US20160333370A1 - Phytophthora Resistant Plants Belonging to the Solanaceae Family - Google Patents
Phytophthora Resistant Plants Belonging to the Solanaceae Family Download PDFInfo
- Publication number
- US20160333370A1 US20160333370A1 US15/111,285 US201415111285A US2016333370A1 US 20160333370 A1 US20160333370 A1 US 20160333370A1 US 201415111285 A US201415111285 A US 201415111285A US 2016333370 A1 US2016333370 A1 US 2016333370A1
- Authority
- US
- United States
- Prior art keywords
- seq
- sequence identity
- plant
- phytophthora
- potato plant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 241000196324 Embryophyta Species 0.000 title claims abstract description 73
- 241000233614 Phytophthora Species 0.000 title abstract description 39
- 241000208292 Solanaceae Species 0.000 title abstract description 20
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 65
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 32
- 230000000694 effects Effects 0.000 claims abstract description 11
- 230000014509 gene expression Effects 0.000 claims abstract description 9
- 238000013518 transcription Methods 0.000 claims abstract description 9
- 230000035897 transcription Effects 0.000 claims abstract description 9
- 244000061456 Solanum tuberosum Species 0.000 claims description 35
- 230000030279 gene silencing Effects 0.000 claims description 26
- 241000233622 Phytophthora infestans Species 0.000 claims description 25
- 230000001603 reducing effect Effects 0.000 claims description 5
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 claims 14
- 238000012986 modification Methods 0.000 claims 8
- 230000004048 modification Effects 0.000 claims 8
- 238000000034 method Methods 0.000 claims 6
- 108091028043 Nucleic acid sequence Proteins 0.000 claims 2
- 238000012226 gene silencing method Methods 0.000 claims 2
- 125000003275 alpha amino acid group Chemical group 0.000 claims 1
- 230000002068 genetic effect Effects 0.000 abstract description 4
- 240000003768 Solanum lycopersicum Species 0.000 description 17
- 235000002595 Solanum tuberosum Nutrition 0.000 description 14
- 241000894007 species Species 0.000 description 12
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 11
- 240000007377 Petunia x hybrida Species 0.000 description 11
- 241000208125 Nicotiana Species 0.000 description 5
- 241000233645 Phytophthora nicotianae Species 0.000 description 5
- 241000208422 Rhododendron Species 0.000 description 5
- 244000061458 Solanum melongena Species 0.000 description 5
- 238000003556 assay Methods 0.000 description 5
- 201000010099 disease Diseases 0.000 description 5
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 5
- 239000012634 fragment Substances 0.000 description 5
- 241000233866 Fungi Species 0.000 description 4
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 4
- 108091030071 RNAI Proteins 0.000 description 4
- 230000009368 gene silencing by RNA Effects 0.000 description 4
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 4
- 229920001817 Agar Polymers 0.000 description 3
- 108091026890 Coding region Proteins 0.000 description 3
- 235000002597 Solanum melongena Nutrition 0.000 description 3
- 239000008272 agar Substances 0.000 description 3
- 210000002421 cell wall Anatomy 0.000 description 3
- 241001233957 eudicotyledons Species 0.000 description 3
- 208000015181 infectious disease Diseases 0.000 description 3
- 238000011081 inoculation Methods 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 210000002380 oogonia Anatomy 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 241000589158 Agrobacterium Species 0.000 description 2
- 108700028369 Alleles Proteins 0.000 description 2
- 235000002566 Capsicum Nutrition 0.000 description 2
- 235000008534 Capsicum annuum var annuum Nutrition 0.000 description 2
- 240000008574 Capsicum frutescens Species 0.000 description 2
- 235000010469 Glycine max Nutrition 0.000 description 2
- 244000068988 Glycine max Species 0.000 description 2
- 244000241838 Lycium barbarum Species 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 241001106044 Physalis Species 0.000 description 2
- 240000009134 Physalis philadelphica Species 0.000 description 2
- 235000002489 Physalis philadelphica Nutrition 0.000 description 2
- 241000219492 Quercus Species 0.000 description 2
- 244000299461 Theobroma cacao Species 0.000 description 2
- 235000009470 Theobroma cacao Nutrition 0.000 description 2
- 229930013930 alkaloid Natural products 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000002299 complementary DNA Substances 0.000 description 2
- 230000001066 destructive effect Effects 0.000 description 2
- 235000013399 edible fruits Nutrition 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 230000013011 mating Effects 0.000 description 2
- 244000052769 pathogen Species 0.000 description 2
- 230000001568 sexual effect Effects 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 229960005322 streptomycin Drugs 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 1
- 235000013479 Amaranthus retroflexus Nutrition 0.000 description 1
- 241001465356 Atropa belladonna Species 0.000 description 1
- 241000288829 Browallia Species 0.000 description 1
- 240000004160 Capsicum annuum Species 0.000 description 1
- 240000005674 Ceanothus americanus Species 0.000 description 1
- 235000014224 Ceanothus americanus Nutrition 0.000 description 1
- 235000001904 Ceanothus herbaceus Nutrition 0.000 description 1
- 229920002101 Chitin Polymers 0.000 description 1
- 244000223760 Cinnamomum zeylanicum Species 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 235000009849 Cucumis sativus Nutrition 0.000 description 1
- 240000008067 Cucumis sativus Species 0.000 description 1
- 235000009854 Cucurbita moschata Nutrition 0.000 description 1
- 240000001980 Cucurbita pepo Species 0.000 description 1
- 235000009852 Cucurbita pepo Nutrition 0.000 description 1
- 241000219104 Cucurbitaceae Species 0.000 description 1
- 108020004414 DNA Proteins 0.000 description 1
- 241000208296 Datura Species 0.000 description 1
- 240000000731 Fagus sylvatica Species 0.000 description 1
- 235000010099 Fagus sylvatica Nutrition 0.000 description 1
- 240000009088 Fragaria x ananassa Species 0.000 description 1
- 108091026898 Leader sequence (mRNA) Proteins 0.000 description 1
- 241000321520 Leptomitales Species 0.000 description 1
- 241000511901 Lycianthes Species 0.000 description 1
- 241001106041 Lycium Species 0.000 description 1
- 235000015459 Lycium barbarum Nutrition 0.000 description 1
- 235000015463 Lycium carolinianum Nutrition 0.000 description 1
- 241000218922 Magnoliophyta Species 0.000 description 1
- 241001106042 Mandragora Species 0.000 description 1
- 241001352264 Nicotianoideae Species 0.000 description 1
- 241000233654 Oomycetes Species 0.000 description 1
- 239000006002 Pepper Substances 0.000 description 1
- 241001352266 Petunioideae Species 0.000 description 1
- 244000064622 Physalis edulis Species 0.000 description 1
- 235000001982 Physalis edulis Nutrition 0.000 description 1
- 240000004001 Physalis peruviana Species 0.000 description 1
- 235000009230 Physalis pubescens Nutrition 0.000 description 1
- 235000002491 Physalis viscosa Nutrition 0.000 description 1
- 241000370518 Phytophthora ramorum Species 0.000 description 1
- 241000948155 Phytophthora sojae Species 0.000 description 1
- 235000016761 Piper aduncum Nutrition 0.000 description 1
- 235000008180 Piper betle Nutrition 0.000 description 1
- 240000008154 Piper betle Species 0.000 description 1
- 240000003889 Piper guineense Species 0.000 description 1
- 235000017804 Piper guineense Nutrition 0.000 description 1
- 235000008184 Piper nigrum Nutrition 0.000 description 1
- 244000236480 Podophyllum peltatum Species 0.000 description 1
- 235000016979 Quercus ilex Nutrition 0.000 description 1
- 240000004127 Quercus ilex Species 0.000 description 1
- 235000008406 SarachaNachtschatten Nutrition 0.000 description 1
- 108091027967 Small hairpin RNA Proteins 0.000 description 1
- 241000208255 Solanales Species 0.000 description 1
- 241001352250 Solanoideae Species 0.000 description 1
- 241000207763 Solanum Species 0.000 description 1
- 235000002634 Solanum Nutrition 0.000 description 1
- 235000004790 Solanum aculeatissimum Nutrition 0.000 description 1
- 235000008424 Solanum demissum Nutrition 0.000 description 1
- 235000018253 Solanum ferox Nutrition 0.000 description 1
- 235000000208 Solanum incanum Nutrition 0.000 description 1
- 235000002560 Solanum lycopersicum Nutrition 0.000 description 1
- 235000013131 Solanum macrocarpon Nutrition 0.000 description 1
- 244000061457 Solanum nigrum Species 0.000 description 1
- 235000002594 Solanum nigrum Nutrition 0.000 description 1
- 235000009869 Solanum phureja Nutrition 0.000 description 1
- 235000000341 Solanum ptychanthum Nutrition 0.000 description 1
- 235000017622 Solanum xanthocarpum Nutrition 0.000 description 1
- 240000003243 Thuja occidentalis Species 0.000 description 1
- 235000008109 Thuja occidentalis Nutrition 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 241001233866 asterids Species 0.000 description 1
- 230000008238 biochemical pathway Effects 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 239000001390 capsicum minimum Substances 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 235000017803 cinnamon Nutrition 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000002222 downregulating effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 210000003495 flagella Anatomy 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 239000011121 hardwood Substances 0.000 description 1
- 235000008216 herbs Nutrition 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000001524 infective effect Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229930027917 kanamycin Natural products 0.000 description 1
- 229960000318 kanamycin Drugs 0.000 description 1
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 1
- 229930182823 kanamycin A Natural products 0.000 description 1
- 230000021121 meiosis Effects 0.000 description 1
- 230000000394 mitotic effect Effects 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 244000045947 parasite Species 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 235000005510 plains black nightshade Nutrition 0.000 description 1
- 244000000003 plant pathogen Species 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 230000007096 poisonous effect Effects 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 238000004382 potting Methods 0.000 description 1
- 230000000506 psychotropic effect Effects 0.000 description 1
- 230000001850 reproductive effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000000392 somatic effect Effects 0.000 description 1
- 235000013599 spices Nutrition 0.000 description 1
- 235000020354 squash Nutrition 0.000 description 1
- 230000010473 stable expression Effects 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 235000021012 strawberries Nutrition 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000009261 transgenic effect Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8279—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8279—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
- C12N15/8282—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for fungal resistance
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0071—Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
Definitions
- the present invention relates to Phytophthora resistance plants belonging to Solanaceae family wherein said resistance is encoded by a combination of two genes.
- the present invention further relates to the use of these genes providing Phytophthora resistance plants belonging to Solanaceae family, the genes themselves and proteins encoded by the present genes.
- the plant pathogen Phytophthora is a genus of plant-damaging Oomycetes (water molds), whose member species are capable of causing large economic losses on crops worldwide, as well as environmental damage in natural ecosystems.
- the genus was first described by Heinrich Anton de Bary in 1875. Approximately 100 species have been described, although and estimate of 100 to 500 undiscovered Phytophthora species are suspected to exist.
- Phytophthora pathogens are mostly pathogens of dicotyledons and generally are host-specific parasites. Many species of Phytophthora are plant pathogens of considerable economic importance. Phytophthora infestans was the infective agent of the potato blight that caused the Great Irish Famine (1845-1849), and still remains the most destructive pathogen of solanaceous crops, including tomato and potato. The soya bean root and stem rot agent, Phytophthora sojae , has also caused longstanding problems for the agricultural industry. In general, plant diseases caused by this genus are difficult to control chemically, and thus the growth of resistant cultivars is the main management strategy.
- Phytophthora cactorum causes rhododendron root rot affecting rhododendrons, azaleas and causes bleeding canker in hardwood trees
- Phytophthora capsici infects Cucurbitaceae fruits, such as cucumbers and squash
- Phytophthora cinnamomi causes cinnamon root rot affecting woody ornamentals including arborvitae, azalea, Phytophthora fragariae —causes red root rot affecting strawberries
- Phytophthora kernoviae pathogen of beech and rhododendron , also occurring on other trees and shrubs including oak, and holm oak
- Phytophthora megakarya one of the cocoa black pod disease species, is invasive and probably responsible for the greatest cocoa crop loss in Africa
- Phytophthora palmivora causes fruit rot in
- Phytophthora is sometimes referred to as a fungal-like organism but it is classified under a different kingdom: Chromalveolata (formerly Stramenopila and previously Chromista). Phytophthora is morphologically very similar to true fungi yet its evolutionary history is quite distinct. In contrast to fungi, chromalveolatas are more closely related to plants than animals. Whereas fungal cell walls are made primarily of chitin, chromalveolata cell walls are constructed mostly of cellulose. Ploidy levels are different between these two groups; Phytophthora have diploid (paired) chromosomes in the vegetative (growing, non-reproductive) stage of life, Fungi are almost always haploid in this state. Biochemical pathways also differ, notably the highly conserved.
- Phytophthoras may reproduce sexually or asexually. In many species, sexual structures have never been observed, or have only been observed in laboratory matings. In homothallic species, sexual structures occur in single culture. Heterothallic species have mating strains, designated as A1 and A2. When mated, antheridia introduce gametes into oogonia, either by the oogonium passing through the antheridium (amphigyny) or by the antheridium attaching to the proximal (lower) half of the oogonium (paragyny), and the union producing oospores. Like animals, but not like most true fungi, meiosis is gametic, and somatic nuclei are diploid.
- Asexual (mitotic) spore types are chlamydospores, and sporangia which produce zoospores.
- Chlamydospores are usually spherical and pigmented, and may have a thickened cell wall to aid in its role as a survival structure. Sporangia may be retained by the subtending hyphae (non-caducous) or be shed readily by wind or water tension (caducous) acting as dispersal structures.
- sporangia may release zoospores, which have two unlike flagella which they use to swim towards a host plant.
- the Solanaceae, or nightshades, are an economically important family of flowering plants.
- the family ranges from herbs to trees, and includes a number of important agricultural crops, medicinal plants, spices, weeds, and ornamentals. Many members of the family contain potent alkaloids, and some are highly toxic.
- the family belongs to the order Solanales, in the asterid group dicotyledons (Magnoliopsida).
- the solanaceae family consists of approximately 98 genera and some 2,700 species, with a great diversity of habitats, morphology and ecology.
- Solanaceae includes a number of commonly collected or cultivated species. Perhaps the most economically important genus of the family is Solanum , which contains the potato ( Solanum tuberosum , in fact, another common name of the family is the “potato family”), the tomato ( Solanum lycopersicum ), and the aubergine or eggplant ( Solanum melongena ). Another important genus Capsicum produce both chilli peppers and bell peppers.
- the genus Physalis produces the so-called groundcherries, as well as the tomatillo ( Physalis philadelphica ), the Cape gooseberry and the Chinese lantern.
- the genus Lycium contains the boxthorns and the wolfberry Lycium barbarum.
- Nicotiana contains, among other species, the plant that produces tobacco.
- Some other important members of Solanaceae include a number of ornamental plants such as Petunia, Browallia and Lycianthes , the source of psychoactive alkaloids, Datura, Mandragora (mandrake), and Atropa belladonna (deadly nightshade). Certain species are universally known for their medicinal uses, their psychotropic effects or for being poisonous.
- solanaceas include many model organisms which are important in the investigation of fundamental biological questions at a cellular, molecular and genetic level, such as tobacco and the petunia.
- the above object is met, according to a first aspect, by plants belonging to the Solanaceae family wherein the present plants comprise a genetic trait providing Phytophthora resistance and wherein the present resistance trait is encoded by a combination of at least two genes having a reduced expression, or reduced transcription, of the present genes or a reduced activity of proteins encoded by the present genes as compared to the plant belonging to Solanaceae family being susceptible to Phytophthora.
- the present plants belonging to the Solanaceae family are selected from the group consisting of potato, petunia , tomato, aubergine, eggplant, tobacco and pepper, more preferably potato, petunia and tomato.
- the present invention relates to potato, the present Phytophthora resistance is resistance to Phytophthora infestans and the present combination of at least two genes are genes encoding proteins according to SEQ ID No. 1 and SEQ ID No. 2 or proteins having at least 80%, 85%, or 90% sequence identity with SEQ ID No. 1 and SEQ ID No. 2, such as 91%, 92%, 93% and 94% sequence identity, preferably at least 95% sequence identity, such as 96%, 97%, 98% and 99% sequence identity.
- the present invention relates to petunia , the present Phytophthora resistance is resistance to Phytophthora nicotianae and the present combination of at least two genes are genes encoding proteins according to SEQ ID No. 3 and SEQ ID No. 4 or proteins having at least 80%, 85%, or 90% sequence identity with SEQ ID No. 3 and SEQ ID No. 4, such as 91%, 92%, 93% and 94% sequence identity, preferably at least 95% sequence identity, such as 96%, 97%, 98% and 99% sequence identity.
- the present invention relates to tomato, the present Phytophthora resistance is resistance to Phytophthora infestans and the present combination of at least two genes are genes encoding proteins according to SEQ ID No. 5 and SEQ ID No. 6 or proteins having at least 80%, 85%, or 90% sequence identity with SEQ ID No. 5 and SEQ ID No. 6, such as 91%, 92%, 93% and 94% sequence identity, preferably at least 95% sequence identity, such as 96%, 97%, 98% and 99% sequence identity.
- the present invention relates to a plant belonging to the Solanaceae family wherein the present plant comprises a genetic trait providing Phytophthora resistance, wherein the present resistance trait is obtainable by down regulating the activity of combination of two genes or reducing the activity of proteins encoded by the present genes in a Phytophthora susceptible plant, wherein the present two genes encode the combinations of SEQ ID Nos. 1 and 2 or SEQ ID Nos. 3 and 4 or SEQ ID Nos. 5 and 6 or proteins having at least 80%, 85%, or 90% sequence identity therewith such as 91%, 92%, 93% and 94% sequence identity, preferably at least 95% sequence identity, such as 96%, 97%, 98% and 99% sequence identity.
- the present plant belonging to the Solanaceae family is selected from the group consisting of potato, petunia and tomato.
- the present invention relates, according to a second aspect, to the use of genes encoding the combinations of SEQ ID Nos. 1 and 2 or SEQ ID Nos. 3 and 4 or SEQ ID Nos. 5 and 6 or proteins having at least 80%, 85%, or 90% sequence identity therewith, such as 91%, 92%, 93% and 94% sequence identity, preferably at least 95% sequence identity, such as 96%, 97%, 98% and 99% sequence identity, for providing Phytophthora resistance in plants belonging to the Solanaceae family.
- the present use for providing Phytophthora resistance in plants belonging to the Solanaceae family comprises reduced expression, or reduced transcription, of the present genes or a reduced activity of proteins encoded by the present genes as compared to the plant belonging to Solanaceae family being susceptible to Phytophthora.
- the present plants belonging to the Solanaceae family are selected from the group consisting of potato, petunia and tomato. More preferably, the present Phytophthora resistance is Phytophthora infestans in potato and/or tomato, or Phytophthora nicotianae in petunia.
- the present invention relates according a third aspect to proteins and genes suitable for providing Phytophthora resistance to plants. Specifically, the present invention relates according to this third aspect to proteins selected from the group consisting of SEQ ID No. 1, 2, 3, 4, 5, 6 and protein having at least 80%, 85%, or 90% sequence identity therewith, such as 91%, 92%, 93% and 94% sequence identity, preferably at least 95% sequence identity, such as 96%, 97%, 98% and 99% sequence identity.
- the present invention relates to coding sequences, or genes encoding cDNA sequence, selected from the group consisting of SEQ ID No. 7, 8, 9, 10, 11, 12 and sequences having at least 80%, 85%, or 90% sequence identity therewith such as 91%, 92%, 93% and 94% sequence identity, preferably at least 95% sequence identity, such as 96%, 97%, 98% and 99% sequence identity.
- the present coding sequene, or genes encoding cDNA sequence is an isolated sequence.
- FIG. 1 shows a detached leaf assay of control potato plants after infection with Phytophthora infestans , wherein all leaves are infected by Phytophthora infestans.
- FIG. 2 shows a detached leaf assay of SEQ ID NOS. 7 & 8 silenced potato plants after infection with Phytophthora infestans , wherein each leaf is from an independent plant.
- FIG. 2 a shows leaves from plants silenced with a middle construct, silencing both SEQ ID NOS. 7&8.
- FIG. 2 b shows leaves from chimeric silenced plants.
- FIG. 3 shows the percentage of plants which are infected by Phytophthora infestans , wherein the first bar shows a control group (about 10% is partially) infected, the second bar shows plants of which only SEQ ID NO 7 is silenced (about 10% partially infected), the third bar shows plants of which both SEQ ID NO 7 and 8 is silenced in the middle part of the respective sequences (about 50% clean), the fourth bar shows plants of which both SEQ ID NO 7 and 8 is silenced at the 5′ end (about 40% clean).
- FIG. 4 shows the percentages of living petunia plants after inoculation with Phytophthora nicotianae , wherein the first bar shows wild type control plant (0% living), the second bar shows SEQ ID NO 9 mutants (20% living plants), the third bar shows SEQ ID NO 10 mutants (20% living plants) and the fourth bar shows double mutants, i.e. both SEQ ID NO 9 and 10 (45% living plants).
- FIG. 5 shows leaves of tomato plants from a Phytophthora infestans disease test.
- the fragments were amplified from genomic DNA and cloned into the pENTR-D-TOPO vector.
- 2 fragments were coupled using primers with complementary overhangs, and subsequent extension and amplification to create the fused fragment. Fragments were transferred using a Gateway LR reaction to the RNAi vector pK7GWiWG2 (Karimi et al., 2002, Trends Plant Sci 7), creating an inverted repeat with hairpin structure.
- the final constructs allow stable expression of a 35S-promoter driven hairpin RNA that forms a silencing-inducing dsRNA, after the hairpin-loop forming intron gets spliced out. At least six independent T1 transformants were maintained for each construct.
- Detached leaves were taken from T1 (first generation transgenics) plants, and placed in a tray with 100% RH with petioles in wet cotton-wool or Oasis.
- Phytophthora infestans (P. inf) zoospores/sporangia were harvested from P. inf cultures (rye-sucrose-agar plates), and a 10 ul drop of spore suspension containing 10e3 sporangia (10e5/ml) was placed on each side of the midvein. Trays were incubated at 18 C.
- Leaf infection rates were scored on day 11, as 1. Completely infected/overgrown, 2. Partially infected (10-50% area), and 3. Clean ( ⁇ 10% area).
- the double silenced (SEQ ID NO. 7 & 8) plants of FIG. 2 a show that only 50% is infected
- the double silenced (chimeric) plants of FIG. 2 b show that only 60% is infected
- the control group of FIG. 1 shows that all plants were infected.
- 40 to 50% of the both SEQ ID NO. 7 and SEQ ID NO. 8 silenced plants are clean, whereas the plants having only SEQ ID NO. 7 silenced only 10% of the plants score partially infected. Accordingly, silencing of both SEQ ID NO. 7 and 8 provides resistance to Phytophthora infestans.
- Transposon insertion lines were identified from a collection/library (Vandenbussche et al., 2008, Plant Journal 54). 2 dTph1 transposon insertion alleles were found in SEQ ID NO 9 and 3 dTph1 transposon insertion alleles in SEQ ID NO 10. Several crosses were made to generate double mutants.
- Plants were grown in standard potting soil, individually potted, at 23 C.
- P. nicotianae spores were harvested from cultures (lima-bean-agar or V8-agar plates), and 2 ml of spore suspension containing 10e4 (assay Sept) spores was dripped onto the soil with each plant. Plant collapse was monitored regularly.
- double mutants i.e. plants having mutations in both SEQ ID NO 9 and SEQ ID NO 10 have a percentage of living plants of 45%, whereas the percentage of living plants of single mutants (mutant in SEQ ID NO. 9 or SEQ ID NO. 10) is only 20%.
- Tomato plants were transformed with two constructs, either for providing over expression of both SEQ ID NO. 11 and 12, or for providing silencing of both SEQ ID NO. 11 and 12.
- Tomato SEQ ID NO. 11 silencing constructs were generated using Gateway cloning of a 300 bp fragment identical to the middle part of the CDS of SEQ ID NO. 11.
- the generated ENTRY vector was Gateway cloned into the pHellsgate12 binary vector. Following Agrobacterium transformation according standard procedure for tomato. The silencing constructs were able to silence both SEQ ID NO. 11 and 12, due to similarities in the sequences.
- Offspring from transformed tomato plants were subjected to a disease test by inoculation of Phytophthora infestans isolate US11. 7 days after inoculation the plants were visually analysed by scoring leaves on a visual scale from 1 to 9, wherein 1 means susceptible and 9 means resistant. As a control for susceptible the plants TS33, TS19 and OT9 were used. As control for resistant the known resistant wild accession LA1269 is used. Per plant 8 leaves were measured. Table below provides the average score from the 8 leaves per plant.
- SEQ ID NO. 11 and 12 overexpressing plants are susceptible for isolate US11.
- the silenced plant provides significant higher scores than the susceptible control LA1269.
- plant 556-01-08 has an average score of 8.5.
- a sample of this plant is shown in FIG. 5 in box G10, and is not infected similar to resistant control plant LA1296 as shown in box D8. Accordingly, silencing of both SEQ ID NO. 11 and 12 provides resistance to Phytophthora infestans.
Landscapes
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Plant Pathology (AREA)
- Medicinal Chemistry (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Peptides Or Proteins (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/EP2014/050572 WO2015106796A1 (en) | 2014-01-14 | 2014-01-14 | Phytophthora resistant plants belonging to the solanaceae family |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2014/050572 A-371-Of-International WO2015106796A1 (en) | 2007-02-01 | 2014-01-14 | Phytophthora resistant plants belonging to the solanaceae family |
Related Child Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/525,236 Continuation-In-Part US8742207B2 (en) | 2007-02-01 | 2008-01-30 | Disease resistant plants |
PCT/EP2008/000718 Continuation-In-Part WO2008092659A1 (en) | 2007-02-01 | 2008-01-30 | Disease resistant plants |
US15/191,919 Continuation-In-Part US10501754B2 (en) | 2007-02-01 | 2016-06-24 | Disease resistant potato plants |
US15/594,293 Continuation US20170283826A1 (en) | 2014-01-14 | 2017-05-12 | Phytophthora resistant plants belonging to the solanaceae family |
US16/055,697 Continuation US20190203223A1 (en) | 2014-01-14 | 2018-08-06 | Phytophthora resistant plants belonging to the solanaceae family |
Publications (1)
Publication Number | Publication Date |
---|---|
US20160333370A1 true US20160333370A1 (en) | 2016-11-17 |
Family
ID=49958470
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/111,285 Abandoned US20160333370A1 (en) | 2014-01-14 | 2014-01-14 | Phytophthora Resistant Plants Belonging to the Solanaceae Family |
US15/594,293 Abandoned US20170283826A1 (en) | 2014-01-14 | 2017-05-12 | Phytophthora resistant plants belonging to the solanaceae family |
US16/055,697 Abandoned US20190203223A1 (en) | 2014-01-14 | 2018-08-06 | Phytophthora resistant plants belonging to the solanaceae family |
US16/361,089 Abandoned US20190309319A1 (en) | 2014-01-14 | 2019-03-21 | Phytophthora resistant plants belonging to the solanaceae family |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/594,293 Abandoned US20170283826A1 (en) | 2014-01-14 | 2017-05-12 | Phytophthora resistant plants belonging to the solanaceae family |
US16/055,697 Abandoned US20190203223A1 (en) | 2014-01-14 | 2018-08-06 | Phytophthora resistant plants belonging to the solanaceae family |
US16/361,089 Abandoned US20190309319A1 (en) | 2014-01-14 | 2019-03-21 | Phytophthora resistant plants belonging to the solanaceae family |
Country Status (6)
Country | Link |
---|---|
US (4) | US20160333370A1 (es) |
EP (1) | EP3094722B1 (es) |
JP (1) | JP6375380B2 (es) |
CN (1) | CN106029876A (es) |
ES (1) | ES2876403T3 (es) |
WO (1) | WO2015106796A1 (es) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9932600B2 (en) | 2007-02-01 | 2018-04-03 | Enza Zaden Beheer B.V. | Disease resistant tomato plants |
US10501754B2 (en) | 2007-02-01 | 2019-12-10 | Enza Zaden Beheer B.V. | Disease resistant potato plants |
US10597675B2 (en) | 2013-07-22 | 2020-03-24 | Scienza Biotechnologies 5 B.V. | Downy mildew resistance providing genes in sunflower |
US10787673B2 (en) | 2007-02-01 | 2020-09-29 | Enza Zaden Beheer B.V. | Disease resistant Brassica plants |
US11299746B2 (en) | 2014-06-18 | 2022-04-12 | Enza Zaden Beheer B.V. | Disease resistant pepper plants |
US11685926B2 (en) | 2007-02-01 | 2023-06-27 | Enza Zaden Beheer B.V. | Disease resistant onion plants |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2455477B2 (en) | 2007-02-01 | 2019-03-06 | Enza Zaden Beheer B.V. | Disease resistant plants |
BR112023016657A2 (pt) * | 2021-02-19 | 2023-11-14 | Erik Andreasson | Método para prover resistência de espectro amplo às plantas e plantas assim obtidas |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008092505A1 (en) * | 2007-02-01 | 2008-08-07 | Enza Zaden Beheer B.V. | Disease resistant plants |
EP2455477B2 (en) * | 2007-02-01 | 2019-03-06 | Enza Zaden Beheer B.V. | Disease resistant plants |
-
2014
- 2014-01-14 US US15/111,285 patent/US20160333370A1/en not_active Abandoned
- 2014-01-14 JP JP2016546485A patent/JP6375380B2/ja active Active
- 2014-01-14 WO PCT/EP2014/050572 patent/WO2015106796A1/en active Application Filing
- 2014-01-14 CN CN201480073163.0A patent/CN106029876A/zh active Pending
- 2014-01-14 ES ES14700478T patent/ES2876403T3/es active Active
- 2014-01-14 EP EP14700478.2A patent/EP3094722B1/en active Active
-
2017
- 2017-05-12 US US15/594,293 patent/US20170283826A1/en not_active Abandoned
-
2018
- 2018-08-06 US US16/055,697 patent/US20190203223A1/en not_active Abandoned
-
2019
- 2019-03-21 US US16/361,089 patent/US20190309319A1/en not_active Abandoned
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9932600B2 (en) | 2007-02-01 | 2018-04-03 | Enza Zaden Beheer B.V. | Disease resistant tomato plants |
US9994861B2 (en) | 2007-02-01 | 2018-06-12 | Enza Zaden Beheer B.V. | Disease resistant grape plants |
US10501754B2 (en) | 2007-02-01 | 2019-12-10 | Enza Zaden Beheer B.V. | Disease resistant potato plants |
US10787673B2 (en) | 2007-02-01 | 2020-09-29 | Enza Zaden Beheer B.V. | Disease resistant Brassica plants |
US11685926B2 (en) | 2007-02-01 | 2023-06-27 | Enza Zaden Beheer B.V. | Disease resistant onion plants |
US10597675B2 (en) | 2013-07-22 | 2020-03-24 | Scienza Biotechnologies 5 B.V. | Downy mildew resistance providing genes in sunflower |
US11299746B2 (en) | 2014-06-18 | 2022-04-12 | Enza Zaden Beheer B.V. | Disease resistant pepper plants |
Also Published As
Publication number | Publication date |
---|---|
EP3094722B1 (en) | 2021-05-12 |
US20190203223A1 (en) | 2019-07-04 |
EP3094722A1 (en) | 2016-11-23 |
JP2017502678A (ja) | 2017-01-26 |
JP6375380B2 (ja) | 2018-08-15 |
US20170283826A1 (en) | 2017-10-05 |
WO2015106796A1 (en) | 2015-07-23 |
US20190309319A1 (en) | 2019-10-10 |
ES2876403T3 (es) | 2021-11-12 |
CN106029876A (zh) | 2016-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20190309319A1 (en) | Phytophthora resistant plants belonging to the solanaceae family | |
EP3167051B1 (en) | Phytophthora resistant plants belonging to the solanaceae family | |
US20220403409A1 (en) | CCA Gene For Virus Resistance | |
CN105524933B (zh) | OsJMJ714影响水稻籽粒大小以及盐胁迫耐性的功能及其应用 | |
JP7541290B2 (ja) | トマトに黄化葉巻様症状を呈するベゴモウイルス属ウイルスに抵抗性のナス科植物、ナス科植物細胞、およびナス科植物の作出方法 | |
US20220267791A1 (en) | Begomovirus resistance related genes | |
WO2021131628A1 (ja) | トマト黄化えそウイルス抵抗性のナス科植物、ナス科植物細胞、及びナス科植物の作出方法 | |
CN110484545A (zh) | 一种从野生大豆中分离出来的抗花叶病毒GsCAD1基因、编码蛋白及其应用 | |
JP5516993B2 (ja) | 複数の病害に対して抵抗性を示す植物及びその作出法 | |
EP4302593A1 (en) | Solanaceous plant resistant to begomovirus genus virus causing yellow leaf curl symptoms in tomatoes, solanaceous plant cell, and method for producing solanaceous plant | |
CN115811936B (zh) | 对疮痂病、蚜虫和白粉病具有抗性的甜瓜植物 | |
US20230313220A1 (en) | Lox3 gene modulation and armyworm tolerance | |
US20230287062A1 (en) | Root-knot nematode resistance conferring gene | |
US20150259700A1 (en) | Transgenic Plants With RNA Interference-Mediated Resistance Against Root-Knot Nematodes | |
JP2006006122A (ja) | エタノール耐性遺伝子を用いる形質転換植物の選抜方法及びそのための形質転換用ベクター |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ENZA ZADEN BEHEER B.V., NETHERLANDS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VAN SCHIE, CHRISTIANUS CORNELIS NICOLAAS;POSTHUMA, KARIN INGEBORG;ZEILMAKER, TIEME;AND OTHERS;SIGNING DATES FROM 20160930 TO 20161002;REEL/FRAME:039959/0708 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |