10.0 lbs/ft 3 , such as in the range of from 1.0 to 4.0 lbs/ft 3 .
  • the LLDPE foam described herein has an R value similar or identical to the R value exhibited by elastomeric PVC-nitrile foam insulation and/or LDPE foam insulation.
  • the LLDPE foam described herein is fully recyclable.
  • the LLDPE foam can be recycled by virtue of at least the LLDPE foam retaining thermoplastic properties, rather than being converted to a thermoset during the process of manufacturing a foam from the initial LLDPE resin.
  • the LLDPE foam is considered fully recyclable because it can be melted into a melt material that may be reused in a variety of different ways.
  • the ability to recycle the LLDPE foam is an advantage over other foam insulation materials that are not recyclable, such as elastomeric PVC-nitrile foam insulation.
  • the LLDPE foam also exhibits improved toughness when compared to other foam insulation materials, such an elastomeric PVC-nitrile foam insulation.
  • the LLDPE foam toughness is exhibited by, for example, higher elongation before breaking than exhibited by elastomeric PVC-nitrile foam insulation.
  • the LLDPE foam toughness is also exhibited by higher tear strength than elastomeric PVC-nitrile foam insulation.
  • the LLDPE foam also exhibits higher puncture resistance as compared to, e.g., elastomeric PVC-nitrile foam.
  • the LLDPE foam described herein meets the ASTM C411 standard for hot-surface performance of high-temperature thermal foam pipe insulation when tested at 220° F.
  • the ASTM C411 test calls for the LLDPE foam material to be applied to a surface heated at a specific temperature for a specific period of time and then checking the material for defects such as cracking, delamination, warpage, flaming, glowing, smoldering and/or smoking after the test is completed.
  • the foam insulation must be found to exhibit little to no cracking, delamination, warpage, flaming, glowing, smoldering, and/or smoking over the testing period of at least 96 hours.
  • the LLDPE foam described herein meets this criteria and additionally exhibits less than 5% linear shrinkage (related to ASTM C 534 standard) when tested by the ASTM C 411 procedure at a temperature of about 220° F.
  • the LLDPE foam described herein has a 25/50 rating (flame spread/smoke development) when tested by the ASTM E84 standard test method for surface burning characteristics of building materials.
  • the ASTM E84 test generally measures surface flame spread and smoke density of a material as compared against the surface burning characteristics of select grade red oak (a 100 rating) and fiber-cement board (a 0 rating) surfaces under specific fire exposure conditions.
  • a method 100 for manufacturing a high temperature LLDPE foam includes a step 110 of processing the LLDPE resin to create a long branched molecular structure in the LLDPE, and a step 120 of manufacturing a foam using the processed LLDPE resin.
  • an LLDPE resin is processed to create a long branched molecular structure in the LLDPE.
  • unprocessed LLDPE resin has a linear structure with a number of short branches. Processing the LLDPE resin to have a long branch molecular structure helps to improve the melt strength of the LLDPE resin.
  • the processing of step 110 can be considered as a processing step to improve the melt strength of the LLDPE resin.
  • the LLDPE resin used in the processing step 110 can be any LLDPE resin material having a suitable melt temperature.
  • the LLDPE resin is selected from those LLDPE resins having a melt temperature of about 255° F.
  • the LLDPE resin is selected from this LLDPE resins having a melt index in the range of from 15 to 25 at 190° C.
  • the LLDPE resin is typically provided in a pellet form. LLDPE resin can be obtained from a variety of manufacturers, including, but not limited to, ExxonMobil Chemical Company of Houston, Tex. and Dow Chemical Company of Midland, Mich.
  • the LLDPE resin is processed to create a long branch molecular structure in the LLDPE resin and/or improve the melt strength of the LLDPE resin.
  • Any process of creating a long branch molecular structure in the LLDPE resin or improving the melt strength can be used, provided that the processing step also retains the thermoplastic property of the LLDPE resin.
  • a processing step that creates a long branch molecular structure in the LLDPE resin and/or improves the melt strength of the LLDPE resin but also results in creating gels and crosslinking is not suitable for the processing step, as the processed LLDPE resin will not remain thermoplastic and, as such, cannot be pressed with conventional equipment used for foaming non-crosslinked LDPE.
  • processing step 110 is carried out on the LLDPE to decrease the melt index of the LLDPE resin.
  • processing step 110 is carried out on an LLDPE resin having a melt index in the range of from 15 to 25 at 190° C. and is carried out until the melt index of the LLDPE resin is reduced to in the range of 0.7 to 5.0 at 190° C.
  • the processing of the LLDPE resin is carried out using an irradiation process.
  • the irradiation process can be carried out using electron beam technology, which generally does not require additives and avoids the generation of hazardous by-products. Electron beam irradiation also typically requires minimal exposure time and is energy efficient. Electron beam irradiation can also be carried out so as to avoid chemical cross-linking.
  • a foam manufacturing process 200 can include a step 210 of mixing the processed LLDPE resin with additives to form a dry mixture, a step 220 of heating and mixing the dry mixture in an extruder to form a homogenous melt, a step 230 of injecting a blowing agent into the homogenous melt, a step 240 of continuing to pass the homogenous melt through the extruder, a step 250 of cooling the homogenous melt, and a step 260 of passing the homogenous melt through a die.
  • the processed LLDPE resin is mixed with additives.
  • the mixing of materials can be accomplished by, for example, introducing the processed LLDPE resin and the additives into the feed zone of an extruder.
  • the processed LLDPE resin and the additives are both in a pellet form when mixed together.
  • the additives added to and mixed with the processed LLDPE resin are a nucleating agent and a diffusion blocker.
  • the nucleating agent can be used to initiate the formation of bubbles in the foam and control cell size in the foam product.
  • the diffusion blocker can be used to prevent cells in the foam product from collapsing. Any suitable nucleating agents and diffusion blockers can be used in step 210 .
  • Other additives known to be useful in the manufacture of foam material can be used step in 210 , and the additives can be used in any combination.
  • step 220 the dry mixture of processed LLDPE resin and additives are heated and mixed inside of an extruder until a homogenous melt is formed.
  • the heating and mixing are carried out using components of the extruder.
  • the extruder used in the process described herein can be any type of extruder suitable for use in manufacturing polymeric foams.
  • the extruder can be a single screw extruder, a tandem extruder, or a twin screw extruder, among others.
  • the melt produced in step 220 has improved melt strength by virtue of the LLDPE resin having been processed to provide a long branched molecular structure.
  • a blowing agent is injected into the homogenous melt.
  • the injection of the blowing agent occurs inside of the extruder.
  • the blowing agent can be injected into the homogenous melt using a high pressure metering system which is capable of overcoming the pressure of the homogenous melt inside the extruder. Any suitable blowing agent known to those of ordinary skill in the art for use in manufacturing foam materials can be used.
  • the blowing agent is isobutene, n-butane, isopentane, pentane, carbon dioxide, nitrogen, HFC, HFO, sulfur hexafluoride or any combination thereof.
  • the homogenous melt continues to pass through the extruder in step 240 . During this time, the temperature of the homogenous melt is increased. The temperature is generally increased due to the combined shear and compressive forces applied to the homogenous melt by the rotating extruder screws.
  • the homogenous melt is cooled prior to being foamed.
  • the homogenous melt can be cooled by passing the homogenous melt through a cooling zone.
  • the cooling zone is a part of the same extruder used to carry out steps 210 , 220 , and 230 .
  • the cooling zone is in a second extruder (such as when a tandem extruder is used).
  • Heat exchangers can also be used to cool the homogenous melt.
  • step 260 the cooled homogenous melt is passed through a die to form the desired geometry for the foam material.
  • the die can have any geometry desired for the manufactured foam product.
  • the blowing agent in the homogenous melt goes through a change of phase (liquid to gas) and permits expansion of bubbles to form a foam having a density in the range of from 0.6 to 10.0 lbs/ft 3 .
  • Additional steps that can be carried out after step 260 include, but are not limited to, using a conveyor belt to carry the foam product away from the extruder, external cooling of the foam to maintain shape, using a puller for feeding the foam to a cutter, and using a cutter for cutting the foam at the desired length.
  • the above method is not limited to the use of extrusion processing to foam the processed LLDPE resin. Other methods known to those of ordinary skill in the art can also be used.
  • Tables 2 and 3 below summarize physical testing carried out on a sample of the LLDPE foam described herein and LDPE foam insulation.
  • Table 4 provides a general comparison of LLDPE foam insulation as described herein versus elastomeric PVC-nitrile foam insulation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
US15/123,554 2014-03-10 2015-03-10 High temperature non-crosslinked polyethylene-based foam and method of making the same Abandoned US20170073487A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/123,554 US20170073487A1 (en) 2014-03-10 2015-03-10 High temperature non-crosslinked polyethylene-based foam and method of making the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201461950490P 2014-03-10 2014-03-10
US15/123,554 US20170073487A1 (en) 2014-03-10 2015-03-10 High temperature non-crosslinked polyethylene-based foam and method of making the same
PCT/US2015/019705 WO2015138449A1 (en) 2014-03-10 2015-03-10 High temperature non-crosslinked polyethylene-based foam and methods of making the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2015/019705 A-371-Of-International WO2015138449A1 (en) 2014-03-10 2015-03-10 High temperature non-crosslinked polyethylene-based foam and methods of making the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/286,229 Continuation US11161952B2 (en) 2014-03-10 2019-02-26 Methods of insulating piping and other materials using high temperature non-crosslinked polyethylene-based foam

Publications (1)

Publication Number Publication Date
US20170073487A1 true US20170073487A1 (en) 2017-03-16

Family

ID=54072333

Family Applications (3)

Application Number Title Priority Date Filing Date
US15/123,554 Abandoned US20170073487A1 (en) 2014-03-10 2015-03-10 High temperature non-crosslinked polyethylene-based foam and method of making the same
US16/286,229 Active 2035-06-13 US11161952B2 (en) 2014-03-10 2019-02-26 Methods of insulating piping and other materials using high temperature non-crosslinked polyethylene-based foam
US17/492,388 Abandoned US20220025141A1 (en) 2014-03-10 2021-10-01 High temperature non-crosslinked polyethylene-based foam and method of making the same

Family Applications After (2)

Application Number Title Priority Date Filing Date
US16/286,229 Active 2035-06-13 US11161952B2 (en) 2014-03-10 2019-02-26 Methods of insulating piping and other materials using high temperature non-crosslinked polyethylene-based foam
US17/492,388 Abandoned US20220025141A1 (en) 2014-03-10 2021-10-01 High temperature non-crosslinked polyethylene-based foam and method of making the same

Country Status (6)

Country Link
US (3) US20170073487A1 (de)
EP (1) EP3116948B1 (de)
CA (1) CA2942265C (de)
ES (1) ES2856924T3 (de)
MX (1) MX2016011707A (de)
WO (1) WO2015138449A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11161952B2 (en) 2014-03-10 2021-11-02 Hickory Springs Manufacturing Company Methods of insulating piping and other materials using high temperature non-crosslinked polyethylene-based foam

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2019412B (en) 1978-04-07 1982-09-15 Raychem Ltd Cross-linked low density linear polyethylenes
JPS58208328A (ja) * 1982-05-31 1983-12-05 Asahi Chem Ind Co Ltd 新規な多泡質材料
JPS5975929A (ja) 1982-10-25 1984-04-28 Sekisui Chem Co Ltd ポリオレフイン発泡体の製造方法
US4525257A (en) 1982-12-27 1985-06-25 Union Carbide Corporation Low level irradiated linear low density ethylene/alpha-olefin copolymers and film extruded therefrom
US4714716A (en) 1984-11-16 1987-12-22 The Dow Chemical Company Lightly crosslinked linear olefinic polymer foams and process for making
US4581383A (en) * 1985-04-19 1986-04-08 The Dow Chemical Company Lightly crosslinked linear olefinic polymer foam blends and process for making
JPH0686544B2 (ja) * 1985-07-12 1994-11-02 鐘淵化学工業株式会社 無架橋直鎖状低密度ポリエチレン予備発泡粒子およびその成形法
US4957790A (en) 1987-12-21 1990-09-18 W. R. Grace & Co.-Conn. Oriented polymeric films
US5508319A (en) * 1991-06-21 1996-04-16 Montell North America Inc. High melt strength, ethylene polymer, process for making it, and use thereof
US5589519A (en) 1994-09-30 1996-12-31 Knaus; Dennis A. Process of extruding lightly crosslinked polyolefin foam
US5736618A (en) 1995-05-05 1998-04-07 Poloso; Anthony High density polyethylene with improved thermoforming characteristics
KR19990039402A (ko) 1997-11-12 1999-06-05 남창우 전자선조사에 의한 선형저밀도 폴리에틸렌 수지의 개질방법
US6593386B1 (en) 1999-09-13 2003-07-15 Sealed Air Corporation (U.S.) Compitable linear and branched ethylenic polymers and foams therefrom
US6541105B1 (en) 1999-09-16 2003-04-01 Dow Global Technologies Inc. Acoustical open-cell polylefins and process for making
WO2001040374A2 (en) * 1999-12-03 2001-06-07 The Dow Chemical Company Grafted thermoplastic compositions and fabricated articles therefrom
JP2004514747A (ja) * 2000-11-23 2004-05-20 サーマフレックス インターナショナル ホールディング ベスローテン フェンノートシャップ 超可撓性パイプ断熱体
JP2002275297A (ja) 2001-03-16 2002-09-25 Toray Ind Inc 架橋ポリオレフィン系樹脂発泡体
US20030051764A1 (en) 2001-09-20 2003-03-20 Jungers Jon W. Air handling system ductwork component and method of manufacture
AU2003262390A1 (en) 2002-04-19 2003-11-03 Gammatron (Pty) Ltd Method of increasing the hydrostatic stress strength of a polymer
US20030215589A1 (en) 2002-05-17 2003-11-20 Rick Merical Antimicrobial film structures for use in HVAC
GB2395948A (en) 2002-12-06 2004-06-09 Pactiv Europ B V Polyolefin foam
US20050106378A1 (en) 2003-11-19 2005-05-19 Sealed Air Corporation (Us) Corrugated foam/film laminates
US20060246272A1 (en) 2005-04-29 2006-11-02 Zhang Xiaomin X Thermoplastic foam composite
JP4841368B2 (ja) 2005-09-28 2011-12-21 株式会社興人 ポリエチレン系架橋シュリンクフイルム
ES2426947T3 (es) 2007-05-31 2013-10-25 Saudi Basic Industries Corporation Espuma de polietileno
JP5803086B2 (ja) 2009-10-31 2015-11-04 キョーラク株式会社 発泡成形体の成形方法及び発泡成形体
JP2013539812A (ja) 2010-10-14 2013-10-28 リライアンス、インダストリーズ、リミテッド 高溶融強度プロピレン系重合体の調製プロセス
US8648122B2 (en) 2011-12-01 2014-02-11 Sealed Air Corporation (Us) Method of foaming polyolefin using acrylated epoxidized fatty acid and foam produced therefrom
EP3116948B1 (de) 2014-03-10 2020-12-09 Hickory Springs Manufacturing Company Auf unvernetztem hochtemperaturpolyethylen basierender schaumstoff und verfahren zur herstellung davon

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11161952B2 (en) 2014-03-10 2021-11-02 Hickory Springs Manufacturing Company Methods of insulating piping and other materials using high temperature non-crosslinked polyethylene-based foam

Also Published As

Publication number Publication date
EP3116948A1 (de) 2017-01-18
CA2942265C (en) 2022-11-29
US11161952B2 (en) 2021-11-02
MX2016011707A (es) 2017-04-27
CA2942265A1 (en) 2015-09-17
EP3116948B1 (de) 2020-12-09
US20190203007A1 (en) 2019-07-04
EP3116948A4 (de) 2017-10-25
ES2856924T3 (es) 2021-09-28
US20220025141A1 (en) 2022-01-27
WO2015138449A1 (en) 2015-09-17

Similar Documents

Publication Publication Date Title
US7803862B2 (en) Composition for polyolefin resin foam, foam of the same, and process for producing foam
EP0585378B1 (de) Blasmittelzusammensetzung und verfahren zur herstellung von schaumen
EP1625174B2 (de) Hochtemperaturbeständige polypropylenweichschäume niedriger dichte
US20120074347A1 (en) Infrared attenuated polymeric foam insulation with flame retardant performance
HUE031448T2 (en) Use of recycled flakes, cellular polyester and products made from it
US8314161B2 (en) Deformable, rigid polystyrene foam board
US20220025141A1 (en) High temperature non-crosslinked polyethylene-based foam and method of making the same
EP2706086A1 (de) Verfahren zur Herstellung von Schaumstoffplatten niedriger Dichte durch Extrusion von Styrolpolymeren unter Verwendung von Hydrofluorolefinen als Treibmittel
CN103232625A (zh) 高阻燃化学交联聚乙烯发泡材料及其制备方法
US9845911B2 (en) Thermoplastic polymeric foam pipe insulation
US8361363B2 (en) Foam board of polyolefin resin and method for its production
EP3426455B1 (de) Vernetzter schlauchförmiger schaum
KR102504693B1 (ko) 열경화성 발포체, 이의 제조방법 및 이를 포함하는 단열재
JP5179550B2 (ja) 再生樹脂含有ポリオレフィン系樹脂発泡体用組成物及びその発泡体
JP5358106B2 (ja) ポリプロピレン系樹脂予備発泡粒子
Saiz‐Arroyo et al. Production and Characterization of crosslinked low‐density polyethylene foams using waste of foams with the same composition
JP4688519B2 (ja) ポリオレフィン系樹脂発泡体の製造方法
US9058922B2 (en) Method of manufacturing chain extended foam insulation coaxial cable
KR101928338B1 (ko) 타원형 클로즈드 셀을 가지는 압출 발포 폴리스티렌 폼 및 이의 제조방법
KR101372137B1 (ko) 발포 비드용 폴리프로필렌 수지 조성물
KR20240078797A (ko) 준불연 및 난연을 동시에 만족하는 페놀 발포폼
CN103102554A (zh) 一种低烟无卤阻燃聚乙烯专用料

Legal Events

Date Code Title Description
AS Assignment

Owner name: HICKORY SPRINGS MANUFACTURING COMPANY, NORTH CAROL

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KUNDU, DEBABRATA;REEL/FRAME:042579/0394

Effective date: 20141104

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION