US20170010663A1 - Smart wearable devices and methods for optimizing output - Google Patents
Smart wearable devices and methods for optimizing output Download PDFInfo
- Publication number
- US20170010663A1 US20170010663A1 US15/229,373 US201615229373A US2017010663A1 US 20170010663 A1 US20170010663 A1 US 20170010663A1 US 201615229373 A US201615229373 A US 201615229373A US 2017010663 A1 US2017010663 A1 US 2017010663A1
- Authority
- US
- United States
- Prior art keywords
- input
- wearable device
- smart wearable
- communications interface
- user
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 35
- 238000013518 transcription Methods 0.000 claims abstract description 29
- 230000035897 transcription Effects 0.000 claims abstract description 29
- 238000004891 communication Methods 0.000 claims description 46
- 230000007613 environmental effect Effects 0.000 claims description 11
- 238000012545 processing Methods 0.000 claims description 11
- 238000003058 natural language processing Methods 0.000 claims description 6
- 210000003423 ankle Anatomy 0.000 claims description 5
- 210000002683 foot Anatomy 0.000 claims description 5
- 210000000707 wrist Anatomy 0.000 claims description 5
- 230000010267 cellular communication Effects 0.000 claims description 4
- 238000005457 optimization Methods 0.000 abstract description 4
- 230000006870 function Effects 0.000 description 23
- 238000005516 engineering process Methods 0.000 description 15
- 238000004590 computer program Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 230000000007 visual effect Effects 0.000 description 6
- 239000008280 blood Substances 0.000 description 5
- 210000004369 blood Anatomy 0.000 description 5
- 239000000872 buffer Substances 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 230000036541 health Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000036760 body temperature Effects 0.000 description 2
- RYYVLZVUVIJVGH-UHFFFAOYSA-N caffeine Chemical compound CN1C(=O)N(C)C(=O)C2=C1N=CN2C RYYVLZVUVIJVGH-UHFFFAOYSA-N 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 230000003340 mental effect Effects 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 238000012549 training Methods 0.000 description 2
- 230000001131 transforming effect Effects 0.000 description 2
- 206010011878 Deafness Diseases 0.000 description 1
- 206010013774 Dry eye Diseases 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- LPHGQDQBBGAPDZ-UHFFFAOYSA-N Isocaffeine Natural products CN1C(=O)N(C)C(=O)C2=C1N(C)C=N2 LPHGQDQBBGAPDZ-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 210000000577 adipose tissue Anatomy 0.000 description 1
- 230000036626 alertness Effects 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 229960001948 caffeine Drugs 0.000 description 1
- VJEONQKOZGKCAK-UHFFFAOYSA-N caffeine Natural products CN1C(=O)N(C)C(=O)C2=C1C=CN2C VJEONQKOZGKCAK-UHFFFAOYSA-N 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 208000002925 dental caries Diseases 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 229920001746 electroactive polymer Polymers 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 230000001815 facial effect Effects 0.000 description 1
- 230000008921 facial expression Effects 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 208000024693 gingival disease Diseases 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000037323 metabolic rate Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000033764 rhythmic process Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 231100000430 skin reaction Toxicity 0.000 description 1
- 239000004984 smart glass Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 210000004243 sweat Anatomy 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 150000003722 vitamin derivatives Chemical class 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/011—Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/1613—Constructional details or arrangements for portable computers
- G06F1/163—Wearable computers, e.g. on a belt
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/1613—Constructional details or arrangements for portable computers
- G06F1/1633—Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
- G06F1/1637—Details related to the display arrangement, including those related to the mounting of the display in the housing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/1613—Constructional details or arrangements for portable computers
- G06F1/1633—Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
- G06F1/1684—Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675
- G06F1/1698—Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675 the I/O peripheral being a sending/receiving arrangement to establish a cordless communication link, e.g. radio or infrared link, integrated cellular phone
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/26—Power supply means, e.g. regulation thereof
- G06F1/32—Means for saving power
- G06F1/3203—Power management, i.e. event-based initiation of a power-saving mode
- G06F1/3206—Monitoring of events, devices or parameters that trigger a change in power modality
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/26—Power supply means, e.g. regulation thereof
- G06F1/32—Means for saving power
- G06F1/3203—Power management, i.e. event-based initiation of a power-saving mode
- G06F1/3234—Power saving characterised by the action undertaken
- G06F1/325—Power saving in peripheral device
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/26—Power supply means, e.g. regulation thereof
- G06F1/32—Means for saving power
- G06F1/3203—Power management, i.e. event-based initiation of a power-saving mode
- G06F1/3234—Power saving characterised by the action undertaken
- G06F1/3287—Power saving characterised by the action undertaken by switching off individual functional units in the computer system
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/011—Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
- G06F3/012—Head tracking input arrangements
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/011—Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
- G06F3/013—Eye tracking input arrangements
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/011—Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
- G06F3/014—Hand-worn input/output arrangements, e.g. data gloves
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/011—Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
- G06F3/015—Input arrangements based on nervous system activity detection, e.g. brain waves [EEG] detection, electromyograms [EMG] detection, electrodermal response detection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/016—Input arrangements with force or tactile feedback as computer generated output to the user
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H40/00—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
- G16H40/40—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the management of medical equipment or devices, e.g. scheduling maintenance or upgrades
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H40/00—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
- G16H40/60—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
- G16H40/63—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/08—Network architectures or network communication protocols for network security for authentication of entities
- H04L63/0861—Network architectures or network communication protocols for network security for authentication of entities using biometrical features, e.g. fingerprint, retina-scan
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/08—Network architectures or network communication protocols for network security for authentication of entities
- H04L63/0869—Network architectures or network communication protocols for network security for authentication of entities for achieving mutual authentication
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W12/00—Security arrangements; Authentication; Protecting privacy or anonymity
- H04W12/06—Authentication
- H04W12/065—Continuous authentication
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/1613—Constructional details or arrangements for portable computers
- G06F1/1626—Constructional details or arrangements for portable computers with a single-body enclosure integrating a flat display, e.g. Personal Digital Assistants [PDAs]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2203/00—Indexing scheme relating to G06F3/00 - G06F3/048
- G06F2203/01—Indexing scheme relating to G06F3/01
- G06F2203/012—Walk-in-place systems for allowing a user to walk in a virtual environment while constraining him to a given position in the physical environment
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B7/00—Signalling systems according to more than one of groups G08B3/00 - G08B6/00; Personal calling systems according to more than one of groups G08B3/00 - G08B6/00
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H40/00—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
- G16H40/60—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
- G16H40/67—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D10/00—Energy efficient computing, e.g. low power processors, power management or thermal management
Definitions
- This technology pertains generally to smart wearable devices and more specifically to smart wearable devices that use sensorial input to optimize output.
- Smart wearable devices are extremely limited and ridged in the way they output information, recommendations and feedback to the user.
- the devices have either a very basic output interface attached to them (such as a screen, audio speaker or motor actuator) or they rely on an external mobile application (installed on a smartphone or tablet for instance) or a Web interface for a richer, more graphical output.
- This can make the operation of smart wearable devices difficult for some people because they are required to learn another user interface and/or language paradigm and may even have to rely on the use of an external device (such as a smartphone) in order to get the full potential from their device. Accordingly, this can limit the desire to use smart wearable devices. For example, children may not be able to read or understand textual information and may prefer to have a device display information in pictograms, videos or with entertaining icons.
- smart wearable devices may not be able to understand the raw information, such as number of steps taken in day or body temperature, which is output by current wearable devices. Disabled people are excluded from using some of the most current wearable devices as well. For instance, blind people who cannot get visual feedback from smart-watches, deaf people unable to hear audible feedback from smart glasses, tetraplegic people unable to feel the haptic feedback from their personal trackers, etc. Therefore, it is desirable to have smart wearable device that can determine the optimal output form for a specific user.
- a smart wearable device receives input from one or more sensors, including input related to the user's biological characteristics. This input can be used to determine an optimal output form. If the determined output form is different from the smart wearable device's native or default output form, the smart wearable device may transcribe the output into the optimal output using a transcription engine.
- transcription engines include, but are not limited to, text to speech and speech to text engine, a natural language processing engine, an image generating engine, a sound generating engine, a vibration generating engine, a smell generating engine and an integrated third party application programming interface.
- FIG. 1 is a schematic diagram of an embodiment of a smart wearable network described herein.
- FIG. 2 is a functional block diagram of an embodiment of a smart wearable device described herein.
- FIG. 3 is a schematic diagram illustrating an embodiment of a smart wearable device optimizing output given specific input related to a user.
- FIG. 4 is a flow diagram of an exemplary method of a smart wearable device optimizing output given specific input related to a user.
- a wearable device can be configured to sense and process characteristics that include, but are not limited to, a wearer's physical characteristics such as gender, weight, height, body temperature, skin temperature, heart rate, respiration, blood sugar level, blood glucose level, stress/fatigue, galvanic skin response, ingestion (protein), digestion rate, metabolic rate, blood chemistry, sweat, core and skin temperature, vital signs, eye dryness, tooth decay, gum disease, energy storage, calorie burn rate, mental alertness, cardiac rhythm, sleep patterns, caffeine content, vitamin content, hydration, blood oxygen saturation, blood coritzol level, blood pressure, cholesterol, lactic acid level, body fat, protein level, hormone level, muscle mass, pH, etc.
- Such conditions may also include, but are not limited to, position (e.g., prone, upright), movement, or physical state (
- a wearable device may include one or more output devices that include, but are not limited to, haptic output devices (e.g., offset motors, electroactive polymers, capacitive voltage generators, Peltier temperature elements, contracting materials, Braille coding actuators), telemetry devices, visual devices, audible devices, and other output devices.
- haptic output devices e.g., offset motors, electroactive polymers, capacitive voltage generators, Peltier temperature elements, contracting materials, Braille coding actuators
- telemetry devices e.g., visual devices, audible devices, and other output devices.
- a wearable device include artificial intelligence so that the device can learn and adapt to the wearer.
- the device may be configured to accurately discriminate between erroneous (accidental, unintended, etc.) and valid sensory inputs, thereby developing accurate conclusions about a wearer's physical state or characteristics (e.g., the device does not interpret a wearer rolling over in their sleep as the wearer exercising).
- the device may also include one or more cameras or other visual sensors for facial, user, or other image recognition.
- a wearable device may also be configured to transmit information to and/or retrieve information from a wearer's digital health history.
- a wearable device may be configured to output information to a user, to another wearable device, to a non-wearable device, or to a network according to the particular features and function of the device.
- FIG. 1 illustrates a generalized networked infrastructure (e.g., system) 100 that includes a network 102 .
- the network could, for example, be a local area network or a wide area network such as the Internet.
- One or more smart wearable devices 104 - 1 through 104 - n may be enabled to communicate with the network 102 through a wired or wireless connection 106 . Further, one or more of the smart wearable devices may be enabled to communicate with another smart wearable device through the network 102 or by means of a direct wired or wireless connection 108 .
- One or more of the smart wearable devices 104 - 1 through 104 - n also may be enabled to communicate with one or more non-wearable devices 110 - 1 through 110 - n .
- the non-wearable devices may be any conventional “smart” device with a processor, associated operating system, and communications interface. Examples of non-wearable devices include Smartphones, tablet computers, laptop computers, desktop computers, and set top boxes. Any of the non-wearable devices may be of a type enabled to communicate with an external device through a wired or wireless connection. In that case, one or more of the smart wearable devices may be enabled to communicate with one or more of the non-wearable devices by means of a direct wired or wireless connection 112 .
- one or more of the non-wearable devices may be of a type enabled to communicate with the network 102 through a standard wired or wireless connection 114 .
- one or more of the smart wearable devices may be enabled to communicate with one or more of the non-wearable devices through the network 102 .
- One or more servers 116 - 1 through 116 - n may be provided in a client-server configuration and connected to the network by means of a wired or wireless connection 118 .
- the servers may include standalone servers, cluster servers, networked servers, or servers connected in an array to function like a large computer. In that case, one or more of the smart wearable devices may be enabled to communicate with one or more of the servers.
- FIG. 2 illustrates a generalized embodiment of a smart wearable device according to the technology described herein. It will be appreciated that the embodiment shown may be modified or customized to enable performing the functions described herein.
- the smart wearable device includes an “engine” 200 having a processor 202 , memory 204 , and application software code 206 .
- the processor 202 can be any suitable conventional processor.
- the memory 204 may include any suitable conventional RAM type memory and/or ROM type memory with associated storage space for storing the application programming code 206 .
- a conventional wired or wireless communications module 208 may be included as needed for performing one or more of the functions of the smart wearable device described herein.
- wireless communication capabilities include, but are not limited to, Bluetooth, Wi-Fi, infrared, cellular, ZigBee, Z-Wave and near field communication.
- One or more conventional interfaces or controllers 210 may also be provided if needed. Examples of interfaces or controllers include, but are not limited to, analog to digital converters, digital to analog converters, buffers, etc.
- the device may include at least one input 212 for a biological or physiological sensor for providing input to the device to perform one or more of the functions described herein.
- Sensor inputs 214 - 1 through 214 - n for optional sensors may be included as well.
- These optional input sensors may include, but are not limited to, accelerometers, temperature sensors, altitude sensors, motion sensors, position sensors, and other sensors to perform the function(s) described herein.
- One or more conventional interfaces or controllers 216 may be provided if needed for the sensors. Examples of interfaces or controllers include, but are not limited to, analog to digital converters, digital to analog converters, buffers, etc.
- the device may include one or more outputs 218 - 1 through 218 - n to drive one or more output devices (and include those output devices).
- These output devices may include, but are not limited to, haptic output devices, telemetry devices, visual devices, audible devices, and other output devices to perform the functions described herein.
- One or more conventional interfaces or controllers 220 may be provided if needed for the output devices. Examples of interfaces or controllers include, but are not limited to, analog to digital converters, digital to analog converters, buffers, etc.
- a user input 222 may be provided according to the functions described herein.
- the user input may, for example, initiate one or more functions, terminate one or more functions, or intervene in a running process.
- the user input can be any conventional input device, including but not limited to, manual switches, touch sensors, magnetic sensors, proximity sensors, etc.
- One or more conventional interfaces or controllers 224 may be provided if needed for the output devices. Examples of interfaces or controllers include, but are not limited to, analog to digital converters, digital to analog converters, buffers, etc.
- the engine 200 may also include a feedback loop 226 for machine learning or other adaptive functions.
- the feedback loop may also provide for device calibration.
- a smart wearable device as described herein would necessarily include a housing or carrier for the above-described components.
- the term “smart wearable device” means a device that would be worn or otherwise associated with the body of a user and be “connected” to the user by means of at least one sensor for sensing one or more biological or physiological conditions of the user.
- wearable platform can vary according to choice and suitability for performing the functions described herein.
- wearable platforms include, but are not limited to, hand worn devices, finger worn devices, wrist worn devices, head worn devices, arm worn devices, leg worn devices, ankle worn devices, foot worn devices, toe worn devices, watches, eyeglasses, rings, bracelets, necklaces, articles of jewelry, articles of clothing, shoes, hats, contact lenses, gloves, etc.
- the input sensors and output devices may be integrated into the wearable platform, or may be external to the wearable platform, as is desired and/or suitable for the function(s) of the smart wearable device.
- a smart wearable device that can automatically or semi-automatically translate, transcribe, render or otherwise adapt its output from its “native form” to another type (or multiple types) of output form which can be more easily, quickly or deeply understood (and acted upon) by the specific user is described herein. This includes, but is not limited to: transforming text into a dynamically-generated picture or video, transforming visual output into audio or haptics (or vice versa), reducing the complexity of the information (or increasing it in the case it is to be read by professionals such as health providers), etc.
- the smart wearable device can determine which output form is optimal for a particular user by analyzing the sensor input from the user. Such input can be acquired automatically or may be manually entered into the device by the user.
- a schematic diagram 300 is show in which a wearable smart device 104 - 1 may include sensors 214 - 1 , 214 - n for acquiring input, including but not limited to, biological sensors 212 that are configured to collect input related to biological characteristics of the user 302 (see also FIG. 2 ). Such biological characteristics may be, but are not limited to, age, gender, education level, mental status, health conditions, etc.
- the smart wearable device may also use third party information, such as information from social media or e-mail messages, to optimize an output form.
- past personal preferences such as a favorite type of output given a specific situation or saved manual preset output forms, may be used to optimize a particular output form.
- the smart wearable device may automatically acquire input 304 from one of its sensors, such as a biological sensor 212 .
- a user may also enter any desired input manually into the smart wearable device, such as personal characteristics or schedules.
- the smart wearable device can then use this input 304 to determine the optimal form for the device's output.
- the optimal output form selected by the smart wearable device may be, but is not limited to, images 306 , sound, such as music tones or voices 308 , haptic signals 310 and lights 312 , or a combination of these output form examples.
- the smart wearable device may transcribe the output information into the optimal output form using one or more transcription engines.
- This transcription engine may be accessed by the smart wearable device through a stand-alone wireless connection or tethered through a wireless-enabled non-wearable device, for example.
- the transcription engine may also be a natively-embedded application or queried remotely through a cloud-based access.
- the smart wearable device may select a specific transcription engine, such as a text to speech and speech to text engine, a natural language processing engine, an image generating engine, a sound generating engine, a vibration generating engine, a smell generating engine or an integrated third party application programming interface, such as a medical dictionary, foreign language dictionary, or sign language directory.
- the image generation image engine can combine a set of basic patterns and images (either stored locally or remotely) into a visual image/video output. For example, the device could pull the user's Facebook picture, extract the user's face, and assemble it with a colored background to visually indicate positive (or negative) feedback.
- the smart wearable device may convey the optimized output to the user 302 itself or it may transmit 316 the optimized output to one or more non-wearable devices 110 - 1 , 110 - n or another smart wearable device 104 - n and that device may then convey the optimized output to the user 302 .
- the smart wearable device may receive input from a sensor that may be internal or external to the smart wearable device 410 . Although at least one of the sensors may be biological, acquiring biological input from the user, other sensors may also be used to collect input, such as an environmental sensor that may collect input related to the context in which the output will be conveyed 420 .
- the smart wearable device may use this received input to determine an optimal output form 430 . If the smart wearable device's native or default output form is different from the determined optimal output form, the smart wearable device may then transcribe the output into the optimal form using one or more transcription engines 440 . Once the optimal output is achieved, the smart wearable device may convey the optimized output to a user itself 450 or the smart wearable may transmit the optimized output to an alternative device 460 and that device may then convey the optimized output 450 .
- a smart wearable device may reduce barriers to using the device by providing outputs specifically tailored to the user. Additionally, it will enable a single model of device to be used in a variety of ways and by a broader population and may also make wearable devices' outputs (especially in case of health/fitness monitoring) useful for both the consumer wearer (“B2C” output type) as well as potential healthcare professionals (“B2B” output).
- the smart wearable device may measure, via GPS or other mechanism, the distance travelled by a user during a run. If the wearer has a personal trainer helping the wearer train for a marathon, for example, the distance information can be communicated to the trainer's wearable or non-wearable device in the optimized format of a map displaying the running route.
- the map information can provide richer detail to the trainer who can use this information to develop better training routines for the wearer in training.
- the watch and biological sensor components of the smart wearable device can measure the pulse rate of the wearer.
- the smart wearable device can communicate the pulse rate to the wearer aurally or with a haptic output.
- the wearable device can be programmed to determine which of two or three bands the wearer's pulse rate fits within and generate a tone or haptic response specific to that particular band.
- An example of the pulse bands could be: ⁇ 100 beats/min; 100-120 beats/min; 130-140 beats/min; >140 beats/min.
- the aural mode may be optimum because the user has selected this mode as the preferred communication mode (rather than looking at the watch display).
- a low light environment could be determined by the programming and automatically switch the device to an aural or haptic output mode so that the bright display doesn't distract the wearer or drain power from the battery unnecessarily by running the bright display.
- the user could rate the output optimization decision that the smart wearable device has made and the smart wearable device may then improve its automated output transcription.
- Embodiments of the present technology may be described with reference to flowchart illustrations of methods and systems according to embodiments of the technology, and/or algorithms, formulae, or other computational depictions, which may also be implemented as computer program products.
- each block or step of a flowchart, and combinations of blocks (and/or steps) in a flowchart, algorithm, formula, or computational depiction can be implemented by various means, such as hardware, firmware, and/or software including one or more computer program instructions embodied in computer-readable program code logic.
- any such computer program instructions may be loaded onto a computer, including without limitation a general purpose computer or special purpose computer, or other programmable processing apparatus to produce a machine, such that the computer program instructions which execute on the computer or other programmable processing apparatus create means for implementing the functions specified in the block(s) of the flowchart(s).
- blocks of the flowcharts, algorithms, formulae, or computational depictions support combinations of means for performing the specified functions, combinations of steps for performing the specified functions, and computer program instructions, such as embodied in computer-readable program code logic means, for performing the specified functions. It will also be understood that each block of the flowchart illustrations, algorithms, formulae, or computational depictions and combinations thereof described herein, can be implemented by special purpose hardware-based computer systems which perform the specified functions or steps, or combinations of special purpose hardware and computer-readable program code logic means.
- these computer program instructions may also be stored in a computer-readable memory that can direct a computer or other programmable processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including instruction means which implement the function specified in the block(s) of the flowchart(s).
- the computer program instructions may also be loaded onto a computer or other programmable processing apparatus to cause a series of operational steps to be performed on the computer or other programmable processing apparatus to produce a computer-implemented process such that the instructions which execute on the computer or other programmable processing apparatus provide steps for implementing the functions specified in the block(s) of the flowchart(s), algorithm(s), formula(e), or computational depiction(s).
- programming refers to one or more instructions that can be executed by a processor to perform a function as described herein.
- the programming can be embodied in software, in firmware, or in a combination of software and firmware.
- the programming can be stored local to the device in non-transitory media, or can be stored remotely such as on a server, or all or a portion of the programming can be stored locally and remotely.
- Programming stored remotely can be downloaded (pushed) to the device by user initiation, or automatically based on one or more factors, such as, for example, location, a timing event, detection of an object, detection of a facial expression, detection of location, detection of a change in location, or other factors.
- processor central processing unit
- computer are used synonymously to denote a device capable of executing the programming and communication with input/output interfaces and/or peripheral devices.
- a smart wearable device comprising: (a) a housing, wherein the housing encases components of a wearable smart device; (b) one or more sensors, wherein at least one sensor is a biological sensor configured to acquire biological input; (c) one or more output forms; (d) a memory; (e) one or more communications interfaces; (f) a processor; and (g) programming residing in a non-transitory computer readable medium, wherein the programming is executable by the computer processor and configured to: (i) receive input from the one or more sensors, wherein the input may be acquired automatically or manually entered by a user and wherein at least some of the input is related to the user's biology; (ii) use the received input to determine an optimal output form, wherein at least some of the input used to determine the optimal output form is related to the user's biology; and (iii) if the device's native output form is not already in the determined optimal output form, transcribe the output into the determined optimal output form using one or more transcription engines
- any preceding embodiments further comprising: one or more environmental sensors, wherein at least one environmental sensor is configured to acquire contextual input and wherein said programming is further configured to: receive input from the one or more environmental sensors, wherein at least some of the input used to determine the optimal output form is related to the context in which the smart wearable device is operating.
- said programming is further configured to: transmit the optimized output to another smart wearable or non-wearable device, wherein the other smart wearable device or non-wearable device is configured to convey the optimal output form to the user.
- programming is further configured to: use information inferred from third party data sources or past personal preferences to determine the optimal output form.
- the one or more communications interfaces are selected from the group consisting of a wired communications interface, a wireless communications interface, a cellular communications interface, a WiFi communications interface, a near field communications interface, an infrared communications interface, a ZigBee communications interface, a Z-Wave communications interface and a Bluetooth communications interface.
- said programming is further configured to: select an optimal combination of transcription engines using embedded dedicated intelligence and processing algorithms, wherein the selection is made based on input from the user sensed in real-time and the user's characteristics.
- said programming is further configured to: (a) receive a feedback input from the user to rate the quality of the determined optimal output form; and (b) use the feedback input as a learning parameter to iteratively improve its determination of optimal output forms.
- the transcription engine is a natively-embedded application or queried remotely through a cloud-based access.
- one or more transcription engines are selected from the group consisting of a text to speech and speech to text engine, a natural language processing engine, an image generating engine, a sound generating engine, a vibration generating engine, a smell generating engine and an integrated third party application programming interface.
- the smart wearable device has a platform selected from the group consisting of hand worn devices, finger worn devices, wrist worn devices, head worn devices, arm worn devices, leg worn devices, ankle worn devices, foot worn devices, toe worn devices, watches, eyeglasses, rings, bracelets, necklaces, articles of jewelry, articles of clothing, shoes, hats, contact lenses, and gloves.
- a computer implemented method for determining the most optimal output form from a smart wearable device comprising: (a) providing a smart wearable device, the smart wearable device comprising: (i) a housing, wherein the housing encases components of a wearable smart device; (ii) one or more sensors, wherein at least one sensor is a biological sensor configured to acquire biological input; (iii) one or more output forms; (iv) a memory; (v) one or more communications interfaces; and (vi) a processor; (b) receiving input from the one or more sensors associated with a smart wearable device, wherein at least one sensor is a biological sensor configured to acquire biological input and wherein the input may be acquired automatically or manually entered by a user; (c) using the received input to determine an optimal output form, wherein at least some of the input used to determine the optimal output form is related to the user's biology; and (d) if the output information is not already in the determined optimal output form, transcribing output information into the determined optimal output form using
- the one or more communications interfaces are selected from the group consisting of a wired communications interface, a wireless communications interface, a cellular communications interface, a WiFi communications interface, a near field communications interface, an infrared communications interface, ZigBee communications interface, a Z-Wave communications interface and a Bluetooth communications interface.
- one or more transcription engines are selected from the group consisting of a text to speech and speech to text engine, a natural language processing engine, an image generating engine, and an integrated third party application programming interface.
- the smart wearable device has a platform selected from the group consisting of hand worn devices, finger worn devices, wrist worn devices, head worn devices, arm worn devices, leg worn devices, ankle worn devices, foot worn devices, toe worn devices, watches, eyeglasses, rings, bracelets, necklaces, articles of jewelry, articles of clothing, shoes, hats, contact lenses, and gloves.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Computer Hardware Design (AREA)
- Human Computer Interaction (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Public Health (AREA)
- General Business, Economics & Management (AREA)
- Business, Economics & Management (AREA)
- Computing Systems (AREA)
- Computer Security & Cryptography (AREA)
- Primary Health Care (AREA)
- Epidemiology (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Life Sciences & Earth Sciences (AREA)
- Dermatology (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Biophysics (AREA)
- Heart & Thoracic Surgery (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Pathology (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
- User Interface Of Digital Computer (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
- Physiology (AREA)
- Software Systems (AREA)
- Cardiology (AREA)
- Computational Linguistics (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
A smart wearable devices and methods for output optimization are presented where the smart wearable device receives input from one or more sensors, including input related to the user's biological characteristics. This input is used to determine an optimal output form. If the determined output form is different from the smart wearable device's native or default output form, the smart wearable device transcribes the output into the optimal out using a transcription engine.
Description
- This application is a 35 U.S.C. §111(a) continuation of PCT international application number PCT/US2015/016597 filed on Feb. 19, 2015, incorporated herein by reference in its entirety, which claims priority to, and the benefit of, U.S. provisional patent application Ser. No. 61/943,837 filed on Feb. 24, 2014, incorporated herein by reference in its entirety. Priority is claimed to each of the foregoing applications.
- The above-referenced PCT international application was published as PCT International Publication No. WO 2015/127062 A1 on Aug. 27, 2015, which publication is incorporated herein by reference in its entirety.
- Not Applicable
- A portion of the material in this patent document is subject to copyright protection under the copyright laws of the United States and of other countries. The owner of the copyright rights has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the United States Patent and Trademark Office publicly available file or records, but otherwise reserves all copyright rights whatsoever. The copyright owner does not hereby waive any of its rights to have this patent document maintained in secrecy, including without limitation its rights pursuant to 37 C.F.R. §1.14.
- 1. Field of the Technology
- This technology pertains generally to smart wearable devices and more specifically to smart wearable devices that use sensorial input to optimize output.
- 2. Discussion
- Smart wearable devices are extremely limited and ridged in the way they output information, recommendations and feedback to the user. The devices have either a very basic output interface attached to them (such as a screen, audio speaker or motor actuator) or they rely on an external mobile application (installed on a smartphone or tablet for instance) or a Web interface for a richer, more graphical output. This can make the operation of smart wearable devices difficult for some people because they are required to learn another user interface and/or language paradigm and may even have to rely on the use of an external device (such as a smartphone) in order to get the full potential from their device. Accordingly, this can limit the desire to use smart wearable devices. For example, children may not be able to read or understand textual information and may prefer to have a device display information in pictograms, videos or with entertaining icons.
- Users of smart wearable devices may not be able to understand the raw information, such as number of steps taken in day or body temperature, which is output by current wearable devices. Disabled people are excluded from using some of the most current wearable devices as well. For instance, blind people who cannot get visual feedback from smart-watches, deaf people unable to hear audible feedback from smart glasses, tetraplegic people unable to feel the haptic feedback from their personal trackers, etc. Therefore, it is desirable to have smart wearable device that can determine the optimal output form for a specific user.
- An aspect of the present disclosure is a smart wearable devices and methods for output optimization. In one exemplary embodiment, a smart wearable device receives input from one or more sensors, including input related to the user's biological characteristics. This input can be used to determine an optimal output form. If the determined output form is different from the smart wearable device's native or default output form, the smart wearable device may transcribe the output into the optimal output using a transcription engine. Examples of transcription engines include, but are not limited to, text to speech and speech to text engine, a natural language processing engine, an image generating engine, a sound generating engine, a vibration generating engine, a smell generating engine and an integrated third party application programming interface.
- Further aspects of the technology will be brought out in the following portions of the specification, wherein the detailed description is for the purpose of fully disclosing preferred embodiments of the technology without placing limitations thereon.
- The technology described herein will be more fully understood by reference to the following drawings which are for illustrative purposes only:
-
FIG. 1 is a schematic diagram of an embodiment of a smart wearable network described herein. -
FIG. 2 is a functional block diagram of an embodiment of a smart wearable device described herein. -
FIG. 3 is a schematic diagram illustrating an embodiment of a smart wearable device optimizing output given specific input related to a user. -
FIG. 4 is a flow diagram of an exemplary method of a smart wearable device optimizing output given specific input related to a user. - The present disclosure generally pertains to wearable devices that are capable of, for example, performing an action based on one or more biological or physiological characteristics of the user wearing the device. Using one or more sensors, a processor, and code executable on the processor, a wearable device can be configured to sense and process characteristics that include, but are not limited to, a wearer's physical characteristics such as gender, weight, height, body temperature, skin temperature, heart rate, respiration, blood sugar level, blood glucose level, stress/fatigue, galvanic skin response, ingestion (protein), digestion rate, metabolic rate, blood chemistry, sweat, core and skin temperature, vital signs, eye dryness, tooth decay, gum disease, energy storage, calorie burn rate, mental alertness, cardiac rhythm, sleep patterns, caffeine content, vitamin content, hydration, blood oxygen saturation, blood coritzol level, blood pressure, cholesterol, lactic acid level, body fat, protein level, hormone level, muscle mass, pH, etc. Such conditions may also include, but are not limited to, position (e.g., prone, upright), movement, or physical state (e.g., sleeping, exercising), etc.
- A wearable device may include one or more output devices that include, but are not limited to, haptic output devices (e.g., offset motors, electroactive polymers, capacitive voltage generators, Peltier temperature elements, contracting materials, Braille coding actuators), telemetry devices, visual devices, audible devices, and other output devices.
- A wearable device include artificial intelligence so that the device can learn and adapt to the wearer. The device may be configured to accurately discriminate between erroneous (accidental, unintended, etc.) and valid sensory inputs, thereby developing accurate conclusions about a wearer's physical state or characteristics (e.g., the device does not interpret a wearer rolling over in their sleep as the wearer exercising). The device may also include one or more cameras or other visual sensors for facial, user, or other image recognition. A wearable device may also be configured to transmit information to and/or retrieve information from a wearer's digital health history.
- A wearable device may be configured to output information to a user, to another wearable device, to a non-wearable device, or to a network according to the particular features and function of the device.
- A. Generalized System Implementation.
-
FIG. 1 illustrates a generalized networked infrastructure (e.g., system) 100 that includes anetwork 102. The network could, for example, be a local area network or a wide area network such as the Internet. One or more smart wearable devices 104-1 through 104-n according to embodiments of the technology described herein may be enabled to communicate with thenetwork 102 through a wired or wireless connection 106. Further, one or more of the smart wearable devices may be enabled to communicate with another smart wearable device through thenetwork 102 or by means of a direct wired orwireless connection 108. - One or more of the smart wearable devices 104-1 through 104-n also may be enabled to communicate with one or more non-wearable devices 110-1 through 110-n. The non-wearable devices, which are beyond the scope of this disclosure, may be any conventional “smart” device with a processor, associated operating system, and communications interface. Examples of non-wearable devices include Smartphones, tablet computers, laptop computers, desktop computers, and set top boxes. Any of the non-wearable devices may be of a type enabled to communicate with an external device through a wired or wireless connection. In that case, one or more of the smart wearable devices may be enabled to communicate with one or more of the non-wearable devices by means of a direct wired or
wireless connection 112. Further, one or more of the non-wearable devices may be of a type enabled to communicate with thenetwork 102 through a standard wired orwireless connection 114. In that case, one or more of the smart wearable devices may be enabled to communicate with one or more of the non-wearable devices through thenetwork 102. - One or more servers 116-1 through 116-n may be provided in a client-server configuration and connected to the network by means of a wired or
wireless connection 118. The servers may include standalone servers, cluster servers, networked servers, or servers connected in an array to function like a large computer. In that case, one or more of the smart wearable devices may be enabled to communicate with one or more of the servers. -
FIG. 2 illustrates a generalized embodiment of a smart wearable device according to the technology described herein. It will be appreciated that the embodiment shown may be modified or customized to enable performing the functions described herein. In the exemplary embodiment shown, the smart wearable device includes an “engine” 200 having aprocessor 202,memory 204, andapplication software code 206. Theprocessor 202 can be any suitable conventional processor. Thememory 204 may include any suitable conventional RAM type memory and/or ROM type memory with associated storage space for storing theapplication programming code 206. - A conventional wired or wireless communications module 208 (e.g., transmitter or receiver or transceiver) may be included as needed for performing one or more of the functions of the smart wearable device described herein. Examples of wireless communication capabilities that can be provided include, but are not limited to, Bluetooth, Wi-Fi, infrared, cellular, ZigBee, Z-Wave and near field communication. One or more conventional interfaces or
controllers 210 may also be provided if needed. Examples of interfaces or controllers include, but are not limited to, analog to digital converters, digital to analog converters, buffers, etc. - The device may include at least one
input 212 for a biological or physiological sensor for providing input to the device to perform one or more of the functions described herein. Sensor inputs 214-1 through 214-n for optional sensors may be included as well. These optional input sensors may include, but are not limited to, accelerometers, temperature sensors, altitude sensors, motion sensors, position sensors, and other sensors to perform the function(s) described herein. One or more conventional interfaces orcontrollers 216 may be provided if needed for the sensors. Examples of interfaces or controllers include, but are not limited to, analog to digital converters, digital to analog converters, buffers, etc. - Additionally, the device may include one or more outputs 218-1 through 218-n to drive one or more output devices (and include those output devices). These output devices may include, but are not limited to, haptic output devices, telemetry devices, visual devices, audible devices, and other output devices to perform the functions described herein. One or more conventional interfaces or
controllers 220 may be provided if needed for the output devices. Examples of interfaces or controllers include, but are not limited to, analog to digital converters, digital to analog converters, buffers, etc. - A user input 222 may be provided according to the functions described herein. The user input may, for example, initiate one or more functions, terminate one or more functions, or intervene in a running process. The user input can be any conventional input device, including but not limited to, manual switches, touch sensors, magnetic sensors, proximity sensors, etc. One or more conventional interfaces or controllers 224 may be provided if needed for the output devices. Examples of interfaces or controllers include, but are not limited to, analog to digital converters, digital to analog converters, buffers, etc.
- Depending on the function(s) described herein, the
engine 200 may also include afeedback loop 226 for machine learning or other adaptive functions. The feedback loop may also provide for device calibration. - It will be appreciated that a smart wearable device as described herein would necessarily include a housing or carrier for the above-described components. It will further be appreciated that, as used herein, the term “smart wearable device” means a device that would be worn or otherwise associated with the body of a user and be “connected” to the user by means of at least one sensor for sensing one or more biological or physiological conditions of the user.
- The particular form of the housing or carrier (i.e., wearable platform) can vary according to choice and suitability for performing the functions described herein. Examples of wearable platforms include, but are not limited to, hand worn devices, finger worn devices, wrist worn devices, head worn devices, arm worn devices, leg worn devices, ankle worn devices, foot worn devices, toe worn devices, watches, eyeglasses, rings, bracelets, necklaces, articles of jewelry, articles of clothing, shoes, hats, contact lenses, gloves, etc.
- It will further be appreciated that the input sensors and output devices may be integrated into the wearable platform, or may be external to the wearable platform, as is desired and/or suitable for the function(s) of the smart wearable device.
- B. Smart Wearable Device and Methods for Output Optimization.
- A smart wearable device that can automatically or semi-automatically translate, transcribe, render or otherwise adapt its output from its “native form” to another type (or multiple types) of output form which can be more easily, quickly or deeply understood (and acted upon) by the specific user is described herein. This includes, but is not limited to: transforming text into a dynamically-generated picture or video, transforming visual output into audio or haptics (or vice versa), reducing the complexity of the information (or increasing it in the case it is to be read by professionals such as health providers), etc. The smart wearable device can determine which output form is optimal for a particular user by analyzing the sensor input from the user. Such input can be acquired automatically or may be manually entered into the device by the user.
- Referring now to
FIG. 3 , a schematic diagram 300 is show in which a wearable smart device 104-1 may include sensors 214-1, 214-n for acquiring input, including but not limited to,biological sensors 212 that are configured to collect input related to biological characteristics of the user 302 (see alsoFIG. 2 ). Such biological characteristics may be, but are not limited to, age, gender, education level, mental status, health conditions, etc. The smart wearable device may also use third party information, such as information from social media or e-mail messages, to optimize an output form. Optionally, past personal preferences, such as a favorite type of output given a specific situation or saved manual preset output forms, may be used to optimize a particular output form. In the example embodiment shown inFIG. 3 , the smart wearable device may automatically acquireinput 304 from one of its sensors, such as abiological sensor 212. A user may also enter any desired input manually into the smart wearable device, such as personal characteristics or schedules. The smart wearable device can then use thisinput 304 to determine the optimal form for the device's output. The optimal output form selected by the smart wearable device may be, but is not limited to,images 306, sound, such as music tones or voices 308,haptic signals 310 andlights 312, or a combination of these output form examples. - If the native or default output form is determined to be different than the determined optimal output form, the smart wearable device may transcribe the output information into the optimal output form using one or more transcription engines. This transcription engine may be accessed by the smart wearable device through a stand-alone wireless connection or tethered through a wireless-enabled non-wearable device, for example. The transcription engine may also be a natively-embedded application or queried remotely through a cloud-based access. The smart wearable device may select a specific transcription engine, such as a text to speech and speech to text engine, a natural language processing engine, an image generating engine, a sound generating engine, a vibration generating engine, a smell generating engine or an integrated third party application programming interface, such as a medical dictionary, foreign language dictionary, or sign language directory. The image generation image engine can combine a set of basic patterns and images (either stored locally or remotely) into a visual image/video output. For example, the device could pull the user's Facebook picture, extract the user's face, and assemble it with a colored background to visually indicate positive (or negative) feedback.
- Referring back to
FIG. 3 , once the output has been optimized, the smart wearable device may convey the optimized output to theuser 302 itself or it may transmit 316 the optimized output to one or more non-wearable devices 110-1, 110-n or another smart wearable device 104-n and that device may then convey the optimized output to theuser 302. - Referring now to
FIG. 4 , a flow diagram 400 is shown, which illustrates how one embodiment of the smart wearable device and methods may be used to optimize its output. The smart wearable device may receive input from a sensor that may be internal or external to the smartwearable device 410. Although at least one of the sensors may be biological, acquiring biological input from the user, other sensors may also be used to collect input, such as an environmental sensor that may collect input related to the context in which the output will be conveyed 420. The smart wearable device may use this received input to determine anoptimal output form 430. If the smart wearable device's native or default output form is different from the determined optimal output form, the smart wearable device may then transcribe the output into the optimal form using one ormore transcription engines 440. Once the optimal output is achieved, the smart wearable device may convey the optimized output to a user itself 450 or the smart wearable may transmit the optimized output to analternative device 460 and that device may then convey the optimizedoutput 450. - A smart wearable device may reduce barriers to using the device by providing outputs specifically tailored to the user. Additionally, it will enable a single model of device to be used in a variety of ways and by a broader population and may also make wearable devices' outputs (especially in case of health/fitness monitoring) useful for both the consumer wearer (“B2C” output type) as well as potential healthcare professionals (“B2B” output).
- In one embodiment, the smart wearable device may measure, via GPS or other mechanism, the distance travelled by a user during a run. If the wearer has a personal trainer helping the wearer train for a marathon, for example, the distance information can be communicated to the trainer's wearable or non-wearable device in the optimized format of a map displaying the running route. The map information can provide richer detail to the trainer who can use this information to develop better training routines for the wearer in training.
- In another embodiment, the watch and biological sensor components of the smart wearable device can measure the pulse rate of the wearer. Instead of displaying the pulse rate data on the screen, the smart wearable device can communicate the pulse rate to the wearer aurally or with a haptic output. Although communicating a wearer's actual heart rate by haptic feedback may be overwhelming (e.g. 140 beats per minute in haptic feedback or a tone sounding 140 times in one minutes), the wearable device can be programmed to determine which of two or three bands the wearer's pulse rate fits within and generate a tone or haptic response specific to that particular band. An example of the pulse bands could be: <100 beats/min; 100-120 beats/min; 130-140 beats/min; >140 beats/min. In some cases, the aural mode may be optimum because the user has selected this mode as the preferred communication mode (rather than looking at the watch display). On the other hand, a low light environment could be determined by the programming and automatically switch the device to an aural or haptic output mode so that the bright display doesn't distract the wearer or drain power from the battery unnecessarily by running the bright display.
- In another embodiment of the smart wearable device, the user could rate the output optimization decision that the smart wearable device has made and the smart wearable device may then improve its automated output transcription.
- Embodiments of the present technology may be described with reference to flowchart illustrations of methods and systems according to embodiments of the technology, and/or algorithms, formulae, or other computational depictions, which may also be implemented as computer program products. In this regard, each block or step of a flowchart, and combinations of blocks (and/or steps) in a flowchart, algorithm, formula, or computational depiction can be implemented by various means, such as hardware, firmware, and/or software including one or more computer program instructions embodied in computer-readable program code logic. As will be appreciated, any such computer program instructions may be loaded onto a computer, including without limitation a general purpose computer or special purpose computer, or other programmable processing apparatus to produce a machine, such that the computer program instructions which execute on the computer or other programmable processing apparatus create means for implementing the functions specified in the block(s) of the flowchart(s).
- Accordingly, blocks of the flowcharts, algorithms, formulae, or computational depictions support combinations of means for performing the specified functions, combinations of steps for performing the specified functions, and computer program instructions, such as embodied in computer-readable program code logic means, for performing the specified functions. It will also be understood that each block of the flowchart illustrations, algorithms, formulae, or computational depictions and combinations thereof described herein, can be implemented by special purpose hardware-based computer systems which perform the specified functions or steps, or combinations of special purpose hardware and computer-readable program code logic means.
- Furthermore, these computer program instructions, such as embodied in computer-readable program code logic, may also be stored in a computer-readable memory that can direct a computer or other programmable processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including instruction means which implement the function specified in the block(s) of the flowchart(s). The computer program instructions may also be loaded onto a computer or other programmable processing apparatus to cause a series of operational steps to be performed on the computer or other programmable processing apparatus to produce a computer-implemented process such that the instructions which execute on the computer or other programmable processing apparatus provide steps for implementing the functions specified in the block(s) of the flowchart(s), algorithm(s), formula(e), or computational depiction(s).
- It will further be appreciated that “programming” as used herein refers to one or more instructions that can be executed by a processor to perform a function as described herein. The programming can be embodied in software, in firmware, or in a combination of software and firmware. The programming can be stored local to the device in non-transitory media, or can be stored remotely such as on a server, or all or a portion of the programming can be stored locally and remotely. Programming stored remotely can be downloaded (pushed) to the device by user initiation, or automatically based on one or more factors, such as, for example, location, a timing event, detection of an object, detection of a facial expression, detection of location, detection of a change in location, or other factors. It will further be appreciated that as used herein, that the terms processor, central processing unit (CPU), and computer are used synonymously to denote a device capable of executing the programming and communication with input/output interfaces and/or peripheral devices.
- From the discussion above it will be appreciated that the technology can be embodied in various ways, including but not limited to the following:
- 1. A smart wearable device, the device comprising: (a) a housing, wherein the housing encases components of a wearable smart device; (b) one or more sensors, wherein at least one sensor is a biological sensor configured to acquire biological input; (c) one or more output forms; (d) a memory; (e) one or more communications interfaces; (f) a processor; and (g) programming residing in a non-transitory computer readable medium, wherein the programming is executable by the computer processor and configured to: (i) receive input from the one or more sensors, wherein the input may be acquired automatically or manually entered by a user and wherein at least some of the input is related to the user's biology; (ii) use the received input to determine an optimal output form, wherein at least some of the input used to determine the optimal output form is related to the user's biology; and (iii) if the device's native output form is not already in the determined optimal output form, transcribe the output into the determined optimal output form using one or more transcription engines.
- 2. The device of any preceding embodiments, further comprising: one or more environmental sensors, wherein at least one environmental sensor is configured to acquire contextual input and wherein said programming is further configured to: receive input from the one or more environmental sensors, wherein at least some of the input used to determine the optimal output form is related to the context in which the smart wearable device is operating.
- 3. The device of any preceding embodiments, wherein said programming is further configured to: transmit the optimized output to another smart wearable or non-wearable device, wherein the other smart wearable device or non-wearable device is configured to convey the optimal output form to the user.
- 4. The device of any preceding embodiments, wherein said programming is further configured to: use information inferred from third party data sources or past personal preferences to determine the optimal output form.
- 5. The device of any preceding embodiments, wherein the one or more communications interfaces are selected from the group consisting of a wired communications interface, a wireless communications interface, a cellular communications interface, a WiFi communications interface, a near field communications interface, an infrared communications interface, a ZigBee communications interface, a Z-Wave communications interface and a Bluetooth communications interface.
- 6. The device of any preceding embodiments, wherein said programming is further configured to: select an optimal combination of transcription engines using embedded dedicated intelligence and processing algorithms, wherein the selection is made based on input from the user sensed in real-time and the user's characteristics.
- 7. The device of any preceding embodiments, wherein said programming is further configured to: (a) receive a feedback input from the user to rate the quality of the determined optimal output form; and (b) use the feedback input as a learning parameter to iteratively improve its determination of optimal output forms.
- 8. The device of any preceding embodiments, wherein the transcription engine is accessed by the smart wearable device through a stand-alone wireless connection or tethered through a wireless-enabled non-wearable device.
- 9. The device of any preceding embodiments, wherein the transcription engine is a natively-embedded application or queried remotely through a cloud-based access.
- 10. The device of any preceding embodiments, wherein one or more transcription engines are selected from the group consisting of a text to speech and speech to text engine, a natural language processing engine, an image generating engine, a sound generating engine, a vibration generating engine, a smell generating engine and an integrated third party application programming interface.
- 11. The device of any preceding embodiments, wherein the smart wearable device has a platform selected from the group consisting of hand worn devices, finger worn devices, wrist worn devices, head worn devices, arm worn devices, leg worn devices, ankle worn devices, foot worn devices, toe worn devices, watches, eyeglasses, rings, bracelets, necklaces, articles of jewelry, articles of clothing, shoes, hats, contact lenses, and gloves.
- 12. A computer implemented method for determining the most optimal output form from a smart wearable device, the method comprising: (a) providing a smart wearable device, the smart wearable device comprising: (i) a housing, wherein the housing encases components of a wearable smart device; (ii) one or more sensors, wherein at least one sensor is a biological sensor configured to acquire biological input; (iii) one or more output forms; (iv) a memory; (v) one or more communications interfaces; and (vi) a processor; (b) receiving input from the one or more sensors associated with a smart wearable device, wherein at least one sensor is a biological sensor configured to acquire biological input and wherein the input may be acquired automatically or manually entered by a user; (c) using the received input to determine an optimal output form, wherein at least some of the input used to determine the optimal output form is related to the user's biology; and (d) if the output information is not already in the determined optimal output form, transcribing output information into the determined optimal output form using one or more transcription engines; (e) wherein said method is performed by executing programming on at least one computer processor, said programming residing on a non-transitory medium readable by the computer processor.
- 13. The method of any preceding embodiments, further comprising: receiving input from one or more environmental sensors associated with the smart wearable device, wherein at least one environmental sensor is configured to acquire contextual input and wherein at least some of the input used to determine the optimal output form is related to the context in which the smart wearable device is operating.
- 14. The method of any preceding embodiments, wherein the one or more communications interfaces are selected from the group consisting of a wired communications interface, a wireless communications interface, a cellular communications interface, a WiFi communications interface, a near field communications interface, an infrared communications interface, ZigBee communications interface, a Z-Wave communications interface and a Bluetooth communications interface.
- 15. The method of any preceding embodiments, further comprising: selecting an optimal combination of transcription engines using embedded dedicated intelligence and processing algorithms, wherein the selection is made based on input from the user sensed in real-time and the user's characteristics.
- 16. The method of any preceding embodiments, further comprising: (a) receiving a feedback input from the user to rate the quality of the determined optimal output form; and (b) using the feedback input as a learning parameter to iteratively improve its determination of optimal output forms.
- 17. The method of any preceding embodiments, wherein the transcription engine is accessed by the smart wearable device through a stand-alone wireless connection or tethered through a wireless-enabled non-wearable device.
- 18. The method of any preceding embodiments, wherein the transcription engine is a natively-embedded application or queried remotely through a cloud-based access.
- 19. The method of any preceding embodiments, wherein one or more transcription engines are selected from the group consisting of a text to speech and speech to text engine, a natural language processing engine, an image generating engine, and an integrated third party application programming interface.
- 20. The method of any preceding embodiments, wherein the smart wearable device has a platform selected from the group consisting of hand worn devices, finger worn devices, wrist worn devices, head worn devices, arm worn devices, leg worn devices, ankle worn devices, foot worn devices, toe worn devices, watches, eyeglasses, rings, bracelets, necklaces, articles of jewelry, articles of clothing, shoes, hats, contact lenses, and gloves.
- Although the description above contains many details, these should not be construed as limiting the scope of the technology but as merely providing illustrations of some of the presently preferred embodiments of this technology. Therefore, it will be appreciated that the scope of the present technology fully encompasses other embodiments which may become obvious to those skilled in the art, and that the scope of the present technology is accordingly to be limited by nothing other than the appended claims, in which reference to an element in the singular is not intended to mean “one and only one” unless explicitly so stated, but rather “one or more.” All structural, chemical, and functional equivalents to the elements of the above-described preferred embodiment that are known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the present claims. Moreover, it is not necessary for a device or method to address each and every problem sought to be solved by the present technology, for it to be encompassed by the present claims. Furthermore, no element, component, or method step in the present disclosure is intended to be dedicated to the public regardless of whether the element, component, or method step is explicitly recited in the claims. No claim element herein is to be construed under the provisions of 35 U.S.C. 112 unless the element is expressly recited using the phrase “means for” or “step for”.
Claims (20)
1. A smart wearable device, the device comprising:
(a) a housing, wherein the housing encases components of a wearable smart device;
(b) one or more sensors, wherein at least one sensor is a biological sensor configured to acquire biological input;
(c) one or more output forms;
(d) a memory;
(e) one or more communications interfaces;
(f) a processor; and
(g) programming residing in a non-transitory computer readable medium, wherein the programming is executable by the computer processor and configured to:
(i) receive input from the one or more sensors, wherein the input may be acquired automatically or manually entered by a user and wherein at least some of the input is related to the user's biology;
(ii) use the received input to determine an optimal output form, wherein at least some of the input used to determine the optimal output form is related to the user's biology; and
(iii) if the device's native output form is not already in the determined optimal output form, transcribe the output into the determined optimal output form using one or more transcription engines.
2. The device of claim 1 , further comprising:
one or more environmental sensors, wherein at least one environmental sensor is configured to acquire contextual input and wherein said programming is further configured to:
receive input from the one or more environmental sensors, wherein at least some of the input used to determine the optimal output form is related to the context in which the smart wearable device is operating.
3. The device of claim 1 , wherein said programming is further configured to:
transmit the optimized output to another smart wearable or non-wearable device, wherein the other smart wearable device or non-wearable device is configured to convey the optimal output form to the user.
4. The device of claim 3 , wherein said programming is further configured to:
use information inferred from third party data sources or past personal preferences to determine the optimal output form.
5. The device of claim 1 , wherein the one or more communications interfaces are selected from the group consisting of a wired communications interface, a wireless communications interface, a cellular communications interface, a WiFi communications interface, a near field communications interface, an infrared communications interface, a ZigBee communications interface, a Z-Wave communications interface and a Bluetooth communications interface.
6. The device of claim 1 , wherein said programming is further configured to:
select an optimal combination of transcription engines using embedded dedicated intelligence and processing algorithms, wherein the selection is made based on input from the user sensed in real-time and the user's characteristics.
7. The device of claim 1 , wherein said programming is further configured to:
(a) receive a feedback input from the user to rate the quality of the determined optimal output form; and
(b) use the feedback input as a learning parameter to iteratively improve its determination of optimal output forms.
8. The device of claim 1 , wherein the transcription engine is accessed by the smart wearable device through a stand-alone wireless connection or tethered through a wireless-enabled non-wearable device.
9. The device of claim 1 , wherein the transcription engine is a natively-embedded application or queried remotely through a cloud-based access.
10. The device of claim 1 , wherein one or more transcription engines are selected from the group consisting of a text to speech and speech to text engine, a natural language processing engine, an image generating engine, a sound generating engine, a vibration generating engine, a smell generating engine and an integrated third party application programming interface.
11. The device of claim 1 , wherein the smart wearable device has a platform selected from the group consisting of hand worn devices, finger worn devices, wrist worn devices, head worn devices, arm worn devices, leg worn devices, ankle worn devices, foot worn devices, toe worn devices, watches, eyeglasses, rings, bracelets, necklaces, articles of jewelry, articles of clothing, shoes, hats, contact lenses, and gloves.
12. A computer implemented method for determining the most optimal output form from a smart wearable device, the method comprising:
(a) providing a smart wearable device, the smart wearable device comprising:
(i) a housing, wherein the housing encases components of a wearable smart device;
(ii) one or more sensors, wherein at least one sensor is a biological sensor configured to acquire biological input;
(iii) one or more output forms;
(iv) a memory;
(v) one or more communications interfaces; and
(vi) a processor;
(b) receiving input from the one or more sensors associated with a smart wearable device, wherein at least one sensor is a biological sensor configured to acquire biological input and wherein the input may be acquired automatically or manually entered by a user;
(c) using the received input to determine an optimal output form, wherein at least some of the input used to determine the optimal output form is related to the user's biology; and
(d) if the output information is not already in the determined optimal output form, transcribing output information into the determined optimal output form using one or more transcription engines;
(e) wherein said method is performed by executing programming on at least one computer processor, said programming residing on a non-transitory medium readable by the computer processor.
13. The method of claim 12 , further comprising:
receiving input from one or more environmental sensors associated with the smart wearable device, wherein at least one environmental sensor is configured to acquire contextual input and wherein at least some of the input used to determine the optimal output form is related to the context in which the smart wearable device is operating.
14. The method of claim 12 , wherein the one or more communications interfaces are selected from the group consisting of a wired communications interface, a wireless communications interface, a cellular communications interface, a WiFi communications interface, a near field communications interface, an infrared communications interface, ZigBee communications interface, a Z-Wave communications interface and a Bluetooth communications interface.
15. The method of claim 12 , further comprising:
selecting an optimal combination of transcription engines using embedded dedicated intelligence and processing algorithms, wherein the selection is made based on input from the user sensed in real-time and the user's characteristics.
16. The method of claim 12 , further comprising:
(a) receiving a feedback input from the user to rate the quality of the determined optimal output form; and
(b) using the feedback input as a learning parameter to iteratively improve its determination of optimal output forms.
17. The method of claim 12 , wherein the transcription engine is accessed by the smart wearable device through a stand-alone wireless connection or tethered through a wireless-enabled non-wearable device.
18. The method of claim 12 , wherein the transcription engine is a natively-embedded application or queried remotely through a cloud-based access.
19. The method of claim 12 , wherein one or more transcription engines are selected from the group consisting of a text to speech and speech to text engine, a natural language processing engine, an image generating engine, and an integrated third party application programming interface.
20. The method of claim 12 , wherein the smart wearable device has a platform selected from the group consisting of hand worn devices, finger worn devices, wrist worn devices, head worn devices, arm worn devices, leg worn devices, ankle worn devices, foot worn devices, toe worn devices, watches, eyeglasses, rings, bracelets, necklaces, articles of jewelry, articles of clothing, shoes, hats, contact lenses, and gloves.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/229,373 US20170010663A1 (en) | 2014-02-24 | 2016-08-05 | Smart wearable devices and methods for optimizing output |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201461943837P | 2014-02-24 | 2014-02-24 | |
PCT/US2015/016597 WO2015127062A1 (en) | 2014-02-24 | 2015-02-19 | Smart wearable devices and methods for optimizing output |
US15/229,373 US20170010663A1 (en) | 2014-02-24 | 2016-08-05 | Smart wearable devices and methods for optimizing output |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2015/016597 Continuation WO2015127062A1 (en) | 2014-02-24 | 2015-02-19 | Smart wearable devices and methods for optimizing output |
Publications (1)
Publication Number | Publication Date |
---|---|
US20170010663A1 true US20170010663A1 (en) | 2017-01-12 |
Family
ID=53878953
Family Applications (9)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/229,373 Abandoned US20170010663A1 (en) | 2014-02-24 | 2016-08-05 | Smart wearable devices and methods for optimizing output |
US15/229,405 Abandoned US20170010666A1 (en) | 2014-02-24 | 2016-08-05 | Smart wearable devices and methods for acquisition of sensorial information from smart devices |
US15/229,393 Abandoned US20170010665A1 (en) | 2014-02-24 | 2016-08-05 | Smart wearable devices and methods for acquisition of sensorial information from wearable devices to activate functions in other devices |
US15/229,382 Active 2035-07-30 US10528121B2 (en) | 2014-02-24 | 2016-08-05 | Smart wearable devices and methods for automatically configuring capabilities with biology and environment capture sensors |
US15/236,448 Active 2035-05-03 US10571999B2 (en) | 2014-02-24 | 2016-08-14 | Proximity based and data exchange and user authentication between smart wearable devices |
US15/236,450 Active US10234936B2 (en) | 2014-02-24 | 2016-08-14 | Smart wearable devices and methods with attention level and workload sensing |
US15/236,461 Active 2035-08-04 US10114453B2 (en) | 2014-02-24 | 2016-08-14 | Smart wearable devices and methods with power consumption and network load optimization |
US15/236,449 Active US10191537B2 (en) | 2014-02-24 | 2016-08-14 | Smart wearable devices and methods for customized haptic feedback |
US15/236,465 Active 2035-08-04 US10254825B2 (en) | 2014-02-24 | 2016-08-14 | Body position optimization and bio-signal feedback for smart wearable devices |
Family Applications After (8)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/229,405 Abandoned US20170010666A1 (en) | 2014-02-24 | 2016-08-05 | Smart wearable devices and methods for acquisition of sensorial information from smart devices |
US15/229,393 Abandoned US20170010665A1 (en) | 2014-02-24 | 2016-08-05 | Smart wearable devices and methods for acquisition of sensorial information from wearable devices to activate functions in other devices |
US15/229,382 Active 2035-07-30 US10528121B2 (en) | 2014-02-24 | 2016-08-05 | Smart wearable devices and methods for automatically configuring capabilities with biology and environment capture sensors |
US15/236,448 Active 2035-05-03 US10571999B2 (en) | 2014-02-24 | 2016-08-14 | Proximity based and data exchange and user authentication between smart wearable devices |
US15/236,450 Active US10234936B2 (en) | 2014-02-24 | 2016-08-14 | Smart wearable devices and methods with attention level and workload sensing |
US15/236,461 Active 2035-08-04 US10114453B2 (en) | 2014-02-24 | 2016-08-14 | Smart wearable devices and methods with power consumption and network load optimization |
US15/236,449 Active US10191537B2 (en) | 2014-02-24 | 2016-08-14 | Smart wearable devices and methods for customized haptic feedback |
US15/236,465 Active 2035-08-04 US10254825B2 (en) | 2014-02-24 | 2016-08-14 | Body position optimization and bio-signal feedback for smart wearable devices |
Country Status (6)
Country | Link |
---|---|
US (9) | US20170010663A1 (en) |
EP (9) | EP3089726B1 (en) |
JP (9) | JP6467721B2 (en) |
KR (12) | KR101939889B1 (en) |
CN (10) | CN105960666B (en) |
WO (9) | WO2015127056A2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160314708A1 (en) * | 2015-04-21 | 2016-10-27 | Freedom Scientific, Inc. | Method and System for Converting Text to Speech |
US10517536B1 (en) * | 2018-03-28 | 2019-12-31 | Senstream, Inc. | Biometric wearable and EDA method for acquiring biomarkers in perspiration |
WO2020243531A3 (en) * | 2019-05-31 | 2020-12-30 | Biotrillion, Inc. | Systems and methods for monitoring movements |
US11434668B1 (en) | 2022-05-07 | 2022-09-06 | Steven D. Wriggle | Detainee monitor restraint |
US12141371B2 (en) | 2018-02-23 | 2024-11-12 | Telefonaktiebolaget Lm Ericsson (Publ) | Coordinating alignment of coordinate systems used for a computer generated reality device and a haptic device |
Families Citing this family (346)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4695526A (en) | 1986-07-11 | 1987-09-22 | Eastman Kodak Company | Poly(ethylene oxide) stripping agents for photographic products |
US8924248B2 (en) | 2006-09-26 | 2014-12-30 | Fitbit, Inc. | System and method for activating a device based on a record of physical activity |
US8998096B2 (en) | 2010-04-01 | 2015-04-07 | Coin, Inc. | Magnetic emissive use of preloaded payment card account numbers |
US8954290B2 (en) | 2010-09-30 | 2015-02-10 | Fitbit, Inc. | Motion-activated display of messages on an activity monitoring device |
US9310909B2 (en) | 2010-09-30 | 2016-04-12 | Fitbit, Inc. | Methods, systems and devices for physical contact activated display and navigation |
US8738321B2 (en) | 2010-09-30 | 2014-05-27 | Fitbit, Inc. | Methods and systems for classification of geographic locations for tracked activity |
US8954291B2 (en) | 2010-09-30 | 2015-02-10 | Fitbit, Inc. | Alarm setting and interfacing with gesture contact interfacing controls |
US8712724B2 (en) | 2010-09-30 | 2014-04-29 | Fitbit, Inc. | Calendar integration methods and systems for presentation of events having combined activity and location information |
US8762102B2 (en) | 2010-09-30 | 2014-06-24 | Fitbit, Inc. | Methods and systems for generation and rendering interactive events having combined activity and location information |
US9148483B1 (en) | 2010-09-30 | 2015-09-29 | Fitbit, Inc. | Tracking user physical activity with multiple devices |
US8762101B2 (en) | 2010-09-30 | 2014-06-24 | Fitbit, Inc. | Methods and systems for identification of event data having combined activity and location information of portable monitoring devices |
US9241635B2 (en) | 2010-09-30 | 2016-01-26 | Fitbit, Inc. | Portable monitoring devices for processing applications and processing analysis of physiological conditions of a user associated with the portable monitoring device |
US8694282B2 (en) | 2010-09-30 | 2014-04-08 | Fitbit, Inc. | Methods and systems for geo-location optimized tracking and updating for events having combined activity and location information |
US8738323B2 (en) | 2010-09-30 | 2014-05-27 | Fitbit, Inc. | Methods and systems for metrics analysis and interactive rendering, including events having combined activity and location information |
US8620617B2 (en) | 2010-09-30 | 2013-12-31 | Fitbit, Inc. | Methods and systems for interactive goal setting and recommender using events having combined activity and location information |
US10983945B2 (en) | 2010-09-30 | 2021-04-20 | Fitbit, Inc. | Method of data synthesis |
US8805646B2 (en) | 2010-09-30 | 2014-08-12 | Fitbit, Inc. | Methods, systems and devices for linking user devices to activity tracking devices |
US9390427B2 (en) | 2010-09-30 | 2016-07-12 | Fitbit, Inc. | Methods, systems and devices for automatic linking of activity tracking devices to user devices |
US10004406B2 (en) | 2010-09-30 | 2018-06-26 | Fitbit, Inc. | Portable monitoring devices for processing applications and processing analysis of physiological conditions of a user associated with the portable monitoring device |
US8744803B2 (en) | 2010-09-30 | 2014-06-03 | Fitbit, Inc. | Methods, systems and devices for activity tracking device data synchronization with computing devices |
US11243093B2 (en) | 2010-09-30 | 2022-02-08 | Fitbit, Inc. | Methods, systems and devices for generating real-time activity data updates to display devices |
US8615377B1 (en) | 2010-09-30 | 2013-12-24 | Fitbit, Inc. | Methods and systems for processing social interactive data and sharing of tracked activity associated with locations |
US8738925B1 (en) | 2013-01-07 | 2014-05-27 | Fitbit, Inc. | Wireless portable biometric device syncing |
ES2991004T3 (en) | 2011-12-22 | 2024-12-02 | Harvard College | Methods for the detection of analytes |
US9253168B2 (en) | 2012-04-26 | 2016-02-02 | Fitbit, Inc. | Secure pairing of devices via pairing facilitator-intermediary device |
US9641239B2 (en) | 2012-06-22 | 2017-05-02 | Fitbit, Inc. | Adaptive data transfer using bluetooth |
US8948832B2 (en) | 2012-06-22 | 2015-02-03 | Fitbit, Inc. | Wearable heart rate monitor |
US9597014B2 (en) | 2012-06-22 | 2017-03-21 | Fitbit, Inc. | GPS accuracy refinement using external sensors |
US11029199B2 (en) | 2012-06-22 | 2021-06-08 | Fitbit, Inc. | Ambient light determination using physiological metric sensor data |
US9044171B2 (en) | 2012-06-22 | 2015-06-02 | Fitbit, Inc. | GPS power conservation using environmental data |
US9728059B2 (en) | 2013-01-15 | 2017-08-08 | Fitbit, Inc. | Sedentary period detection utilizing a wearable electronic device |
US9039614B2 (en) | 2013-01-15 | 2015-05-26 | Fitbit, Inc. | Methods, systems and devices for measuring fingertip heart rate |
EP2971184B1 (en) | 2013-03-12 | 2019-04-17 | President and Fellows of Harvard College | Method of generating a three-dimensional nucleic acid containing matrix |
US8976062B2 (en) | 2013-04-01 | 2015-03-10 | Fitbit, Inc. | Portable biometric monitoring devices having location sensors |
US9063164B1 (en) | 2013-10-02 | 2015-06-23 | Fitbit, Inc. | Collaborative activity-data acquisition |
US9578307B2 (en) | 2014-01-14 | 2017-02-21 | Toyota Motor Engineering & Manufacturing North America, Inc. | Smart necklace with stereo vision and onboard processing |
US10248856B2 (en) | 2014-01-14 | 2019-04-02 | Toyota Motor Engineering & Manufacturing North America, Inc. | Smart necklace with stereo vision and onboard processing |
US10360907B2 (en) | 2014-01-14 | 2019-07-23 | Toyota Motor Engineering & Manufacturing North America, Inc. | Smart necklace with stereo vision and onboard processing |
US9915545B2 (en) | 2014-01-14 | 2018-03-13 | Toyota Motor Engineering & Manufacturing North America, Inc. | Smart necklace with stereo vision and onboard processing |
US9629774B2 (en) | 2014-01-14 | 2017-04-25 | Toyota Motor Engineering & Manufacturing North America, Inc. | Smart necklace with stereo vision and onboard processing |
US10024679B2 (en) | 2014-01-14 | 2018-07-17 | Toyota Motor Engineering & Manufacturing North America, Inc. | Smart necklace with stereo vision and onboard processing |
US11990019B2 (en) | 2014-02-27 | 2024-05-21 | Fitbit, Inc. | Notifications on a user device based on activity detected by an activity monitoring device |
US9031812B2 (en) | 2014-02-27 | 2015-05-12 | Fitbit, Inc. | Notifications on a user device based on activity detected by an activity monitoring device |
US20150288687A1 (en) * | 2014-04-07 | 2015-10-08 | InvenSense, Incorporated | Systems and methods for sensor based authentication in wearable devices |
US9344546B2 (en) | 2014-05-06 | 2016-05-17 | Fitbit, Inc. | Fitness activity related messaging |
US9568972B2 (en) * | 2014-05-09 | 2017-02-14 | Intel Corporation | Coordinated multi-device power management |
US9763049B2 (en) | 2014-05-15 | 2017-09-12 | Pebble Technology Corp. | Contextual information usage in systems that include accessory devices |
CN104050402A (en) * | 2014-06-12 | 2014-09-17 | 深圳市汇顶科技股份有限公司 | Mobile terminal security certification method and system and mobile terminal |
US10179932B2 (en) | 2014-07-11 | 2019-01-15 | President And Fellows Of Harvard College | Methods for high-throughput labelling and detection of biological features in situ using microscopy |
US9547363B2 (en) * | 2014-07-16 | 2017-01-17 | Mediatek Inc. | Power-saving method and associated electronic device |
US10024667B2 (en) | 2014-08-01 | 2018-07-17 | Toyota Motor Engineering & Manufacturing North America, Inc. | Wearable earpiece for providing social and environmental awareness |
US11918375B2 (en) | 2014-09-05 | 2024-03-05 | Beijing Zitiao Network Technology Co., Ltd. | Wearable environmental pollution monitor computer apparatus, systems, and related methods |
US10617342B2 (en) | 2014-09-05 | 2020-04-14 | Vision Service Plan | Systems, apparatus, and methods for using a wearable device to monitor operator alertness |
US10448867B2 (en) | 2014-09-05 | 2019-10-22 | Vision Service Plan | Wearable gait monitoring apparatus, systems, and related methods |
US10024678B2 (en) | 2014-09-17 | 2018-07-17 | Toyota Motor Engineering & Manufacturing North America, Inc. | Wearable clip for providing social and environmental awareness |
US9922236B2 (en) | 2014-09-17 | 2018-03-20 | Toyota Motor Engineering & Manufacturing North America, Inc. | Wearable eyeglasses for providing social and environmental awareness |
US9952675B2 (en) | 2014-09-23 | 2018-04-24 | Fitbit, Inc. | Methods, systems, and apparatuses to display visibility changes responsive to user gestures |
US9808185B2 (en) | 2014-09-23 | 2017-11-07 | Fitbit, Inc. | Movement measure generation in a wearable electronic device |
US10419886B2 (en) * | 2014-09-25 | 2019-09-17 | Intel Corporation | Context-based management of wearable computing devices |
US9753539B2 (en) | 2014-10-02 | 2017-09-05 | Futureplay Inc. | Method, device, system and non-transitory computer-readable recording medium for providing user interface |
KR20160075079A (en) * | 2014-12-19 | 2016-06-29 | 삼성전자주식회사 | Electronic device for controlling other elcectronic device and method for controlling other elcectronic device |
KR102247518B1 (en) * | 2014-12-23 | 2021-05-03 | 삼성전자주식회사 | Wearable apparatus, management server, management system having the same and method for controlling thereof |
US9807806B2 (en) | 2014-12-24 | 2017-10-31 | Mediatek Inc. | Method for accessing a network in electronic system and associated portable device |
US9819560B2 (en) | 2014-12-24 | 2017-11-14 | Mediatek Inc. | Dynamic data distribution method in private network and associated electronic device |
US9576460B2 (en) | 2015-01-21 | 2017-02-21 | Toyota Motor Engineering & Manufacturing North America, Inc. | Wearable smart device for hazard detection and warning based on image and audio data |
US10215568B2 (en) | 2015-01-30 | 2019-02-26 | Vision Service Plan | Systems and methods for tracking motion, performance, and other data for an individual such as a winter sports athlete |
US10490102B2 (en) | 2015-02-10 | 2019-11-26 | Toyota Motor Engineering & Manufacturing North America, Inc. | System and method for braille assistance |
US9586318B2 (en) | 2015-02-27 | 2017-03-07 | Toyota Motor Engineering & Manufacturing North America, Inc. | Modular robot with smart device |
US9677901B2 (en) | 2015-03-10 | 2017-06-13 | Toyota Motor Engineering & Manufacturing North America, Inc. | System and method for providing navigation instructions at optimal times |
US9811752B2 (en) | 2015-03-10 | 2017-11-07 | Toyota Motor Engineering & Manufacturing North America, Inc. | Wearable smart device and method for redundant object identification |
US9972216B2 (en) | 2015-03-20 | 2018-05-15 | Toyota Motor Engineering & Manufacturing North America, Inc. | System and method for storing and playback of information for blind users |
US10185513B1 (en) | 2015-06-05 | 2019-01-22 | Life365, Inc. | Device configured for dynamic software change |
US11329683B1 (en) * | 2015-06-05 | 2022-05-10 | Life365, Inc. | Device configured for functional diagnosis and updates |
US10560135B1 (en) | 2015-06-05 | 2020-02-11 | Life365, Inc. | Health, wellness and activity monitor |
US9974492B1 (en) | 2015-06-05 | 2018-05-22 | Life365, Inc. | Health monitoring and communications device |
JP2017012277A (en) * | 2015-06-29 | 2017-01-19 | カシオ計算機株式会社 | Portable electronic device, sensor control system, sensor control method, and sensor control program |
CN105045394A (en) * | 2015-08-03 | 2015-11-11 | 歌尔声学股份有限公司 | Method and apparatus for starting preset function in wearable electronic terminal |
US9898039B2 (en) | 2015-08-03 | 2018-02-20 | Toyota Motor Engineering & Manufacturing North America, Inc. | Modular smart necklace |
WO2017020115A1 (en) * | 2015-08-05 | 2017-02-09 | Eski Inc. | Methods and apparatus for communicating with a receiving unit |
CN106445101A (en) | 2015-08-07 | 2017-02-22 | 飞比特公司 | Method and system for identifying user |
US9813857B2 (en) | 2015-08-13 | 2017-11-07 | Eski Inc. | Methods and apparatus for creating an individualized record of an event |
US10194228B2 (en) * | 2015-08-29 | 2019-01-29 | Bragi GmbH | Load balancing to maximize device function in a personal area network device system and method |
WO2017042803A1 (en) * | 2015-09-10 | 2017-03-16 | Agt International Gmbh | Method of device for identifying and analyzing spectator sentiment |
US9871546B2 (en) * | 2015-09-11 | 2018-01-16 | Panasonic Intellectual Property Corporation Of America | Wearable terminal mountable on part of body of user |
US10564794B2 (en) * | 2015-09-15 | 2020-02-18 | Xerox Corporation | Method and system for document management considering location, time and social context |
CN105510388B (en) * | 2015-11-25 | 2019-01-08 | 中国科学院电工研究所 | Wearable sweat pH value detection device |
EP3383510B1 (en) * | 2015-12-01 | 2020-04-29 | Koninklijke Philips N.V. | Activity identification and tracking |
US10599980B2 (en) * | 2015-12-21 | 2020-03-24 | Intel Corporation | Technologies for cognitive cuing based on knowledge and context |
US9848035B2 (en) * | 2015-12-24 | 2017-12-19 | Intel Corporation | Measurements exchange network, such as for internet-of-things (IoT) devices |
JP2017117277A (en) * | 2015-12-25 | 2017-06-29 | 株式会社イシダ | Guidance information delivery system |
US11437139B2 (en) | 2015-12-28 | 2022-09-06 | Data Vault Holdings, Inc. | Method and apparatus for biometric data collection combining visual data with historical health records metadata |
US11593764B2 (en) * | 2015-12-28 | 2023-02-28 | Data Vault Holdings, Inc. | Remote medication delivery systems |
KR102635868B1 (en) | 2016-01-26 | 2024-02-14 | 삼성전자주식회사 | Electronic device and controlling method thereof |
US10181021B2 (en) | 2016-02-01 | 2019-01-15 | Fitbit, Inc. | Method and apparatus for off-body detection for wearable device |
US10188345B2 (en) | 2016-02-12 | 2019-01-29 | Fitbit, Inc. | Method and apparatus for providing biofeedback during meditation exercise |
US10080530B2 (en) | 2016-02-19 | 2018-09-25 | Fitbit, Inc. | Periodic inactivity alerts and achievement messages |
CN109475242B (en) * | 2016-02-24 | 2022-03-04 | 斯马特斯纳格Ip有限公司 | Sleeping bag for babies and children |
WO2017150006A1 (en) * | 2016-03-03 | 2017-09-08 | 村田機械株式会社 | Temporary storage system |
US10024680B2 (en) | 2016-03-11 | 2018-07-17 | Toyota Motor Engineering & Manufacturing North America, Inc. | Step based guidance system |
JP6496679B2 (en) * | 2016-03-28 | 2019-04-03 | 株式会社ゼンリンデータコム | Terminal, information processing system, information processing method, and program |
KR101729689B1 (en) * | 2016-03-29 | 2017-04-24 | 주식회사 더블에이치 | Wearable device for reducing body fat using light emit diodes and method thereof |
CN108697902B (en) * | 2016-03-29 | 2021-06-04 | 达博爱公司 | Wearable device for reducing body fat by using LED and operation method thereof |
US10163282B2 (en) * | 2016-03-30 | 2018-12-25 | Intermec, Inc. | Systems and methods for authentication |
US9788152B1 (en) | 2016-04-01 | 2017-10-10 | Eski Inc. | Proximity-based configuration of a device |
US20170310673A1 (en) * | 2016-04-20 | 2017-10-26 | Huami Inc. | Security system with gesture-based access control |
EP3432770B1 (en) * | 2016-04-22 | 2023-10-25 | Nokia Technologies Oy | Controlling measurement of one or more vital signs of a living subject |
JP7259182B2 (en) | 2016-04-25 | 2023-04-18 | プレジデント アンド フェローズ オブ ハーバード カレッジ | Hybridization chain reaction method for in situ molecular detection |
WO2017190085A1 (en) | 2016-04-29 | 2017-11-02 | Fitbit, Inc. | Sleep monitoring system with optional alarm functionality |
WO2017200571A1 (en) | 2016-05-16 | 2017-11-23 | Google Llc | Gesture-based control of a user interface |
US20170334168A1 (en) * | 2016-05-18 | 2017-11-23 | Ford Global Technologies, Llc | Hybrid Adhesive System For Metal and Composite Assemblies |
US9730027B2 (en) | 2016-05-19 | 2017-08-08 | Fitbit, Inc. | Back-filling of geolocation-based exercise routes |
US10488527B2 (en) | 2016-05-19 | 2019-11-26 | Fitbit, Inc. | Automatic tracking of geolocation data for exercises |
US9958275B2 (en) | 2016-05-31 | 2018-05-01 | Toyota Motor Engineering & Manufacturing North America, Inc. | System and method for wearable smart device communications |
US10325514B2 (en) | 2016-06-02 | 2019-06-18 | Fitbit, Inc. | Systems and techniques for tracking sleep consistency and sleep goals |
US10081103B2 (en) | 2016-06-16 | 2018-09-25 | International Business Machines Corporation | Wearable device testing |
JP6807405B2 (en) * | 2016-06-23 | 2021-01-06 | スリーエム イノベイティブ プロパティズ カンパニー | Personal protective equipment (PPE) with analysis stream processing for safety event detection |
US9781243B1 (en) * | 2016-06-27 | 2017-10-03 | Intel Corporation | Optimizing wearable device settings using machine learning |
CN109475295B (en) * | 2016-06-29 | 2022-07-26 | 皇家飞利浦有限公司 | Methods and devices for health devices and wearable/implantable devices |
US11096048B2 (en) * | 2016-06-30 | 2021-08-17 | Huawei Technologies Co., Ltd. | Identity authentication method and communications terminal |
US9947305B2 (en) * | 2016-07-01 | 2018-04-17 | Intel Corporation | Bi-directional music synchronization using haptic devices |
WO2018006951A1 (en) * | 2016-07-06 | 2018-01-11 | Telefonaktiebolaget Lm Ericsson (Publ) | Transfer of a monitoring responsibility |
US11587063B1 (en) * | 2016-07-06 | 2023-02-21 | United Services Automobile Association (Usaa) | Automated proximity fraud account lock systems and methods |
US10561519B2 (en) | 2016-07-20 | 2020-02-18 | Toyota Motor Engineering & Manufacturing North America, Inc. | Wearable computing device having a curved back to reduce pressure on vertebrae |
US9756604B1 (en) * | 2016-07-21 | 2017-09-05 | Immersion Corporation | Haptic functionality for network connected devices |
US10890975B2 (en) | 2016-07-22 | 2021-01-12 | Harman International Industries, Incorporated | Haptic guidance system |
US20180032944A1 (en) * | 2016-07-26 | 2018-02-01 | Accenture Global Solutions Limited | Biometric-based resource allocation |
CN106419867A (en) * | 2016-08-09 | 2017-02-22 | 上海斐讯数据通信技术有限公司 | Wearable electronic instrument, human health monitoring system comprising same and human health monitoring method |
JP6743569B2 (en) * | 2016-08-09 | 2020-08-19 | 沖電気工業株式会社 | Operation support device, operation support method, and program |
CN106202976A (en) * | 2016-08-15 | 2016-12-07 | 宁波高科美电子技术有限公司 | A kind of learning quality and the assessment assay method of time |
CN106236098B (en) * | 2016-08-16 | 2019-03-08 | 京东方科技集团股份有限公司 | Wearable device, the movement detection systems based on wearable device and method |
KR101946341B1 (en) * | 2016-08-24 | 2019-02-11 | 주식회사 네오펙트 | Method for setting up difficulty of training contents and electronic device implementing the same |
CN106354386B (en) * | 2016-08-30 | 2018-06-29 | 杨永利 | The electronic equipment and method interacted using physiological signal |
US11207021B2 (en) | 2016-09-06 | 2021-12-28 | Fitbit, Inc | Methods and systems for labeling sleep states |
US10187765B2 (en) * | 2016-09-23 | 2019-01-22 | Apple Inc. | Networked sensor array |
DE102016218874A1 (en) * | 2016-09-29 | 2018-03-29 | Takata AG | Vehicle components, switches for placement on a vehicle component, and methods of manufacturing a vehicle component |
KR102546249B1 (en) * | 2016-10-10 | 2023-06-23 | 삼성전자주식회사 | output device outputting audio signal and method for controlling thereof |
US11061559B2 (en) | 2016-10-25 | 2021-07-13 | Hewlett-Packard Development Company, L.P. | Controlling user interfaces for electronic devices |
US10432851B2 (en) | 2016-10-28 | 2019-10-01 | Toyota Motor Engineering & Manufacturing North America, Inc. | Wearable computing device for detecting photography |
JP2018072205A (en) * | 2016-10-31 | 2018-05-10 | 公立大学法人岩手県立大学 | Operation information gathering system |
US10697811B2 (en) | 2016-10-31 | 2020-06-30 | Nokia Technologies Oy | Method, apparatus and computer program product for providing sensor data collection and sensor configuration |
CN108021104A (en) * | 2016-10-31 | 2018-05-11 | 博世汽车部件(苏州)有限公司 | Production line monitoring system and method |
WO2018081795A1 (en) * | 2016-10-31 | 2018-05-03 | Zipline Medical, Inc. | Systems and methods for monitoring physical therapy of the knee and other joints |
US10012505B2 (en) | 2016-11-11 | 2018-07-03 | Toyota Motor Engineering & Manufacturing North America, Inc. | Wearable system for providing walking directions |
US10521669B2 (en) | 2016-11-14 | 2019-12-31 | Toyota Motor Engineering & Manufacturing North America, Inc. | System and method for providing guidance or feedback to a user |
KR20180055068A (en) * | 2016-11-16 | 2018-05-25 | 엘지전자 주식회사 | Smart terminal service system and smart terminal processing data |
US10332523B2 (en) | 2016-11-18 | 2019-06-25 | Google Llc | Virtual assistant identification of nearby computing devices |
CN106709304A (en) * | 2016-11-21 | 2017-05-24 | 北京小米移动软件有限公司 | Terminal equipment control method and device |
WO2018096630A1 (en) * | 2016-11-24 | 2018-05-31 | オリンパス株式会社 | Data processing device, computer readable medium, data processing method, and program |
WO2018096631A1 (en) | 2016-11-24 | 2018-05-31 | オリンパス株式会社 | Data processing device, computer readable medium, data processing method, and program |
US10276002B2 (en) | 2017-01-13 | 2019-04-30 | Intel Corporation | Apparatus and method for modifying a haptic output of a haptic device |
US10334515B2 (en) | 2017-01-13 | 2019-06-25 | ENK Wireless, Inc. | Conveying information via auxiliary device selection |
US10637814B2 (en) * | 2017-01-18 | 2020-04-28 | Microsoft Technology Licensing, Llc | Communication routing based on physical status |
US10172760B2 (en) | 2017-01-19 | 2019-01-08 | Jennifer Hendrix | Responsive route guidance and identification system |
CN211410115U (en) * | 2017-01-22 | 2020-09-04 | 宁波幸福妈妈医疗科技有限公司 | Wearable device |
EP3381173B1 (en) * | 2017-01-28 | 2023-05-10 | Well Being Digital Limited | A device for identifying a person and a method thereof |
WO2018145133A1 (en) * | 2017-02-02 | 2018-08-09 | Raubenheimer Pieter Jacobus Adriaan | A supervisory, diagnostic and technical assistance device and a system for promoting remote supervision, diagnostic and technical assistance |
US11042174B2 (en) * | 2017-02-03 | 2021-06-22 | Qualcomm Incorporated | System and method for thermal management of a wearable computing device based on proximity to a user |
US10721363B2 (en) * | 2017-02-09 | 2020-07-21 | Sony Corporation | System and method for controlling notifications in an electronic device according to user status |
US10861450B2 (en) * | 2017-02-10 | 2020-12-08 | Samsung Electronics Co., Ltd. | Method and apparatus for managing voice-based interaction in internet of things network system |
CN106859955A (en) * | 2017-02-14 | 2017-06-20 | 包磊 | Acupuncture analog signal output method and device |
WO2018156101A1 (en) * | 2017-02-21 | 2018-08-30 | Ford Global Technologies, Llc | Vehicle and wearable device operation |
WO2018165560A1 (en) * | 2017-03-10 | 2018-09-13 | Zimmer, Inc. | Smartwatch therapy application |
JP6676569B2 (en) * | 2017-03-17 | 2020-04-08 | 日本電信電話株式会社 | Authentication system, authentication device, and authentication method |
CN107106044B (en) * | 2017-03-30 | 2021-03-16 | 深圳市汇顶科技股份有限公司 | Wearable device, wearing quality detection method and device |
CN106993265B (en) * | 2017-03-31 | 2020-09-29 | 北京小米移动软件有限公司 | Communication method based on wearable device, terminal and wearable device |
US10621685B2 (en) | 2017-04-03 | 2020-04-14 | International Business Machines Corporation | Cognitive education advisor |
US11051706B1 (en) | 2017-04-07 | 2021-07-06 | Fitbit, Inc. | Multiple source-detector pair photoplethysmography (PPG) sensor |
CN107070914A (en) * | 2017-04-11 | 2017-08-18 | 北京小米移动软件有限公司 | Authorization method, device and equipment based on wearable device |
US10624561B2 (en) | 2017-04-12 | 2020-04-21 | Fitbit, Inc. | User identification by biometric monitoring device |
KR101744195B1 (en) * | 2017-04-17 | 2017-06-09 | 주식회사 더블에이치 | Wearable device for reducing body fat and method thereof |
US9910298B1 (en) | 2017-04-17 | 2018-03-06 | Vision Service Plan | Systems and methods for a computerized temple for use with eyewear |
WO2018207079A1 (en) * | 2017-05-08 | 2018-11-15 | Shay Rapaport | Method and system for universal access control management to an entity with inconsistent internet access |
US10129269B1 (en) | 2017-05-15 | 2018-11-13 | Forcepoint, LLC | Managing blockchain access to user profile information |
US9882918B1 (en) | 2017-05-15 | 2018-01-30 | Forcepoint, LLC | User behavior profile in a blockchain |
US10862927B2 (en) | 2017-05-15 | 2020-12-08 | Forcepoint, LLC | Dividing events into sessions during adaptive trust profile operations |
US10917423B2 (en) | 2017-05-15 | 2021-02-09 | Forcepoint, LLC | Intelligently differentiating between different types of states and attributes when using an adaptive trust profile |
US10943019B2 (en) | 2017-05-15 | 2021-03-09 | Forcepoint, LLC | Adaptive trust profile endpoint |
US10447718B2 (en) | 2017-05-15 | 2019-10-15 | Forcepoint Llc | User profile definition and management |
US10623431B2 (en) | 2017-05-15 | 2020-04-14 | Forcepoint Llc | Discerning psychological state from correlated user behavior and contextual information |
US10999296B2 (en) | 2017-05-15 | 2021-05-04 | Forcepoint, LLC | Generating adaptive trust profiles using information derived from similarly situated organizations |
US10845955B2 (en) | 2017-05-15 | 2020-11-24 | Apple Inc. | Displaying a scrollable list of affordances associated with physical activities |
US10999297B2 (en) | 2017-05-15 | 2021-05-04 | Forcepoint, LLC | Using expected behavior of an entity when prepopulating an adaptive trust profile |
US10817579B2 (en) | 2017-05-16 | 2020-10-27 | Apple Inc. | Determining relevant information based on user interactions |
US10874313B2 (en) * | 2017-06-04 | 2020-12-29 | Apple Inc. | Heartrate tracking techniques |
US12027033B2 (en) * | 2017-06-08 | 2024-07-02 | Guardian Band Inc. | Wearable personal safety devices and methods of operating the same |
US20180356888A1 (en) * | 2017-06-13 | 2018-12-13 | Immersion Corporation | Generating haptic effect for a wearable electronic device based on tightness level |
CN107231480A (en) * | 2017-06-16 | 2017-10-03 | 深圳奥迪仕科技有限公司 | A kind of method for carrying out the accurate automatic identification of scene using motion bracelet and mobile phone |
JP6901702B2 (en) * | 2017-06-20 | 2021-07-14 | カシオ計算機株式会社 | Information processing equipment, information processing methods, programs, and information processing systems |
US10978203B2 (en) | 2017-06-20 | 2021-04-13 | International Business Machines Corporation | Power-efficient health affliction classification |
WO2019005003A1 (en) | 2017-06-27 | 2019-01-03 | Ford Global Technologies, Llc | Haptic device operation |
US10572011B2 (en) * | 2017-06-30 | 2020-02-25 | Microsoft Technology Licensing, Llc | Haptic feedback system |
CA3068844A1 (en) | 2017-07-05 | 2019-01-10 | Myant Inc. | Method for sensing of biometric data and use thereof for bidirectional communication with networked devices |
KR102398184B1 (en) * | 2017-07-13 | 2022-05-16 | 삼성전자주식회사 | Electronic device and method for providing digerstibility on eaten food |
KR102032196B1 (en) * | 2017-07-20 | 2019-10-15 | 최한솔 | Hybrid watch for recognizing braille |
US10721303B2 (en) * | 2017-07-27 | 2020-07-21 | At&T Intellectual Property I, L.P. | System and method to enable sensory data for any devices connected to a phone in a 5G network |
CN107633853B (en) * | 2017-08-03 | 2020-07-03 | 广东小天才科技有限公司 | Control method for playing audio and video files and user terminal |
US11331019B2 (en) | 2017-08-07 | 2022-05-17 | The Research Foundation For The State University Of New York | Nanoparticle sensor having a nanofibrous membrane scaffold |
CN107582076B (en) * | 2017-08-15 | 2020-05-19 | 浙江大学 | Attention detection device and detection method based on wireless action acquisition module |
US10216236B1 (en) * | 2017-08-31 | 2019-02-26 | Snap Inc. | Systems and methods for temperature management in wearable devices |
EP3459437A1 (en) * | 2017-09-21 | 2019-03-27 | Koninklijke Philips N.V. | Determining an orientation of a wearable device |
DE102017122377A1 (en) * | 2017-09-27 | 2019-03-28 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Glove-type input / output device and method for outputting thermo-receptive information via a force |
US10561357B2 (en) * | 2017-09-29 | 2020-02-18 | Steering Solutions Ip Holding Corporation | Automotive driver health monitoring and response system |
US11172025B2 (en) | 2017-10-03 | 2021-11-09 | Nec Corporation | Server apparatus, odor sensor data analysis method, and computer-readable recording medium |
CN107967937A (en) * | 2017-11-10 | 2018-04-27 | 苏州大成电子科技有限公司 | A kind of intelligent identification device and recognition methods |
CN107798438A (en) * | 2017-11-22 | 2018-03-13 | 北京汇心联科技有限公司 | A kind of community interaction Performance Evaluation method and device |
US10457146B2 (en) | 2017-12-06 | 2019-10-29 | Faurecia Interior Systems, Inc. | Vehicle interior panel with thermal feedback |
CN108170252B (en) * | 2017-12-26 | 2020-05-05 | 中国联合网络通信集团有限公司 | A terminal power saving method and device |
US10678335B2 (en) | 2018-01-08 | 2020-06-09 | Facebook Technologies, Llc | Methods, devices, and systems for creating haptic stimulations and tracking motion of a user |
CN108173967A (en) * | 2018-01-30 | 2018-06-15 | 四川东鼎里智信息技术有限责任公司 | A kind of on-line module of wearable built-in support cellular data function |
CN108289127A (en) * | 2018-01-30 | 2018-07-17 | 四川东鼎里智信息技术有限责任公司 | A kind of Internet of things system for Medical Devices comprehensively monitoring |
US10250976B1 (en) | 2018-02-01 | 2019-04-02 | International Business Machines Corporation | Energy-efficient audio life logging |
CN108514409A (en) * | 2018-02-07 | 2018-09-11 | 南京唐潮科技有限公司 | A kind of multi-parameter human body detecting device |
KR102568686B1 (en) * | 2018-02-09 | 2023-08-23 | 삼성전자주식회사 | Mobile device including context hub and operation method thereof |
US10958639B2 (en) | 2018-02-27 | 2021-03-23 | Bank Of America Corporation | Preventing unauthorized access to secure information systems using multi-factor, hardware based and/or advanced biometric authentication |
US20190268331A1 (en) * | 2018-02-27 | 2019-08-29 | Bank Of America Corporation | Preventing Unauthorized Access to Secure Information Systems Using Multi-Factor, Hardware Based and/or Advanced Biometric Authentication |
DK179980B1 (en) * | 2018-03-12 | 2019-11-27 | Apple Inc. | User interfaces for health monitoring |
CN111868666A (en) | 2018-03-23 | 2020-10-30 | 脸谱科技有限责任公司 | Method, device and system for determining contact of a user of a virtual reality and/or augmented reality device |
EP3545823A1 (en) * | 2018-03-28 | 2019-10-02 | Koninklijke Philips N.V. | Apparatus for use with a wearable cuff |
US11157042B1 (en) | 2018-03-28 | 2021-10-26 | Douglas Patton | Systems and methods for interaction of wearable communication devices |
JP2019181049A (en) * | 2018-04-17 | 2019-10-24 | ソニー株式会社 | Biometric information evaluating device and biometric information evaluating method |
WO2019203837A1 (en) * | 2018-04-19 | 2019-10-24 | Hewlett-Packard Development Company, L.P. | Inputs to virtual reality devices from touch surface devices |
US11436547B2 (en) | 2018-04-23 | 2022-09-06 | Bank Of America Corporation | Wearable device for operational compliance |
CN112074257A (en) | 2018-05-04 | 2020-12-11 | 宝洁公司 | Sensor device and system for monitoring the basic needs of a baby |
EP3787584B1 (en) * | 2018-05-04 | 2024-08-07 | The Procter & Gamble Company | Monitoring system for providing both visual and non-visual data |
WO2019222846A1 (en) * | 2018-05-22 | 2019-11-28 | Myant Inc. | Method for sensing and communication of biometric data and for bidirectional communication with a textile based sensor platform |
CN108652650A (en) * | 2018-05-24 | 2018-10-16 | 中国航天员科研训练中心 | Alertness real-time detection method based on pulse wave signal and system |
WO2019243633A1 (en) * | 2018-06-22 | 2019-12-26 | iNDTact GmbH | Sensor arrangement, use of the sensor arrangement, and method for detecting structure-borne noise |
WO2020003105A1 (en) * | 2018-06-26 | 2020-01-02 | Lampros Kourtis | Method and system to detect drug delivery |
CN108829337A (en) * | 2018-06-29 | 2018-11-16 | 努比亚技术有限公司 | Apparatus control method, device and computer readable storage medium |
JP2021529078A (en) * | 2018-07-03 | 2021-10-28 | モテラム テクノロジーズ, インク.Moterum Technologies, Inc. | Distributed system architecture and usage for gait monitoring |
CN109117612A (en) * | 2018-07-03 | 2019-01-01 | 普联技术有限公司 | Personal identification method, device and the storage medium of smartwatch |
CN109144245B (en) * | 2018-07-04 | 2021-09-14 | Oppo(重庆)智能科技有限公司 | Equipment control method and related product |
CN109062328A (en) * | 2018-07-10 | 2018-12-21 | 广东小天才科技有限公司 | Control method and control device of wearable device and electronic device |
US10897705B2 (en) | 2018-07-19 | 2021-01-19 | Tectus Corporation | Secure communication between a contact lens and an accessory device |
US10602513B2 (en) * | 2018-07-27 | 2020-03-24 | Tectus Corporation | Wireless communication between a contact lens and an accessory device |
GB2574074B (en) | 2018-07-27 | 2020-05-20 | Mclaren Applied Tech Ltd | Time synchronisation |
US10722128B2 (en) | 2018-08-01 | 2020-07-28 | Vision Service Plan | Heart rate detection system and method |
CN110602982B (en) * | 2018-08-17 | 2022-10-21 | 广东高驰运动科技股份有限公司 | Plateau risk early warning method and device, electronic device, and computer-readable storage medium |
WO2020037795A1 (en) * | 2018-08-23 | 2020-02-27 | 华为技术有限公司 | Voice recognition method, wearable device and electronic device |
US11051996B2 (en) | 2018-08-27 | 2021-07-06 | The Procter & Gamble Company | Sensor devices and systems for monitoring the basic needs of an infant |
US11484267B2 (en) | 2018-09-11 | 2022-11-01 | Apple Inc. | Contact detection for physiological sensor |
US11426122B2 (en) | 2018-09-13 | 2022-08-30 | The Aga Khan University | Glove |
WO2020076976A1 (en) | 2018-10-10 | 2020-04-16 | Readcoor, Inc. | Three-dimensional spatial molecular indexing |
JP6486543B2 (en) * | 2018-10-12 | 2019-03-20 | 株式会社FiNC Technologies | Health management server, health management server control method, and health management program |
US10692606B2 (en) * | 2018-10-23 | 2020-06-23 | International Business Machines Corporation | Stress level reduction using haptic feedback |
EP3650959A1 (en) * | 2018-11-07 | 2020-05-13 | Tissot S.A. | Method for distributing a descriptive alert of a notification message |
CN109646008A (en) * | 2018-11-08 | 2019-04-19 | 华南理工大学 | A kind of optical health smart health glasses |
CN109464158A (en) * | 2018-11-30 | 2019-03-15 | 南昌与德软件技术有限公司 | A kind of physiological detection method, apparatus, terminal and storage medium |
AU2019418434B2 (en) * | 2018-12-31 | 2025-02-27 | Becton, Dickinson And Company | Systems, apparatuses and methods for enhanced notifications to users of wearable medical devices |
KR102816254B1 (en) | 2019-01-31 | 2025-06-09 | 삼성전자주식회사 | Server and method for controlling thereof |
GB2586433B (en) * | 2019-03-11 | 2024-03-27 | Blakemore Helen | Medical health software application and wearable telecommunication device |
JP7326802B2 (en) * | 2019-03-25 | 2023-08-16 | オムロンヘルスケア株式会社 | Measurement facilitator, method and program |
SE543271C2 (en) * | 2019-03-27 | 2020-11-10 | Vibrosense Dynamics Ab | Apparatus for measuring vibrotactile perception and preparation method thereof including automated measurement of temperature |
US10853496B2 (en) | 2019-04-26 | 2020-12-01 | Forcepoint, LLC | Adaptive trust profile behavioral fingerprint |
CN109889991B (en) * | 2019-04-28 | 2021-01-12 | 广东小天才科技有限公司 | A safety reminder method, device and mobile device |
CN110074776B (en) * | 2019-04-30 | 2020-04-10 | 广东乐之康医疗技术有限公司 | Power consumption control method and system of artificial intelligence dynamic heart and lung monitoring equipment |
US11152100B2 (en) | 2019-06-01 | 2021-10-19 | Apple Inc. | Health application user interfaces |
US11234077B2 (en) | 2019-06-01 | 2022-01-25 | Apple Inc. | User interfaces for managing audio exposure |
US20200401934A1 (en) * | 2019-06-21 | 2020-12-24 | International Business Machines Corporation | Generated response using artificial intelligence (ai) based on biometric data |
WO2020263250A1 (en) | 2019-06-26 | 2020-12-30 | Google Llc | Radar-based authentication status feedback |
US12002588B2 (en) | 2019-07-17 | 2024-06-04 | Apple Inc. | Health event logging and coaching user interfaces |
CN114127816A (en) * | 2019-07-18 | 2022-03-01 | 阿特拉斯5D公司 | System and method for on-floor detection without wearables |
US12067093B2 (en) * | 2019-07-23 | 2024-08-20 | Quanata, Llc | Biometric authentication using a smart ring |
US11909238B1 (en) | 2019-07-23 | 2024-02-20 | BlueOwl, LLC | Environment-integrated smart ring charger |
US11853030B2 (en) | 2019-07-23 | 2023-12-26 | BlueOwl, LLC | Soft smart ring and method of manufacture |
CN113853566B (en) | 2019-07-26 | 2024-05-28 | 谷歌有限责任公司 | Context sensitive control of radar-based gesture recognition |
US11868537B2 (en) | 2019-07-26 | 2024-01-09 | Google Llc | Robust radar-based gesture-recognition by user equipment |
EP4004686B1 (en) | 2019-07-26 | 2024-11-20 | Google LLC | Authentication management through imu and radar |
US11385722B2 (en) | 2019-07-26 | 2022-07-12 | Google Llc | Robust radar-based gesture-recognition by user equipment |
CN113853567B (en) * | 2019-07-26 | 2024-03-29 | 谷歌有限责任公司 | Lower status based on IMU and radar |
KR102416386B1 (en) | 2019-08-30 | 2022-07-05 | 구글 엘엘씨 | Input mode notification for multiple input mode |
EP3811187B1 (en) | 2019-08-30 | 2021-10-06 | Google LLC | Input methods for mobile devices |
KR102661485B1 (en) | 2019-08-30 | 2024-04-29 | 구글 엘엘씨 | Visual indicator for paused radar gestures |
EP4299148A3 (en) * | 2019-09-06 | 2024-03-27 | Sports Data Labs, Inc. | System for generating simulated animal data and models |
CN114286975A (en) | 2019-09-09 | 2022-04-05 | 苹果公司 | Research user interface |
KR102257039B1 (en) * | 2019-09-10 | 2021-05-28 | 주식회사 피앤씨솔루션 | Machine learning system based on distributed data processing |
WO2021075894A1 (en) * | 2019-10-16 | 2021-04-22 | (주)아이티버스 | Smart controller with sensor |
KR102468942B1 (en) * | 2019-10-16 | 2022-11-21 | (주)아이티버스 | A smart controller having a sensor |
GB2588236B (en) | 2019-10-18 | 2024-03-20 | Mclaren Applied Ltd | Gyroscope bias estimation |
US11451536B2 (en) * | 2019-10-25 | 2022-09-20 | Nymi Inc. | User state monitoring system and method using motion, and a user access authorization system and method employing same |
JP2021068370A (en) * | 2019-10-28 | 2021-04-30 | ソニー株式会社 | Information processor, information processing method, and program |
WO2021092511A1 (en) * | 2019-11-07 | 2021-05-14 | Thump, Inc. | Systems, devises, and methods including a heartbeat mimetic |
KR102268340B1 (en) * | 2019-11-12 | 2021-06-23 | 이은주 | Body contact counting wearable device and relationship improvement system using the same |
CN110968857B (en) * | 2019-12-03 | 2022-04-08 | 南京航空航天大学 | Smart watch identity authentication method based on arm lifting action |
JP6905773B2 (en) | 2019-12-18 | 2021-07-21 | 株式会社デジタル・Ai | Watching band monitoring system, watching band monitoring device, watching band monitoring method and watching band monitoring program |
KR102455540B1 (en) * | 2019-12-19 | 2022-10-18 | 한국전자기술연구원 | Conductive Fabric Area Network |
US11869666B2 (en) | 2020-01-10 | 2024-01-09 | Kristen M. Heimerl | Computer system for crisis state detection and intervention |
WO2021145024A1 (en) * | 2020-01-16 | 2021-07-22 | ソニーグループ株式会社 | Information processing device, information processing terminal, and program |
WO2021145026A1 (en) * | 2020-01-17 | 2021-07-22 | ソニーグループ株式会社 | Information processing device and information processing terminal |
US12061680B1 (en) * | 2020-02-19 | 2024-08-13 | Apple Inc. | Electronic device system with ring devices |
US11335342B2 (en) | 2020-02-21 | 2022-05-17 | International Business Machines Corporation | Voice assistance system |
US12216791B2 (en) | 2020-02-24 | 2025-02-04 | Forcepoint Llc | Re-identifying pseudonymized or de-identified data utilizing distributed ledger technology |
CN111345800B (en) * | 2020-03-16 | 2022-11-01 | 华中师范大学 | Learning attention detection method and system in MOOC environment |
JP7209363B2 (en) * | 2020-04-13 | 2023-01-20 | リオモ インク | Stability evaluation system, program and method |
WO2021216013A1 (en) * | 2020-04-22 | 2021-10-28 | Yuece Mehmet Afsin | Wearable technological article and person contact tracking and management system used in pandemic disease incidences |
CN113672889A (en) * | 2020-05-14 | 2021-11-19 | 华为技术有限公司 | Device enabling method and device, and storage medium |
US20230186706A1 (en) * | 2020-05-21 | 2023-06-15 | Saturday Capital, Llc | Health based digital functionality and access control |
GB2595504A (en) * | 2020-05-28 | 2021-12-01 | Huma Therapeutics Ltd | Physiological sensing |
AU2021283914A1 (en) | 2020-06-02 | 2023-01-19 | Apple Inc. | User interfaces for tracking of physical activity events |
DK181037B1 (en) | 2020-06-02 | 2022-10-10 | Apple Inc | User interfaces for health applications |
US11717181B2 (en) * | 2020-06-11 | 2023-08-08 | Samsung Electronics Co., Ltd. | Adaptive respiratory condition assessment |
CN111870222B (en) * | 2020-07-10 | 2024-08-09 | 广东小天才科技有限公司 | Prompt method and device for biological information measurement, measurement method and device, storage medium and wearable device |
US11600121B2 (en) | 2020-07-21 | 2023-03-07 | Unitedhealth Group Incorporated | Systems and methods for conditional remote unlocking of identified containers |
US12232878B1 (en) | 2020-08-01 | 2025-02-25 | Apple Inc. | Atrial fibrillation user interfaces |
US20230248285A1 (en) * | 2020-08-07 | 2023-08-10 | Fitbit, Inc. | Stress Determination and Management Techniques Related Applications |
US20220049303A1 (en) | 2020-08-17 | 2022-02-17 | Readcoor, Llc | Methods and systems for spatial mapping of genetic variants |
KR102268730B1 (en) * | 2020-08-26 | 2021-06-25 | 박중진 | Gloves with a holding portion of a hot pack |
CN111949133B (en) | 2020-08-27 | 2022-06-21 | 歌尔科技有限公司 | Haptic feedback method, related device and computer-readable storage medium |
US11698710B2 (en) | 2020-08-31 | 2023-07-11 | Apple Inc. | User interfaces for logging user activities |
US11574620B2 (en) * | 2020-10-21 | 2023-02-07 | Laurence H. Cooke | Sonic device and method for repelling mosquitoes |
US12324428B2 (en) | 2020-10-21 | 2025-06-10 | Laurence H. Cooke | Sonic device and method for repelling mosquitoes |
KR102811206B1 (en) * | 2020-10-23 | 2025-05-22 | 삼성전자주식회사 | Wearable device and method for measuring biometric information |
CN112150043A (en) * | 2020-10-28 | 2020-12-29 | 北京中科心研科技有限公司 | Method and device for evaluating quality of lovers' relationships |
USD1012481S1 (en) | 2020-10-29 | 2024-01-30 | Unitedhealth Group Incorporated | Storage container assembly |
CA3177615A1 (en) | 2020-10-30 | 2022-05-05 | Datafeel Inc. | Wearable data communication apparatus, kits, methods, and systems |
US11671406B2 (en) * | 2020-11-03 | 2023-06-06 | International Business Machines Corporation | Patterned and correlated electrical activity |
CN112394813B (en) * | 2020-11-05 | 2021-06-08 | 广州市南方人力资源评价中心有限公司 | VR examination method and device based on intelligent bracelet equipment and brain wave acquisition equipment |
KR102407481B1 (en) * | 2020-11-25 | 2022-06-10 | (주)서브원 | Diving Equalization Training Device |
CN112633473A (en) * | 2020-12-18 | 2021-04-09 | 展讯通信(上海)有限公司 | Wearable device based on AI and application data processing method thereof |
KR20220099404A (en) * | 2021-01-06 | 2022-07-13 | 삼성전자주식회사 | Electronic device with a plurality of optic sensors and method for controlling the same |
EP4201319A4 (en) | 2021-01-06 | 2024-03-20 | Samsung Electronics Co., Ltd. | ELECTRONIC DEVICE COMPRISING A PLURALITY OF OPTICAL SENSORS AND ITS CONTROL METHOD |
WO2022178156A1 (en) * | 2021-02-22 | 2022-08-25 | View, Inc. | Wearable device coupled to a facility network |
KR20220139738A (en) | 2021-04-08 | 2022-10-17 | 삼성전자주식회사 | System for tracking user state and method of thereof |
KR20220140341A (en) | 2021-04-09 | 2022-10-18 | 주식회사 에이솔텍 | Method and apparatus for providing haptic feedback |
US11632454B2 (en) | 2021-04-19 | 2023-04-18 | Meta Platforms Technologies, Llc | Head-worn wearable devices for automatically ceasing the capture of video data, and methods of use thereof |
EP4309374A1 (en) | 2021-04-19 | 2024-01-24 | Meta Platforms Technologies, Llc | Wrist-wearable device for automatically switching between video and other calling modes based on sensor data at the wrist-wearable device, head-worn wearable devices for use therewith and for coordinated video capturing with the wrist-wearable device, and methods of use thereof |
KR102600954B1 (en) * | 2021-04-30 | 2023-11-10 | 링크페이스 주식회사 | User monitoring system using biosignal |
US20230010577A1 (en) * | 2021-07-06 | 2023-01-12 | Capital One Services, Llc | Computer-Based System for Locking User Account Access |
WO2023013927A1 (en) | 2021-08-05 | 2023-02-09 | Samsung Electronics Co., Ltd. | Method and wearable device for enhancing quality of experience index for user in iot network |
CN113626710B (en) * | 2021-08-16 | 2024-04-23 | 百度在线网络技术(北京)有限公司 | Push information generation method, related device and computer program product |
CA3130972C (en) | 2021-09-16 | 2024-04-09 | Cameron Mackenzie Clark | Wearable device that provides spaced retrieval alerts to assist the wearer to remember desired information |
WO2023080424A1 (en) * | 2021-11-05 | 2023-05-11 | 삼성전자주식회사 | Method and device for acquiring sensor data |
US11938947B2 (en) * | 2022-01-05 | 2024-03-26 | Honeywell International S.R.O. | Systems and methods for sensor-based operator fatigue management |
WO2023140490A1 (en) * | 2022-01-24 | 2023-07-27 | 삼성전자 주식회사 | Electronic device for body temperature measurement and operation method thereof |
KR102650568B1 (en) * | 2022-01-26 | 2024-03-22 | 링크페이스 주식회사 | User monitoring system using biosignal |
WO2023199318A1 (en) * | 2022-04-12 | 2023-10-19 | B.G. Negev Technologies And Applications Ltd.,At Ben Gurion University | A system and a method of measuring, analyzing, and providing feedback regarding the nervous, mental and physiological states of a patient, using wearable or carried sensors |
US12081984B2 (en) | 2022-04-27 | 2024-09-03 | T-Mobile Usa, Inc. | Increasing efficiency of communication between a mobile device and a satellite associated with a wireless telecommunication network |
GB2619043B (en) | 2022-05-25 | 2024-11-06 | Sony Interactive Entertainment Inc | Wearable data processing apparatus, system and method |
US12131361B2 (en) * | 2022-05-25 | 2024-10-29 | The Toronto-Dominion Bank | Distributed authentication at a physical premises |
US12313912B2 (en) | 2022-08-23 | 2025-05-27 | Tectus Corporation | Electronic contact lens data receiver circuit |
US20240079137A1 (en) * | 2022-09-06 | 2024-03-07 | Samsung Electronics Co., Ltd. | System and method for stress profiling and personalized stress intervention recommendation |
US20240087701A1 (en) * | 2022-09-09 | 2024-03-14 | ARCHETYPE Wellness LLC | Systems and methods for wellness-enabled multi-resident community |
US20240305962A1 (en) * | 2023-03-09 | 2024-09-12 | Qualcomm Incorporated | Sensor processing offload and fusion |
US20240307006A1 (en) * | 2023-03-15 | 2024-09-19 | T-Mobile Innovations Llc | Biometric sensors for enhanced detection, stimulation, and notification |
WO2025038074A1 (en) * | 2023-08-11 | 2025-02-20 | Google Llc | Method and apparatus implementing an optimized network reselection setting based on biometric information of a user and status information of a wearable computing device |
US12340899B1 (en) | 2024-06-14 | 2025-06-24 | Jeremy Gallego Eckstein | Apparatus, methods, and systems for real-time feedback in medical procedures using wearable devices worn by procedure performers |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130278631A1 (en) * | 2010-02-28 | 2013-10-24 | Osterhout Group, Inc. | 3d positioning of augmented reality information |
Family Cites Families (239)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3518113B2 (en) * | 1995-12-06 | 2004-04-12 | 日産自動車株式会社 | Display device |
JPH1134688A (en) * | 1997-07-15 | 1999-02-09 | Omron Corp | System for monitoring mind and body information of driver engaging in vehicle-driving work and system for controlling safety operation |
JP2000003336A (en) * | 1998-06-16 | 2000-01-07 | Nec Corp | User authentication method and user authentication system in portable data communication terminal device |
JP2000099546A (en) * | 1998-09-25 | 2000-04-07 | Canon Inc | Data retrieval device by sound data retrieval method and storage medium |
JP2000250840A (en) * | 1999-03-01 | 2000-09-14 | Nippon Telegr & Teleph Corp <Ntt> | Interface control method and apparatus and recording medium recording interface control program |
US6494829B1 (en) * | 1999-04-15 | 2002-12-17 | Nexan Limited | Physiological sensor array |
US20050021679A1 (en) * | 2000-02-25 | 2005-01-27 | Alexander Lightman | Method and system for data transmission between wearable devices or from wearable devices to portal |
US6893396B2 (en) * | 2000-03-01 | 2005-05-17 | I-Medik, Inc. | Wireless internet bio-telemetry monitoring system and interface |
JP2001252265A (en) * | 2000-03-08 | 2001-09-18 | Sharp Corp | Biofeedback apparatus |
JP3846844B2 (en) | 2000-03-14 | 2006-11-15 | 株式会社東芝 | Body-mounted life support device |
JP2001258855A (en) * | 2000-03-17 | 2001-09-25 | Arata Nemoto | Health judgment method and judgment device therefor |
AU2001251226A1 (en) | 2000-04-02 | 2001-10-15 | Tangis Corporation | Improving contextual responses based on automated learning techniques |
JP4042340B2 (en) * | 2000-05-17 | 2008-02-06 | カシオ計算機株式会社 | Information equipment |
JP2001340320A (en) * | 2000-06-02 | 2001-12-11 | Yamaha Motor Co Ltd | Equipment operation support device |
US7689437B1 (en) * | 2000-06-16 | 2010-03-30 | Bodymedia, Inc. | System for monitoring health, wellness and fitness |
US7261690B2 (en) | 2000-06-16 | 2007-08-28 | Bodymedia, Inc. | Apparatus for monitoring health, wellness and fitness |
WO2002030279A1 (en) * | 2000-10-10 | 2002-04-18 | Alan Remy Magill | Health monitoring |
US6801140B2 (en) * | 2001-01-02 | 2004-10-05 | Nokia Corporation | System and method for smart clothing and wearable electronic devices |
US6824147B2 (en) * | 2001-03-26 | 2004-11-30 | Michael J. Ouellette | Convertible ski-supported vehicle |
JP4172543B2 (en) * | 2001-04-24 | 2008-10-29 | 大日本住友製薬株式会社 | Biological data transmission / reception system and method |
JP2002334032A (en) * | 2001-05-09 | 2002-11-22 | Matsushita Electric Ind Co Ltd | Data download system and mobile terminal device used therefor |
US20030046228A1 (en) * | 2001-08-28 | 2003-03-06 | Jean-Marc Berney | User-wearable functional jewelry with biometrics and smartcard to remotely sign and/or authenticate to e-services |
JP2003249867A (en) * | 2002-02-22 | 2003-09-05 | Soriton Syst:Kk | Method of transmitting emotions using communication device |
US20040010207A1 (en) * | 2002-07-15 | 2004-01-15 | Flaherty J. Christopher | Self-contained, automatic transcutaneous physiologic sensing system |
US7209790B2 (en) * | 2002-09-30 | 2007-04-24 | Medtronic, Inc. | Multi-mode programmer for medical device communication |
EP1553872B1 (en) * | 2002-10-15 | 2010-01-13 | Volvo Technology Corporation | Method for interpreting a subjects head and eye activity |
JP2004337556A (en) * | 2003-05-13 | 2004-12-02 | Yasuo Fujii | Robot with means to obtain biological information and function to manage health care |
JP4496717B2 (en) * | 2003-06-05 | 2010-07-07 | ソニー株式会社 | Device control method and device control system |
WO2005001677A1 (en) * | 2003-06-27 | 2005-01-06 | Matsushita Electric Industrial Co., Ltd. | Service provision device |
WO2005013177A2 (en) * | 2003-08-01 | 2005-02-10 | Georgia State University Research Foundation, Inc. | Methods, systems, and apparatus for monitoring within-day energy balance deviation |
JP3915754B2 (en) * | 2003-08-04 | 2007-05-16 | ソニー株式会社 | Mobile terminal and ringtone generation method |
WO2005044090A2 (en) * | 2003-11-04 | 2005-05-19 | General Hospital Corporation | Respiration motion detection and health state assessment system |
WO2005083546A1 (en) * | 2004-02-27 | 2005-09-09 | Simon Richard Daniel | Wearable modular interface strap |
KR100609155B1 (en) | 2004-03-22 | 2006-08-02 | 엘지전자 주식회사 | Image processing device and backlight correction method using same |
JP2005318973A (en) * | 2004-05-07 | 2005-11-17 | Sony Corp | Biological sensor apparatus, content reproducing method and content reproducing apparatus |
JP4487633B2 (en) * | 2004-05-24 | 2010-06-23 | 日産自動車株式会社 | In-vehicle communication device |
US8021297B2 (en) * | 2004-07-07 | 2011-09-20 | Koninklijke Philips Electronics N.V. | Wearable device |
JP4672327B2 (en) * | 2004-10-08 | 2011-04-20 | 富士通株式会社 | Automatic service method, automatic service device and program thereof |
AU2004324705A1 (en) * | 2004-11-08 | 2006-05-11 | Idesia Ltd. | Method and apparatus for electro-biometric indentity recognition |
JP4915735B2 (en) * | 2004-11-16 | 2012-04-11 | 学校法人日本大学 | Fatigue judgment system and fatigue judgment method |
US20060115130A1 (en) * | 2004-11-29 | 2006-06-01 | Douglas Kozlay | Eyewear with biometrics to protect displayed data |
JP4665904B2 (en) | 2004-11-30 | 2011-04-06 | コニカミノルタホールディングス株式会社 | Information processing device |
KR100647122B1 (en) * | 2004-12-08 | 2006-11-23 | 한국전자통신연구원 | Method for multicast communication by grouping wireless sensor network and apparatus thereof |
NO20052590D0 (en) * | 2005-05-27 | 2005-05-27 | Thales Norway As | Connecting and disconnecting device and a portable system using the device. |
US9802225B2 (en) * | 2005-06-27 | 2017-10-31 | General Vibration Corporation | Differential haptic guidance for personal navigation |
US20070150589A1 (en) | 2005-12-08 | 2007-06-28 | Kim Won T | Context-awareness based system supporting autonomous system construction and method of operating the system |
JP2007203913A (en) * | 2006-02-02 | 2007-08-16 | Denso Corp | Driving assistance device and driving assistance system |
US7629881B2 (en) * | 2006-04-28 | 2009-12-08 | The Johns Hopkins University | Sensor-based adaptive wearable devices and methods |
US8412949B2 (en) * | 2006-05-05 | 2013-04-02 | Proxense, Llc | Personal digital key initialization and registration for secure transactions |
JP4148276B2 (en) * | 2006-05-09 | 2008-09-10 | ソニー株式会社 | POSITION ESTIMATION DEVICE, POSITION ESTIMATION METHOD, AND PROGRAM RECORDING MEDIUM |
US8595161B2 (en) * | 2006-05-12 | 2013-11-26 | Vecna Technologies, Inc. | Method and system for determining a potential relationship between entities and relevance thereof |
US8684900B2 (en) * | 2006-05-16 | 2014-04-01 | Bao Tran | Health monitoring appliance |
CN101484068A (en) * | 2006-07-05 | 2009-07-15 | 皇家飞利浦电子股份有限公司 | Wearable blood pressure monitoring system |
US8157730B2 (en) * | 2006-12-19 | 2012-04-17 | Valencell, Inc. | Physiological and environmental monitoring systems and methods |
US8256666B2 (en) * | 2007-01-30 | 2012-09-04 | Phil Dixon | Processing transactions of different payment devices of the same issuer account |
JP2008229248A (en) * | 2007-03-23 | 2008-10-02 | Toshiba Corp | Sleep controlling apparatus, method, and program |
KR100889394B1 (en) * | 2007-05-23 | 2009-03-19 | 주식회사 두성기술 | Programmable exercise alarm system and methode thereof. |
US20090033622A1 (en) * | 2007-05-30 | 2009-02-05 | 24/8 Llc | Smartscope/smartshelf |
US8271082B2 (en) * | 2007-06-07 | 2012-09-18 | Zoll Medical Corporation | Medical device configured to test for user responsiveness |
US7974689B2 (en) * | 2007-06-13 | 2011-07-05 | Zoll Medical Corporation | Wearable medical treatment device with motion/position detection |
US20090005827A1 (en) * | 2007-06-26 | 2009-01-01 | David Weintraub | Wearable defibrillator |
JP2009056075A (en) * | 2007-08-31 | 2009-03-19 | Seiko Epson Corp | Environmental device control system and environmental device control device |
US20090069642A1 (en) * | 2007-09-11 | 2009-03-12 | Aid Networks, Llc | Wearable Wireless Electronic Patient Data Communications and Physiological Monitoring Device |
US8031172B2 (en) * | 2007-10-12 | 2011-10-04 | Immersion Corporation | Method and apparatus for wearable remote interface device |
US8373557B2 (en) | 2007-10-19 | 2013-02-12 | Smiths Medical Asd, Inc. | Method for establishing a telecommunications network for patient monitoring |
JP2009148372A (en) * | 2007-12-19 | 2009-07-09 | Panasonic Electric Works Co Ltd | Stress judgment system and stress improvement system |
JP5100368B2 (en) * | 2007-12-28 | 2012-12-19 | パナソニック株式会社 | Wireless communication terminal and terminal recognition method |
US20090171180A1 (en) * | 2007-12-28 | 2009-07-02 | Trevor Pering | Method and apparatus for configuring wearable sensors |
US9298815B2 (en) * | 2008-02-22 | 2016-03-29 | Accenture Global Services Limited | System for providing an interface for collaborative innovation |
EP2156652B1 (en) * | 2008-02-28 | 2012-04-25 | Leeds, Richard | Method and system for notification and telecommunications management |
JP4596023B2 (en) * | 2008-03-11 | 2010-12-08 | トヨタ自動車株式会社 | Sleeping device |
JP4613974B2 (en) * | 2008-03-28 | 2011-01-19 | ソニー株式会社 | Communication device and communication system |
US8976007B2 (en) * | 2008-08-09 | 2015-03-10 | Brian M. Dugan | Systems and methods for providing biofeedback information to a cellular telephone and for using such information |
WO2009152608A1 (en) * | 2008-06-16 | 2009-12-23 | Mytrak Health System Inc. | Mobile fitness and personal caloric management system |
US9037530B2 (en) * | 2008-06-26 | 2015-05-19 | Microsoft Technology Licensing, Llc | Wearable electromyography-based human-computer interface |
US8953620B2 (en) * | 2008-07-17 | 2015-02-10 | T-Mobile Usa, Inc. | System and method for selectively provisioning telecommunications services between an access point and a telecommunications network using a subscriber identifier |
US8009039B2 (en) | 2008-09-18 | 2011-08-30 | Sensormatic Electronics, LLC | EAS power management system |
US8004391B2 (en) * | 2008-11-19 | 2011-08-23 | Immersion Corporation | Method and apparatus for generating mood-based haptic feedback |
JP5387367B2 (en) * | 2008-12-01 | 2014-01-15 | 富士通株式会社 | Arousal level determination device and arousal level determination method |
US9591118B2 (en) * | 2009-01-01 | 2017-03-07 | Intel Corporation | Pose to device mapping |
WO2010082496A1 (en) * | 2009-01-19 | 2010-07-22 | パナソニック株式会社 | Activation device, method, and computer program for brain wave interface system |
EP2400884B1 (en) * | 2009-02-25 | 2018-03-07 | Valencell, Inc. | Light-guiding devices and monitoring devices incorporating same |
US8588824B2 (en) * | 2009-02-26 | 2013-11-19 | Adobe Systems Incorporated | Transferring media context information based on proximity to a mobile device |
WO2010111363A2 (en) * | 2009-03-24 | 2010-09-30 | Wound Sentry, Llc | Patient movement detection system and method |
US9655518B2 (en) * | 2009-03-27 | 2017-05-23 | Braemar Manufacturing, Llc | Ambulatory and centralized processing of a physiological signal |
GB2471903A (en) * | 2009-07-17 | 2011-01-19 | Sharp Kk | Sleep management system for monitoring sleep quality and making recommendations for improvement |
US8527213B2 (en) * | 2009-07-21 | 2013-09-03 | Ntt Docomo, Inc. | Monitoring wellness using a wireless handheld device |
US9024865B2 (en) * | 2009-07-23 | 2015-05-05 | Qualcomm Incorporated | Method and apparatus for controlling mobile and consumer electronic devices |
US20110025817A1 (en) | 2009-07-24 | 2011-02-03 | Ronald Carter | Patient monitoring utilizing one or more accelerometers |
EP3923295A1 (en) * | 2009-08-31 | 2021-12-15 | Abbott Diabetes Care, Inc. | Medical devices and methods |
US8279052B2 (en) * | 2009-11-04 | 2012-10-02 | Immersion Corporation | Systems and methods for haptic confirmation of commands |
CN105286843A (en) * | 2009-12-09 | 2016-02-03 | 耐克创新有限合伙公司 | Athletic performance monitoring system utilizing heart rate information |
US20110173308A1 (en) * | 2010-01-14 | 2011-07-14 | Brent Gutekunst | System and method for medical surveillance through personal communication device |
JP5476137B2 (en) * | 2010-01-19 | 2014-04-23 | 株式会社日立製作所 | Human interface based on biological and brain function measurement |
US8869263B2 (en) * | 2010-02-26 | 2014-10-21 | Blackberry Limited | Wireless communications system providing mobile device authentication bypass based upon user-wearable security device and related methods |
US10180572B2 (en) * | 2010-02-28 | 2019-01-15 | Microsoft Technology Licensing, Llc | AR glasses with event and user action control of external applications |
US20110213217A1 (en) * | 2010-02-28 | 2011-09-01 | Nellcor Puritan Bennett Llc | Energy optimized sensing techniques |
EP2542147A4 (en) * | 2010-03-04 | 2014-01-22 | Neumitra LLC | Devices and methods for treating psychological disorders |
JP2011182973A (en) * | 2010-03-09 | 2011-09-22 | Proassist:Kk | Brain wave collection controller |
JP5670071B2 (en) * | 2010-03-10 | 2015-02-18 | レノボ・イノベーションズ・リミテッド(香港) | Mobile device |
CA2766232C (en) * | 2010-03-24 | 2021-12-07 | Abbott Diabetes Care Inc. | Medical device inserters and processes of inserting and using medical devices |
JP5017414B2 (en) * | 2010-04-12 | 2012-09-05 | 株式会社東芝 | Sleep state measurement device, sleep state measurement method, and sleep state measurement system |
US9557814B2 (en) * | 2010-04-22 | 2017-01-31 | Sony Interactive Entertainment Inc. | Biometric interface for a handheld device |
US9888868B2 (en) * | 2010-06-17 | 2018-02-13 | The Regents Of The University Of California | Energy aware sensor management for wearable medical systems optimization |
US8796888B2 (en) * | 2010-07-07 | 2014-08-05 | Adaptive Materials, Inc. | Wearable power management system |
JP2012095796A (en) | 2010-11-01 | 2012-05-24 | Rohm Co Ltd | Watching sensor |
JP5498329B2 (en) * | 2010-09-16 | 2014-05-21 | 株式会社Nttドコモ | Communication apparatus and program |
US9131888B2 (en) * | 2010-09-21 | 2015-09-15 | Alexander B. Grey | Metrics and algorithms for interpretation of muscular use |
JP5195859B2 (en) * | 2010-09-27 | 2013-05-15 | トヨタ自動車株式会社 | Sleeping device |
US8694282B2 (en) * | 2010-09-30 | 2014-04-08 | Fitbit, Inc. | Methods and systems for geo-location optimized tracking and updating for events having combined activity and location information |
JP2012084068A (en) * | 2010-10-14 | 2012-04-26 | Denso Corp | Image analyzer |
BR112013008702A2 (en) * | 2010-10-18 | 2016-06-21 | 3M Innovative Properties Co | "Multifunctional medical device for telemedicine applications" |
JP2012085906A (en) * | 2010-10-21 | 2012-05-10 | Sharp Corp | Device for monitoring living body, method for monitoring living body, system for monitoring living body, control program, and recording medium on which the control program is recorded |
JP2012110528A (en) * | 2010-11-25 | 2012-06-14 | Toyota Motor Corp | Sleep device |
US8983374B2 (en) * | 2010-12-13 | 2015-03-17 | Qualcomm Incorporated | Receiver for near field communication and wireless power functionalities |
US20120271121A1 (en) * | 2010-12-29 | 2012-10-25 | Basis Science, Inc. | Integrated Biometric Sensing and Display Device |
US8475367B1 (en) * | 2011-01-09 | 2013-07-02 | Fitbit, Inc. | Biometric monitoring device having a body weight sensor, and methods of operating same |
US20120203491A1 (en) * | 2011-02-03 | 2012-08-09 | Nokia Corporation | Method and apparatus for providing context-aware control of sensors and sensor data |
US8447329B2 (en) * | 2011-02-08 | 2013-05-21 | Longsand Limited | Method for spatially-accurate location of a device using audio-visual information |
US20120212593A1 (en) * | 2011-02-17 | 2012-08-23 | Orcam Technologies Ltd. | User wearable visual assistance system |
US8519835B2 (en) * | 2011-03-02 | 2013-08-27 | Htc Corporation | Systems and methods for sensory feedback |
EP2691938B1 (en) * | 2011-03-29 | 2020-02-19 | Qualcomm Incorporated | Selective hand occlusion over virtual projections onto physical surfaces using skeletal tracking |
JP6013447B2 (en) * | 2011-04-08 | 2016-10-25 | ゾール メディカル コーポレイションZOLL Medical Corporation | Cooperation resuscitation perfusion support |
US8725462B2 (en) * | 2011-05-13 | 2014-05-13 | Fujitsu Limited | Data aggregation platform |
US8947226B2 (en) * | 2011-06-03 | 2015-02-03 | Brian M. Dugan | Bands for measuring biometric information |
EP2718805A1 (en) * | 2011-06-10 | 2014-04-16 | Aliphcom | Wearable device data security |
EP2718079A2 (en) * | 2011-06-10 | 2014-04-16 | Aliphcom | Determinative processes for wearable devices |
US20130198694A1 (en) * | 2011-06-10 | 2013-08-01 | Aliphcom | Determinative processes for wearable devices |
US20150118967A1 (en) * | 2011-06-10 | 2015-04-30 | Aliphcom | Data-capable band management in an integrated application and network communication data environment |
US20130176142A1 (en) * | 2011-06-10 | 2013-07-11 | Aliphcom, Inc. | Data-capable strapband |
AU2012267525A1 (en) * | 2011-06-10 | 2013-04-11 | Aliphcom | Motion profile templates and movement languages for wearable devices |
US20120316896A1 (en) * | 2011-06-10 | 2012-12-13 | Aliphcom | Personal advisor system using data-capable band |
US20120316456A1 (en) * | 2011-06-10 | 2012-12-13 | Aliphcom | Sensory user interface |
US20120316932A1 (en) * | 2011-06-10 | 2012-12-13 | Aliphcom | Wellness application for data-capable band |
US20120316455A1 (en) * | 2011-06-10 | 2012-12-13 | Aliphcom | Wearable device and platform for sensory input |
US20120313296A1 (en) * | 2011-06-10 | 2012-12-13 | Aliphcom | Component protective overmolding |
WO2013018267A1 (en) * | 2011-07-29 | 2013-02-07 | パナソニック株式会社 | Presentation control device and presentation control method |
US9180288B2 (en) * | 2011-09-01 | 2015-11-10 | Zoll Medical Corporation | Medical equipment electrodes |
US8171525B1 (en) * | 2011-09-15 | 2012-05-01 | Google Inc. | Enabling users to select between secure service providers using a central trusted service manager |
JP2013069184A (en) * | 2011-09-26 | 2013-04-18 | Nippon Seiki Co Ltd | Vehicle driver condition determination device and vehicle driver condition determination method |
US9294612B2 (en) * | 2011-09-27 | 2016-03-22 | Microsoft Technology Licensing, Llc | Adjustable mobile phone settings based on environmental conditions |
CN102438064A (en) * | 2011-09-28 | 2012-05-02 | 宇龙计算机通信科技(深圳)有限公司 | Emotion expression method and system of mobile terminal and mobile terminal |
JP5967794B2 (en) * | 2011-10-06 | 2016-08-10 | Kddi株式会社 | Screen output device, program and method for determining display size according to relationship between viewer and subject person |
CN102438068A (en) | 2011-10-26 | 2012-05-02 | 深圳市五巨科技有限公司 | Mobile terminal video chat method and mobile terminal |
US9936351B2 (en) * | 2011-10-26 | 2018-04-03 | Sling Media Pvt Ltd | Apparatus systems and methods for proximity-based service discovery and session sharing |
US9396627B2 (en) * | 2011-11-15 | 2016-07-19 | Sony Corporation | Information processing device and method |
KR101157072B1 (en) * | 2011-11-16 | 2012-06-21 | 숭실대학교산학협력단 | Method and apparatus for authenticating password of user device using password icon |
US8541745B2 (en) * | 2011-11-16 | 2013-09-24 | Motorola Mobility Llc | Methods and devices for clothing detection about a wearable electronic device |
MX2014006021A (en) * | 2011-11-22 | 2014-06-04 | Koninkl Philips Nv | Mental balance or imbalance estimation system and method. |
US8766805B2 (en) * | 2011-11-28 | 2014-07-01 | Motorola Mobility Llc | Smart adaptive device for alerting user of scheduled tasks prior to falling asleep |
WO2013096954A1 (en) * | 2011-12-23 | 2013-06-27 | The Trustees Of Dartmouth College | Wearable computing device for secure control of physiological sensors and medical devices, with secure storage of medical records, and bioimpedance biometric |
US9186077B2 (en) * | 2012-02-16 | 2015-11-17 | Google Technology Holdings LLC | Method and device with customizable power management |
JP2013200133A (en) * | 2012-03-23 | 2013-10-03 | Panasonic Corp | Navigation device |
US9041530B2 (en) * | 2012-04-18 | 2015-05-26 | Qualcomm Incorporated | Biometric attribute anomaly detection system with adjusting notifications |
JP5924111B2 (en) * | 2012-05-14 | 2016-05-25 | 株式会社Jvcケンウッド | Information communication system, information communication apparatus, information communication method and program |
US9417106B2 (en) * | 2012-05-16 | 2016-08-16 | Sony Corporation | Wearable computing device |
JP2013248103A (en) * | 2012-05-31 | 2013-12-12 | Nippon Seiki Co Ltd | Driver state detection device |
CN103445777B (en) * | 2012-06-01 | 2015-12-02 | 中国人民解放军第四军医大学 | The monitoring method of sleep and fatigue monitoring class watch device and normalization dingus |
US20160317060A1 (en) * | 2013-05-23 | 2016-11-03 | Medibotics Llc | Finger Ring with Electromagnetic Energy Sensor for Monitoring Food Consumption |
JP2014001955A (en) * | 2012-06-15 | 2014-01-09 | Nikon Corp | Electronic device |
US9044149B2 (en) * | 2012-06-22 | 2015-06-02 | Fitbit, Inc. | Heart rate data collection |
US8970358B2 (en) * | 2012-06-22 | 2015-03-03 | GM Global Technology Operations LLC | Alert systems and methods for a vehicle |
JP2014012072A (en) | 2012-07-04 | 2014-01-23 | Sony Corp | Measurement apparatus, measurement method, program, storage medium, and measurement system |
WO2014010568A1 (en) * | 2012-07-09 | 2014-01-16 | テイ・エス テック株式会社 | Wakefulness-maintenance apparatus |
US10956956B2 (en) * | 2012-08-17 | 2021-03-23 | Ebay Inc. | System, method, and computer readable medium for recommendations based on wearable sensors |
US20140085101A1 (en) * | 2012-09-25 | 2014-03-27 | Aliphcom | Devices and methods to facilitate affective feedback using wearable computing devices |
CN203000912U (en) * | 2012-10-12 | 2013-06-19 | 浙江大学城市学院 | Wearable multi-physiological-signal collection and locating device |
US9477313B2 (en) * | 2012-11-20 | 2016-10-25 | Samsung Electronics Co., Ltd. | User gesture input to wearable electronic device involving outward-facing sensor of device |
US10318994B2 (en) * | 2012-11-30 | 2019-06-11 | Panasonic Intellectual Property Corporation Of America | Information providing method |
US10033773B2 (en) * | 2012-12-10 | 2018-07-24 | Samsung Electronics Co., Ltd. | Application execution method and apparatus |
US9261960B2 (en) * | 2013-01-24 | 2016-02-16 | Immersion Corporation | Haptic sensation recording and playback |
US10175739B2 (en) * | 2013-01-29 | 2019-01-08 | Avago Technologies International Sales Pte. Limited | Wearable device-aware supervised power management for mobile platforms |
KR102064795B1 (en) * | 2013-02-27 | 2020-01-10 | 한국전자통신연구원 | Posture training system and method of control thereof |
US8803366B2 (en) * | 2013-03-04 | 2014-08-12 | Hello Inc. | Telemetry system with wireless power receiver and monitoring devices |
US20150182113A1 (en) * | 2013-12-31 | 2015-07-02 | Aliphcom | Real-time fatigue, personal effectiveness, injury risk device(s) |
US9854081B2 (en) * | 2013-03-15 | 2017-12-26 | Apple Inc. | Volume control for mobile device using a wireless device |
US9449084B2 (en) * | 2013-03-15 | 2016-09-20 | Futurewei Technologies, Inc. | Music recommendation based on biometric and motion sensors on mobile device |
US8976062B2 (en) * | 2013-04-01 | 2015-03-10 | Fitbit, Inc. | Portable biometric monitoring devices having location sensors |
US9596224B2 (en) * | 2013-04-05 | 2017-03-14 | Nuvectra Corporation | Systems, devices, components and methods for communicating with an IMD using a portable electronic device and a mobile computing device |
CN103310142B (en) * | 2013-05-22 | 2015-10-07 | 复旦大学 | Based on the human-computer fusion safety certifying method of wearable device |
WO2015011552A1 (en) * | 2013-07-25 | 2015-01-29 | Bionym Inc. | Preauthorized wearable biometric device, system and method for use thereof |
US9554747B2 (en) * | 2013-08-26 | 2017-01-31 | EveryFit, Inc. | Power efficient system and method for measuring physical activity in resource constrained devices |
US9158379B2 (en) * | 2013-09-06 | 2015-10-13 | Immersion Corporation | Haptic warping system that transforms a haptic signal into a collection of vibrotactile haptic effect patterns |
CN103476152A (en) * | 2013-09-26 | 2013-12-25 | 王卫东 | Wearable wireless router gateway recorder |
US9558336B2 (en) * | 2013-10-04 | 2017-01-31 | Salutron Inc. | Persistent authentication using sensors of a user-wearable device |
JP6219504B2 (en) * | 2013-10-25 | 2017-10-25 | インテル コーポレイション | Apparatus and method for capturing and generating user experiences |
US9813864B2 (en) * | 2013-11-04 | 2017-11-07 | Apple Inc. | Detecting stowing or unstowing of a mobile device |
US20150145653A1 (en) * | 2013-11-25 | 2015-05-28 | Invensense, Inc. | Device control using a wearable device |
US9504425B2 (en) * | 2013-12-16 | 2016-11-29 | Verily Life Sciences Llc | Method of location coordination via wireless protocol between multiple devices |
US9389675B2 (en) * | 2013-12-19 | 2016-07-12 | International Business Machines Corporation | Power management for in-memory computer systems |
US9595181B2 (en) * | 2013-12-20 | 2017-03-14 | Invensense, Inc. | Wearable device assisting smart media application and vice versa |
US9971412B2 (en) * | 2013-12-20 | 2018-05-15 | Lenovo (Singapore) Pte. Ltd. | Enabling device features according to gesture input |
EP3087559B1 (en) * | 2013-12-24 | 2021-05-05 | Flexterra, Inc. | Support structures for a flexible electronic component |
US20150185839A1 (en) * | 2013-12-28 | 2015-07-02 | Aleksander Magi | Multi-screen wearable electronic device for wireless communication |
US20150182130A1 (en) * | 2013-12-31 | 2015-07-02 | Aliphcom | True resting heart rate |
US9754175B2 (en) * | 2014-01-15 | 2017-09-05 | Zentry, LLC | Acquiring identity signatures from biological structures |
US9483636B2 (en) * | 2014-01-17 | 2016-11-01 | Microsoft Technology Licensing, Llc | Runtime application integrity protection |
WO2015118368A1 (en) * | 2014-02-06 | 2015-08-13 | Sony Corporation | Device and method for detecting gestures on the skin |
US9218034B2 (en) * | 2014-02-13 | 2015-12-22 | Qualcomm Incorporated | User-directed motion gesture control |
US9865058B2 (en) * | 2014-02-19 | 2018-01-09 | Daqri, Llc | Three-dimensional mapping system |
US9304576B2 (en) * | 2014-03-25 | 2016-04-05 | Intel Corporation | Power management for a wearable apparatus |
US9782104B2 (en) * | 2014-03-26 | 2017-10-10 | GestureLogic Inc. | Systems, methods and devices for acquiring and processing physiological signals |
US10575760B2 (en) * | 2014-03-26 | 2020-03-03 | GestureLogic Inc. | Systems, methods and devices for activity recognition |
US9770179B2 (en) * | 2014-03-26 | 2017-09-26 | GestureLogic Inc. | System, method and device for detecting heart rate |
US9588507B2 (en) * | 2014-03-26 | 2017-03-07 | Mediatek Inc. | Low-power mechanism for wearable controller and associated control method |
KR102080747B1 (en) * | 2014-03-28 | 2020-02-24 | 엘지전자 주식회사 | Mobile terminal and control method thereof |
US9867125B2 (en) * | 2014-04-07 | 2018-01-09 | Google Llc | Systems for enabling modular mobile electronic devices |
US10133351B2 (en) * | 2014-05-21 | 2018-11-20 | Apple Inc. | Providing haptic output based on a determined orientation of an electronic device |
TWI692272B (en) * | 2014-05-28 | 2020-04-21 | 美商飛利斯有限公司 | Device with flexible electronic components on multiple surfaces |
KR20160020521A (en) * | 2014-05-30 | 2016-02-23 | 후아웨이 테크놀러지 컴퍼니 리미티드 | Method for detecting electric quantity of device, device and system |
US9619010B1 (en) * | 2014-06-17 | 2017-04-11 | Amazon Technologies, Inc. | Selective powering off of hardware components for battery management in mobile devices |
US9954787B2 (en) * | 2014-06-23 | 2018-04-24 | Huawei Technologies Co., Ltd. | Intelligent terminal power-saving management method and apparatus |
US9400557B2 (en) * | 2014-06-25 | 2016-07-26 | Intel Corporation | Multimodal haptic effect system |
US9679538B2 (en) * | 2014-06-26 | 2017-06-13 | Intel IP Corporation | Eye display interface for a touch display device |
KR101570430B1 (en) * | 2014-08-11 | 2015-11-20 | 엘지전자 주식회사 | Wearble device and operation method thereof |
US9665985B2 (en) * | 2014-08-15 | 2017-05-30 | Daqri, Llc | Remote expert system |
EP2995244A3 (en) * | 2014-08-18 | 2016-07-06 | Samsung Electronics Co., Ltd. | Wearable biometric information measurement device |
US9578399B2 (en) * | 2014-08-25 | 2017-02-21 | Daqri, Llc | Remote sensor access and queuing |
US10326295B2 (en) * | 2014-08-29 | 2019-06-18 | Verizon Patent And Licensing Inc. | Method and system for providing power management for a wearable smart device |
US20160070439A1 (en) * | 2014-09-04 | 2016-03-10 | International Business Machines Corporation | Electronic commerce using augmented reality glasses and a smart watch |
US9645646B2 (en) * | 2014-09-04 | 2017-05-09 | Intel Corporation | Three dimensional contextual feedback wristband device |
US9799177B2 (en) * | 2014-09-23 | 2017-10-24 | Intel Corporation | Apparatus and methods for haptic covert communication |
US10419886B2 (en) * | 2014-09-25 | 2019-09-17 | Intel Corporation | Context-based management of wearable computing devices |
US10004883B2 (en) * | 2014-09-25 | 2018-06-26 | Intel Corporation | Contextual activation of pharmaceuticals through wearable devices |
US10146308B2 (en) * | 2014-10-14 | 2018-12-04 | Immersion Corporation | Systems and methods for impedance coupling for haptic devices |
US20160178906A1 (en) * | 2014-12-19 | 2016-06-23 | Intel Corporation | Virtual wearables |
US9858718B2 (en) * | 2015-01-27 | 2018-01-02 | Microsoft Technology Licensing, Llc | Dynamically adaptable virtual lists |
WO2016134306A1 (en) * | 2015-02-20 | 2016-08-25 | Mc10, Inc. | Automated detection and configuration of wearable devices based on on-body status, location, and/or orientation |
TWI615706B (en) * | 2015-03-25 | 2018-02-21 | 曦恩體感科技股份有限公司 | Wearable device and detecting method thereof |
KR20160142128A (en) * | 2015-06-02 | 2016-12-12 | 엘지전자 주식회사 | Watch type mobile terminal and method for controlling the same |
US9952676B2 (en) * | 2015-06-25 | 2018-04-24 | Intel Corporation | Wearable device with gesture recognition mechanism |
US9864844B2 (en) * | 2015-06-26 | 2018-01-09 | Intel Corporation | Wearable device normalization of fitness equipment settings and characteristics |
US10653366B2 (en) * | 2015-06-26 | 2020-05-19 | Andrew Michael Levine | Haptic feedback device, system and method |
US20170083101A1 (en) * | 2015-09-17 | 2017-03-23 | International Business Machines Corporation | Gesture recognition data transfer |
US20170105677A1 (en) * | 2015-10-15 | 2017-04-20 | Scott Technologies, Inc. | Team Participant Awareness Indicator and Indicative Notification |
US9854529B2 (en) * | 2015-12-03 | 2017-12-26 | Google Llc | Power sensitive wireless communication radio management |
US20170185142A1 (en) * | 2015-12-25 | 2017-06-29 | Le Holdings (Beijing) Co., Ltd. | Method, system and smart glove for obtaining immersion in virtual reality system |
US10607081B2 (en) * | 2016-01-06 | 2020-03-31 | Orcam Technologies Ltd. | Collaboration facilitator for wearable devices |
US9797729B1 (en) * | 2016-10-25 | 2017-10-24 | Toyota Motor Engineering & Manufacturing North America, Inc. | Systems and methods for automatic fit adjustment of a wearable device |
-
2015
- 2015-02-19 CN CN201580007369.8A patent/CN105960666B/en not_active Expired - Fee Related
- 2015-02-19 WO PCT/US2015/016590 patent/WO2015127056A2/en active Application Filing
- 2015-02-19 JP JP2016551183A patent/JP6467721B2/en active Active
- 2015-02-19 WO PCT/US2015/016714 patent/WO2015127143A1/en active Application Filing
- 2015-02-19 WO PCT/US2015/016606 patent/WO2015127070A1/en active Application Filing
- 2015-02-19 KR KR1020167021793A patent/KR101939889B1/en active Active
- 2015-02-19 CN CN201580007376.8A patent/CN105979859B/en not_active Expired - Fee Related
- 2015-02-19 JP JP2016551292A patent/JP6620374B2/en active Active
- 2015-02-19 KR KR1020167021792A patent/KR101924702B1/en active Active
- 2015-02-19 CN CN201580007368.3A patent/CN105981083B/en not_active Expired - Fee Related
- 2015-02-19 CN CN201580007379.1A patent/CN105980008B/en not_active Expired - Fee Related
- 2015-02-19 WO PCT/US2015/016597 patent/WO2015127062A1/en active Application Filing
- 2015-02-19 EP EP15751666.7A patent/EP3089726B1/en active Active
- 2015-02-19 KR KR1020167021760A patent/KR20160106719A/en not_active Ceased
- 2015-02-19 JP JP2016551182A patent/JP6585606B2/en active Active
- 2015-02-19 CN CN201710420611.5A patent/CN107193382B/en not_active Expired - Fee Related
- 2015-02-19 KR KR1020187034172A patent/KR102204265B1/en active Active
- 2015-02-19 EP EP15752187.3A patent/EP3089658A4/en not_active Withdrawn
- 2015-02-19 JP JP2016551277A patent/JP6582285B2/en active Active
- 2015-02-19 EP EP15751850.7A patent/EP3090352A4/en not_active Ceased
- 2015-02-19 WO PCT/US2015/016593 patent/WO2015127059A2/en active Application Filing
- 2015-02-19 JP JP2016551210A patent/JP6660300B2/en active Active
- 2015-02-19 EP EP15752136.0A patent/EP3089657A4/en not_active Ceased
- 2015-02-19 KR KR1020167021795A patent/KR101859311B1/en active Active
- 2015-02-19 CN CN201580007374.9A patent/CN105960575B/en not_active Expired - Fee Related
- 2015-02-19 WO PCT/US2015/016679 patent/WO2015127119A2/en active Application Filing
- 2015-02-19 EP EP15751382.1A patent/EP3090417B1/en active Active
- 2015-02-19 JP JP2016551234A patent/JP6330199B2/en active Active
- 2015-02-19 EP EP15752742.5A patent/EP3092463B1/en active Active
- 2015-02-19 CN CN201580007378.7A patent/CN105981003B/en not_active Expired - Fee Related
- 2015-02-19 EP EP15751661.8A patent/EP3092461B1/en active Active
- 2015-02-19 WO PCT/US2015/016713 patent/WO2015127142A1/en active Application Filing
- 2015-02-19 EP EP15752378.8A patent/EP3110606B1/en active Active
- 2015-02-19 KR KR1020187003545A patent/KR101919740B1/en active Active
- 2015-02-19 WO PCT/US2015/016603 patent/WO2015127067A1/en active Application Filing
- 2015-02-19 EP EP15751783.0A patent/EP3092631A4/en not_active Withdrawn
- 2015-02-19 CN CN201580007403.1A patent/CN105960572B/en not_active Expired - Fee Related
- 2015-02-19 KR KR1020167021794A patent/KR101946130B1/en active Active
- 2015-02-19 KR KR1020167021757A patent/KR101920131B1/en active Active
- 2015-02-19 JP JP2016551181A patent/JP6458296B2/en active Active
- 2015-02-19 JP JP2016551214A patent/JP6346671B2/en active Active
- 2015-02-19 CN CN201580007373.4A patent/CN106029325B/en not_active Expired - Fee Related
- 2015-02-19 KR KR1020167021796A patent/KR101938950B1/en active Active
- 2015-02-19 KR KR1020167021759A patent/KR101939888B1/en active Active
- 2015-02-19 WO PCT/US2015/016676 patent/WO2015127116A1/en active Application Filing
- 2015-02-19 CN CN201580007372.XA patent/CN105960196B/en not_active Expired - Fee Related
- 2015-02-19 KR KR1020167021755A patent/KR101909361B1/en active Active
- 2015-02-19 JP JP2016551264A patent/JP6314343B2/en active Active
- 2015-02-19 KR KR1020187004240A patent/KR20180018854A/en not_active Withdrawn
-
2016
- 2016-08-05 US US15/229,373 patent/US20170010663A1/en not_active Abandoned
- 2016-08-05 US US15/229,405 patent/US20170010666A1/en not_active Abandoned
- 2016-08-05 US US15/229,393 patent/US20170010665A1/en not_active Abandoned
- 2016-08-05 US US15/229,382 patent/US10528121B2/en active Active
- 2016-08-14 US US15/236,448 patent/US10571999B2/en active Active
- 2016-08-14 US US15/236,450 patent/US10234936B2/en active Active
- 2016-08-14 US US15/236,461 patent/US10114453B2/en active Active
- 2016-08-14 US US15/236,449 patent/US10191537B2/en active Active
- 2016-08-14 US US15/236,465 patent/US10254825B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130278631A1 (en) * | 2010-02-28 | 2013-10-24 | Osterhout Group, Inc. | 3d positioning of augmented reality information |
Non-Patent Citations (1)
Title |
---|
Border US 2013/0267631 A1 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160314708A1 (en) * | 2015-04-21 | 2016-10-27 | Freedom Scientific, Inc. | Method and System for Converting Text to Speech |
US12141371B2 (en) | 2018-02-23 | 2024-11-12 | Telefonaktiebolaget Lm Ericsson (Publ) | Coordinating alignment of coordinate systems used for a computer generated reality device and a haptic device |
US10517536B1 (en) * | 2018-03-28 | 2019-12-31 | Senstream, Inc. | Biometric wearable and EDA method for acquiring biomarkers in perspiration |
WO2020243531A3 (en) * | 2019-05-31 | 2020-12-30 | Biotrillion, Inc. | Systems and methods for monitoring movements |
US11434668B1 (en) | 2022-05-07 | 2022-09-06 | Steven D. Wriggle | Detainee monitor restraint |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20170010663A1 (en) | Smart wearable devices and methods for optimizing output | |
US10524715B2 (en) | Systems, environment and methods for emotional recognition and social interaction coaching | |
US20200337631A1 (en) | Systems, environment and methods for identification and analysis of recurring transitory physiological states and events using a portable data collection device | |
CN102986201B (en) | User interfaces | |
US8494507B1 (en) | Adaptive, portable, multi-sensory aid for the disabled | |
AU2015218578B2 (en) | Systems, environment and methods for evaluation and management of autism spectrum disorder using a wearable data collection device | |
Luxton et al. | Intelligent mobile, wearable, and ambient technologies for behavioral health care | |
Zou | Guidelines for Designing Inclusive Wearable Devices for the Aging Population | |
JP2025048911A (en) | system | |
JP2025060536A (en) | system | |
Awada et al. | An Integrated System for Improved Assisted Living of Elderly People |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SONY CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TANAKA, NOBUO;ELGORT, VLADIMIR;DANIELSON, JACELYN;AND OTHERS;SIGNING DATES FROM 20150601 TO 20151207;REEL/FRAME:039530/0329 Owner name: SONY CORPORATION OF AMERICA, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TANAKA, NOBUO;ELGORT, VLADIMIR;DANIELSON, JACELYN;AND OTHERS;SIGNING DATES FROM 20150601 TO 20151207;REEL/FRAME:039530/0329 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |