US20170034462A1 - Solid-state imaging element having image signal overflow path - Google Patents

Solid-state imaging element having image signal overflow path Download PDF

Info

Publication number
US20170034462A1
US20170034462A1 US15/236,555 US201615236555A US2017034462A1 US 20170034462 A1 US20170034462 A1 US 20170034462A1 US 201615236555 A US201615236555 A US 201615236555A US 2017034462 A1 US2017034462 A1 US 2017034462A1
Authority
US
United States
Prior art keywords
imaging device
reset
device according
configured
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/236,555
Inventor
Takahisa Ueno
Kazuya Yonemoto
Ryoji Suzuki
Koichi Shiono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP15905098A priority Critical patent/JP4200545B2/en
Priority to JP10-159050 priority
Priority to US09/327,523 priority patent/US7116365B1/en
Priority to US10/945,519 priority patent/US8023024B2/en
Priority to US13/067,112 priority patent/US8743257B2/en
Priority to US14/218,485 priority patent/US9179081B2/en
Priority to US14/630,320 priority patent/US9313430B2/en
Priority to US14/732,293 priority patent/US9253422B2/en
Priority to US14/994,935 priority patent/US9445020B2/en
Application filed by Sony Corp filed Critical Sony Corp
Priority to US15/236,555 priority patent/US20170034462A1/en
Publication of US20170034462A1 publication Critical patent/US20170034462A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/335Transforming light or analogous information into electric information using solid-state image sensors [SSIS]
    • H04N5/357Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N5/363Noise processing, e.g. detecting, correcting, reducing or removing noise applied to reset noise, e.g. KTC noise related to CMOS structures
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14638Structures specially adapted for transferring the charges across the imager perpendicular to the imaging plane
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N3/00Scanning details of television systems; Combination thereof with generation of supply voltages
    • H04N3/10Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical
    • H04N3/14Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical by means of electrically scanned solid-state devices
    • H04N3/15Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical by means of electrically scanned solid-state devices for picture signal generation
    • H04N3/1506Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical by means of electrically scanned solid-state devices for picture signal generation with addressing of the image-sensor elements
    • H04N3/1512Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical by means of electrically scanned solid-state devices for picture signal generation with addressing of the image-sensor elements for MOS image-sensors, e.g. MOS-CCD
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N3/00Scanning details of television systems; Combination thereof with generation of supply voltages
    • H04N3/10Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical
    • H04N3/14Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical by means of electrically scanned solid-state devices
    • H04N3/15Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical by means of electrically scanned solid-state devices for picture signal generation
    • H04N3/155Control of the image-sensor operation, e.g. image processing within the image-sensor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/335Transforming light or analogous information into electric information using solid-state image sensors [SSIS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/335Transforming light or analogous information into electric information using solid-state image sensors [SSIS]
    • H04N5/341Extracting pixel data from an image sensor by controlling scanning circuits, e.g. by modifying the number of pixels having been sampled or to be sampled
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/335Transforming light or analogous information into electric information using solid-state image sensors [SSIS]
    • H04N5/369SSIS architecture; Circuitry associated therewith
    • H04N5/374Addressed sensors, e.g. MOS or CMOS sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/335Transforming light or analogous information into electric information using solid-state image sensors [SSIS]
    • H04N5/369SSIS architecture; Circuitry associated therewith
    • H04N5/374Addressed sensors, e.g. MOS or CMOS sensors
    • H04N5/3742Details of transfer or readout registers; split readout registers and multiple readout registers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/335Transforming light or analogous information into electric information using solid-state image sensors [SSIS]
    • H04N5/369SSIS architecture; Circuitry associated therewith
    • H04N5/374Addressed sensors, e.g. MOS or CMOS sensors
    • H04N5/3745Addressed sensors, e.g. MOS or CMOS sensors having additional components embedded within a pixel or connected to a group of pixels within a sensor matrix, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/335Transforming light or analogous information into electric information using solid-state image sensors [SSIS]
    • H04N5/369SSIS architecture; Circuitry associated therewith
    • H04N5/374Addressed sensors, e.g. MOS or CMOS sensors
    • H04N5/3745Addressed sensors, e.g. MOS or CMOS sensors having additional components embedded within a pixel or connected to a group of pixels within a sensor matrix, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N5/37457Addressed sensors, e.g. MOS or CMOS sensors having additional components embedded within a pixel or connected to a group of pixels within a sensor matrix, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising amplifiers shared between a plurality of pixels, e.g. at least one part of the amplifier has to be on the sensor array itself

Abstract

Since the great number of elements constituting a unit pixel having an amplification function would hinder reduction of pixel size, unit pixel n,m arranged in a matrix form is comprised of a photodiode, a transfer switch for transferring charges stored in the photodiode, a floating diffusion for storing charges transferred by the transfer switch, a reset switch for resetting the floating diffusion, and an amplifying transistor for outputting a signal in accordance with the potential of the floating diffusion to a vertical signal line, and by affording vertical selection pulse .phi.Vn to the drain of the reset switch to control a reset potential thereof, pixels are selected in units of rows.

Description

    CROSS REFERENCES TO RELATED APPLICATIONS
  • This is a Continuation Application of U.S. patent Ser. No. 14/994,935, filed on Jan. 13, 2016, which is a Continuation Application of U.S. patent Ser. No.: 14/732,293, filed on Jun. 5, 2015, now U.S. Pat. No. 9,253,422 issued on Feb. 2, 2016, which is a Continuation Application of U.S. patent Ser. No.: 14/630,320, filed on Feb. 24, 2015, now U.S. Pat. No.: 9,313,430 issued on Apr. 12, 2016, which is a Continuation Application of U.S. patent Ser. No.: 14/218,485, filed Mar. 18, 2014, now U.S. Pat. No.: 9,179,081, issued on Nov. 3, 2015, which is a Continuation Application of U.S. patent application Ser. No.: 13/067,112, filed on May 10, 2011, now U.S. Pat. No.: 8,743,257, issued on Jun. 3, 2014, which is a Continuation Application of U.S. patent application Ser. No.: 10/945,519, filed on Sep. 20, 2004, now U.S. Pat. No.: 8,023,024, issued on Sep. 20, 2011, which is a Continuation Application of U.S. patent application Ser. No.: 09/327,523, filed on Jun. 8, 1999, now U.S. Pat. No.: 7,116,365, issued on Oct. 3, 2006, which claims priority from Japanese Patent Application 10-159050, filed on Jun. 8, 1998, the entire contents of which being incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a solid-state imaging element, a method for driving it, and a camera system, and particularly to an amplification type solid-state imaging element such as a CMOS image sensor having an amplification function for each of unit pixels arranged in a matrix form, a method for driving it, and a camera system using amplification type solid-state imaging elements as imaging devices.
  • 2. Description of Related Art
  • Amplification type solid-state imaging elements, for example, CMOS image sensors have various pixel structures. As an example, there is known a pixel structure having floating diffusion (FD) inside pixels. This pixel structure is advantageous in that sensitivity can be increased because signals are amplified by the floating diffusion. FIG. 18 shows a prior art pixel structure of this type.
  • In FIG. 18, each of unit pixels 100 arranged in a matrix form includes photogate 101, transfer switch 102, floating diffusion 103, reset transistor 104, amplifying transistor 105, and vertical selection transistor 106. In response to a vertical selection pulse afforded via the vertical selection line 111, the vertical selection transistor 106 selects unit pixels 100 in units of rows, whereby a signal amplified by the amplifying transistor 105 is output to the vertical signal line 112.
  • By the way, to reduce pixel size requires that the number of elements to constitute a unit pixel 100 is reduced. However, since the pixel structure of a prior art CMOS image sensor described above dictates that three transistors, reset transistor 104, amplifying transistor 105, and vertical selection transistor 106, are used to select the potential of floating diffusion 103 in units of rows for output to vertical signal line 112, a large number of elements are used, hindering reduction of pixel size.
  • SUMMARY OF THE INVENTION
  • The present invention has been made in consideration of the above problem and an object of the present invention is to reduce the number of elements making up a unit pixel and offer a solid-state imaging element having made reduction of pixel size possible, a method for driving it, and a camera system.
  • A solid-state imaging element according to the present invention comprises:
  • unit pixels, arranged in a matrix form, which have photoelectric transfer elements, transfer switches for transferring charges stored in the photoelectric transfer elements, charge store parts for storing charges transferred by the transfer switches, reset switches for resetting the charge store parts, and amplifying elements for outputting signals in accordance with the potential of the charge store parts to vertical signal lines;
  • a vertical scanning circuit for selecting pixels in units of rows by controlling a reset potential afforded to the reset switch;
  • a horizontal scanning circuit for sequentially selecting signals output to the vertical signal lines in units of columns; and
  • an output circuit for outputting signals selected by the horizontal scanning circuit via horizontal signal lines.
  • In a solid-state imaging element of the above configuration, by setting a reset potential afforded to a reset switch in a unit pixel to, e.g., 0 V at the time of other than pixel selection, the potential of a charge store part becomes Low. By affording, e.g., a pixel source voltage to the reset switch as a reset potential, pixels are selected, and upon the occurrence of a reset pulse, the potential of the charge store part is reset to the pixel source voltage. Namely, by controlling a reset potential, the potential of the charge store part is controlled. Subsequently, signal charges stored in the photoelectric transfer element are transferred to the charge store part and the potential of the charge store part that changes in accordance with the transfer is read into a vertical signal line by an amplifying element.
  • A method for driving a solid-state imaging element according to the present invention, in a solid-state imaging element comprising unit pixels, arranged in a matrix form, which have photoelectric transfer elements, transfer switches for transferring charges stored in the photoelectric transfer elements, charge store parts for storing charges transferred by the transfer switches, reset switches for resetting the charge store parts, and amplifying elements for outputting signals in accordance with the potential of the charge store parts to vertical signal lines, selects pixels in units of rows by controlling a reset potential afforded to the reset switches.
  • In a solid-state imaging element having an amplification function for each pixel, the potential of a charge store part is controlled by controlling a reset potential afforded to a reset switch to reset the charge store part. Thereby, pixels are selected in units of rows without providing an element for vertical (row) selection. That is, the reset switch also has a function to select pixels in unit of rows. Accordingly, an element for vertical selection can be cut from a unit pixel.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic configuration diagram showing a first embodiment of the present invention.
  • FIG. 2 is a potential diagram of unit pixel and vertical signal line in the first embodiment.
  • FIG. 3 is a timing chart at pixel selection in the first embodiment.
  • FIGS. 4A to 4C show a potential diagram 1 of pixels of selection line in the first embodiment.
  • FIGS. 5A to 5C show a potential diagram 2 of pixels of selection line in the first embodiment.
  • FIGS. 6A to 6E are cross-sectional structure diagrams showing a concrete configuration example of overflow path.
  • FIG. 7 is a schematic configuration diagram showing a variant of the first embodiment of the present invention.
  • FIG. 8 is a potential diagram of unit pixel and vertical signal line in of a variant of the first embodiment.
  • FIG. 9 is a timing chart at pixel selection in a variant of the first embodiment.
  • FIG. 10 is a schematic configuration diagram showing a second embodiment of the present invention.
  • FIG. 11 is a potential diagram of unit pixel and vertical signal line in the second embodiment.
  • FIG. 12 is a timing chart at pixel selection in the second embodiment.
  • FIGS. 13A to 131J show a potential diagram 1 of pixels of selection line in the second embodiment.
  • FIGS. 14A to 14C show a potential diagram 2 of pixels of selection line in the second embodiment.
  • FIGS. 15A to 151J show a potential diagram 1 of pixels of non-selection line in the second embodiment.
  • FIGS. 16A to 16C show a potential diagram 2 of pixels of non-selection line in the second embodiment
  • FIG. 17 is a schematic configuration diagram of an example of a camera system to which the present invention is applied.
  • FIG. 18 is a circuit diagram showing the configuration of a prior art unit pixel.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
  • FIG. 1 is a schematic configuration diagram of a CMOS image sensor according to a first embodiment of the present invention. In FIG. 1, unit pixels 10 are two-dimensionally arranged to constitute a pixel section; for simplicity, there are shown here only two pixels, unit pixel 10 n,m in the n-th row, the m-th column and unit pixel 10 n+1,m in the (n+1)-th row, the m-th column. The structure of unit pixel 10 is the same for all pixels; hereinafter, as an example, the structure of unit pixel 10 n,m in the n-th row, the m-th column will be described.
  • The unit pixel 10 n,m comprises a photoelectric transfer element, e.g., photodiode 11, transfer switch 12, floating diffusion (FD) 13 serving as a charge store part, reset switch 14, and amplifying transistor 15. As a photoelectric transfer element, photogate or embedded photodiode can be substituted for the photodiode 11.
  • In this example, N-channel enhancement type transistor, N-chantel depression type transistor, and N-channel enhancement type transistor are used as the transfer switch 12, reset switch 14, and amplifying transistor 15, respectively. However, all or part of these transistors can also be replaced by P-channel transistors to constitute the circuit.
  • In the unit pixel 10 n,m, the photodiode 11 is a p-n junction diode that photoelectrically converts incident light into signal charge of quantity in accordance with the quantity of the incident light and stores it. The transfer switch 12, connected between the photodiode 11 and floating diffusion 13, transfers the signal charge stored in the photodiode 11 to the floating diffusion 13. The floating diffusion 13 converts the transferred signal charge into a signal voltage and affords the voltage to the gate of the amplifying transistor 15.
  • The reset switch 14, connected between the floating diffusion 13 and vertical selection line 21, has a function to reset the potential of the floating diffusion 13 to that of pixel power source. The amplifying transistor 15, connected between power source line 22 and vertical signal line 23, amplifies the potential of the floating diffusion 13 and outputs the amplified potential to the vertical signal line 23. A pixel power source voltage is not limited to 3.3V, which is used as an example in this example.
  • FIG. 2 shows a potential distribution of unit pixel 10 and vertical signal line 23 in the first embodiment. In the figure, PD, TS, FD, RS, and AT designate photodiode 11, transfer switch 12, floating diffusion 13, reset switch 14, and amplifying transistor 15, respectively. For potentials of the floating diffusion 13 and amplifying transistor 15, a potential operation range at selection and a potential operation range at other times are shown by solid lines and dashed lines, respectively.
  • Vertical scanning circuit 24, provided to select unit pixels 10 in units of rows, is comprised of e.g., a shift register. From the vertical scanning circuit 24, vertical selection pulse .phi.V ( . . . , .phi.Vn, .phi.Vn+1, . . . ), transfer pulse .phi.T ( . . . , .phi.Tn, .phi.Tn+1, . . . ), and reset pulse .phi.R ( . . . , .phi.Rn, .phi.Rn+1, . . . ) are output.
  • The vertical selection pulse .phi.V ( . . . , .phi.Vn, .phi.Vn+1, . . . ) is applied to the drain of reset switch 14 through the vertical selection line 21, the transfer pulse .phi.T ( . . . , .phi.Tn, .phi.Tn+1, . . . ) to the gate of transfer switch 12 through the transfer line 25, and the reset pulse .phi.R ( . . . , .phi.Rn, .phi.Rn+1, . . . ) to the gate of reset switch 14 through the reset line 26.
  • To the end of vertical signal line 23, vertical signal line output circuit 27 is connected for each column. As the vertical signal line output circuit 27, an output circuit of e.g., voltage mode type is used. Horizontal selection pulse .phi.H ( . . . , .phi.Hm, . . . ) from horizontal scanning circuit 28 is fed to the vertical signal line output circuit 27. The horizontal scanning circuit 28, provided to select unit pixels 10 in units of columns, is comprised of e.g., a shift register.
  • The output end of vertical signal line output circuit 27 is connected to horizontal signal line 29. To the horizontal signal line 29, one line of signals read into the vertical signal line output circuit 27 through the vertical signal line 23 from unit pixel 10 is output sequentially from the vertical signal line output circuit 27 by horizontal scanning of the horizontal scanning circuit 28. The input end of horizontal signal line output circuit 30 is connected to the end of horizontal signal line 29.
  • Next, the pixel operation in a CMOS image sensor according to the first embodiment of the above configuration will be described using an example of selecting pixels of n-th line (n-th row). Herein, the timing chart of FIG. 3 will be used with reference to the potential diagrams of FIGS. 4 and 5.
  • A time period (t<t1) until time tl is non-selection state. In the non-selection state, since vertical selection pulse .phi.Vn is in Low level (0 V) and reset switch (RS) 14 is in off state, the potential of floating diffusion (FD) 13 is 0 V.
  • At time t1, the vertical selection pulse .phi.Vn changes from Low to High (3.3V), and at the same time, in response to the occurrence of reset pulse .phi.Rn, the reset switch 14 goes on and the potential of floating diffusion 13 of the n-th line is reset from 0 V to 3.3V. As a result, since the amplifying transistor (AT) 15 is turned on, pixels of the n-th line go into selection state (t1<t<t2).
  • Upon the extinction of the reset pulse .phi.Rn at time t2, the reset floating diffusion 13 is read. Consequently, an offset level (hereinafter, called a noise level) different for each different pixel is read into the vertical signal line 23 by the amplifying transistor 15 and output to the vertical signal line output circuit 27 (t2<t<t3). The read-out noise level is held (sample held) within the vertical signal line output circuit 27.
  • Upon the occurrence of transfer pulse .phi.Tn at time t3, the transfer switch (TS) 12, because a potential below the gate thereof is deepened by the transfer pulse .phi.Tn applied to the gate, transfers signal charge stored in the photodiode (PD) 11 to the floating diffusion 13 (t3<t<t4). The transfer of signal charge causes the potential of the floating diffusion 13 to change in accordance with the quantity of charge.
  • Upon the extinction of the transfer pulse .phi.Tn at time t4, a potential in accordance with the signal charge of the floating diffusion 13 is read into the vertical signal line 23 by the amplifying transistor 15 and output to the vertical signal line output-circuit (t4<t<t5). The read-out signal level is held (sample held) within the vertical signal line output circuit 27.
  • Upon entry to a horizontal valid period, signals read from pixels 10 into the vertical signal line output circuit 27 for each column are sequentially output to the horizontal signal line output circuit 30 through the horizontal signal line 29. At this time, in these output circuits 27 and 30, by subtracting a noise level from the signal level of unit pixel 10, a fixed pattern noise due to the dispersion of characteristics of unit pixel 10 is suppressed and a fixed pattern noise due to the dispersion of characteristics of the vertical signal line output circuit 27 is suppressed.
  • At time t6, the vertical selection pulse .phi.Vn changes from High to Low, and thereby pixels on the n-th line go into non-selection state, and at the same time, pixels on the next (n+1)-th line go into selection state, and the above operation is repeated on the (n+1)-th line.
  • Herein, a description will be made of pixels on non-selection lines. By driving the vertical selection pulse .phi.V Low (0 V), pixel 10 can be put in non-selection state. This is because since a depression type transistor is used as the reset switch 14, when the vertical selection pulse .phi.V is 0 V the floating diffusion 13 is always 0 V, and thereby the amplifying transistor 15 is always in cut-off state.
  • As described above, unit pixel 10 is comprised of photodiode 11, transfer switch 12, floating diffusion 13, reset switch 14, and amplifying transistor 15, and the potential of floating diffusion 13 is controlled through the reset switch 14, whereby one transistor can be cut because a vertical selection switch is not provided to provide the vertical selection function, as it would be in the case of conventional pixel structures.
  • When the vertical selection pulse .phi.V is driven Low by incorporating a charge pump circuit, the gate of the transfer switch 12 can be put at a negative potential for a long period other than the period t3<t<t4. In such a case, a dark current can be suppressed since holes can be implanted into the silicon interface of the transfer switch adjacent to the photodiode 11 for a long period of time. This produces a great effect, particularly when an embedded sensor structure is employed as the photodiode 11.
  • Although the foregoing description of operation, for simplicity, has been on all pixel independent reading mode in which signals of pixels of all lines are independently read, the present invention is not limited to that mode. Of course, frame reading mode and field reading mode are also possible. In the former mode, signals of odd (even) lines are read in a first field and signals of even (odd) lines are read in a second field. In the latter mode, signals of two adjacent lines are read at the same time to add voltages, and combinations of two lines for the addition operation are changed on a field basis.
  • Herein, a description will be made of a concrete configuration of unit pixel 10. When signal charges are stored in the photodiode 11, as apparent from FIG. 4A, the floating diffusion 13 becomes 0 V. For this reason, during the charge storing, the surface potential of the transfer switch 12 must be 0 V or less. However, without a special process, there would be no path for discharging charges that overflow from the photodiode 11,
  • Accordingly, a pixel structure according to the present invention is made so that a diffusion layer connected to power source, e.g., the drain of the amplifying transistor 15 is laid out adjacently to the photodiode 11 and element separation between both is made imperfect, whereby an overflow path is formed and excess charges are discharged (overflowed) via the path. By this process, an overflow path can be formed without increasing the dimension of unit pixel 10.
  • As concrete examples of forming an overflow path, various structures described below are possible. As shown in FIGS. 6A to 6E, there are a structure (FIG. 6A) in which an overflow path is formed by reducing the width (distance) of an element separation region; a structure (FIG. 6B) in which an overflow path is formed by reducing the density of a P region for channel stop; and a structure (FIG. 6C) in which an overflow path is formed by positively forming an N.sup.− region below a P region for channel stop.
  • In the case where an embedded sensor structure is used as the photodiode 11, there are a structure (FIG. 61J) in which an N.sup.+(SR N.sup.+) region for sensor is formed also in the pixel power source side to moderately form a lateral distance of an overflow path and further a high-density impurity is injected into the N.sup.+ region of the pixel power source side to form a N.sup.+ region for source/drain; and a structure (FIG. 6E) in which an N.sup.− region is formed for an overflow path in the (FIG. 61J) structure.
  • A LOCOS (Local Oxidation of Silicon) oxide film shown in-each of the structures of FIGS. 6A to 6C is not necessarily necessary. However, in this case, to moderately form a lateral distance of an overflow path, as in the example of the (FIG. 61J) structure, it is desirable to implant ions to an N.sup.+ region of photodiode 11 and an N.sup.+ region of pixel power source adjacent to an overflow pulse with an identical mask.
  • As in each of the structures of FIG. 6A, and FIGS. 6C to 6E, the silicon interface of overflow section is not depleted by forming the overflow path with a virtual gate. Accordingly, dark current occurs less frequently, compared with prior art overflow structures in which a transfer gate is used, in which case a silicon interface would be depleted. A greater effect is obtained particularly when an embedded sensor structure is used as the photodiode 11, because depleted portions of silicon interface can be completely eliminated.
  • FIG. 7 is a schematic configuration diagram of a variant of a first embodiment of the present invention. The first embodiment takes a configuration in which signals from pixels are output in voltage mode, while the variant takes a configuration in which signals from pixels are output in current mode. Accordingly, the pixel structure of unit pixel is exactly the same as that of the first embodiment, except for the configuration of a signal output system.
  • A CMOS image sensor according to the variant takes a configuration in which horizontal selection switch 31 is connected between the end of vertical signal line 23 and horizontal signal line 29, and an operational amplifier 33 fed back by resistor 32 is placed at the end of horizontal signal line 29. That is, to output signals from pixels in current mode, the vertical signal line 23 and horizontal signal line 29 are fixed to a constant potential (Vbias) by the operational amplifier 33 fed back by the resistor 32 and the amplifying transistor 15 within unit pixel 10 n,m is linearly operated by incorporating a power source circuit 34, for example, and reducing a source voltage to be afforded to pixels.
  • Although this variant is constructed in a way that incorporates the power source circuit 34 and reduces a source voltage to be afforded to pixels, the present invention is not limited to this construction. For example, by reducing a threshold voltage Vth of the amplifying transistor 15 within unit pixel 10 n,m, the amplifying transistor 15 can also be linearly operated.
  • FIG. 8 shows a potential distribution of unit pixel 10 and vertical signal line 23 in this variant. In FIG. 8, PD, TS, FD, RS, and AT designate photodiode 11, transfer switch 12, floating diffusion 13, reset switch 14, and amplifying transistor 15, respectively. For potentials of the floating diffusion 13 and amplifying transistor 15, a potential operation range at selection and a potential operation range at other times are shown by solid lines and dashed lines, respectively.
  • FIG. 9 is a timing chart for explaining the operation of a CMOS image sensor according to this variant. Fundamental portions of the operation of unit pixel 10 n,m are the same as those of the first embodiment. Herein, to avoid an overlapping description, only different portions will be described.
  • Signals are read from pixels during a horizontal valid period. Noise levels are not read but only signal levels are read. Since a sample hold operation cannot be performed in a signal output system in the current mode as it could be in the voltage mode, fixed pattern noises of signal levels due to the characteristics of pixels are suppressed using a frame memory in an external signal processing system.
  • Although FIG. 9 is a timing chart on the all pixel independent reading mode in which signals of pixels of all lines are independently read, the present invention is not limited to that mode. Of course, the frame reading mode and the field reading mode are also possible. In the former mode, signals of odd (even) lines are read in a first field and signals of even (odd) lines are read in a second field. In the latter mode, signals of two adjacent lines are read at the same time to add currents, and combinations of two lines for the addition operation are changed on a field basis.
  • FIG. 10 is a schematic configuration diagram of a CMOS image sensor according to a second embodiment of the present invention. In FIG. 10, unit pixels 40 are two-dimensionally arranged to constitute a pixel section; for simplicity, there are shown here only two pixels, unit pixel 40 n,m in the n-th row, the m-th column and unit pixel 40 n+1,m in the (n+1)-th row, the m-th column. The structure of unit pixel 40 is the same for all pixels; hereinafter, as an example, the structure of unit pixel 40 n,m in the n-th row, the m-th column will be described.
  • The unit pixel 40 n,m comprises a photoelectric transfer element, e.g., photodiode 41, transfer switch 42, floating diffusion (FD) 43 serving, as a charge store part, reset switch 44, amplifying transistor 45, and transfer selection switch 46. As a photoelectric transfer element, photogate or embedded photodiode can be substituted for the photodiode 41.
  • In this example, N-channel enhancement type transistor, N-channel depression type transistor, N-channel enhancement type transistor, and N-channel enhancement type transistor are used as transfer switch 42, reset switch 44, amplifying transistor 45, and transfer selection switch 45, respectively. However, all or part of these transistors can also be replaced by P-channel transistors to constitute the circuit.
  • In the unit pixel 40 n,m, the photodiode 41 is a p-n junction diode of e.g., an embedded sensor structure that photoelectrically converts incident light into signal charge of quantity in accordance with the quantity of the incident light and stores it. The transfer switch 42, connected between the photodiode 41 and floating diffusion 43, transfers the signal charge stored in the photodiode 41 to the floating diffusion 43. The floating diffusion 43 converts the transferred signal charge into a signal voltage and feeds the voltage to the gate of the amplifying transistor 45.
  • The reset switch 44, connected between the floating diffusion 43 and vertical selection line 51, has a function to reset the potential of the floating diffusion 43 to that of pixel power source. The amplifying transistor 45, connected between power source line 52 and vertical signal line 53, amplifies the potential of the floating diffusion 43 and outputs the amplified potential to the vertical signal line 53.
  • To the power source line 52, a voltage of e.g., 3.3 V is afforded from power source circuit 54. However, a source voltage is not limited to 3.3 V. Transfer selection switch 46, connected between transfer line 55 and transfer switch 42, performs transfer control for the transfer switch 42.
  • FIG. 11 shows a potential distribution of unit pixel 40 and vertical signal line 53 in the second embodiment. In FIG. 11, PD, TS, FD, RS, AT, and SS designate photodiode 41, transfer switch 42, floating diffusion 43, reset switch 44, amplifying transistor 45, and transfer selection switch 46, respectively. For potentials of the floating diffusion 43 and amplifying transistor 45, a potential operation range at selection and a potential operation range at other times are shown by solid lines and dashed lines, respectively.
  • As apparent from FIG. 11, in this example, a photodiode of an embedded sensor structure is used as photodiode 41. That is, the photodiode is of such a sensor construction that P.sup.+ hole store layer 47 is provided on the substrate surface of the p-n junction diode. For an overflow path of unit pixel 40, the pixel structures in FIGS. 6A to 6E are employed, as in the first embodiment.
  • Vertical scanning circuit 56, provided to select unit pixels 40 in units of rows, is comprised of e.g., a shift register. From the vertical scanning circuit 56, vertical selection pulse .phi.V ( . . . , .phi.Vn, .phi.Vn+1, . . . ) is output. Vertical selection pulse .phi.V ( . . . , .phi.Vn, .phi.Vn+1, . . . ) is applied to the drain of reset switch 14 via the vertical selection line 51.
  • Vertical scanning circuit 57, provided to select unit pixels 40 in units of columns, is comprised of e.g., a shift register. From the horizontal scanning circuit 57, reset pulse .phi.R ( . . . , .phi.Rm, . . . ), transfer pulse .phi.T ( . . . , .phi.Tm, . . . ), and horizontal selection pulse .phi.H ( . . . , .phi.Hm, . . . ) are output. The transfer pulse .phi.T ( . . . , .phi.Tm, . . . ) is applied to the drain of transfer selection switch 46 via the transfer line 55, and the reset pulse .phi.R ( . . . , .phi.Rm, . . . ) to the gate of reset switch 44 via the reset line 58.
  • Horizontal selection switch 60 is connected between the end of vertical signal line 53 and horizontal signal line 59. As the horizontal selection transistor 60, an N-channel transistor, for example, is used. Horizontal selection pulse .phi.H ( . . . , .phi.Hm, . . . ) output from horizontal scanning circuit 57 is fed to the gate of the horizontal selection transistor 60. An operational amplifier 62 fed back by resistor 61 is placed at the end of horizontal signal line 59.
  • A CMOS image sensor according to the second embodiment of the above configuration takes a configuration in which signals from pixels are output in the current mode. That is, the vertical signal line 53 and horizontal signal line 59 are fixed to a constant potential (Vbias) by the operational amplifier 62 fed back by the resistor 61 and the amplifying transistor 45 within unit pixel 40 n,m is linearly operated by incorporating a power source circuit 54 and reducing a source voltage to be afforded to pixels.
  • Although this embodiment is configured so that the amplifying transistor 45 is linearly operated by incorporating the power source circuit 54 and reducing a source voltage to be afforded to pixels, the present invention is not limited to this configuration. For example, by reducing a threshold voltage Vth of the amplifying transistor 45 within unit pixel 40 n,m, the amplifying transistor 45 can be linearly operated.
  • Next, the pixel operation in a CMOS image sensor according to the second embodiment of the above configuration will be described using an example of selecting pixels of n-th line. Herein, the timing chart of FIG. 12 will be used with reference to the potential diagrams of FIGS. 13 and 14.
  • A time period (t<t1) until time tl is non-selection state. In the non-selection state, since vertical selection pulse .phi.Vn is in Low level (0 V) and reset switch (RS) 44 is in off state, the potential of floating diffusion (FD) 43 is 0 V.
  • At time t1, the vertical selection pulse .phi.Vn changes from Low to High (3.3V). The gate potential of the amplifying transistor (AT) 45 increases because a depression type transistor is used as the reset transistor 44 (t1<t<t2).
  • At this time, the amplifying transistor 45 may comes on depending on the potential setting thereof or the potential of the vertical signal line 53. This example assumes that the amplifying transistor 45 is cut off. At this point, however, since the horizontal selection switch 60 is off and no influence is exerted on the horizontal signal line 59, it does not matter in which state the amplifying transistor 45 is.
  • In response to the occurrence of reset pulse .phi.Rm at time t2, the reset switch 44 comes on and the potential of floating diffusion 43 in the n-th line, the m-th column is reset from 0 V to 3.3 V. Since this results in the amplifying transistor (AT) 45 turning on, unit pixel 40 n,m in the n-th line, the m-th column goes into the selection state (t2<t<t3).
  • Upon the extinction of the reset pulse .phi.Rm at time t3, the reset floating diffusion 43 is read. Consequently, an offset level (hereinafter, called a noise level) different for each pixel is read into the vertical signal line 53 (t3<t <t4). The read-out noise level is, in response to the horizontal selection pulse .phi.Hm that occurred at time t2, output to the horizontal signal line 59 by the horizontal selection switch 60 that is on.
  • Upon the occurrence of transfer pulse .phi.Tm at time t4, the transfer switch (TS) 42, because a potential below the gate thereof is deepened by the transfer pulse .phi.Tn applied to the gate, transfers signal charge stored in the photodiode (PD) 41 to the floating diffusion 43 (t4<t<t5). The transfer of the signal charge causes the potential of the floating diffusion 43 to change in accordance with the quantity of charge.
  • Upon the extinction of the transfer pulse .phi.Tm at time t5, a potential in accordance with the signal charge of the floating diffusion 43 is read into the vertical signal line 53 by the amplifying transistor 45 (t5<t<t6). The read-out noise level is output to the horizontal signal line 59 by the horizontal selection switch 60.
  • At time t7, the vertical selection pulse .phi.Vn changes from High to Low, whereby pixels on the n-th line go into non-selection state, and at the same time, pixels on the next (n+1)-th line go into selection state, and the above operation is repeated on the (n+1)-th line.
  • As described above, for one pixel, noise level and signal level are sequentially obtained in that order (a reverse order from signal level to noise level is also permissible). This operation is called a pixel point sequential reset operation.
  • The pixel point sequential reset operation has the following advantages: [0094] {circumflex over (1)} Since noise output and signal output take an identical path including the horizontal selection switch 60, a fixed pattern noise due to dispersion between paths will not occur in principle. [0095] {circumflex over (2)} Since noise level and signal level are sequentially output, the difference between noise level and signal level can be obtained by a differential circuit such as a correlated duplex sampling circuit (CDS circuit) without using frame memory and line memory in an external signal processing system, so that the system can be simplified.
  • A series of pixel point sequential reset operations described above must be performed at a high speed. For this reason, signals from pixels are output in the current mode that is advantageous in terms of operation speed. However, without being limited to a mode of current mode output, if speed requirements are satisfied, a mode of voltage mode output can also be taken, as in a CMOS image sensor according to the first embodiment.
  • As apparent from the potential diagrams of FIGS. 15 and 16, the operation of pixels not selected does not matter particularly even if transfer pulse .phi.Tm and reset pulse .phi.Rm are shared in column direction.
  • Although the foregoing description of operation, for simplicity, is on the all pixel independent reading mode in which signals of pixels of all lines are independently read, the present invention is not limited to that mode. Of course, frame reading mode and field reading mode are also possible. In the former mode, signals of odd (even) lines are read in a first field and signals of even (odd) lines are read in a second field. In the latter mode, signals of two adjacent lines are read at the same time to add currents, and combinations of two lines for the addition operation are changed on a field basis.
  • In the CMOS image sensor according to the above second embodiment, adjacent .phi.Tm-1 and reset pulse .phi.Rm can be also be shared, and thereby the wiring can be cut.
  • By positively providing capacity to a node connected to the gate of transfer selection switch 46 and the gate of transfer switch 42, when vertical selection pulse .phi.Vn changes from High to Low when t>t7, the gate potential of the transfer switch 42 can be made negative. By this arrangement, since holes can be implanted into the silicon interface of transfer switch 42 adjacent to the photodiode 41, a dark current can be suppressed.
  • Furthermore, the power source circuit 54 can be cut by shifting (in this example, e.g., 1.5 V shift) the potential (Vbias) of vertical signal line 53, the potential of amplifying transistor 45, and the entire source voltage.
  • A variant of the second embodiment can be constructed so that current output is performed by transferring the role of the amplifying transistor 45 as source follower resistance load to the horizontal selection switch 60. That is, a current output operation is performed as described below.
  • Assume that the horizontal selection switch 60 operates in a linear area. The potential of horizontal signal line 59 is held constant, for example, by using an operational amplifier 33 fed back by a resistor. By doing so, a source follower loaded with a resistor is formed by the amplifying transistor 46 and the horizontal selection switch 60, a current flows through the horizontal signal line 59 in accordance with the potential of floating diffusion 43, and a voltage in accordance with the potential of floating diffusion 43 develops at the output end of the operational amplifier.
  • FIG. 17 is a schematic configuration diagram of an example of a camera system to which the present invention is applied. In FIG. 17, incident light (image light) from an object (not shown) forms an image on the imaging surface of imaging element 72 by an optical system including lens 71 and other elements. As the imaging element 72, a CMOS image sensor according to the foregoing first embodiment or variant thereof, or the second embodiment is used.
  • The imaging element 72 is driven based on a variety of timings output from driving circuit 73 including a timing generator and the like. An imaging signal output from the imaging element 72 is subjected to various signal operations in signal processing circuit 74 before being output as an image signal.
  • As described above, according to the present invention, unit pixels arranged in a matrix form are comprised of a photoelectric transfer element, transfer switch, a charge store part, a reset switch, and an amplifying element, and pixels are selected in units of rows by controlling a reset potential afforded to the reset switch, whereby an element for vertical selection can be cut, making reduction of pixel size possible.

Claims (16)

1. (canceled)
2. An imaging device comprising:
a differential circuit, and
a pixel including
a photoelectric conversion element,
a charge store element,
a transfer transistor,
a reset transistor, and
an amplifying transistor,
wherein, during a first time period, the reset transistor is configured to connect a first voltage line to the charge store element,
wherein, during a second time period which is after the first time period, the amplifying transistor is configured to output a first signal as an offset level to a signal line,
wherein, during a third time period which is after the second time period, the transfer transistor is configured to transfer a charge stored in the photoelectric conversion element to the charge store element, and
wherein, during a fourth time period which is after the third time period, the amplifying transistor is configured to output a second signal as a signal level to the signal line.
wherein the differential circuit is configured to output a third signal according to a difference between the offset level and the signal level.
3. The imaging device according to claim 2, wherein a region in which the oxide film is arranged is configured to discharge charge from the photoelectric conversion element to the second voltage line.
4. The imaging device according to claim 2, wherein the first voltage line is configured to supply a first voltage and a second voltage.
5. The imaging device according to claim 2, wherein a potential of the first voltage line is not fixed.
6. The imaging device according to claim 2, wherein the amplifying transistor is directly connected to the signal line.
7. The imaging device according to claim 2, wherein the charge store element is a floating diffusion region.
8. The imaging device according to claim 2, wherein the reset transistor is configured to reset the charge store element.
9. The imaging device according to claim 2, wherein the photoelectric conversion element is configured to convert incident light into a signal charge.
10. The imaging device according to claim 2,
wherein the transfer transistor is configured to connect the photoelectric conversion element to the charge store element according to a transfer pulse supplied via a transfer control line,
wherein the reset transistor is configured to connect the first voltage line to the charge store element according to a reset pulse supplied via a reset control line, and
wherein the amplifying transistor is configured to connect the second voltage line to the signal line according to a potential of the charge store element.
11. The imaging device according to claim 10,
wherein the signal line extends along a first direction, and
wherein the first voltage line, the second voltage line, and the reset control line extend along a second direction which is different with the first direction.
12. The imaging device according to claim 2, further comprising a vertical scanning circuit and a horizontal scanning circuit.
13. The imaging device according to claim 12, further comprising an output circuit configured to output image signals supplied from the pixel according to the horizontal scanning circuit.
14. The imaging device according to claim 2, wherein the reset transistor is a depletion type transistor.
15. The imaging device according to claim 10, wherein a negative potential is applied to the transfer control line.
16. An electronic apparatus comprising the imaging device according to claim 2.
US15/236,555 1998-06-08 2016-08-15 Solid-state imaging element having image signal overflow path Abandoned US20170034462A1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP15905098A JP4200545B2 (en) 1998-06-08 1998-06-08 Solid-state imaging device, driving method thereof, and camera system
JP10-159050 1998-06-08
US09/327,523 US7116365B1 (en) 1998-06-08 1999-06-08 Solid-state imaging element, method for driving the same, and camera system
US10/945,519 US8023024B2 (en) 1998-06-08 2004-09-20 Solid-state imaging element having image signal overflow path
US13/067,112 US8743257B2 (en) 1998-06-08 2011-05-10 Solid-state imaging element having image signal overflow path
US14/218,485 US9179081B2 (en) 1998-06-08 2014-03-18 Solid-state imaging element having image signal overflow path
US14/630,320 US9313430B2 (en) 1998-06-08 2015-02-24 Solid-state imaging element having image signal overflow path
US14/732,293 US9253422B2 (en) 1998-06-08 2015-06-05 Solid-state imaging element having image signal overflow path
US14/994,935 US9445020B2 (en) 1998-06-08 2016-01-13 Solid-state imaging element having image signal overflow path
US15/236,555 US20170034462A1 (en) 1998-06-08 2016-08-15 Solid-state imaging element having image signal overflow path

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US15/236,555 US20170034462A1 (en) 1998-06-08 2016-08-15 Solid-state imaging element having image signal overflow path

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/994,935 Continuation US9445020B2 (en) 1998-06-08 2016-01-13 Solid-state imaging element having image signal overflow path

Publications (1)

Publication Number Publication Date
US20170034462A1 true US20170034462A1 (en) 2017-02-02

Family

ID=15685142

Family Applications (13)

Application Number Title Priority Date Filing Date
US09/327,523 Expired - Lifetime US7116365B1 (en) 1998-06-08 1999-06-08 Solid-state imaging element, method for driving the same, and camera system
US10/747,741 Active 2021-05-06 US8284284B2 (en) 1998-06-08 2003-12-29 Solid-state imaging element, method for driving the same, and camera system
US10/944,977 Expired - Fee Related US8031248B2 (en) 1998-06-08 2004-09-20 Solid state imaging element having horizontal scanning circuit for providing reset signals
US10/945,519 Expired - Fee Related US8023024B2 (en) 1998-06-08 2004-09-20 Solid-state imaging element having image signal overflow path
US10/945,503 Active 2021-11-28 US7944491B2 (en) 1998-06-08 2004-09-20 Solid-state image-pickup device including unit pixels having a 3-transistor design and wherein a vertical selection pulse provides a reset potential
US11/409,613 Expired - Fee Related US7352401B2 (en) 1998-06-08 2006-04-24 Solid-state imaging element, method for driving the same, and camera system
US13/067,112 Expired - Lifetime US8743257B2 (en) 1998-06-08 2011-05-10 Solid-state imaging element having image signal overflow path
US13/565,383 Expired - Fee Related US8922689B2 (en) 1998-06-08 2012-08-02 Solid-state imaging element having image signal overflow path
US14/218,485 Expired - Lifetime US9179081B2 (en) 1998-06-08 2014-03-18 Solid-state imaging element having image signal overflow path
US14/630,320 Expired - Fee Related US9313430B2 (en) 1998-06-08 2015-02-24 Solid-state imaging element having image signal overflow path
US14/732,293 Expired - Fee Related US9253422B2 (en) 1998-06-08 2015-06-05 Solid-state imaging element having image signal overflow path
US14/994,935 Expired - Lifetime US9445020B2 (en) 1998-06-08 2016-01-13 Solid-state imaging element having image signal overflow path
US15/236,555 Abandoned US20170034462A1 (en) 1998-06-08 2016-08-15 Solid-state imaging element having image signal overflow path

Family Applications Before (12)

Application Number Title Priority Date Filing Date
US09/327,523 Expired - Lifetime US7116365B1 (en) 1998-06-08 1999-06-08 Solid-state imaging element, method for driving the same, and camera system
US10/747,741 Active 2021-05-06 US8284284B2 (en) 1998-06-08 2003-12-29 Solid-state imaging element, method for driving the same, and camera system
US10/944,977 Expired - Fee Related US8031248B2 (en) 1998-06-08 2004-09-20 Solid state imaging element having horizontal scanning circuit for providing reset signals
US10/945,519 Expired - Fee Related US8023024B2 (en) 1998-06-08 2004-09-20 Solid-state imaging element having image signal overflow path
US10/945,503 Active 2021-11-28 US7944491B2 (en) 1998-06-08 2004-09-20 Solid-state image-pickup device including unit pixels having a 3-transistor design and wherein a vertical selection pulse provides a reset potential
US11/409,613 Expired - Fee Related US7352401B2 (en) 1998-06-08 2006-04-24 Solid-state imaging element, method for driving the same, and camera system
US13/067,112 Expired - Lifetime US8743257B2 (en) 1998-06-08 2011-05-10 Solid-state imaging element having image signal overflow path
US13/565,383 Expired - Fee Related US8922689B2 (en) 1998-06-08 2012-08-02 Solid-state imaging element having image signal overflow path
US14/218,485 Expired - Lifetime US9179081B2 (en) 1998-06-08 2014-03-18 Solid-state imaging element having image signal overflow path
US14/630,320 Expired - Fee Related US9313430B2 (en) 1998-06-08 2015-02-24 Solid-state imaging element having image signal overflow path
US14/732,293 Expired - Fee Related US9253422B2 (en) 1998-06-08 2015-06-05 Solid-state imaging element having image signal overflow path
US14/994,935 Expired - Lifetime US9445020B2 (en) 1998-06-08 2016-01-13 Solid-state imaging element having image signal overflow path

Country Status (6)

Country Link
US (13) US7116365B1 (en)
EP (2) EP0964570B1 (en)
JP (1) JP4200545B2 (en)
KR (2) KR100690477B1 (en)
DE (1) DE69942941D1 (en)
TW (1) TW416235B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190191221A1 (en) * 2017-12-19 2019-06-20 Rovi Guides, Inc. Systems and methods for adaptive storage and scheduling of media assets

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4200545B2 (en) 1998-06-08 2008-12-24 ソニー株式会社 Solid-state imaging device, driving method thereof, and camera system
US7116366B1 (en) * 1999-08-31 2006-10-03 Micron Technology, Inc. CMOS aps pixel sensor dynamic range increase
JP3467013B2 (en) 1999-12-06 2003-11-17 キヤノン株式会社 Solid-state imaging device
JP3856283B2 (en) 2000-02-14 2006-12-13 シャープ株式会社 Solid-state imaging device and driving method of imaging device
US6965408B2 (en) 2000-02-28 2005-11-15 Canon Kabushiki Kaisha Solid-state image pickup device having a photoelectric conversion unit and a punch-through current suppression circuit
FR2824664A1 (en) * 2001-05-09 2002-11-15 St Microelectronics Sa Cmos photodetector comprising an amorphous silicon photodiode
JP3880345B2 (en) * 2001-08-27 2007-02-14 キヤノン株式会社 Differential amplifier circuit, solid-state imaging device using the same, and imaging system
JP2003143480A (en) * 2001-11-06 2003-05-16 Sony Corp Solid-state imaging apparatus and its driving method
JP4404241B2 (en) 2002-02-12 2010-01-27 ソニー株式会社 Solid-state imaging device and output method thereof
JP4208559B2 (en) 2002-12-03 2009-01-14 キヤノン株式会社 Photoelectric conversion device
JP4355148B2 (en) * 2003-02-28 2009-10-28 パナソニック株式会社 Driving method of solid-state imaging device
JP3794637B2 (en) 2003-03-07 2006-07-05 松下電器産業株式会社 Solid-state imaging device
JP4297416B2 (en) 2003-06-10 2009-07-15 シャープ株式会社 Solid-state imaging device, driving method thereof and camera
JP2005167588A (en) * 2003-12-02 2005-06-23 Sony Corp Method for driving solid-state imaging element and solid-state imaging device
JP4311181B2 (en) * 2003-12-05 2009-08-12 ソニー株式会社 Semiconductor device control method, signal processing method, semiconductor device, and electronic apparatus
EP2249389B1 (en) 2004-02-25 2019-02-20 Sony Semiconductor Solutions Corporation Method of manufacturing a photodetecting device
WO2005086236A1 (en) 2004-02-25 2005-09-15 S.O.I.Tec Silicon On Insulator Technologies Photodetecting device
KR100621561B1 (en) 2004-11-05 2006-09-19 삼성전자주식회사 CMOS Image sensor and method for operating thereof
KR100657863B1 (en) 2005-02-07 2006-12-14 삼성전자주식회사 Cmos active pixel sensor using fingered type source follower transistor
US7608549B2 (en) * 2005-03-15 2009-10-27 Asm America, Inc. Method of forming non-conformal layers
JP2006270890A (en) * 2005-03-25 2006-10-05 Matsushita Electric Ind Co Ltd Imaging apparatus and digital camera
JP2007036861A (en) * 2005-07-28 2007-02-08 Sanyo Electric Co Ltd Driver and driving method of solid-state imaging device
GB0517742D0 (en) 2005-08-31 2005-10-12 E2V Tech Uk Ltd Radiation sensor
JP4807014B2 (en) * 2005-09-02 2011-11-02 ソニー株式会社 Solid-state imaging device, driving method of solid-state imaging device, and imaging device
US7700471B2 (en) * 2005-12-13 2010-04-20 Versatilis Methods of making semiconductor-based electronic devices on a wire and articles that can be made thereby
US7619671B2 (en) * 2006-07-18 2009-11-17 Aptina Imaging Corporation Method, apparatus and system for charge injection suppression in active pixel sensors
JP4818018B2 (en) 2006-08-01 2011-11-16 キヤノン株式会社 Photoelectric conversion device and imaging system using the same
JP4956084B2 (en) 2006-08-01 2012-06-20 キヤノン株式会社 Photoelectric conversion device and imaging system using the same
US7692130B2 (en) 2006-11-01 2010-04-06 International Business Machines Corporation CMOS imaging sensor having a third FET device with a gate terminal coupled to a second diffusion region of a first FET device and a first terminal coupled to a row select signal
US7791010B2 (en) * 2006-11-01 2010-09-07 International Business Machines Corporation CMOS image sensor having a third FET device with the gate terminal coupled to the diffusion region of a first FET device, the second terminal coupled to a column signal line, and the first terminal coupled to a row select signal
KR100890152B1 (en) * 2006-12-22 2009-03-20 매그나칩 반도체 유한회사 Small Size, High Gain, and Low Noise Pixel for CMOS Image Sensors
JP4979375B2 (en) 2006-12-28 2012-07-18 キヤノン株式会社 Solid-state imaging device and imaging system
JP5016941B2 (en) * 2007-02-08 2012-09-05 株式会社東芝 Solid-state imaging device
US7978243B2 (en) 2007-02-28 2011-07-12 Canon Kabushiki Kaisha Imaging apparatus, driving method thereof, and imaging system
KR100880528B1 (en) * 2007-06-01 2009-01-28 매그나칩 반도체 유한회사 CMOS Image Sensors
JP4900190B2 (en) * 2007-10-19 2012-03-21 ソニー株式会社 Solid-state imaging device
CN102017150B (en) * 2008-05-02 2016-08-03 佳能株式会社 Solid state image pickup device
JP4788742B2 (en) * 2008-06-27 2011-10-05 ソニー株式会社 Solid-state imaging device and electronic apparatus
JP5458869B2 (en) * 2009-12-21 2014-04-02 ソニー株式会社 Solid-state imaging device, driving method thereof, and camera
JP4921615B2 (en) 2010-01-25 2012-04-25 パナソニック株式会社 Method for immobilizing protein A on a self-assembled membrane
JP5267503B2 (en) * 2010-05-17 2013-08-21 ソニー株式会社 Solid-state imaging device
WO2012029202A1 (en) 2010-08-30 2012-03-08 Panasonic Corporation A method for immobilizing streptavidin on a self-assembled monolayer
CN103124786A (en) 2010-10-19 2013-05-29 松下电器产业株式会社 Method for immobilizing glucose oxidase on self-assembled film
KR20170022794A (en) * 2015-08-21 2017-03-02 삼성전자주식회사 Shared pixel and image sensor including the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5898168A (en) * 1997-06-12 1999-04-27 International Business Machines Corporation Image sensor pixel circuit
US5949115A (en) * 1996-08-13 1999-09-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including nickel formed on a crystalline silicon substrate
US6188094B1 (en) * 1998-03-19 2001-02-13 Canon Kabushiki Kaisha Solid-state image pickup device
US6522357B2 (en) * 1997-09-30 2003-02-18 Intel Corporation Method and apparatus for increasing retention time in image sensors having an electronic shutter
US20030137594A1 (en) * 1997-10-06 2003-07-24 Toru Koizumi Image sensing apparatus, signal detection apparatus, and signal accumulation apparatus
US6633334B1 (en) * 1997-12-26 2003-10-14 Canon Kabushiki Kaisha Solid-state image pickup device with optimum layout of building components around a photoelectric conversion portion
US6661459B1 (en) * 1998-03-19 2003-12-09 Canon Kabushiki Kaisha Solid state image pickup device with LDD structure and reset transistor
US20040065808A1 (en) * 1997-09-29 2004-04-08 Canon Kabushiki Kaisha Image sensing device using MOS type image sensing elements

Family Cites Families (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1551935A (en) * 1976-08-19 1979-09-05 Philips Nv Imaging devices
JPS6017196B2 (en) * 1978-01-23 1985-05-01 Hitachi Seisakusho Kk
DE2939518C2 (en) * 1979-09-28 1989-02-16 Siemens Ag, 1000 Berlin Und 8000 Muenchen, De
JPS59215180A (en) * 1983-05-20 1984-12-05 Sanyo Electric Co Ltd Solid-state image pickup element
US4811371A (en) * 1986-05-16 1989-03-07 Rca Corporation Floating-diffusion electrometer with adjustable sensitivity
JPS63100879A (en) * 1986-10-17 1988-05-02 Hitachi Ltd Solid-state image pickup device
JPH084137B2 (en) * 1988-01-12 1996-01-17 日本電気株式会社 Output circuit of charge transfer device
US4985774A (en) * 1988-01-20 1991-01-15 Minolta Camera Kabushiki Kaisha Image sensing device having direct drainage of unwanted charges
JP2708455B2 (en) 1988-03-25 1998-02-04 株式会社日立製作所 Solid-state imaging device
US5144447A (en) * 1988-03-31 1992-09-01 Hitachi, Ltd. Solid-state image array with simultaneously activated line drivers
US5306932A (en) * 1989-07-21 1994-04-26 Nec Corporation Charge transfer device provided with improved output structure
US5262871A (en) * 1989-11-13 1993-11-16 Rutgers, The State University Multiple resolution image sensor
CA2021052C (en) * 1990-07-12 1995-08-29 Clifford D. Anger Pushbroom spectrographic imager
JP3064380B2 (en) 1990-10-17 2000-07-12 ソニー株式会社 Solid-state imaging device and driving method thereof
JP3050583B2 (en) * 1990-10-17 2000-06-12 ソニー株式会社 Solid-state imaging device
US5134488A (en) * 1990-12-28 1992-07-28 David Sarnoff Research Center, Inc. X-Y addressable imager with variable integration
JP2701546B2 (en) * 1991-01-18 1998-01-21 日本電気株式会社 Charge transfer device having signal charge detection circuit
JP2913876B2 (en) * 1991-03-08 1999-06-28 ソニー株式会社 Solid-state imaging device
JP3018546B2 (en) 1991-03-18 2000-03-13 ソニー株式会社 Solid-state imaging device
US5844760A (en) * 1991-03-22 1998-12-01 Fuji Electric Co., Ltd. Insulated-gate controlled semiconductor device
JP3021971B2 (en) * 1992-05-22 2000-03-15 富士ゼロックス株式会社 Image sensor
US5872596A (en) * 1992-09-28 1999-02-16 Canon Kabushiki Kaisha Device for widening the dynamic range of solid-state image pickup elements
JPH06334920A (en) * 1993-03-23 1994-12-02 Mitsubishi Electric Corp Solid state image pickup element and driving method thereof
US5452004A (en) * 1993-06-17 1995-09-19 Litton Systems, Inc. Focal plane array imaging device with random access architecture
US5949483A (en) * 1994-01-28 1999-09-07 California Institute Of Technology Active pixel sensor array with multiresolution readout
US5841126A (en) * 1994-01-28 1998-11-24 California Institute Of Technology CMOS active pixel sensor type imaging system on a chip
JPH07284024A (en) 1994-04-07 1995-10-27 Mitsubishi Electric Corp Solid-state image pickup element
US5933188A (en) * 1994-10-19 1999-08-03 Canon Kabushiki Kaisha Photoelectric conversion apparatus and method with reset
US5576763A (en) * 1994-11-22 1996-11-19 Lucent Technologies Inc. Single-polysilicon CMOS active pixel
US5719626A (en) * 1994-12-16 1998-02-17 Nikon Corporation Solid-state image pickup device
JP3697769B2 (en) * 1995-02-24 2005-09-21 株式会社ニコン Photoelectric conversion element and photoelectric conversion device
US5933189A (en) * 1995-03-09 1999-08-03 Nikon Corporation Solid state image pickup apparatus
JPH0955473A (en) * 1995-06-08 1997-02-25 Matsushita Electron Corp Semiconductor device and its inspection method
DE69631356T2 (en) * 1995-08-02 2004-07-15 Canon K.K. Semiconductor image sensor with common output power
JP3031606B2 (en) * 1995-08-02 2000-04-10 キヤノン株式会社 Solid-state imaging device and image imaging device
EP0845900B1 (en) * 1995-08-11 2002-11-06 Kabushiki Kaisha Toshiba Image system, solid-state imaging device semiconductor integrated circuit
WO1997007629A1 (en) * 1995-08-11 1997-02-27 Kabushiki Kaisha Toshiba Mos solid-state image pickup device
GB2308267B (en) * 1995-08-25 2000-06-28 Psc Inc Optical reader with imaging array having reduced pattern density
US5608243A (en) * 1995-10-19 1997-03-04 National Semiconductor Corporation Single split-gate MOS transistor active pixel sensor cell with automatic anti-blooming and wide dynamic range
JPH09139486A (en) * 1995-11-16 1997-05-27 Sony Corp Solid state image pick up element and drive of solid state image pick up element
JP3559640B2 (en) * 1996-02-27 2004-09-02 キヤノン株式会社 Photoelectric conversion device
JP3522953B2 (en) 1996-03-14 2004-04-26 株式会社東芝 Solid-state imaging device
US5719676A (en) * 1996-04-12 1998-02-17 Tropel Corporation Diffraction management for grazing incidence interferometer
JP3608293B2 (en) 1996-05-27 2005-01-05 ソニー株式会社 Manufacturing method of semiconductor device
JP3310164B2 (en) * 1996-05-30 2002-07-29 株式会社東芝 Solid-state imaging device
US5932902A (en) * 1996-08-19 1999-08-03 Sony Corporation Solid-state imaging device with element-separating electrodes
US5886659A (en) * 1996-08-21 1999-03-23 California Institute Of Technology On-focal-plane analog-to-digital conversion for current-mode imaging devices
JP3579194B2 (en) 1996-09-17 2004-10-20 株式会社東芝 Driving method of solid-state imaging device
US6674470B1 (en) * 1996-09-19 2004-01-06 Kabushiki Kaisha Toshiba MOS-type solid state imaging device with high sensitivity
GB2318473B (en) * 1996-10-17 2000-11-29 Sony Corp Solid state imaging device,signal processing method and camera
JPH10233964A (en) 1997-02-20 1998-09-02 Nikon Corp Solid-state image pickup device for forming binary signal
JPH10248034A (en) * 1997-03-03 1998-09-14 Nissan Motor Co Ltd Image sensor
JP3915161B2 (en) * 1997-03-04 2007-05-16 ソニー株式会社 Method for expanding dynamic range of solid-state image sensor with blooming prevention structure and solid-state image sensor
JP3911788B2 (en) * 1997-03-10 2007-05-09 ソニー株式会社 Solid-state imaging device and driving method thereof
JPH10257392A (en) * 1997-03-14 1998-09-25 Matsushita Electron Corp Physical quantity distribution detection semiconductor unit, drive method and manufacture therefor
US6201270B1 (en) * 1997-04-07 2001-03-13 Pao-Jung Chen High speed CMOS photodetectors with wide range operating region and fixed pattern noise reduction
US5920345A (en) * 1997-06-02 1999-07-06 Sarnoff Corporation CMOS image sensor with improved fill factor
US5969758A (en) * 1997-06-02 1999-10-19 Sarnoff Corporation DC offset and gain correction for CMOS image sensor
US6115066A (en) * 1997-06-12 2000-09-05 International Business Machines Corporation Image sensor with direct digital correlated sampling
US5900623A (en) * 1997-08-11 1999-05-04 Chrontel, Inc. Active pixel sensor using CMOS technology with reverse biased photodiodes
EP1711002A3 (en) * 1997-08-15 2011-06-08 Sony Corporation Solid-state image sensor and method of driving same
US5965871A (en) * 1997-11-05 1999-10-12 Pixart Technology, Inc. Column readout multiplexer for CMOS image sensors with multiple readout and fixed pattern noise cancellation
US6747695B1 (en) * 1997-12-05 2004-06-08 Intel Corporation Integrated CMOS imager
US6025935A (en) * 1997-12-31 2000-02-15 Peripheral Imaging Corporation Charge storage image scanner having equalizing pre-charge and reset improvements
US6008486A (en) * 1997-12-31 1999-12-28 Gentex Corporation Wide dynamic range optical sensor
US6667768B1 (en) * 1998-02-17 2003-12-23 Micron Technology, Inc. Photodiode-type pixel for global electronic shutter and reduced lag
NL1011381C2 (en) * 1998-02-28 2000-02-15 Hyundai Electronics Ind Photodiode for a CMOS image sensor and method for its manufacture.
US6069376A (en) * 1998-03-26 2000-05-30 Foveonics, Inc. Intra-pixel frame storage element, array, and electronic shutter method including speed switch suitable for electronic still camera applications
JP2921567B1 (en) * 1998-04-22 1999-07-19 松下電子工業株式会社 Solid-state imaging device and method of manufacturing the same
US6606120B1 (en) * 1998-04-24 2003-08-12 Foveon, Inc. Multiple storage node full color active pixel sensors
TW425563B (en) * 1998-06-03 2001-03-11 Nippon Electric Co Solid state image pickup device and driving method therefore
JP4200545B2 (en) * 1998-06-08 2008-12-24 ソニー株式会社 Solid-state imaging device, driving method thereof, and camera system
US6043478A (en) * 1998-06-25 2000-03-28 Industrial Technology Research Institute Active pixel sensor with shared readout structure
US6259124B1 (en) * 1998-08-07 2001-07-10 Eastman Kodak Company Active pixel sensor with high fill factor blooming protection
US7791116B1 (en) * 1998-10-14 2010-09-07 Micron Technology, Inc. CMOS imager having a nitride dielectric
US6825878B1 (en) * 1998-12-08 2004-11-30 Micron Technology, Inc. Twin P-well CMOS imager
US6603513B1 (en) * 1999-02-16 2003-08-05 Micron Technology, Inc. Using a single control line to provide select and reset signals to image sensors in two rows of a digital imaging device
US6731397B1 (en) * 1999-05-21 2004-05-04 Foveon, Inc. Method for storing and retrieving digital image data from an imaging array

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5949115A (en) * 1996-08-13 1999-09-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including nickel formed on a crystalline silicon substrate
US5898168A (en) * 1997-06-12 1999-04-27 International Business Machines Corporation Image sensor pixel circuit
US20040065808A1 (en) * 1997-09-29 2004-04-08 Canon Kabushiki Kaisha Image sensing device using MOS type image sensing elements
US6522357B2 (en) * 1997-09-30 2003-02-18 Intel Corporation Method and apparatus for increasing retention time in image sensors having an electronic shutter
US20030137594A1 (en) * 1997-10-06 2003-07-24 Toru Koizumi Image sensing apparatus, signal detection apparatus, and signal accumulation apparatus
US6633334B1 (en) * 1997-12-26 2003-10-14 Canon Kabushiki Kaisha Solid-state image pickup device with optimum layout of building components around a photoelectric conversion portion
US6188094B1 (en) * 1998-03-19 2001-02-13 Canon Kabushiki Kaisha Solid-state image pickup device
US6661459B1 (en) * 1998-03-19 2003-12-09 Canon Kabushiki Kaisha Solid state image pickup device with LDD structure and reset transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190191221A1 (en) * 2017-12-19 2019-06-20 Rovi Guides, Inc. Systems and methods for adaptive storage and scheduling of media assets

Also Published As

Publication number Publication date
US20140198241A1 (en) 2014-07-17
US8284284B2 (en) 2012-10-09
EP0964570A2 (en) 1999-12-15
US20050041127A1 (en) 2005-02-24
EP0964570B1 (en) 2010-11-17
US8023024B2 (en) 2011-09-20
EP1892950A2 (en) 2008-02-27
US9179081B2 (en) 2015-11-03
US8743257B2 (en) 2014-06-03
KR20060059952A (en) 2006-06-02
US20050036051A1 (en) 2005-02-17
US20060192875A1 (en) 2006-08-31
KR20000005962A (en) 2000-01-25
US9313430B2 (en) 2016-04-12
EP1892950A3 (en) 2012-04-25
US9253422B2 (en) 2016-02-02
US8922689B2 (en) 2014-12-30
EP1892950A8 (en) 2010-07-28
US20050036050A1 (en) 2005-02-17
TW416235B (en) 2000-12-21
US20120292486A1 (en) 2012-11-22
US20110211101A1 (en) 2011-09-01
EP0964570A3 (en) 2002-07-03
US8031248B2 (en) 2011-10-04
US7116365B1 (en) 2006-10-03
US20160127666A1 (en) 2016-05-05
US7352401B2 (en) 2008-04-01
US20040141076A1 (en) 2004-07-22
EP1892950B1 (en) 2017-08-30
JPH11355668A (en) 1999-12-24
US20150208007A1 (en) 2015-07-23
US20150271428A1 (en) 2015-09-24
US7944491B2 (en) 2011-05-17
KR100690477B1 (en) 2007-03-09
KR100654878B1 (en) 2006-12-08
JP4200545B2 (en) 2008-12-24
US9445020B2 (en) 2016-09-13
DE69942941D1 (en) 2010-12-30

Similar Documents

Publication Publication Date Title
US9865633B2 (en) Solid-state imaging device and driving method therefor
US9490291B2 (en) Solid state imaging device and camera system
US8319872B2 (en) Solid image pickup device, image pickup system and method of driving solid image pickup device
US8378401B2 (en) Solid state imaging apparatus, method for driving the same and camera using the same
US8643756B2 (en) Solid-state image-sensing device having a plurality of controlled pixels, with each pixel having a transfer gate signal that is ternary-voltage signal switched among three levels, and method of operating same
US7697051B2 (en) Image sensor with pixels having multiple capacitive storage elements
US7110030B1 (en) Solid state image pickup apparatus
US7375748B2 (en) Differential readout from pixels in CMOS sensor
JP4614545B2 (en) Image sensor
US7525077B2 (en) CMOS active pixel sensor and active pixel sensor array using fingered type source follower transistor
JP3794637B2 (en) Solid-state imaging device
US6452153B1 (en) Optoelectronic sensor
US6326230B1 (en) High speed CMOS imager with motion artifact supression and anti-blooming
DE4409835C2 (en) Solid state image sensor and driver method therefor
JP4388696B2 (en) CMOS imaging device
US5541402A (en) Imaging active pixel device having a non-destructive read-out gate
US6801256B1 (en) High-speed solid-state imaging device capable of suppressing image noise
US8199235B2 (en) Image sensing device and imaging system
US7157683B2 (en) Method, apparatus and system providing configurable current source device for image sensors
US8026969B2 (en) Pixel for boosting pixel reset voltage
KR100817801B1 (en) Solid-state image pickup device and camera system
JP5358136B2 (en) Solid-state imaging device
US6018365A (en) Imaging system and method for increasing the dynamic range of an array of active pixel sensor cells
TW416235B (en) Solid-state imaging element, method for driving the same, and camera system
BE1020440A5 (en) Pixel matrix with individual control of the exposure time for a pixel or a field of pixels.

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION