US20160381360A1 - Video encoding method for encoding division block, video decoding method for decoding division block, and recording medium for implementing the same - Google Patents

Video encoding method for encoding division block, video decoding method for decoding division block, and recording medium for implementing the same Download PDF

Info

Publication number
US20160381360A1
US20160381360A1 US15/258,655 US201615258655A US2016381360A1 US 20160381360 A1 US20160381360 A1 US 20160381360A1 US 201615258655 A US201615258655 A US 201615258655A US 2016381360 A1 US2016381360 A1 US 2016381360A1
Authority
US
United States
Prior art keywords
encoding
block
sub
blocks
decoding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US15/258,655
Other versions
US9888259B2 (en
Inventor
Mun Churl Kim
Bum Shik Lee
Jae Il Kim
Chang Seob Park
Sang Jin Hahm
In Joon Cho
Keun Sik Lee
Byung Sun Kim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea Advanced Institute of Science and Technology KAIST
Korean Broadcasting System Corp
Original Assignee
Korea Advanced Institute of Science and Technology KAIST
Korean Broadcasting System Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=43003799&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20160381360(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Korea Advanced Institute of Science and Technology KAIST, Korean Broadcasting System Corp filed Critical Korea Advanced Institute of Science and Technology KAIST
Priority to US15/258,655 priority Critical patent/US9888259B2/en
Publication of US20160381360A1 publication Critical patent/US20160381360A1/en
Priority to US15/855,019 priority patent/US10462494B2/en
Application granted granted Critical
Publication of US9888259B2 publication Critical patent/US9888259B2/en
Priority to US16/572,704 priority patent/US11076175B2/en
Priority to US17/361,528 priority patent/US11659210B2/en
Priority to US18/298,711 priority patent/US20230247229A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/85Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression
    • H04N19/86Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression involving reduction of coding artifacts, e.g. of blockiness
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/117Filters, e.g. for pre-processing or post-processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/12Selection from among a plurality of transforms or standards, e.g. selection between discrete cosine transform [DCT] and sub-band transform or selection between H.263 and H.264
    • H04N19/122Selection of transform size, e.g. 8x8 or 2x4x8 DCT; Selection of sub-band transforms of varying structure or type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/124Quantisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/13Adaptive entropy coding, e.g. adaptive variable length coding [AVLC] or context adaptive binary arithmetic coding [CABAC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • H04N19/14Coding unit complexity, e.g. amount of activity or edge presence estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • H04N19/159Prediction type, e.g. intra-frame, inter-frame or bidirectional frame prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/61Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/80Details of filtering operations specially adapted for video compression, e.g. for pixel interpolation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/172Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a picture, frame or field
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/174Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a slice, e.g. a line of blocks or a group of blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/182Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a pixel

Definitions

  • the present invention relates to video encoding and decoding methods capable of dividing an input picture in units of blocks and encoding and decoding a division block by simultaneously using intra and inter prediction encoding, and more particularly to video encoding and decoding methods of encoding and decoding a division block through inter and intra predictions in video encoding that can improve encoding efficiency and further improve encoding efficiency by encoding a block video signal by use of a square transform or a non-square transform according to a size of the division block.
  • ISO/IEC International Organization for Standardization/International Electrotechnical Commission
  • ISO/IEC 14496-10 (Moving Picture Experts Group (MPEG)-4 Part 10 Advanced Video Coding) or H.264, which is video compression/encoding technology jointly standardized in ISO/IEC and International Telecommunication Union-Telecommunication Standardization (ITU-T), an ISO/IEC 14496-10 Amendment 3 (MPEG-4 Scalable Video Coding) standard, a video codec-1 (VC-1), which is an Society of Motion Picture and Television Engineers (SMPTE) standard, an audio video coding standard (AVS), and the like have achieved significant advance in terms of video data compression efficiency.
  • ISO/IEC International Organization for Standardization/International Electrotechnical Commission
  • MPEG-4 Part 10 Advanced Video Coding or H.264
  • MPEG-4 Scalable Video Coding MPEG-4 Scalable Video Coding
  • VC-1 video codec-1
  • SMPTE Society of Motion Picture and Television Engineers
  • AVS audio video coding standard
  • a micro motion or a motion of a complex video may be more effectively predicted, and compression efficiency may be significantly improved by significantly reducing a generated residual signal.
  • FIG. 1 is a diagram showing seven types of motion prediction block divisions used in H.264 as division block types of 16 ⁇ 16 macroblock unit blocks to be encoded in an H.264/advanced video coding (AVC) encoder of the related art.
  • AVC advanced video coding
  • an encoding process is generally performed by dividing an input video into macroblock units having a size of 16 ⁇ 16.
  • prediction encoding is performed by dividing a macroblock into seven types of sub-blocks as shown in FIG. 1 and finally selecting a block for minimizing the rate-distortion cost.
  • the macroblock When intra encoding of sub-blocks into which a 16 ⁇ 16 macroblock to be encoded is divided is performed, the macroblock is subjected to intra prediction encoding in a size of one 16 ⁇ 16 pixel unit. Alternatively, after the macroblock is divided into sub-blocks, intra prediction encoding of four 8 ⁇ 8 blocks or sixteen 4 ⁇ 4 blocks is performed.
  • the above-described intra prediction encoding technique efficient in terms of the reduction of the number of cases of various block modes in low definition video encoding, but has a problem in high definition (HD) or ultra high definition (UHD) video encoding. That is, in the case of a super-macroblock having a size of 32 ⁇ 32 or more to which a 16 ⁇ 16 macroblock as an encoding unit block is extended, encoding efficiency is degraded if all divided block modes within the super-macroblock are applied to the same intra prediction based on a 16 ⁇ 16, 8 ⁇ 8, or 4 ⁇ 4 block as in the existing method.
  • HD high definition
  • UHD ultra high definition
  • all divided blocks are encoded by only intra or inter prediction encoding in a prediction encoding method based on division blocks in the related art. That is, only one of the intra prediction encoding and the inter prediction encoding is selected and applied to a division block without applying both the intra prediction encoding and the inter prediction encoding to the division block.
  • This may result in a gain of encoding efficiency in image or video compression at an HD rate or less due to simplicity of a syntax expressing a block encoding mode obtained by applying only one of intra and inter encoding, but may become a factor that degrades the encoding efficiency when a unit of encoding is a super-macroblock that has the same or greater size than a macroblock.
  • the present invention has been made to solve the above-described problem, and an object of the invention is to provide a more effective prediction encoding method that performs an encoding process by extending a method of selecting intra or inter prediction encoding for sub-division blocks of a divided block during video encoding so that both intra and inter prediction encoding modes can be selected and selectively applying a square or non-square transform kernel to a residual signal according to a block size after motion compensation of the divided block.
  • Another object of the present invention is to provide a computer-readable recording medium for implementing the method.
  • a video encoding method including: dividing an input picture into encoding unit blocks; dividing the encoding unit blocks into sub-blocks; and encoding the sub-blocks by selectively using at least one of intra prediction encoding and inter prediction encoding.
  • the video encoding method may further include: transforming residual signals through the encoding unit blocks and the sub-blocks by selectively applying a variable block-size transform kernel according to a block size; quantizing the transformed residual signals; and entropy-encoding results of quantization.
  • the residual signals through the sub-blocks may be encoded by selectively applying one or more de-blocking filters according to the block size and an encoding type.
  • a size of the encoding unit block may be a square having an N*N size, and the encoding unit block may be divided into one or more square or non-square sub-blocks having any size.
  • the sub-blocks may be encoded by selecting one of intra prediction encoding methods.
  • the entropy encoding may be performed by scanning a quantized transform coefficient selected according to a block size.
  • the square sub-blocks may be transformed by applying a square transform kernel.
  • a square transform kernel having a size of the smaller or same number of pixels may be applied by comparing the number of horizontal pixels of the square sub-block with the number of vertical pixels.
  • the non-square sub-blocks may be transformed by applying a non-square transform kernel.
  • a non-square transform kernel having a size of the smaller or same number of pixels may be applied by comparing the number of horizontal pixels of the non-square sub-block with the number of vertical pixels.
  • a method of encoding a division block in video encoding including: (a) inputting a picture to be encoded; (b) dividing the input picture into encoding unit blocks; (c) dividing each input encoding unit block into sub-blocks; (d) performing intra prediction encoding and inter prediction encoding of the encoding unit block and the sub-blocks and selecting one block type among the encoding unit block and the sub-blocks; and (e) performing intra prediction encoding and/or inter prediction encoding of the encoding unit block and the sub-blocks by use of a prediction result of the block type.
  • a method of encoding a division block in video encoding including: (a′) inputting a picture to be encoded; (b′) dividing the input picture into encoding unit blocks; (c′) determining whether to perform inter prediction encoding of a current input picture; (d′) initializing an index of a sub-block of an encoding unit block to be encoded in the input picture if the current input picture corresponds to inter prediction; (e′) selecting a block mode of the encoding unit block to be encoded; (f′) determining whether to perform both intra and inter prediction encoding of the selected block mode; (g′) performing the intra and inter prediction encoding of the selected block mode if it is determined to perform both the intra and inter prediction encoding of the selected block mode; (h′) storing a prediction encoding result and a rate-distortion cost value of step (g′); (i′) if the selected block mode is a final mode,
  • the method may further include: after step (c′), performing the intra prediction encoding if the current input picture does not correspond to the inter prediction.
  • the method may further include: after step (f′), performing the inter prediction encoding of the selected block mode if it is not determined to perform both the intra and inter prediction encoding of the selected block mode.
  • the method may further include: after step (g′), obtaining a residual signal through motion prediction and compensation if the inter prediction encoding of the selected block mode is performed; transforming the selected block by use of the residual signal; quantizing the transformed selected block; and entropy-encoding a result of quantization.
  • the method may further include: after step (g′), obtaining a residual signal through the intra prediction encoding if the intra prediction encoding of the selected block mode is performed; transforming the selected block by use of the residual signal; quantizing the transformed selected block; and entropy-encoding a result of quantization.
  • the method may further include: performing a transform by selectively applying a transform kernel according to a block size when the selected block is transformed using the residual signal.
  • a method of decoding a division block in video decoding comprising: (A) inputting a bitstream to be decoded; (B) determining whether the input bitstream corresponds to inter prediction; (C) performing intra prediction encoding if the input bitstream is subjected to intra prediction encoding; (D) analyzing a slice if the input bitstream corresponds to the inter prediction; (E) analyzing a unit encoding block within the slice; (F) decoding an encoding mode of a unit encoding sub-division block; (G) analyzing whether a sub-division encoding block is an inter prediction encoding block; (H) performing inter prediction decoding if the sub-division encoding block corresponds to the inter prediction; (I) performing intra prediction decoding if the sub-division encoding block corresponds to intra prediction; (J) configuring unit decoding block pixels from sub-division decoding results; (K) configuring slice
  • Step (C) may further include: if the unit encoding block is a super-macroblock having the same or greater size than a 16 ⁇ 16 macroblock, performing intra prediction decoding by decoding a sub-division block encoding mode corresponding to the size of the super-macroblock.
  • Step (C) may further include: performing intra prediction decoding by applying a de-blocking filter corresponding to a size of a sub-division block.
  • Step (C) may further include the step of: performing intra prediction decoding by applying a de-blocking filter according to a size of a sub-division block.
  • Step (F) may further include: if the unit encoding block is a super-macroblock having the same or greater size than a 16 ⁇ 16 macroblock, decoding a sub-division block encoding mode corresponding to the size of the super-macroblock.
  • Step (H) may further include: performing intra prediction decoding by applying a square or non-square transform kernel corresponding to a size of a sub-division block and decoding an encoded quantized transform coefficient.
  • Step (H) may further include: performing intra prediction decoding by applying an inverse quantization method according to a size of a sub-division block and a decoding mode condition of a peripheral decoding block and decoding an encoded quantized transform coefficient.
  • Step (H) may further include: performing inter prediction decoding by applying a de-blocking filter corresponding to a size of a sub-division block.
  • a computer-readable recording medium storing a program for causing a computer to execute the above-described method.
  • a divided block is encoded in an intra or inter prediction encoding mode by applying at least one of intra prediction encoding and inter prediction encoding to a divided sub-block or its sub-division blocks, and prediction encoding is performed using both intra and inter predictions for an encoding unit block or its sub-division blocks, so that the flexibility of encoding mode selection can be increased and the efficiency of encoding can be increased.
  • each division block is encoded by selectively applying a size of a variable block-size transform kernel according to a size of the division block so that both the intra and inter predictions can be applied to sub-division blocks. Therefore, it is possible to significantly improve encoding efficiency.
  • FIG. 1 is a diagram showing division block types of 16 ⁇ 16 macroblock unit blocks to be encoded in an H.264/advanced video coding (AVC) encoder of the related art.
  • AVC advanced video coding
  • FIG. 2 is a diagram showing super-macroblock unit blocks and division block types for intra or inter prediction encoding in an encoder according to an example embodiment of the present invention.
  • FIG. 3 is a flowchart illustrating a method of encoding a division block in video encoding according to an example embodiment of the present invention.
  • FIG. 4 is a flowchart illustrating a method of decoding a bitstream encoded in a video division block mode according to an example embodiment of the present invention.
  • FIG. 2 is a diagram showing super-macroblock unit blocks and division block types for intra or inter prediction encoding in an encoder according to an example embodiment of the present invention.
  • FIG. 2 is a diagram showing an example of super-macroblocks, which have larger sizes than a macroblock of a 16 ⁇ 16 pixel unit, and block division types applied to an example embodiment of the present invention.
  • a process of dividing a super-macroblock into sub-blocks and intra or inter prediction encoding the division blocks is performed, and the super-macroblock is encoded so that both intra and inter prediction encoding modes can be used as a final encoding mode. Therefore, it is possible to very effectively increase video encoding efficiency. In practice, it is possible to perform encoding by selecting a block mode capable of minimizing rate-distortion cost as shown in Equation 1.
  • J MODE denotes a rate-distortion function for a block encoding mode
  • s denotes an original block pixel input to be encoded
  • r denotes a reference video pixel input
  • QP denotes a quantization parameter
  • MODE denotes a division block mode type.
  • transform encoding is applied to a residual signal of a super-macroblock having an increased size
  • Equation 2 If the square transform kernel having the size of 16 ⁇ 16 or more is applied to the super-macroblock, it is possible to carry out a calculation as shown in Equation 2.
  • X denotes an N ⁇ N input video signal matrix
  • A denotes an N ⁇ N square transform kernel matrix
  • Y denotes a transform coefficient matrix
  • a 1 denotes an M ⁇ M square transform kernel matrix
  • a 2 denotes an (M/2) ⁇ (M/2) square transform kernel matrix
  • Y denotes a transform coefficient matrix
  • a square or non-square kernel transform When a square or non-square kernel transform is applied according to an example embodiment of the present invention, it is preferable to perform transform encoding by performing a comparison with the smaller number of pixels between the number of horizontal pixels and the number of vertical pixels of a division block and applying a kernel having a size that is equal to or less than the smaller number of pixels.
  • FIG. 3 is a flowchart illustrating a method for encoding a division block in video encoding according to an example embodiment of the present invention.
  • the picture i is input in sequence for encoding (S 102 ).
  • the input picture i is divided into encoding unit blocks (S 103 ).
  • the encoding unit block may be a macroblock or super-macroblock.
  • the unit block j to be encoded is divided into sub-blocks (S 107 ).
  • One of sub-block modes k is selected (S 109 ).
  • sub-block mode k is a final block node (S 114 ). If the sub-block mode k is not the final block mode, steps S 109 to S 113 are iterated for the next block mode. On the other hand, if the sub-block mode k is the final block mode, an optimum division block is determined and corresponding encoding results are finally selected (S 115 ).
  • step S 116 If it is determined in step S 116 that the current encoding unit block j is the final block in the current picture i, it is checked whether the current picture i is a final picture (S 117 ). If the current picture i is the final picture, the algorithm ends. Otherwise, the algorithm returns to step S 102 , the next picture is input, and steps S 102 to S 116 are iterated.
  • FIG. 4 is a flowchart illustrating a method of decoding a bitstream encoded in a video division block mode according to an example embodiment of the present invention.
  • An encoded picture bitstream i is input in sequence for decoding (S 202 ).
  • slice information regarding the input picture bitstream is analyzed (S 205 ).
  • the decoding unit block may be a macroblock or a super-macroblock.
  • an encoding mode of a division sub-block within the unit encoding block is decoded (S 210 ).
  • inter prediction decoding is performed if the sub-block is the inter prediction encoding block (S 213 )
  • intra prediction encoding is performed if the sub-block is an intra prediction encoding block or mode (S 212 ).
  • pixel values of the sub-division block are recovered using sub-block encoding results (S 214 ).
  • S 215 After it is checked whether a current sub-division block m is the final block (S 215 ), pixel values of a unit decoding block are configured if the current sub-division block m is the final block (S 216 ). Otherwise, the algorithm returns to step S 210 for decoding the next division sub-block, and steps S 210 to S 214 are performed.
  • a current unit encoding block k is a final unit encoding block (S 217 )
  • slice pixels are configured if the current unit encoding block k is the final unit encoding block (S 218 ). Otherwise, the algorithm returns to step S 208 , and steps S 208 to S 216 are performed.
  • a current slice j is a final slice (S 219 )
  • picture pixels are configured if the current slice j is the final slice (S 220 ). Otherwise, steps S 205 to S 218 are performed.
  • the algorithm ends if the current picture i is the final picture. Otherwise, the algorithm returns to step S 202 , the next bitstream is input, and steps S 202 to S 220 are performed.
  • an input video is divided into encoding unit blocks. After the encoding unit block is sub-divided into sub-blocks, each sub-division block is encoded by selectively using at least one of intra prediction and inter prediction.
  • encoding can be performed using both inter and intra prediction sub-block modes in an encoding mode of an encoding unit block and simultaneously a variable block-size transform kernel is selectively applied, so that encoding efficiency can be improved.
  • the above-described method of encoding a division block in video encoding can be implemented as computer-readable codes on a computer-readable recording medium.
  • the computer-readable recording medium includes all types of recording devices storing data readable by a computer system.
  • Examples of the computer-readable recording medium include a read only memory (ROM), a random access memory (RAM), a compact disk-read only memory (CD-ROM), a magnetic tape, a hard disk, a floppy disk, a mobile storage, a flash memory, an optical data storage, etc.
  • the computer-readable recording medium may be implemented in the form of carrier waves (e.g., transmission over the Internet).
  • the computer-readable recording medium is distributed to computer systems connected to each other through a computer communication network, so that the computer-readable codes can be stored in a distribution manner and executed thereby.

Abstract

Disclosed are a method of encoding a division block in video encoding and a method of decoding a division block in video decoding. An input picture is divided into encoding unit blocks. The encoding unit blocks are divided into sub-blocks. The sub-blocks are encoded by selectively using at least one of intra prediction encoding and inter prediction encoding. A decoding process is performed through a reverse process of the encoding method. When pixel values of an encoding unit block are encoded in video encoding, the flexibility in selecting an encoding mode is increased and the efficiency of encoding is increased.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a Continuation of U.S. application Ser. No. 13/202,906, filed on Oct. 10, 2011, which is a National Stage of International Application No. PCT/KR2010/001125, filed Feb. 23, 2010 and published as WO 2010/095915 A2 on Aug. 26, 2010, which claims the benefit of Korean Patent Application No. 10-2009-0076753, filed on Aug. 19, 2009, and Korean Patent Application No. 10-2009-0015013, filed on Feb. 23, 2009, the entire disclosures of which are incorporated herein by reference for all purposes.
  • TECHNICAL FIELD
  • The present invention relates to video encoding and decoding methods capable of dividing an input picture in units of blocks and encoding and decoding a division block by simultaneously using intra and inter prediction encoding, and more particularly to video encoding and decoding methods of encoding and decoding a division block through inter and intra predictions in video encoding that can improve encoding efficiency and further improve encoding efficiency by encoding a block video signal by use of a square transform or a non-square transform according to a size of the division block.
  • BACKGROUND ART
  • International Organization for Standardization/International Electrotechnical Commission (ISO/IEC) 14496-10 (Moving Picture Experts Group (MPEG)-4 Part 10 Advanced Video Coding) or H.264, which is video compression/encoding technology jointly standardized in ISO/IEC and International Telecommunication Union-Telecommunication Standardization (ITU-T), an ISO/IEC 14496-10 Amendment 3 (MPEG-4 Scalable Video Coding) standard, a video codec-1 (VC-1), which is an Society of Motion Picture and Television Engineers (SMPTE) standard, an audio video coding standard (AVS), and the like have achieved significant advance in terms of video data compression efficiency.
  • There are various factors for improving video compression efficiency. In particular, a process of sub-dividing a macroblock in units of 16×16, 16×8, 8×16, 8×8, 8×4, 4×8, and 4×4, prediction-encoding sub-blocks, and encoding a block for minimizing cost in an optimum block mode in terms of rate-distortion cost is performed, unlike existing video encoding standards (MPEG-1 Video, MPEG-2 Video, MPEG-4 Part 2 Visual, H.261, H.263, and the like) in which prediction encoding is performed after a size of a picture to be encoded is divided in units of macroblocks (each of which has 16×16 pixels).
  • Thereby, a micro motion or a motion of a complex video may be more effectively predicted, and compression efficiency may be significantly improved by significantly reducing a generated residual signal.
  • FIG. 1 is a diagram showing seven types of motion prediction block divisions used in H.264 as division block types of 16×16 macroblock unit blocks to be encoded in an H.264/advanced video coding (AVC) encoder of the related art.
  • In a block-based prediction encoding method as shown in FIG. 1, an encoding process is generally performed by dividing an input video into macroblock units having a size of 16×16. In particular, in the ISO/IEC 14496-10 (MPEG-4 Advanced Video Coding) or H.264 standard, prediction encoding is performed by dividing a macroblock into seven types of sub-blocks as shown in FIG. 1 and finally selecting a block for minimizing the rate-distortion cost.
  • When intra encoding of sub-blocks into which a 16×16 macroblock to be encoded is divided is performed, the macroblock is subjected to intra prediction encoding in a size of one 16×16 pixel unit. Alternatively, after the macroblock is divided into sub-blocks, intra prediction encoding of four 8×8 blocks or sixteen 4×4 blocks is performed.
  • In general, the above-described intra prediction encoding technique efficient in terms of the reduction of the number of cases of various block modes in low definition video encoding, but has a problem in high definition (HD) or ultra high definition (UHD) video encoding. That is, in the case of a super-macroblock having a size of 32×32 or more to which a 16×16 macroblock as an encoding unit block is extended, encoding efficiency is degraded if all divided block modes within the super-macroblock are applied to the same intra prediction based on a 16×16, 8×8, or 4×4 block as in the existing method.
  • In other words, it should be noted that all divided blocks are encoded by only intra or inter prediction encoding in a prediction encoding method based on division blocks in the related art. That is, only one of the intra prediction encoding and the inter prediction encoding is selected and applied to a division block without applying both the intra prediction encoding and the inter prediction encoding to the division block. This may result in a gain of encoding efficiency in image or video compression at an HD rate or less due to simplicity of a syntax expressing a block encoding mode obtained by applying only one of intra and inter encoding, but may become a factor that degrades the encoding efficiency when a unit of encoding is a super-macroblock that has the same or greater size than a macroblock.
  • DISCLOSURE OF INVENTION Technical Problem
  • The present invention has been made to solve the above-described problem, and an object of the invention is to provide a more effective prediction encoding method that performs an encoding process by extending a method of selecting intra or inter prediction encoding for sub-division blocks of a divided block during video encoding so that both intra and inter prediction encoding modes can be selected and selectively applying a square or non-square transform kernel to a residual signal according to a block size after motion compensation of the divided block.
  • Another object of the present invention is to provide a computer-readable recording medium for implementing the method.
  • Technical Solution
  • According to an example embodiment of the present invention for achieving the above-described object, there is provided a video encoding method, including: dividing an input picture into encoding unit blocks; dividing the encoding unit blocks into sub-blocks; and encoding the sub-blocks by selectively using at least one of intra prediction encoding and inter prediction encoding.
  • The video encoding method may further include: transforming residual signals through the encoding unit blocks and the sub-blocks by selectively applying a variable block-size transform kernel according to a block size; quantizing the transformed residual signals; and entropy-encoding results of quantization.
  • The residual signals through the sub-blocks may be encoded by selectively applying one or more de-blocking filters according to the block size and an encoding type.
  • A size of the encoding unit block may be a square having an N*N size, and the encoding unit block may be divided into one or more square or non-square sub-blocks having any size.
  • When the square or non-square sub-blocks are encoded using the inter prediction encoding, the sub-blocks may be encoded by selecting one of intra prediction encoding methods.
  • When the intra prediction encoding or inter prediction encoding of the square or non-square sub-blocks is performed, the entropy encoding may be performed by scanning a quantized transform coefficient selected according to a block size.
  • The square sub-blocks may be transformed by applying a square transform kernel.
  • When the square sub-blocks are transformed by applying the square transform kernel, a square transform kernel having a size of the smaller or same number of pixels may be applied by comparing the number of horizontal pixels of the square sub-block with the number of vertical pixels.
  • The non-square sub-blocks may be transformed by applying a non-square transform kernel.
  • When the non-square sub-blocks are transformed by applying the non-square transform kernel, a non-square transform kernel having a size of the smaller or same number of pixels may be applied by comparing the number of horizontal pixels of the non-square sub-block with the number of vertical pixels.
  • According to another example embodiment of the present invention, there is provided a method of encoding a division block in video encoding, including: (a) inputting a picture to be encoded; (b) dividing the input picture into encoding unit blocks; (c) dividing each input encoding unit block into sub-blocks; (d) performing intra prediction encoding and inter prediction encoding of the encoding unit block and the sub-blocks and selecting one block type among the encoding unit block and the sub-blocks; and (e) performing intra prediction encoding and/or inter prediction encoding of the encoding unit block and the sub-blocks by use of a prediction result of the block type.
  • According to still another example embodiment of the present invention, there is provided a method of encoding a division block in video encoding, including: (a′) inputting a picture to be encoded; (b′) dividing the input picture into encoding unit blocks; (c′) determining whether to perform inter prediction encoding of a current input picture; (d′) initializing an index of a sub-block of an encoding unit block to be encoded in the input picture if the current input picture corresponds to inter prediction; (e′) selecting a block mode of the encoding unit block to be encoded; (f′) determining whether to perform both intra and inter prediction encoding of the selected block mode; (g′) performing the intra and inter prediction encoding of the selected block mode if it is determined to perform both the intra and inter prediction encoding of the selected block mode; (h′) storing a prediction encoding result and a rate-distortion cost value of step (g′); (i′) if the selected block mode is a final mode, determining encoding by comparing rate-distortion costs for respective block modes and selecting a final block mode for the encoding unit block; (j′) determining whether a current encoding unit block is a final block in the current input picture; and (k′) determining whether the current input picture is a final picture if the current encoding unit block is the final block in the current input picture, and iterating steps (a′) to (j′) until the current input picture becomes the final picture.
  • The method may further include: after step (c′), performing the intra prediction encoding if the current input picture does not correspond to the inter prediction.
  • The method may further include: after step (f′), performing the inter prediction encoding of the selected block mode if it is not determined to perform both the intra and inter prediction encoding of the selected block mode.
  • The method may further include: after step (g′), obtaining a residual signal through motion prediction and compensation if the inter prediction encoding of the selected block mode is performed; transforming the selected block by use of the residual signal; quantizing the transformed selected block; and entropy-encoding a result of quantization.
  • The method may further include: after step (g′), obtaining a residual signal through the intra prediction encoding if the intra prediction encoding of the selected block mode is performed; transforming the selected block by use of the residual signal; quantizing the transformed selected block; and entropy-encoding a result of quantization.
  • The method may further include: performing a transform by selectively applying a transform kernel according to a block size when the selected block is transformed using the residual signal.
  • According to still another example embodiment of the present invention, there is provided a method of decoding a division block in video decoding, comprising: (A) inputting a bitstream to be decoded; (B) determining whether the input bitstream corresponds to inter prediction; (C) performing intra prediction encoding if the input bitstream is subjected to intra prediction encoding; (D) analyzing a slice if the input bitstream corresponds to the inter prediction; (E) analyzing a unit encoding block within the slice; (F) decoding an encoding mode of a unit encoding sub-division block; (G) analyzing whether a sub-division encoding block is an inter prediction encoding block; (H) performing inter prediction decoding if the sub-division encoding block corresponds to the inter prediction; (I) performing intra prediction decoding if the sub-division encoding block corresponds to intra prediction; (J) configuring unit decoding block pixels from sub-division decoding results; (K) configuring slice pixels from decoding unit block results; and (K) configuring a picture from slice pixel configuration results. Accordingly, it is possible to perform intra and/or inter prediction decoding.
  • Step (C) may further include: if the unit encoding block is a super-macroblock having the same or greater size than a 16×16 macroblock, performing intra prediction decoding by decoding a sub-division block encoding mode corresponding to the size of the super-macroblock.
  • Step (C) may further include: performing intra prediction decoding by applying a de-blocking filter corresponding to a size of a sub-division block.
  • Step (C) may further include the step of: performing intra prediction decoding by applying a de-blocking filter according to a size of a sub-division block.
  • Step (F) may further include: if the unit encoding block is a super-macroblock having the same or greater size than a 16×16 macroblock, decoding a sub-division block encoding mode corresponding to the size of the super-macroblock.
  • Step (H) may further include: performing intra prediction decoding by applying a square or non-square transform kernel corresponding to a size of a sub-division block and decoding an encoded quantized transform coefficient.
  • Step (H) may further include: performing intra prediction decoding by applying an inverse quantization method according to a size of a sub-division block and a decoding mode condition of a peripheral decoding block and decoding an encoded quantized transform coefficient.
  • Step (H) may further include: performing inter prediction decoding by applying a de-blocking filter corresponding to a size of a sub-division block.
  • According to yet another example embodiment of the present invention, there is provided a computer-readable recording medium storing a program for causing a computer to execute the above-described method.
  • Advantageous Effects
  • When pixel values of an encoding unit block are encoded in video encoding according to the present invention, a divided block is encoded in an intra or inter prediction encoding mode by applying at least one of intra prediction encoding and inter prediction encoding to a divided sub-block or its sub-division blocks, and prediction encoding is performed using both intra and inter predictions for an encoding unit block or its sub-division blocks, so that the flexibility of encoding mode selection can be increased and the efficiency of encoding can be increased.
  • In prediction encoding based on division blocks according to the present invention, each division block is encoded by selectively applying a size of a variable block-size transform kernel according to a size of the division block so that both the intra and inter predictions can be applied to sub-division blocks. Therefore, it is possible to significantly improve encoding efficiency.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 is a diagram showing division block types of 16×16 macroblock unit blocks to be encoded in an H.264/advanced video coding (AVC) encoder of the related art.
  • FIG. 2 is a diagram showing super-macroblock unit blocks and division block types for intra or inter prediction encoding in an encoder according to an example embodiment of the present invention.
  • FIG. 3 is a flowchart illustrating a method of encoding a division block in video encoding according to an example embodiment of the present invention.
  • FIG. 4 is a flowchart illustrating a method of decoding a bitstream encoded in a video division block mode according to an example embodiment of the present invention.
  • BEST MODE FOR CARRYING OUT THE INVENTION
  • Hereinafter, example embodiments of the present invention will be described in detail with reference to the accompanying drawings. The same elements are denoted by the same reference numerals throughout the drawings. Detailed description related to well-known functions or configurations will be omitted if they make the subject matter of the present invention unclear.
  • FIG. 2 is a diagram showing super-macroblock unit blocks and division block types for intra or inter prediction encoding in an encoder according to an example embodiment of the present invention. FIG. 2 is a diagram showing an example of super-macroblocks, which have larger sizes than a macroblock of a 16×16 pixel unit, and block division types applied to an example embodiment of the present invention.
  • As shown in FIG. 2, a process of dividing a super-macroblock into sub-blocks and intra or inter prediction encoding the division blocks is performed, and the super-macroblock is encoded so that both intra and inter prediction encoding modes can be used as a final encoding mode. Therefore, it is possible to very effectively increase video encoding efficiency. In practice, it is possible to perform encoding by selecting a block mode capable of minimizing rate-distortion cost as shown in Equation 1.

  • J MODE(s,r,MODE|QP,λMODE)=SSD(s,r,MODE|QP)+λMODE R(s,r,MODE|QP)   Equation 1
  • Here, JMODE denotes a rate-distortion function for a block encoding mode, s denotes an original block pixel input to be encoded, r denotes a reference video pixel input, QP denotes a quantization parameter, denotes a Lagrange multiplier dependent on a mode, and MODE denotes a division block mode type.
  • Also, if transform encoding is applied to a residual signal of a super-macroblock having an increased size, it is possible to increase encoding efficiency by selectively applying a square transform kernel having a size of 16×16 or more, which is greater than existing sizes of 4×4 and 8×8, or a non-square transform kernel having a size of 16×8, 8×16, or more for a non-square transform according to a size of a division block.
  • If the square transform kernel having the size of 16×16 or more is applied to the super-macroblock, it is possible to carry out a calculation as shown in Equation 2.

  • Y=AX   Equation 2
  • Here, X denotes an N×N input video signal matrix, A denotes an N×N square transform kernel matrix, and Y denotes a transform coefficient matrix. If a sub-block after division is a non-square block, a transform is performed as shown in Equation 3.

  • Y=A1XA2   Equation 3
  • Here, when an input video signal X is an M×(M/2) matrix, A1 denotes an M×M square transform kernel matrix, A2 denotes an (M/2)×(M/2) square transform kernel matrix, and Y denotes a transform coefficient matrix.
  • When a square or non-square kernel transform is applied according to an example embodiment of the present invention, it is preferable to perform transform encoding by performing a comparison with the smaller number of pixels between the number of horizontal pixels and the number of vertical pixels of a division block and applying a kernel having a size that is equal to or less than the smaller number of pixels.
  • FIG. 3 is a flowchart illustrating a method for encoding a division block in video encoding according to an example embodiment of the present invention.
  • Referring to FIG. 3, first, an index of a picture i to be encoded is initialized (i=0) (S101). The picture i is input in sequence for encoding (S102).
  • Next, the input picture i is divided into encoding unit blocks (S103). In an example embodiment of the present invention, the encoding unit block may be a macroblock or super-macroblock.
  • Next, it is checked whether to perform inter prediction encoding of a current picture i (S104). If the current picture i does not correspond to inter prediction, intra prediction encoding is performed (S105). Otherwise, if the current picture i corresponds to inter prediction, an index of an encoding unit block j to be encoded within the one picture i is initialized (j=0) (S106).
  • Thereafter, the unit block j to be encoded is divided into sub-blocks (S107). An index of a sub-block mode k is initialized (k=0) (S108). One of sub-block modes k is selected (S109).
  • It is checked whether or not to perform intra and inter predictions for the sub-block mode to be encoded in the encoding unit block (S110). If it is checked to perform the intra and inter predictions, intra and inter encoding are performed (S111). Otherwise, only inter prediction encoding is performed (S112). A prediction encoding result and a rate-distortion cost value are stored as encoding results (S113).
  • It is checked whether the sub-block mode k is a final block node (S114). If the sub-block mode k is not the final block mode, steps S109 to S113 are iterated for the next block mode. On the other hand, if the sub-block mode k is the final block mode, an optimum division block is determined and corresponding encoding results are finally selected (S115).
  • It is determined whether a current encoding unit block j is a final block in the current picture i (S116). If the current encoding unit block j is not the final block, steps S107 to S115 are iterated by inputting the next encoding unit block.
  • If it is determined in step S116 that the current encoding unit block j is the final block in the current picture i, it is checked whether the current picture i is a final picture (S117). If the current picture i is the final picture, the algorithm ends. Otherwise, the algorithm returns to step S102, the next picture is input, and steps S102 to S116 are iterated.
  • FIG. 4 is a flowchart illustrating a method of decoding a bitstream encoded in a video division block mode according to an example embodiment of the present invention.
  • Referring to FIG. 4, first, an index of a picture i to be decoded is initialized (i=0) (S201). An encoded picture bitstream i is input in sequence for decoding (S202).
  • Next, it is checked whether an input picture bitstream i corresponds to inter prediction encoding (S203). If a current picture bitstream i does not correspond to the inter prediction encoding, intra prediction decoding is performed (S207). Otherwise, if the input picture bitstream i corresponds to the inter prediction encoding, an index of a slice j to be decoded within one picture i is initialized (j=0) (S204).
  • Next, slice information regarding the input picture bitstream is analyzed (S205). An index of a unit decoding block j to be decoded within each slice within one picture i is initialized (k=0) (S206). In an example embodiment of the present invention, the decoding unit block may be a macroblock or a super-macroblock.
  • Next, after information regarding each unit encoding block is analyzed (S208), an index of a division sub-block within the unit encoding block is initialized (m=0) (S209). Thereafter, an encoding mode of a division sub-block within the unit encoding block is decoded (S210). After it is checked whether the division sub-block is an inter prediction encoding block (S211), inter prediction decoding is performed if the sub-block is the inter prediction encoding block (S213), and intra prediction encoding is performed if the sub-block is an intra prediction encoding block or mode (S212).
  • Thereafter, pixel values of the sub-division block are recovered using sub-block encoding results (S214). After it is checked whether a current sub-division block m is the final block (S215), pixel values of a unit decoding block are configured if the current sub-division block m is the final block (S216). Otherwise, the algorithm returns to step S210 for decoding the next division sub-block, and steps S210 to S214 are performed.
  • After it is checked whether a current unit encoding block k is a final unit encoding block (S217), slice pixels are configured if the current unit encoding block k is the final unit encoding block (S218). Otherwise, the algorithm returns to step S208, and steps S208 to S216 are performed. After it is checked whether a current slice j is a final slice (S219), picture pixels are configured if the current slice j is the final slice (S220). Otherwise, steps S205 to S218 are performed. After it is determined whether a current picture i is a final picture (S221), the algorithm ends if the current picture i is the final picture. Otherwise, the algorithm returns to step S202, the next bitstream is input, and steps S202 to S220 are performed.
  • In video encoding according to an embodiment of the present invention, an input video is divided into encoding unit blocks. After the encoding unit block is sub-divided into sub-blocks, each sub-division block is encoded by selectively using at least one of intra prediction and inter prediction.
  • Thereby, encoding can be performed using both inter and intra prediction sub-block modes in an encoding mode of an encoding unit block and simultaneously a variable block-size transform kernel is selectively applied, so that encoding efficiency can be improved.
  • In video decoding according to an example embodiment of the present invention, it is possible to decode a compressed bitstream with improved encoding efficiency by performing the reverse process of encoding.
  • As another example embodiment of the present invention, the above-described method of encoding a division block in video encoding can be implemented as computer-readable codes on a computer-readable recording medium. The computer-readable recording medium includes all types of recording devices storing data readable by a computer system.
  • Examples of the computer-readable recording medium include a read only memory (ROM), a random access memory (RAM), a compact disk-read only memory (CD-ROM), a magnetic tape, a hard disk, a floppy disk, a mobile storage, a flash memory, an optical data storage, etc. Furthermore, the computer-readable recording medium may be implemented in the form of carrier waves (e.g., transmission over the Internet).
  • Further, the computer-readable recording medium is distributed to computer systems connected to each other through a computer communication network, so that the computer-readable codes can be stored in a distribution manner and executed thereby.
  • Although preferred embodiments of an inter prediction encoding method and/or an inter prediction encoding method in video encoding and decoding methods, which are reverse processes thereof, have been described, the example embodiments are illustrative and the present invention is not limited thereto. Those skilled in the art will understand that various modifications and changes may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.
  • Sequence Listing Free Text
  • Encoding, decoding, inter prediction, intra prediction, transform kernel, square transform kernel, non-square transform kernel, quantization, MPEG, rate-distortion cost, H.264/MPEG-4 Part 10 Advanced Video Coding.

Claims (7)

1. A method of video encoding, comprising:
dividing a coding unit block within a current slice into four of first sub-blocks;
dividing at least one of the first sub-blocks within the coding unit block into two of second sub-blocks, wherein a prediction mode for each of the second sub-blocks has intra prediction mode or inter prediction mode;
performing prediction on the each of the second sub-blocks according to the prediction mode for the each of the second sub-blocks; and
transforming the at least one of the second sub-blocks,
wherein the performing prediction on the each of the second sub-blocks according to the prediction mode for the each of the second sub-blocks includes performing intra prediction on a second sub-block having the intra prediction mode and inter prediction on a second sub-block having the inter prediction mode.
2. The method of claim 1, wherein the each of the second sub-blocks selectively applies a variable block-size transform kernel according to a second sub-block size.
3. The method of claim 1,
wherein a size of the coding unit block is a square having an N*N size, and
wherein the at least one of the first sub-blocks is square block.
4. The method of claim 1, wherein the each of the second sub-blocks is decoded by selectively applying one or more de-blocking filters according to a size of the second sub-block.
5. The method of claim 1, wherein the coding unit block is a square block of a larger size than a size of 16×16.
6. The method of claim 1, wherein the each of the second sub-blocks is a non-square block.
7. The method of claim 6, wherein the each of the second sub-blocks is applied a non-square transform kernel.
US15/258,655 2009-02-23 2016-09-07 Video encoding method for encoding division block, video decoding method for decoding division block, and recording medium for implementing the same Active US9888259B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/258,655 US9888259B2 (en) 2009-02-23 2016-09-07 Video encoding method for encoding division block, video decoding method for decoding division block, and recording medium for implementing the same
US15/855,019 US10462494B2 (en) 2009-02-23 2017-12-27 Video encoding method for encoding division block, video decoding method for decoding division block, and recording medium for implementing the same
US16/572,704 US11076175B2 (en) 2009-02-23 2019-09-17 Video encoding method for encoding division block, video decoding method for decoding division block, and recording medium for implementing the same
US17/361,528 US11659210B2 (en) 2009-02-23 2021-06-29 Video encoding method for encoding division block, video decoding method for decoding division block, and recording medium for implementing the same
US18/298,711 US20230247229A1 (en) 2009-02-23 2023-04-11 Video encoding method for encoding division block, video decoding method for decoding division block, and recording medium for implementing the same

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
KR20090015013 2009-02-23
KR10-2009-0015013 2009-02-23
KR1020090076753A KR20100095992A (en) 2009-02-23 2009-08-19 Method for encoding partitioned block in video encoding, method for decoding partitioned block in video decoding and recording medium implementing the same
KR10-2009-0076753 2009-08-19
PCT/KR2010/001125 WO2010095915A2 (en) 2009-02-23 2010-02-23 Video encoding method for encoding division block, video decoding method for decoding division block, and recording medium for implementing the same
US13/202,906 US9485512B2 (en) 2009-02-23 2010-02-23 Video encoding method for encoding division block, video decoding method for decoding division block, and recording medium for implementing the same
US15/258,655 US9888259B2 (en) 2009-02-23 2016-09-07 Video encoding method for encoding division block, video decoding method for decoding division block, and recording medium for implementing the same

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2010/001125 Continuation WO2010095915A2 (en) 2009-02-23 2010-02-23 Video encoding method for encoding division block, video decoding method for decoding division block, and recording medium for implementing the same
US13/202,906 Continuation US9485512B2 (en) 2009-02-23 2010-02-23 Video encoding method for encoding division block, video decoding method for decoding division block, and recording medium for implementing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/855,019 Continuation US10462494B2 (en) 2009-02-23 2017-12-27 Video encoding method for encoding division block, video decoding method for decoding division block, and recording medium for implementing the same

Publications (2)

Publication Number Publication Date
US20160381360A1 true US20160381360A1 (en) 2016-12-29
US9888259B2 US9888259B2 (en) 2018-02-06

Family

ID=43003799

Family Applications (10)

Application Number Title Priority Date Filing Date
US13/202,906 Active 2030-10-12 US9485512B2 (en) 2009-02-23 2010-02-23 Video encoding method for encoding division block, video decoding method for decoding division block, and recording medium for implementing the same
US15/258,655 Active US9888259B2 (en) 2009-02-23 2016-09-07 Video encoding method for encoding division block, video decoding method for decoding division block, and recording medium for implementing the same
US15/258,518 Active US9838720B2 (en) 2009-02-23 2016-09-07 Video encoding method for encoding division block, video decoding method for decoding division block, and recording medium for implementing the same
US15/258,593 Active US9838721B2 (en) 2009-02-23 2016-09-07 Video encoding method for encoding division block, video decoding method for decoding division block, and recording medium for implementing the same
US15/258,460 Active US9838719B2 (en) 2009-02-23 2016-09-07 Video encoding method for encoding division block, video decoding method for decoding division block, and recording medium for implementing the same
US15/258,627 Active US9838722B2 (en) 2009-02-23 2016-09-07 Video encoding method for encoding division block, video decoding method for decoding division block, and recording medium for implementing the same
US15/855,019 Active US10462494B2 (en) 2009-02-23 2017-12-27 Video encoding method for encoding division block, video decoding method for decoding division block, and recording medium for implementing the same
US16/572,704 Active US11076175B2 (en) 2009-02-23 2019-09-17 Video encoding method for encoding division block, video decoding method for decoding division block, and recording medium for implementing the same
US17/361,528 Active 2030-04-13 US11659210B2 (en) 2009-02-23 2021-06-29 Video encoding method for encoding division block, video decoding method for decoding division block, and recording medium for implementing the same
US18/298,711 Pending US20230247229A1 (en) 2009-02-23 2023-04-11 Video encoding method for encoding division block, video decoding method for decoding division block, and recording medium for implementing the same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/202,906 Active 2030-10-12 US9485512B2 (en) 2009-02-23 2010-02-23 Video encoding method for encoding division block, video decoding method for decoding division block, and recording medium for implementing the same

Family Applications After (8)

Application Number Title Priority Date Filing Date
US15/258,518 Active US9838720B2 (en) 2009-02-23 2016-09-07 Video encoding method for encoding division block, video decoding method for decoding division block, and recording medium for implementing the same
US15/258,593 Active US9838721B2 (en) 2009-02-23 2016-09-07 Video encoding method for encoding division block, video decoding method for decoding division block, and recording medium for implementing the same
US15/258,460 Active US9838719B2 (en) 2009-02-23 2016-09-07 Video encoding method for encoding division block, video decoding method for decoding division block, and recording medium for implementing the same
US15/258,627 Active US9838722B2 (en) 2009-02-23 2016-09-07 Video encoding method for encoding division block, video decoding method for decoding division block, and recording medium for implementing the same
US15/855,019 Active US10462494B2 (en) 2009-02-23 2017-12-27 Video encoding method for encoding division block, video decoding method for decoding division block, and recording medium for implementing the same
US16/572,704 Active US11076175B2 (en) 2009-02-23 2019-09-17 Video encoding method for encoding division block, video decoding method for decoding division block, and recording medium for implementing the same
US17/361,528 Active 2030-04-13 US11659210B2 (en) 2009-02-23 2021-06-29 Video encoding method for encoding division block, video decoding method for decoding division block, and recording medium for implementing the same
US18/298,711 Pending US20230247229A1 (en) 2009-02-23 2023-04-11 Video encoding method for encoding division block, video decoding method for decoding division block, and recording medium for implementing the same

Country Status (6)

Country Link
US (10) US9485512B2 (en)
EP (2) EP3823281A1 (en)
JP (10) JP6164600B2 (en)
KR (1) KR20100095992A (en)
CN (6) CN106101705B (en)
WO (1) WO2010095915A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10869065B2 (en) 2016-09-20 2020-12-15 Kt Corporation Method and apparatus encoding/decoding with quad and binary tree partitioning

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100095992A (en) * 2009-02-23 2010-09-01 한국과학기술원 Method for encoding partitioned block in video encoding, method for decoding partitioned block in video decoding and recording medium implementing the same
US9635368B2 (en) * 2009-06-07 2017-04-25 Lg Electronics Inc. Method and apparatus for decoding a video signal
US9247247B2 (en) 2010-04-13 2016-01-26 Samsung Electronics Co., Ltd. Video-encoding method and video-encoding apparatus using prediction units based on encoding units determined in accordance with a tree structure, and video-decoding method and video-decoding apparatus using prediction units based on encoding units determined in accordance with a tree structure
KR20110123651A (en) * 2010-05-07 2011-11-15 한국전자통신연구원 Apparatus and method for image coding and decoding using skip coding
US8625888B2 (en) * 2010-07-21 2014-01-07 Microsoft Corporation Variable kernel size image matting
CN108737843B (en) * 2010-09-27 2022-12-27 Lg 电子株式会社 Method for dividing block and decoding device
CA3188026A1 (en) 2010-09-30 2012-04-05 Mitsubishi Electric Corporation Moving image encoding device, moving image decoding device, moving image coding method, and moving image decoding method
CN102857762B (en) * 2011-07-01 2016-03-30 华为技术有限公司 The acquisition methods of block index information and device in a kind of decode procedure
WO2013023518A1 (en) * 2011-08-17 2013-02-21 Mediatek Singapore Pte. Ltd. Method and apparatus for intra prediction using non-square blocks
MX355319B (en) 2011-11-08 2018-04-16 Kt Corp Method and apparatus for coefficient scan based on partition mode of prediction unit.
WO2013077713A1 (en) * 2011-11-27 2013-05-30 엘지전자 주식회사 Method for realigning transform coefficient and device using same
CN104126303B (en) * 2011-11-29 2018-03-06 华为技术有限公司 Unified segmenting structure and Signalling method for high efficiency video coding
TWI684354B (en) * 2011-12-28 2020-02-01 日商Jvc建伍股份有限公司 Dynamic image decoding device and dynamic image decoding method
CN104205842B (en) * 2012-03-30 2017-06-30 株式会社日立制作所 Picture decoding method and picture decoding apparatus
US9344723B2 (en) * 2012-04-13 2016-05-17 Qualcomm Incorporated Beta offset control for deblocking filters in video coding
CN104272734A (en) * 2012-05-15 2015-01-07 索尼公司 Image processing device and image processing method
CN108401157B (en) 2012-10-01 2022-06-24 Ge视频压缩有限责任公司 Scalable video decoder, scalable video encoder, and scalable video decoding and encoding methods
RU2623905C1 (en) * 2012-11-08 2017-06-29 Кт Корпорейшен Video decoding method
RU2619199C1 (en) * 2012-11-08 2017-05-12 Кт Корпорейшен Video decoding method
CN104704827B (en) 2012-11-13 2019-04-12 英特尔公司 Content-adaptive transform decoding for next-generation video
WO2014120368A1 (en) * 2013-01-30 2014-08-07 Intel Corporation Content adaptive entropy coding for next generation video
CN103596003B (en) * 2013-11-11 2015-05-06 中国科学技术大学 Interframe predication quick mode selecting method for high-performance video coding
TWI536811B (en) 2013-12-27 2016-06-01 財團法人工業技術研究院 Method and system for image processing, decoding method, encoder and decoder
US9715559B2 (en) * 2014-03-17 2017-07-25 Qualcomm Incorporated Hash-based encoder search for intra block copy
KR102445242B1 (en) 2014-03-19 2022-09-21 삼성전자주식회사 Video encoding and decoding method and apparatus involving boundary filtering
WO2016090568A1 (en) 2014-12-10 2016-06-16 Mediatek Singapore Pte. Ltd. Binary tree block partitioning structure
US10382795B2 (en) 2014-12-10 2019-08-13 Mediatek Singapore Pte. Ltd. Method of video coding using binary tree block partitioning
US10136132B2 (en) * 2015-07-21 2018-11-20 Microsoft Technology Licensing, Llc Adaptive skip or zero block detection combined with transform size decision
US10491906B2 (en) * 2015-11-05 2019-11-26 Mediatek Inc. Method and apparatus for block prediction using variable block-size in image compression
US10390026B2 (en) 2016-03-25 2019-08-20 Google Llc Smart reordering in recursive block partitioning for advanced intra prediction in video coding
US10404989B2 (en) * 2016-04-26 2019-09-03 Google Llc Hybrid prediction modes for video coding
US20190289301A1 (en) * 2016-05-23 2019-09-19 Kaonmedia Co., Ltd. Image processing method, and image encoding and decoding method using same
WO2018012660A1 (en) * 2016-07-15 2018-01-18 엘지전자(주) Method and apparatus for encoding and decoding video signal using transform domain prediction for prediction unit partition
EP3306922A1 (en) * 2016-10-05 2018-04-11 Thomson Licensing Method and apparatus for encoding a picture using rate-distortion based block splitting
CN109479144A (en) * 2016-10-13 2019-03-15 富士通株式会社 Image coding/decoding method, device and image processing equipment
EP3544300B1 (en) 2016-11-21 2021-10-13 Panasonic Intellectual Property Corporation of America Devices and methods for image coding and decoding using a block size dependent split ratio
EP3528498A1 (en) 2016-11-21 2019-08-21 Panasonic Intellectual Property Corporation of America Coding device, decoding device, coding method, and decoding method
EP3383045A1 (en) 2017-03-27 2018-10-03 Thomson Licensing Multiple splits prioritizing for fast encoding
CN108668136A (en) * 2017-03-28 2018-10-16 华为技术有限公司 Image encoding/decoding method, video coder/decoder and video coding and decoding system
CN116684604A (en) * 2017-03-31 2023-09-01 松下电器(美国)知识产权公司 Image encoding device, image decoding device, and storage medium
CA3106615A1 (en) 2017-07-17 2019-01-24 Industry-University Cooperation Foundation Hanyang University Method and apparatus for encoding/decoding image
BR112020020046A2 (en) * 2018-05-02 2021-01-05 Interdigital Vc Holdings, Inc. VIDEO ENCODING AND DECODING
CN112567754B (en) * 2018-08-22 2022-09-20 寰发股份有限公司 Method and apparatus for encoding or decoding transform coefficients
CN109688414B (en) * 2018-12-19 2022-11-11 同济大学 VVC intra-frame coding unit candidate prediction mode reduction and block division early termination method
CN111355951B (en) * 2018-12-24 2023-11-10 华为技术有限公司 Video decoding method, device and decoding equipment
US20220103854A1 (en) * 2019-01-31 2022-03-31 Mediatek Inc. Method and Apparatus of Combined Inter and Intra Prediction for Video Coding
WO2020156454A1 (en) 2019-01-31 2020-08-06 Mediatek Inc. Method and apparatus of transform type assignment for intra sub-partition in video coding
WO2020162737A1 (en) 2019-02-08 2020-08-13 주식회사 윌러스표준기술연구소 Video signal processing method and device using secondary transform
CN111669579B (en) * 2019-03-09 2022-09-16 杭州海康威视数字技术股份有限公司 Method, encoding end, decoding end and system for encoding and decoding
CN111669582B (en) 2019-03-09 2022-05-20 杭州海康威视数字技术股份有限公司 Method, encoding end, decoding end and system for encoding and decoding
EP3912359A4 (en) * 2019-03-11 2022-04-20 Huawei Technologies Co., Ltd. An encoder, a decoder and corresponding methods restricting size of sub-partitions from intra sub-partition coding mode tool
CN110087087B (en) * 2019-04-09 2023-05-12 同济大学 VVC inter-frame coding unit prediction mode early decision and block division early termination method
CN111988618B (en) * 2019-05-22 2022-05-20 杭州海康威视数字技术股份有限公司 Decoding and encoding method, decoding end and encoding end
CN116405697A (en) * 2019-07-23 2023-07-07 杭州海康威视数字技术股份有限公司 Encoding and decoding method, device and equipment thereof
EP4017008A4 (en) * 2019-09-21 2022-11-09 LG Electronics Inc. Transform-based image coding method and device
CN117036832B (en) * 2023-10-09 2024-01-05 之江实验室 Image classification method, device and medium based on random multi-scale blocking

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060146941A1 (en) * 2005-01-04 2006-07-06 Samsung Electronics Co., Ltd. Deblocking control method considering intra BL mode and multilayer video encoder/decoder using the same
US20090263032A1 (en) * 2006-07-14 2009-10-22 Junichi Tanaka Image processing apparatus, method, and program
US8929455B2 (en) * 2011-07-01 2015-01-06 Mitsubishi Electric Research Laboratories, Inc. Method for selecting transform types from mapping table for prediction modes

Family Cites Families (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0322887A (en) 1989-06-20 1991-01-31 Toshiba Corp Operation of ac motor
US5241395A (en) * 1989-08-07 1993-08-31 Bell Communications Research, Inc. Adaptive transform coding using variable block size
JPH03220887A (en) * 1990-01-25 1991-09-30 Fujitsu Ltd Frame selection prediction coder for moving picture
JP3220887B2 (en) 1993-08-19 2001-10-22 株式会社日立製作所 Paper handling equipment
US6571016B1 (en) * 1997-05-05 2003-05-27 Microsoft Corporation Intra compression of pixel blocks using predicted mean
JP2001016595A (en) * 1999-04-30 2001-01-19 Fujitsu Ltd Moving picture encoder and decoder
JP3840020B2 (en) * 1999-12-14 2006-11-01 株式会社東芝 Video encoding device
KR100377190B1 (en) * 1999-12-24 2003-03-26 한국전자통신연구원 Method for video encoding including intra update based on the estimated error probabilities using the size of bitstream for each block
US6404814B1 (en) * 2000-04-28 2002-06-11 Hewlett-Packard Company Transcoding method and transcoder for transcoding a predictively-coded object-based picture signal to a predictively-coded block-based picture signal
DE10022331A1 (en) * 2000-05-10 2001-11-15 Bosch Gmbh Robert Method for transformation coding of moving image sequences e.g. for audio-visual objects, involves block-wise assessing movement vectors between reference- and actual- image signals of image sequence
US7088780B2 (en) * 2001-05-11 2006-08-08 Mitsubishi Electric Research Labs, Inc. Video transcoder with drift compensation
US6907071B2 (en) * 2001-05-24 2005-06-14 Telefonaktiebolaget Lm Ericsson (Publ) Selective prediction for intra-coding video data block
US20020191695A1 (en) * 2001-06-07 2002-12-19 Irvine Ann Chris Interframe encoding method and apparatus
US7474699B2 (en) * 2001-08-28 2009-01-06 Ntt Docomo, Inc. Moving picture encoding/transmission system, moving picture encoding/transmission method, and encoding apparatus, decoding apparatus, encoding method decoding method and program usable for the same
EP2099228B1 (en) 2001-09-14 2014-11-12 NTT DoCoMo, Inc. Coding method, decoding method, coding apparatus, decoding apparatus, image processing system, coding program, and decoding program
CN101409838B (en) * 2001-09-14 2011-01-12 株式会社Ntt都科摩 Coding method, decoding method, coding apparatus, decoding apparatus, and image processing system
JP4580902B2 (en) * 2002-07-11 2010-11-17 パナソニック株式会社 Filtering strength determination method, video encoding method, and video decoding method
US6975773B1 (en) 2002-07-30 2005-12-13 Qualcomm, Incorporated Parameter selection in data compression and decompression
US7336720B2 (en) * 2002-09-27 2008-02-26 Vanguard Software Solutions, Inc. Real-time video coding/decoding
EP1582063B1 (en) * 2003-01-07 2018-03-07 Thomson Licensing DTV Mixed inter/intra video coding of macroblock partitions
KR20050098251A (en) * 2003-01-20 2005-10-11 코닌클리케 필립스 일렉트로닉스 엔.브이. Video coding
KR100828353B1 (en) 2003-02-05 2008-05-08 삼성전자주식회사 Method for dividing the image block and Apparatus thereof
US7657111B2 (en) * 2003-02-14 2010-02-02 Fujifilm Corporation Apparatus and program for image processing for obtaining processed compressed moving image data
HUP0301368A3 (en) * 2003-05-20 2005-09-28 Amt Advanced Multimedia Techno Method and equipment for compressing motion picture data
US8107535B2 (en) * 2003-06-10 2012-01-31 Rensselaer Polytechnic Institute (Rpi) Method and apparatus for scalable motion vector coding
MXPA06002210A (en) * 2003-08-26 2006-05-19 Thomson Licensing Method and apparatus for decoding hybrid intra-inter coded blocks.
US8085844B2 (en) * 2003-09-07 2011-12-27 Microsoft Corporation Signaling reference frame distances
JP2005123732A (en) * 2003-10-14 2005-05-12 Matsushita Electric Ind Co Ltd Apparatus and method for deblocking filter processing
CN2659351Y (en) * 2003-11-16 2004-12-01 崔呢喃 Improved cervical forceps
US7362809B2 (en) * 2003-12-10 2008-04-22 Lsi Logic Corporation Computational reduction in motion estimation based on lower bound of cost function
US7889792B2 (en) * 2003-12-24 2011-02-15 Apple Inc. Method and system for video encoding using a variable number of B frames
JP4594688B2 (en) * 2004-06-29 2010-12-08 オリンパス株式会社 Image encoding processing method, image decoding processing method, moving image compression processing method, moving image expansion processing method, image encoding processing program, image encoding device, image decoding device, image encoding / decoding system, extended image compression / decompression Processing system
KR100631714B1 (en) * 2004-06-30 2006-10-09 엘지전자 주식회사 Apparatus and method for improved video signal rate control of a mobile terminal
JP2006020095A (en) * 2004-07-01 2006-01-19 Sharp Corp Motion vector detection circuit, image encoding circuit, motion vector detecting method and image encoding method
US8085846B2 (en) * 2004-08-24 2011-12-27 Thomson Licensing Method and apparatus for decoding hybrid intra-inter coded blocks
JP4877449B2 (en) * 2004-11-04 2012-02-15 カシオ計算機株式会社 Moving picture coding apparatus and moving picture coding processing program
KR100679031B1 (en) 2004-12-03 2007-02-05 삼성전자주식회사 Method for encoding/decoding video based on multi-layer, and apparatus using the method
FR2881898A1 (en) * 2005-02-10 2006-08-11 Thomson Licensing Sa METHOD AND DEVICE FOR CODING A VIDEO IMAGE IN INTER OR INTRA MODE
US7617436B2 (en) * 2005-08-02 2009-11-10 Nokia Corporation Method, device, and system for forward channel error recovery in video sequence transmission over packet-based network
KR100727969B1 (en) * 2005-08-27 2007-06-14 삼성전자주식회사 Apparatus for encoding and decoding image, and method theroff, and a recording medium storing program to implement the method
US8503806B2 (en) * 2005-09-06 2013-08-06 Megachips Corporation Compression encoder, compression encoding method and program
CN103118252B (en) * 2005-09-26 2016-12-07 三菱电机株式会社 Dynamic image encoding device and dynamic image decoding device
US8681867B2 (en) * 2005-10-18 2014-03-25 Qualcomm Incorporated Selective deblock filtering techniques for video coding based on motion compensation resulting in a coded block pattern value
RU2369038C1 (en) 2005-11-30 2009-09-27 Кабусики Кайся Тосиба Image encoding/decoding method, image encoding/decoding device
KR100772870B1 (en) * 2005-12-12 2007-11-02 삼성전자주식회사 Method and apparatus for encoding and decoding video signal using coefficient's property which composes FGS layer's block
US7843995B2 (en) * 2005-12-19 2010-11-30 Seiko Epson Corporation Temporal and spatial analysis of a video macroblock
JP2009060153A (en) * 2005-12-21 2009-03-19 Panasonic Corp Intra prediction mode decision device, method, and program
KR100914713B1 (en) * 2006-01-09 2009-08-31 엘지전자 주식회사 Inter-layer prediction method for video signal
JP2007201558A (en) * 2006-01-23 2007-08-09 Matsushita Electric Ind Co Ltd Moving picture coding apparatus and moving picture coding method
US7804900B2 (en) 2006-02-23 2010-09-28 Industrial Technology Research Institute Method for fast SATD estimation
US8000390B2 (en) * 2006-04-28 2011-08-16 Sharp Laboratories Of America, Inc. Methods and systems for efficient prediction-mode selection
KR100809298B1 (en) * 2006-06-22 2008-03-04 삼성전자주식회사 Flag encoding method, flag decoding method, and apparatus thereof
JP2008005197A (en) * 2006-06-22 2008-01-10 Toshiba Corp Decoding device and decoding method
US8126046B2 (en) * 2006-06-30 2012-02-28 Intel Corporation Flexible macroblock ordering and arbitrary slice ordering apparatus, system, and method
JP4724061B2 (en) 2006-07-06 2011-07-13 株式会社東芝 Video encoding device
JPWO2008012918A1 (en) * 2006-07-28 2009-12-17 株式会社東芝 Image encoding and decoding method and apparatus
EP2052359A4 (en) 2006-08-14 2012-09-05 Apple Inc Creation of a virtual community
KR101382101B1 (en) 2006-08-25 2014-04-07 톰슨 라이센싱 Methods and apparatus for reduced resolution partitioning
CN102752597A (en) * 2006-08-28 2012-10-24 汤姆森许可贸易公司 Method and apparatus for determining expected distortion in decoded video blocks
CN101523917A (en) * 2006-09-29 2009-09-02 汤姆逊许可证公司 Geometric intra prediction
US7991236B2 (en) * 2006-10-16 2011-08-02 Nokia Corporation Discardable lower layer adaptations in scalable video coding
US20080126278A1 (en) * 2006-11-29 2008-05-29 Alexander Bronstein Parallel processing motion estimation for H.264 video codec
PL2123051T3 (en) * 2006-12-18 2011-04-29 Koninl Philips Electronics Nv Image compression and decompression
US8331448B2 (en) * 2006-12-22 2012-12-11 Qualcomm Incorporated Systems and methods for efficient spatial intra predictabilty determination (or assessment)
US8102913B2 (en) * 2006-12-22 2012-01-24 Sony Corporation DCT/Q/IQ/IDCT bypass algorithm in MPEG to AVC/H.264 transcoding
KR101365570B1 (en) 2007-01-18 2014-02-21 삼성전자주식회사 Method and apparatus for encoding and decoding based on intra prediction
JP4901772B2 (en) 2007-02-09 2012-03-21 パナソニック株式会社 Moving picture coding method and moving picture coding apparatus
JP5413191B2 (en) * 2007-03-20 2014-02-12 富士通株式会社 Moving picture encoding method and apparatus, and moving picture decoding apparatus
US8498335B2 (en) * 2007-03-26 2013-07-30 Microsoft Corporation Adaptive deadzone size adjustment in quantization
WO2008120434A1 (en) * 2007-03-28 2008-10-09 Panasonic Corporation Decoding circuit, decoding method, encoding circuit, and encoding method
US8442337B2 (en) * 2007-04-18 2013-05-14 Microsoft Corporation Encoding adjustments for animation content
RU2010100485A (en) * 2007-06-12 2011-07-20 Нокиа Корпорейшн (Fi) JOINT CODING OF A LOT OF TRANSFORMATION BLOCKS WITH A REDUCED NUMBER OF COEFFICIENTS
US8331444B2 (en) * 2007-06-26 2012-12-11 Qualcomm Incorporated Sub-band scanning techniques for entropy coding of sub-bands
US20090026881A1 (en) 2007-07-26 2009-01-29 Hakan Erturk Piezoelectric fan, method of cooling a microelectronic device using same, and system containing same
ATE552571T1 (en) * 2007-11-28 2012-04-15 Honda Res Inst Europe Gmbh ARTIFICIAL COGNITIVE SYSTEM WITH AMARI DYNAMICS OF A NEURAL FIELD
KR100951301B1 (en) 2007-12-17 2010-04-02 한국과학기술원 Method of inter-frame/intra block predictive coding in video coding
KR100952340B1 (en) * 2008-01-24 2010-04-09 에스케이 텔레콤주식회사 Method and Apparatus for Determing Encoding Mode by Using Temporal and Spartial Complexity
US8798137B2 (en) * 2008-02-29 2014-08-05 City University Of Hong Kong Bit rate estimation in data or video compression
US8208532B2 (en) * 2008-03-31 2012-06-26 Oracle America, Inc. Method and apparatus for data compression and decompression
US8311112B2 (en) * 2008-12-31 2012-11-13 Entropic Communications, Inc. System and method for video compression using predictive coding
EP2396969A4 (en) * 2009-02-13 2012-12-12 Research In Motion Ltd Modified entropy encoding for images and videos
CA2751802A1 (en) * 2009-02-13 2010-08-19 Research In Motion Limited In-loop deblocking for intra-coded images or frames
WO2010091503A1 (en) * 2009-02-13 2010-08-19 Research In Motion Limited Adaptive quantization with balanced pixel-domain distortion distribution in image processing
KR20100095992A (en) * 2009-02-23 2010-09-01 한국과학기술원 Method for encoding partitioned block in video encoding, method for decoding partitioned block in video decoding and recording medium implementing the same
US9560350B2 (en) 2009-03-31 2017-01-31 Texas Instruments Incorporated Intra/inter mode decision for predictive frame encoding
KR20110017719A (en) 2009-08-14 2011-02-22 삼성전자주식회사 Method and apparatus for video encoding, and method and apparatus for video decoding
KR101302660B1 (en) * 2009-09-14 2013-09-03 에스케이텔레콤 주식회사 High Definition Video Encoding/Decoding Method and Apparatus
US9549190B2 (en) * 2009-10-01 2017-01-17 Sk Telecom Co., Ltd. Method and apparatus for encoding/decoding image using variable-size macroblocks
CN104935934B (en) 2009-10-21 2018-04-03 Sk电信有限公司 Video coding apparatus
US20110116545A1 (en) * 2009-11-17 2011-05-19 Jinwen Zan Methods and devices for in-loop video deblocking
KR101379188B1 (en) * 2010-05-17 2014-04-18 에스케이 텔레콤주식회사 Video Coding and Decoding Method and Apparatus for Macroblock Including Intra and Inter Blocks
US9609354B2 (en) * 2010-12-14 2017-03-28 M&K Holdings Inc. Apparatus for decoding a moving picture
US10171819B2 (en) 2015-08-03 2019-01-01 Arris Enterprises Llc Intra prediction mode selection in video coding
JP2017113145A (en) * 2015-12-22 2017-06-29 オリンパス株式会社 Ultrasonic observation device, operation method of ultrasonic observation device, and operation program of ultrasonic observation device
JP2017113142A (en) * 2015-12-22 2017-06-29 修二 土佐 Nasal hemorrhage hemostatic instrument
JP2021183506A (en) 2020-05-22 2021-12-02 日本ストロー株式会社 Food and drink storage container lid and food and drink storage container

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060146941A1 (en) * 2005-01-04 2006-07-06 Samsung Electronics Co., Ltd. Deblocking control method considering intra BL mode and multilayer video encoder/decoder using the same
US20090263032A1 (en) * 2006-07-14 2009-10-22 Junichi Tanaka Image processing apparatus, method, and program
US8929455B2 (en) * 2011-07-01 2015-01-06 Mitsubishi Electric Research Laboratories, Inc. Method for selecting transform types from mapping table for prediction modes

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10869065B2 (en) 2016-09-20 2020-12-15 Kt Corporation Method and apparatus encoding/decoding with quad and binary tree partitioning
US11350136B2 (en) 2016-09-20 2022-05-31 Kt Corporation Method and apparatus encoding/decoding with quad and binary tree partitioning
US11350137B2 (en) 2016-09-20 2022-05-31 Kt Corporation Method and apparatus encoding/decoding with quad and binary tree partitioning
US11356710B2 (en) 2016-09-20 2022-06-07 Kt Corporation Method and apparatus encoding/decoding with quad and binary tree partitioning

Also Published As

Publication number Publication date
US9838722B2 (en) 2017-12-05
JP2022033108A (en) 2022-02-28
US9838721B2 (en) 2017-12-05
CN105959690A (en) 2016-09-21
JP6164600B2 (en) 2017-07-19
JP2017184274A (en) 2017-10-05
JP2017184273A (en) 2017-10-05
JP2017201793A (en) 2017-11-09
US10462494B2 (en) 2019-10-29
JP6164660B2 (en) 2017-07-19
CN105959689B (en) 2019-03-01
CN105959692A (en) 2016-09-21
WO2010095915A3 (en) 2010-11-25
US20200014957A1 (en) 2020-01-09
EP2400763A4 (en) 2015-12-16
JP6851265B2 (en) 2021-03-31
WO2010095915A2 (en) 2010-08-26
EP3823281A1 (en) 2021-05-19
JP6851264B2 (en) 2021-03-31
JP6851263B2 (en) 2021-03-31
CN106101705A (en) 2016-11-09
US20230247229A1 (en) 2023-08-03
US20170013281A1 (en) 2017-01-12
EP2400763A2 (en) 2011-12-28
CN105959690B (en) 2019-02-22
US20160381358A1 (en) 2016-12-29
JP2017201792A (en) 2017-11-09
JP2020127227A (en) 2020-08-20
CN105959689A (en) 2016-09-21
CN105959692B (en) 2019-02-26
JP2024045615A (en) 2024-04-02
US9838719B2 (en) 2017-12-05
CN102369733B (en) 2016-06-22
US20120128070A1 (en) 2012-05-24
US20160381357A1 (en) 2016-12-29
CN105959691A (en) 2016-09-21
US20160381359A1 (en) 2016-12-29
US9485512B2 (en) 2016-11-01
JP6846988B2 (en) 2021-03-24
CN106101705B (en) 2019-11-12
JP2012518940A (en) 2012-08-16
US9838720B2 (en) 2017-12-05
US20210329307A1 (en) 2021-10-21
CN102369733A (en) 2012-03-07
KR20100095992A (en) 2010-09-01
CN105959691B (en) 2019-02-22
US11659210B2 (en) 2023-05-23
JP2015136150A (en) 2015-07-27
US9888259B2 (en) 2018-02-06
US11076175B2 (en) 2021-07-27
JP7171646B2 (en) 2022-11-15
US20180124432A1 (en) 2018-05-03
JP2022033107A (en) 2022-02-28

Similar Documents

Publication Publication Date Title
US11659210B2 (en) Video encoding method for encoding division block, video decoding method for decoding division block, and recording medium for implementing the same
KR102052292B1 (en) Deriving reference mode values and encoding and decoding information representing prediction modes
KR20210134556A (en) Apparatus and method for intra-prediction based video encoding or decoding
KR20230029717A (en) Method for decoding a video partitioned block
KR20110126567A (en) Method for encoding partitioned block in video encoding, method for decoding partitioned block in video decoding and recording medium implementing the same
KR102258057B1 (en) Method for decoding partitioned block in video decoding and recording medium implementing the same
KR20170051390A (en) Method for decoding partitioned block in video decoding and recording medium implementing the same
KR20170051388A (en) Method for decoding partitioned block in video decoding and recording medium implementing the same
KR20170051389A (en) Method for decoding partitioned block in video decoding and recording medium implementing the same
KR20170051391A (en) Method for decoding partitioned block in video decoding and recording medium implementing the same

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: SURCHARGE FOR LATE PAYMENT, SMALL ENTITY (ORIGINAL EVENT CODE: M2554); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 4