WO2021131628A1 - トマト黄化えそウイルス抵抗性のナス科植物、ナス科植物細胞、及びナス科植物の作出方法 - Google Patents

トマト黄化えそウイルス抵抗性のナス科植物、ナス科植物細胞、及びナス科植物の作出方法 Download PDF

Info

Publication number
WO2021131628A1
WO2021131628A1 PCT/JP2020/045381 JP2020045381W WO2021131628A1 WO 2021131628 A1 WO2021131628 A1 WO 2021131628A1 JP 2020045381 W JP2020045381 W JP 2020045381W WO 2021131628 A1 WO2021131628 A1 WO 2021131628A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
mutation
tswv
plant
solanaceae
Prior art date
Application number
PCT/JP2020/045381
Other languages
English (en)
French (fr)
Inventor
泰規 新子
中原 健二
Original Assignee
キッコーマン株式会社
国立大学法人北海道大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キッコーマン株式会社, 国立大学法人北海道大学 filed Critical キッコーマン株式会社
Priority to CN202080086530.6A priority Critical patent/CN114828621A/zh
Priority to JP2021567161A priority patent/JPWO2021131628A1/ja
Priority to EP20907296.6A priority patent/EP4082332A4/en
Priority to US17/788,160 priority patent/US20230030612A1/en
Publication of WO2021131628A1 publication Critical patent/WO2021131628A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8283Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for virus resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses

Definitions

  • the present invention relates to a method for producing Solanaceae plants, Solanaceae plant cells, and Solanaceae plants that are resistant to tomato spotted wilt virus.
  • viruses belonging to the genus Tospovirus of the family Bunyaviridae and the genus Begomovirus of the family Geminiviridae are viruses belonging to the genus Tospovirus of the family Bunyaviridae and the genus Begomovirus of the family Geminiviridae.
  • Tomato spotted wilt virus (hereinafter often abbreviated as "TSWV”) is one of the most important plant viruses that have scientific and economic impacts. It is in the 5th place (see, for example, Non-Patent Document 1).
  • Tomato spotted wilt virus is a type of relatively old plant virus discovered in 1915, but its research was delayed compared to other viruses due to the difficulty in purifying complete virus particles. Was there. Research has finally increased in the 1990s, and it is now classified as a type virus of the genus Tospovirus of the Bunyaviridae family.
  • the genus Bunyaviridae other than the genus Tospovirus are viruses that infect animals and are a taxonomically very specific group of viruses to which animal and plant viruses belong within the same family (eg,). See Non-Patent Documents 2 and 3).
  • TSWV is a spherical virus with a coating of about 100 nm in diameter, which contains a 3-segment ring-closing string-shaped nucleocapsid.
  • the viral genome also consists of positive-strand RNA with three segments, and basically passes through the gene translation system as a negative strand.
  • the major factor that caused the genus Tospovirus including TSWV and the genus Begomovirus of Geminiviridae including tomato yellow leaf curl virus (TYLCV) to occur frequently all over the world is an important carrier of both viruses due to the globalization of distribution. This is because the virus adhered to agricultural products including flowers and expanded its distribution.
  • TSWV is mainly transmitted by small insect thrips with a body length of about 1 mm.
  • vector thrips such as Soybean thrips, Welsh onion thrips, Western flower thrips, and Thrips palmi Karny. Thrips can acquire TSWV by sucking only during the larval stage, and the larvae have the ability to transmit before hatching, but in general, they also transmit TSWV during sucking after becoming adults.
  • the thrips that transmit TSWV in Japan were the native species Thrips palmi Karny and Tomato spotted wilt, but the Western flower thrips, known as the important vector of TSWV, invaded Japan from overseas in 1990, and it is far away. The appearance of TSWV changed drastically as the distribution of occurrence was expanded from the ability to move distances.
  • Tospovirus virus including TSWV causes great damage to various flowers and also spreads damage to vegetables cultivated in the surrounding area.
  • the host range of TSWV is very wide, with more than 900 plant species, and at present, outbreaks are seen worldwide centering on vegetables and flower plants such as tomatoes, peppers, tobacco, melon, chrysanthemum, dahlia, gerbera and Turkish chrysanthemum. (See, for example, Non-Patent Document 4).
  • TSWV can also infect weeds such as Asteraceae and Polygonaceae, and some of them overwinter, which will be the source of transmission the following year. Viruses of the genus Tospovirus, once infected, easily settle in plants and are difficult to eradicate.
  • thrips are very small insects of 1 mm or less, and in order to prevent invasion, the field must be isolated with a fine net, and there is a concern that the temperature inside the field will rise, so it is easy to carry out. The current situation is that it has not been done. Furthermore, thrips prefer pollen and get inside the perianth to avoid chemicals, so pesticide control has not been an effective means.
  • a TSWV viral coat protein (coat protein) gene or a sequence gene having complementation to at least a part of a viral RNA replication intermediate is subjected to gene manipulation and plant transformation methods.
  • Methods for imparting virus resistance to plants by so-called genetic recombination, which is introduced into the plant genome, have been developed in tobacco, tomato, potato, papaya and the like (for example, Non-Patent Documents 7 and 8, Patent Documents 1 and 2). See).
  • TSWV plant diseases caused by TSWV
  • the following methods can be mentioned.
  • the present inventors have diligently studied a method for controlling plant diseases caused by TSWV by the method (2) above. As a result, it is an object of the present invention to provide a TSWV control method and a TSWV resistant plant by discovering a new resistance gene and developing a plant carrying this gene as a variety.
  • the present invention provides the following Solanaceae plants, parts thereof, and processed products thereof.
  • At least one gene selected from the group consisting of the receptor-like kinase RLK gene and its homologous gene has a mutation, and the mutation suppresses the expression of the gene having the mutation, or the above-mentioned An eggplant family plant in which the protein encoded by the gene having the mutation is non-functional against tomato spotted wilt virus and has resistance to tomato spotted wilt virus.
  • the Solanaceae plant according to [1] wherein the mutation is introduced into a gene in the genome by a genome editing technique.
  • (C) Discontinuous or discontinuous 3n base (n 1-7) deficiency, and
  • the receptor-like kinase RLK gene has a nucleotide sequence whose cDNA sequence is shown in SEQ ID NO: 1.
  • the homologous gene of the translation receptor-like kinase RLK gene has a cDNA sequence of SEQ ID NO: 1.
  • the present invention provides the following Solanaceae plant cells, and Solanaceae plants having them and parts thereof.
  • At least one gene selected from the group consisting of the receptor-like kinase RLK gene and its homologous gene has a mutation, and the mutation suppresses the expression of the gene having the mutation, or the above-mentioned An eggplant family plant cell in which the protein encoded by the gene having the mutation is non-functional against tomato spotted wilt virus and has resistance to tomato spotted wilt virus.
  • the Solanaceae plant cell according to [14] wherein the mutation is introduced into a gene in the genome by a genome editing technique.
  • the homologous gene of the translation receptor-like kinase RLK gene has a cDNA sequence of SEQ ID NO: 1.
  • the plant cell of the family Narcissus according to [17] which contains a base sequence having 85% or more sequence homology with respect to the base sequence shown in.
  • the Solanaceae plant cell according to [18] which has a mutation in the region corresponding to the nucleotide sequence shown in SEQ ID NO: 3 in the receptor-like kinase RLK gene or its homologous gene.
  • the present invention provides the following method for producing Solanaceae plants, and the Solanaceae plants obtained by the production method.
  • a method for producing a Solanaceae plant that is resistant to tomato yellow gene virus including a step of selecting Solanaceae plants.
  • the receptor-like kinase RLK gene includes the nucleotide sequence whose cDNA sequence is shown in SEQ ID NO: 1, and the homologous gene of the receptor-like kinase RLK gene has its cDNA sequence set to SEQ ID NO: 1.
  • the method for producing a tomato yellow sardine virus-resistant nasal plant according to [30] which contains a base sequence having 85% or more sequence homology with respect to the indicated base sequence.
  • the present invention provides the following Solanaceae plant breeding progeny production method and Solanaceae plants obtained by the production method.
  • Tomatoes comprising a step of self-pollinating or cross-pollinating a tomato spotted wilt virus-resistant Solanaceae plant or its progeny obtained by the production method according to any one of [27] to [34].
  • TSWV-resistant Solanaceae plants and Solanaceae plants have the property of inhibiting TSWV infection, the property of suppressing the growth of TSWV after infection, and / or the property of suppressing the development of TSWV infectious symptoms.
  • Methods for producing cells and Solanaceae plants are provided.
  • FIG. 1 shows the cDNA sequence of the tomato receptor-like kinase RLK gene (Solyc02g091840), the underlined part is exon 1, and the double underlined part is the guide RNA recognition part (bases 790 to 809 of exon 1).
  • the part surrounded by a square is the PAM sequence.
  • FIG. 2 is an electrophoretic photograph showing the results of reverse transcription PCR (hereinafter also referred to as RT-PCR) analysis of the first TSWV inoculation test.
  • FIG. 3 is an electrophoretic photograph showing the results of RT-PCR analysis of the second TSWV inoculation test.
  • FIG. 4 is a graph showing the virus morbidity determined by the TSWV inoculation test of the RLK mutant strain.
  • FIG. 5 is a diagram showing the base sequence of the mutant region of the RLK mutant line, in which (A) shows a 5-base deletion of the C74-1 line and (B) shows a single base insertion of the C74-7 line.
  • FIG. 6 is a diagram showing a mutation pattern in the receptor-like kinase RLK gene of tomato.
  • Solanaceae plants have TSWV resistance when the expression of their homologous genes is suppressed or the protein encoded by the mutated gene is non-functional to TSWV.
  • TSWV-resistant plant is the first report in the Solanaceae family.
  • the present embodiment a mode for carrying out the present invention (hereinafter, also referred to as “the present embodiment”) will be described in detail.
  • the present invention is not limited to the following embodiments and drawings, and can be modified in various ways within the scope of the gist thereof.
  • the present embodiment relates to a TSWV-resistant Solanaceae plant.
  • the TSWV-resistant Solanaceae plant is a plant having a property of inhibiting TSWV infection, a property of suppressing the growth of TSWV even if infected, and / or a property of suppressing the onset of TSWV infection symptoms. is there.
  • the TSWV-resistant Solanaceae plant is preferably a plant having a property of inhibiting TSWV infection or suppressing TSWV growth even if infected.
  • the Solanaceae plant is not particularly limited as long as it is a plant belonging to the Solanaceae family, and examples thereof include plants belonging to the genus Solanam, the genus Nicotiana, the genus Capsicum, and the like.
  • tomato Solanum lycopersicum
  • eggplant Solanum melongena
  • tobacco Nonicotiana tabacum
  • pepper Capsicum annuum
  • potato Solanum tuberosum
  • tomato Solanum lycopersicum
  • eggplant Solanum melongena
  • tobacco Nonicotiana tabacum
  • pepper Capsicum annuum
  • potato Solanum tuberosum
  • the TSWV-resistant Solanaceae plant of the present embodiment has a mutation in the receptor-like kinase RLK gene and its homologous gene.
  • the RLK gene is a "Receptor-Like Kinase", a tomato gene that encodes a receptor-like kinase.
  • RLK called BAM1 (Barery Any Meristem 1) in Arabidopsis thaliana, encodes a CLAVATA1-related receptor-like kinase protein required for shoot and meristem function involved in leaf and gametogenesis.
  • BAM2 which is highly homologous
  • RLK1 Solyc02g091840, on chromosome 2
  • BAM1 of Arabidopsis thaliana is involved in the C4 protein of the virus of the genus Begomovirus of the Geminiviridae family and the replication of closely related viruses, the genus Tospovirus including RLK and TSWV of tomato There has been no report on the relationship with.
  • the cDNA sequence of the "RLK gene” contains the base sequence shown in SEQ ID NO: 1 or consists of the base sequence shown in SEQ ID NO: 1.
  • the "RMK gene homology gene” means that the cDNA sequence contains a base sequence having sequence homology to the base sequence shown in SEQ ID NO: 1, or the base sequence shown in SEQ ID NO: 1. It is preferably composed of a base sequence having sequence homology with respect to the above.
  • the homology with the nucleotide sequence of SEQ ID NO: 1 is not particularly limited, but is preferably 85% or more and less than 100%.
  • the lower limit of homology may be any value such as 87% or more, 90% or more, 93% or more, 95% or more, 97% or more, 99% or more, 99.5% or more.
  • the homology between the nucleotide sequence shown in SEQ ID NO: 1 and the cDNA sequence of the homology gene can be determined by a known method.
  • a known homology search program such as BLAST can be used to determine the homology of the base sequence.
  • the Solanaceae plant has a mutation in at least one gene selected from the group consisting of the receptor-like kinase RLK gene and its homologous gene (hereinafter, the gene having the mutation is also referred to as "TSWV resistance gene").
  • the mutation is one that suppresses the expression of the gene having the mutation or makes the protein encoded by the gene non-functional with respect to TSWV.
  • a protein that is non-functional to TSWV refers to a protein that is not available when TSWV infects a plant and proliferates, or that reduces TSWV infection and proliferation.
  • the TSWV resistance gene may be mutated so as not to encode a protein.
  • TSWV when TSWV infects a plant, it is considered that a specific RLK is used among a plurality of RLK isoforms existing in Solanaceae plants.
  • the gene encoding the specific isoform used by TSWV that is, RLK functional with respect to TSWV
  • the specific RLK protein used by TSWV is not produced or the produced RLK is produced.
  • the protein is non-functional with respect to TSWV, it is considered that the translation of the protein required for infectious growth, which is encoded on the viral genome, does not proceed.
  • the Solanaceae plant acquires TSWV resistance because the TSWV protein that requires interaction with RLK cannot perform its function and the infection and proliferation of TSWV are inhibited.
  • the plant itself can utilize the other homologue, or the plant itself utilizes the non-functional RLK protein for TSWV. Since it is possible, it is considered possible to impart TSWV resistance without affecting the growth of the host Solanaceae plant.
  • RLK2 having high homology with RLK1 (Solyc02g091840, on chromosome 2) is known, and it is considered that it exists while assisting each other in plants.
  • Solanaceae plants having the TSWV resistance gene acquire TSWV resistance. For example, even 20 days or more after TSWV inoculation, the accumulated amount of TSWV in the plant is about the same as or less than that of the non-TSWV inoculated strain, and / or the TSWV infection symptom cannot be visually confirmed. It can be determined that the plant has "TSWV resistance". Specifically, as shown in Examples described later, plants are infected with TSWV by a conventional method, and the accumulation of TSWV in the plant is confirmed by a known method such as ELISA method or reverse transcription PCR method. TSWV resistance can be determined. The TSWV resistance of plants can also be determined by confirming the presence or absence of TSWV infection symptoms (mosaicization and yellowing of leaves, thread leaves, dwarfing, gangrene, etc.) of plants infected with TSWV. ..
  • the gene mutation may be present in at least one gene selected from the group consisting of the receptor-like kinase RLK gene and its homologous gene. Therefore, a Solanaceae plant having a mutation in the receptor-like kinase RLK gene and / or its homologous gene can be included in the present embodiment.
  • the TSWV-resistant Solanaceae plant in the present embodiment may have a mutation in all the genes encoding the RLK gene protein functional to TSWV.
  • a polyploid plant such as a diploid
  • Such TSWV-resistant Solanaceae plants may have other normal RLK gene genes as long as the gene encoding the RLK gene protein functional for TSWV is mutated.
  • all the endogenous genes encoding the RLK gene protein functional to TSWV may be deleted or destroyed to lose their functions, and a foreign RLK gene gene may be introduced instead.
  • all the genes encoding any protein functional to TSWV according to the present invention may have mutations, and all the genes encoding the proteins functional to TSWV are TSWV resistant. It is preferably mutated into a gene.
  • Such TSWV-resistant Solanaceae plants may have other normal genes as long as the gene encoding any protein functional for TSWV is mutated.
  • all endogenous genes encoding any protein functional for TSWV may be deleted or destroyed to lose their functions, and a foreign homologous gene may be introduced instead. ..
  • the TSWV-resistant Solanaceae plant in this embodiment has a mutation in a gene within its genome.
  • the gene mutation include the following (a) to (d).
  • (C) Discontinuous or discontinuous 3n base (n 1-7) deficiency, and
  • a frameshift mutation is a mutation in which the codon reading frame shifts due to the deletion or insertion of a base, and a different amino acid sequence is encoded. By changing the encoding amino acid sequence, the mutated gene becomes a TSWV resistance gene.
  • a nonsense mutation is a mutation in which a codon that originally encoded an amino acid is changed to a stop codon, thereby becoming a TSWV resistance gene.
  • Substitution, deletion, addition, and / or insertion of one or more bases changes the reading frame of the amino acid sequence encoded by the base sequence downstream of the mutation region. Due to the change in the reading frame, the amino acid sequence originally encoded changes, and the structure of the protein changes, so that the gene becomes a TSWV resistance gene.
  • the mutation is preferably a mutation in a base other than the third codon.
  • the number of bases substituted, deleted, added, and / or inserted is not particularly limited as long as the TSWV resistance gene can be obtained, but may be, for example, 1 to 5, 1 to 3, or 1 to 2. be able to.
  • the mutation of the TSWV resistance gene is preferably at least one selected from the group consisting of the above (a) to (d).
  • the mutations (a) to (d) above are not alternative, and for example, the mutations in (a) and (b) may occur as a result of the mutations in (c) and (d). is there.
  • Mutations in the genome of plants of the family Eggaceae are those that suppress the expression of the gene having the mutation or those that make the protein encoded by the gene non-functional with respect to TSWV, and TSWV in the plant having the mutation gene. There is no particular limitation as long as it imparts resistance and does not significantly impair the life and growth of the plant.
  • the mutation when the Solanaceae plant has a mutation in the RLK gene, the mutation preferably exists in exon 1 (SEQ ID NO: 2) of the RLK gene and contains bases 790 to 809 in exon 1. It is more preferable to be present in a region, that is, a region containing TCTTCTAGAGTACCTTGCAGT shown in SEQ ID NO: 3.
  • the mutation when a Solanaceae plant has a mutation in the homologous gene of the RLK gene, the mutation preferably exists in the region corresponding to the nucleotide sequence shown in SEQ ID NO: 2 in the homologous gene, and the SEQ ID NO: in the region. It is more preferable that it exists in the region corresponding to the base sequence shown in 3.
  • the mutation is preferably a 5-base deletion or a 1-base insertion. Nucleotide sequences 8 and 9 and FIGS. 5 and 6 of the region having such a mutation are shown. Further, the base sequence of the RLK gene having the 5-base deletion is shown in SEQ ID NO: 10, and the base sequence of the RLK gene having the 1-base insertion is shown in SEQ ID NO: 11.
  • the mutations of Solanaceae plants are not limited to the above-mentioned regions, and mutations may be present in other regions within the RLK gene or in other genes as long as TSWV resistance is not impaired. ..
  • the mutation of the gene of the Solanaceae plant is introduced into the gene in the genome by a genome editing technique such as the CRISPR system described later.
  • the mutant gene in the genome may be homozygous, which is present in both two alleles, or heterozygous, which is present in only one allele, but is preferably homozygous. .. This is because the homozygous type, in which two alleles are characterized by the same mutant sequence, is considered to more strongly express the properties brought about by the mutant gene.
  • the TSWV-resistant Solanaceae plant in the present embodiment may be a composite-resistant Solanaceae plant that exhibits resistance to other viruses and bacteria as long as it exhibits resistance to TSWV.
  • viruses all potyviruses (PVY, etc.) that infect the family Narusa, have VPg similar to PVY at the 5'end of the viral genome, and resistance due to mutation of the translation initiation factor has been reported.
  • the present embodiment relates to a portion of Solanaceae plant having TSWV resistance.
  • the portion includes a portion collected from a Solanaceae plant having the above characteristics and a progeny plant or a cloned plant, or a derivative obtained from the plant or portion.
  • Specific examples of the parts include organs such as fruits, shoots, stems, roots, shoots and anthers, as well as plant tissues and cells.
  • Such moieties may be in any form and may be suspension cultures, protoplasts, embryos, callus tissues, leaf pieces, gametophytes, sporophytes, pollen and microspores. Seeds are examples of derivatives of Solanaceae plants.
  • the portion of the TSWV-resistant Solanaceae plant in the present embodiment may be a scion, a rootstock or the like used for grafting.
  • the present embodiment also relates to plant cells (including curls) capable of regenerating the above-mentioned TSWV-resistant Solanaceae plant, and the TSWV-resistant Solanaceae plant in the present embodiment is such. It also includes plants obtained from plant cells.
  • the part of the Solanaceae plant having TSWV resistance is preferably a fruit that is useful for raw consumption or processing.
  • the portion is a seed because it is useful for the production of progeny.
  • the present embodiment relates to a processed product of Solanaceae plants or parts thereof.
  • the processed product is not particularly limited, and examples thereof include processed products for food, industrial use, medical use, etc., and processed products for food are particularly preferable.
  • the edible processed products of tomato include canned tomato, tomato paste, ketchup, tomato sauce, tomato soup, dried tomato, tomato juice, tomato powder, tomato concentrate and the like. Can be mentioned.
  • nutritional supplements made from tomatoes are also examples of processed products.
  • Solanaceae plant cells having TSWV resistance In one embodiment, the present embodiment relates to Solanaceae plant cells having TSWV resistance.
  • the Solanaceae plant cell of the present embodiment has a mutation in at least one gene selected from the group consisting of the receptor-like kinase RLK gene and its homologous gene. These genes and their mutations are as described above in relation to TSWV-resistant Solanaceae plants.
  • the TSWV resistance of Solanaceae plant cells can be confirmed by the method described above.
  • the presence or absence of TSWV resistance can be confirmed by infecting plant cells with TSWV by a conventional method and detecting the accumulation of TSWV in the cells by a known method such as ELISA method or reverse transcription PCR method.
  • the TSWV-resistant Solanaceae plant cells of the present embodiment may be isolated from the above-mentioned TSWV-resistant Solanaceae plants and progeny plants or cloned plants, or TSWV-resistant plants described later. It may be a plant cell into which a gene mutation has been introduced, which is obtained by the method for producing a Solanaceae plant. Furthermore, the morphology of TSWV-resistant Solanaceae plant cells is not particularly limited, and suspension cultures and protoplasts are also included.
  • the type of the plant cell is not particularly limited as long as it is a cell of a Solanaceae plant, but it is preferably a cell of tomato, eggplant, tobacco, capsicum, and potato, and it is preferably a cell of tomato, eggplant, and potato. More preferably, it is a tomato cell.
  • the present embodiment relates to a Solanaceae plant and a portion thereof having the Solanaceae plant cells described above and having TSWV resistance.
  • the Solanaceae plant and its parts include parts such as plants, tissues and organs regenerated from plant cells into which a gene mutation has been introduced.
  • the portion of the plant regenerated from the plant cell is also the portion having the Solanaceae plant cell described above. The details of the portion are as described above in relation to the TSWV-resistant Solanaceae plant.
  • the part of Solanaceae fruits that are useful for raw consumption and processing are preferable.
  • the portion is a seed because it is useful for the production of progeny.
  • the present embodiment relates to a processed product of Solanaceae plants or parts thereof.
  • the processed product is not particularly limited, and examples thereof include processed products for food, industrial use, medical use, etc., and processed products for food are particularly preferable.
  • the present embodiment relates to a method for producing a TSWV-resistant Solanaceae plant of the present invention.
  • the present invention relates to a production method including the following steps. A step of selecting at least one gene selected from the group consisting of the receptor-like kinase RLK gene and its homologous gene, and A step of introducing into a selected gene in the genome of a Solanaceae plant a mutation in which the expression of the selected gene is suppressed or a mutation in which the protein encoded by the selected gene becomes non-functional with respect to TSWV. A step of selecting Solanaceae plants that are resistant to TSWV.
  • At least one gene is selected as a target gene from the group consisting of the receptor-like kinase RLK gene and its homologous genes.
  • the gene to be selected may be one type or a combination of two or more types of genes. These genes are as described above in relation to TSWV-resistant Solanaceae plants.
  • the mutation is then introduced into the selected gene.
  • the methods for introducing mutations into genes in the genome can be broadly classified into the following two methods.
  • Direct genome editing By directly editing the genome of a plant having RLK functional to TSWV, a pinpoint mutation is introduced at a target site to produce a plant having a TSWV resistance gene.
  • Method. (2) Mutant gene transfer: This is a method in which the following procedures (A) and (B) are combined.
  • a TSWV resistance gene is prepared and introduced into a plant using an appropriate promoter.
  • B) Among the endogenous genes possessed by the plant corresponding to the TSWV resistance gene prepared in (A) above, a gene functional to TSWV is made non-functional to TSWV. Each method will be described below.
  • Direct Genome Editing Direct genome editing can be performed using a known genome editing technique using a site-specific nuclease such as CRISPR or TALEN.
  • a site-specific nuclease such as CRISPR or TALEN.
  • a restriction enzyme capable of cleaving a specific site of the genome
  • various mutations are introduced due to a repair error when the double-strand break is introduced.
  • a mutation is introduced into the target gene (in this embodiment, the gene encoding RLK functional for TSWV).
  • CRISPR system it is preferable to use the CRISPR system, and it is particularly preferable to use the CRISPR / Cas9 system, because mutations can be introduced with particularly high specificity and high efficiency.
  • a guide RNA sgRNA
  • sgRNA guide RNA
  • NHEJ non-homologous end binding
  • Cas9 proteins and sgRNAs Delivery of Cas9 proteins and sgRNAs to plants is carried out via vectors encoding them by methods known to those of skill in the art, such as the Agrobacterium method, standard transfection methods, electroporation methods, particle bombardment methods. Etc. can be used.
  • a binary vector incorporating the Cas9 gene and sgRNA is constructed, and after transforming agrobacterium with this, a plant is transformed with this agrobacterium.
  • Cas9 protein and sgRNA can be delivered to plants (Friedrich Fauser et al., "The Plant Journal," 2014, 79: 348-359, and Ryo Osawa and Hiroshi Egami, "New plant breeding.” Let's Understand Technology-See NBT (New Plant Breeding Techniques), International Literature, 2013, etc.).
  • the morphology of the plant transformed by Agrobacterium is not particularly limited as long as it can regenerate the plant body, and examples thereof include suspended cultured cells, protoplasts, leaf sections, and callus. After removing Agrobacterium, the cells can be cultured in a medium containing a drug according to the vector used, and a section in which the target gene is incorporated can be selectively cultured using drug resistance as an index.
  • the guide RNA can be designed so that mutations can be introduced into the target site with high efficiency.
  • 3 bases before a 3-base sequence called a PAM sequence is basically cleaved. Since the PAM sequence must be present immediately after the target sequence, the guide RNA can be designed with the upstream of the PAM sequence as the target sequence.
  • RNA In the design of guide RNA, it is preferable to consider the GC content because the higher the GC content of the base sequence, the higher the cleavage efficiency. In addition, it can be designed to reduce non-specific cutting due to the off-target effect as much as possible.
  • FIG. 1 showing the cDNA sequence (SEQ ID NO: 1) of the RLK gene existing on chromosome 2 of tomato
  • SEQ ID NO: 2 the part indicated by the square existing in exon 1 (underlined part in FIG. 1, SEQ ID NO: 2) is the PAM sequence.
  • a guide RNA can be designed by targeting usually 20 bases (SEQ ID NO: 3) upstream from these 3 bases.
  • the region corresponding to the nucleotide sequence shown in SEQ ID NO: 3 in the homologous gene of the RNA gene is selected as a target.
  • PAM sequence selection and guide RNA design can be performed. In this way, mutations can be introduced into the target site to produce plants carrying the TSWV-resistant RLK gene.
  • the present embodiment also relates to a vector containing a guide RNA and a guide RNA used for producing the TSWV-resistant Solanaceae plant.
  • the sequence of the guide RNA is as described above.
  • the present embodiment further relates to a kit containing the guide RNA.
  • the kit may contain site-specific nucleases and the like necessary for performing genome editing by the CRISPR system and can be used to produce TSWV-resistant Solanaceae plants.
  • Mutant gene transfer is a method in which the following procedures (A) and (B) are combined.
  • a TSWV resistance gene is prepared and introduced into a plant using an appropriate promoter.
  • B Among the endogenous genes possessed by the plant corresponding to the TSWV resistance gene prepared in (A) above, a gene functional to TSWV is made non-functional to TSWV.
  • the order in which the above (A) and (B) are carried out is not particularly limited as long as the plant does not die, and (B) may be carried out first.
  • the method of performing only (B) at a specific site is the above-mentioned (1) direct genome editing.
  • a mutant gene encoding an RLK protein that is non-functional to TSWV is prepared and introduced into a plant using an appropriate promoter.
  • the mutant gene can be prepared by using a method known to those skilled in the art. For example, a base sequence having a desired mutation can be synthesized and amplified by PCR or the like. The mutations introduced here are as described above in relation to TSWV-resistant Solanaceae plants.
  • the prepared mutant gene can also be introduced into a plant using a method known to those skilled in the art. Conveniently, it can be carried out by using a vector carrying a mutant gene, for example, by using a polyethylene glycol method, an electroporation method, an Agrobacterium method, a particle gun method or the like.
  • the mutant gene introduced here is a TSWV resistance gene in which the RLK gene (or its homologous gene) derived from a Solanaceae plant is mutated, and may be a TSWV resistance gene of another type of plant.
  • the morphology of the plant into which the above vector is introduced is not particularly limited as long as it can regenerate the plant body, and examples thereof include suspended cultured cells, protoplasts, leaf sections, and callus.
  • the procedure (B) among the endogenous RLK genes (or their homologous genes) possessed by the plant, those functional for TSWV are changed to non-functional ones for TSWV.
  • a known method can be used to carry out the procedure (B) as a method for introducing a mutation into a plant.
  • mutagen treatment such as ion beam and EMS can be used. It can also be carried out by genome editing techniques such as CRISPR and TALEN described above. It is desirable that all endogenous RLKs that are functional with respect to TSWV are non-functional with respect to TSWV.
  • the plant body is regenerated from the part of the plant (leaf pieces, plant cells, etc.) having the TSWV resistance gene.
  • Regeneration of the plant body can be carried out by a method known to those skilled in the art depending on the type of plant. For example, see Sun HJ et al., "Plant Cell Physiol.," 2006, 47: 426, etc. for tomatoes, Jefferson RA et al., "EMBO J.,” 1987, 6: 3901, etc. for tobacco. Can be done.
  • Solanaceae plants having resistance to TSWV are selected.
  • the sorting can be performed by the above-mentioned method for confirming TSWV resistance.
  • a plant having TSWV resistance can be selected by infecting a plant with TSWV by a conventional method and confirming the accumulation of TSWV in the plant by a known method such as ELISA method or reverse transcription PCR method. ..
  • TSWV infection symptoms mosaicization and yellowing of leaves, thread leaves, dwarfing, gangrene, etc.
  • Solanaceae plants produced by the above method include tomatoes, eggplants, tobaccos, capsicums, potatoes, etc., preferably tomatoes, eggplants, potatoes, and particularly preferably tomatoes.
  • the present embodiment relates to a Solanaceae plant produced by the method described above.
  • the Solanaceae plant is similar to the TSWV-resistant Solanaceae plant described above.
  • TSWV-resistant Solanaceae plants having a TSWV resistance gene are obtained, progeny and clones of the plant can be obtained by a known method. Therefore, the TSWV-resistant Solanaceae plants of this embodiment also include these progeny and clones.
  • the present embodiment is used for breeding a TSWV-resistant Solanaceae plant, which comprises a step of self-pollinating or cross-pollinating the TSWV-resistant Solanaceae plant (primary) or its progeny obtained by the above-mentioned production method. Regarding the production method of later generations. Self-pollination or cross-pollination of plants can be carried out by methods known in the art and may be carried out in a natural state or artificially. The progeny thus obtained can be further self-pollinated or cross-pollinated to produce a further progeny.
  • Recessive resistance does not show immune resistance like dominant resistance, and may sometimes allow virus infection, migration, or proliferation.
  • dominant resistance which establishes resistance between a virus-specific gene and a ligand-receptor reaction of a plant-specific gene
  • the virus utilizes a host factor essential for infection and proliferation by mutation. By not being able to do so, the infection rate is greatly reduced.
  • Recessive resistance is considered to be suitable for continuous breeding as an effect different from dominant resistance, in which resistance is broken by a slight mutation in the virus.
  • Example 1 -Preparation of recombinant agrobacterium for introducing mutation into RLK gene
  • SEQ ID NO: 2 A site recognized by guide RNA is found in exon 1 (SEQ ID NO: 2) of RLK gene (Solyc02g091840), which is considered to be present on chromosome 2 of tomato.
  • SEQ ID NO: 3 Double-stranded DNA corresponding to the set 20-base length site (SEQ ID NO: 3: TCTCTAGAGTACCTTGCAGT) was synthesized and inserted into the restriction enzyme BbsI site in the vector pUC19_AtU6oligo (obtained from the National Institute of Agrobiological Sciences).
  • a recombinant vector was constructed.
  • the cDNA sequence of the RLK gene present on chromosome 2 of the wild-type tomato is shown in FIG. 1 and SEQ ID NO: 1.
  • a cassette site containing a guide RNA sequence region was excised from the constructed recombinant vector and inserted into the restriction enzyme I-SceI site in the binary vector pZD_OsU3gYSA_HolgerCas9_NPTII to obtain a recombinant binary vector.
  • Agrobacterium LBA4404 manufactured by Takara Bio Inc. was transformed by a conventional method to obtain recombinant Agrobacterium.
  • Example 2 Transformation of tomato
  • a known cultivar Manny Maker or in-house cultivar S was used. Transformation of tomatoes using Agrobacterium is described in general textbooks (for example, Yutaka Tabei ed., "Transformation Protocol ⁇ Plant Edition>", Kagaku-Dojin Co., Ltd., 2012). It was carried out according to. Specifically, a leaf piece obtained by germinating tomato seeds in a sterile medium, or a sterilized leaf piece or true leaf piece normally sown was prepared.
  • Example 2 a culture solution in which the recombinant Agrobacterium obtained in Example 1 was cultured until the turbidity became 0.1 to 1.0 was prepared, and the leaf pieces were immersed in the culture solution for about 10 minutes. Infected with Agrobacterium.
  • MS basal medium Murashige and Skoog medium (hereinafter, also abbreviated as "MS basal medium") in which carbenicillin (100 to 500 mg / ml) and kanamycin (20 to 100 mg / ml) are added to tomato leaf pieces. 3% sucrose in MS basal medium, 1 It was transferred onto .5 mg / L zeatin (with 1% agar added) and subjected to selective culture under 25 ° C. illumination (16 hours illumination / 8 hours darkness). Callus formation from leaf pieces was promoted by exchanging the medium every 10 days to 2 weeks from the start of the culture and subpassing the transplant. Adventitious buds were induced by repeating subculture.
  • rooting medium MS basal medium with 1.5% sucrose, 1% agar, 50-250 mg / ml carbenicillin, 20-100 mg / ml kanamycin, and possibly naphthalene acetic acid (NAA) ) was added) and cultured for 1 to 3 months while subculturing every month.
  • T0 transgenic current generation
  • the amplified fragment was treated with a restriction enzyme having a restriction enzyme cleavage site in the target site, specifically, XbaI, and it was confirmed whether or not the amplified fragment was cleaved.
  • a restriction enzyme having a restriction enzyme cleavage site in the target site specifically, XbaI
  • the restriction enzyme site has changed, so that the amplified fragment is not cleaved by the restriction enzyme. Based on this, it was determined that genetic recombination and editing occurred within the target gene (data not shown).
  • the selected RLK editing system was named C74 system.
  • T0 The selected editorial line individual (T0) was grown in an isolated greenhouse and self-pollinated to collect seeds.
  • Transgenic offspring (T1) were recovered.
  • the seeds of T1 were further self-pollinated to recover the progeny seeds, which was defined as the T2 generation.
  • Example 4 ⁇ TSWV inoculation test> -Method
  • the T2 generation of the C74 line which is the RLK editing line obtained in Example 3 above, was sown to obtain tomato seedlings of about 10 cm.
  • the obtained tomato seedlings were mechanically inoculated with TSWV-infected leaf grinding crude juice.
  • sardine 0.5 g was ground in a 0.05 M phosphate buffer (containing pH 7.0 and 10 mM sodium sulfite) and diluted 10 to 20 times.
  • mechanical inoculation was performed by impregnating a cotton swab with a crude virus juice and rubbing it with Celite (No. 454) on the first or second true leaf of tomato.
  • cultivar S8 which is a wild species (WT) before mutation, was used.
  • RNA was extracted from them using PLANT TOTAL RNA mini kit (manufactured by VIOGENE).
  • PLANT TOTAL RNA mini kit manufactured by VIOGENE.
  • cDNA is synthesized by reverse transcription using Primescript II 1ST Strand cDNA synthesis kit (manufactured by Takara Bio Co., Ltd.), and primer 3 (5'-) for detecting Tospo virus based on a sequence common to Tospo viruses.
  • PCR (Conditions: 95 ° C.
  • the above inoculation test was repeated 3 times.
  • symptom observation and RT-PCR were performed 25 days after inoculation
  • symptom observation and RT-PCR were performed 27 days after inoculation
  • symptom observation and RT-PCR were performed. Only symptom observation was performed 25 days after inoculation.
  • FIG. 2 shows the results of RT-PCR of the first test of wild-type tomatoes without introducing the C74 strain and the control mutation.
  • M is a molecular weight marker
  • P is a positive control
  • N is a negative control
  • the lane on the left side of M is the C74 line
  • the control is on the right side.
  • the ones found in were also arbitrarily analyzed.
  • the upper band indicates the presence of virus.
  • FIG. 3 shows the results of RT-PCR of the second test of the C74 strain and the control wild-type tomato without introducing the mutation.
  • M is a molecular weight marker
  • P is a positive control
  • N is a negative control
  • Mo is a Mock (inoculate only the buffer)
  • C74 is described under the lane as the C74 line, "Cont”. The contrast is described. The upper band indicates the presence of virus.
  • the morbidity rate is the ratio of the total number of plant individuals showing symptoms (mosaic of leaves, yellowing, swelling symptoms, etc.) and the number of plant individuals showing positive PCR to the number of plant individuals tested (number of test samples). As shown in FIG. The numbers in parentheses in the figure are the number of samples to be tested. As is clear from FIG. 4, the morbidity rate of the control was as high as more than 0.5 to 0.8, but the morbidity rate of the RFL editing line C74 was as low as less than 0.4 at the highest. Since the test method carried out here has a higher infection pressure than the virus infection caused by insect media in the natural world, it is estimated that a virus infection does not occur in the natural world when the morbidity rate in this test is less than 0.4. The value.
  • the amplification product was cloned into a cloning plasmid, and the base sequence of the amplification product was determined by sequencing.
  • FIGS. 5A and 5 Two types of mutation patterns were detected in the amplified region, one was a 5-base deficiency of the C74-1 line and the other was a single-base insertion of the C74-7 line.
  • the confirmed base sequence is shown in FIGS. 5A and 5 together with the wild-type base sequence.
  • "RLKwt” is the wild type, below that is the sequence of each clone
  • "CCG” shown in the white box is the PAM sequence
  • the part shown in the gray box is the guide RNA recognition 20 bases. (However, the actual guide RNA recognizes the complementary strand (reverse strand) of this sequence).
  • FIG. 6 shows the wild-type mutation region of the C74-1 strain (mutation region RA) and the mutation region of the C74-7 strain (mutation region RB) side by side.
  • the underline in the figure indicates the mutant part, and " ⁇ " indicates the absence (deficiency) of the base.
  • the present invention has a property of inhibiting TSWV infection, a property of suppressing the growth of TSWV after infection, and / or a property of suppressing the development of TSWV infection symptoms. And a method for producing an eggplant family plant. INDUSTRIAL APPLICABILITY According to the present invention, problems mainly in the agricultural field such as reduction of yield of Solanaceae plants due to TSWV infection can be solved.
  • SEQ ID NO: 1 The cDNA sequence of the RLK gene (Solyc02g091840), bases 1 to 2818 are exon 1, and bases 790 to 809 are target sequences.
  • SEQ ID NO: 2 Exon 1 of the RLK gene, and bases 790 to 809 are the target sequences.
  • SEQ ID NO: 3 Target sequence in exon 1 of RLK gene
  • SEQ ID NO: 4 Primer 1 for detecting RLK gene
  • SEQ ID NO: 5 Primer 2 for detecting the RLK gene
  • SEQ ID NO: 6 Primer 3 for detecting the genus Tospovirus
  • SEQ ID NO: 7 Primer 4 for detecting the genus Tospovirus
  • SEQ ID NO: 8 Mutant region RA of RLK gene
  • SEQ ID NO: 9 Mutant region RB of RLK gene
  • SEQ ID NO: 10 The cDNA sequence of the mutant RLK gene, with bases 790 to 804 being the mutant region RA.
  • SEQ ID NO: 11 It is a cDNA sequence of a mutant RLK gene, and bases 790 to 810 are mutant regions RB.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Virology (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本発明の課題は、トマト黄化えそウイルス(TSWV)の感染を阻害する性質、感染後のTSWVの増殖を抑制する性質及び/又はTSWVの感染症状の発現を抑制する性質を有する、TSWV抵抗性のナス科植物、ナス科植物細胞、及びナス科植物の作出方法を提供することである。本発明は、受容体様キナーゼRLK遺伝子及びその相同遺伝子からなる群より選ばれる少なくとも1種の遺伝子が変異を有し、この変異によって、変異を有する遺伝子の発現が抑制されているか、又は変異を有する遺伝子のコードするタンパク質がトマト黄化えそウイルスに対して非機能的であり、トマト黄化えそウイルス抵抗性を有する、ナス科植物を提供する。

Description

トマト黄化えそウイルス抵抗性のナス科植物、ナス科植物細胞、及びナス科植物の作出方法
 本発明は、トマト黄化えそウイルス抵抗性のナス科植物、ナス科植物細胞、及びナス科植物の作出方法に関する。
 農産物の流通が盛んになるのに伴い、以前は局所的に発生していたウイルス病が世界中に蔓延するようになった。その代表的なものがブニヤウイルス科のトスポウイルス属とジェミニウイルス科のベゴモウイルス属に属するウイルスである。
 トマト黄化えそウイルス(Tomato spotted wilt virus;以下、しばしば、「TSWV」と略す)は、科学的・経済的な影響を与える非常に重要なウイルスとして、数多存在する植物ウイルスの中でも、上位5位以内に入っている(例えば、非特許文献1を参照)。
 トマト黄化えそウイルスは、1915年に発見された比較的歴史の古い植物ウイルスの一種であるが、完全なウイルス粒子の精製が困難であったことから、他のウイルスに比べその研究が遅れていた。1990年代に入りようやく研究が多くなり、現在は、ブニヤウイルス科のトスポウイルス属のタイプウイルスとして分類されている。ブニヤウイルス科にはトスポウイルス属以外に4属あるが、これらはすべて動物に感染するウイルスで、同じ科の中に動物ウイルスと植物ウイルスが属する分類学的に極めて特殊なウイルスグループである(例えば、非特許文献2、3を参照)。
 TSWVは、直径100nm前後の被膜をもつ球状ウイルスで、その中に3分節の閉環ひも状のヌクレオキャプシドが入っている。ウイルスゲノムは、やはり3分節の1本鎖RNAから成り、基本的にマイナス鎖として遺伝子翻訳系を経る。
 TSWVを含むトスポウイルス属やトマト黄化葉巻ウイルス(TYLCV)を含むジェミニウイルス科ベゴモウイルス属が世界中で多発するようになった大きな要因は、流通のグローバル化に伴い、両ウイルスの重要な媒介虫が花卉を含む農産物などに付着して、その分布を拡大したことによる。
 TSWVは、主に体長約1mmの微小昆虫アザミウマ類によって媒介される。媒介できるアザミウマは、ダイズウスイロアザミウマ、ネギアザミウマ、ミカンキイロアザミウマ、ヒラズハナアザミウマなど多種が知られている。アザミウマは、幼虫期にのみ吸汁によりTSWVを獲得でき、幼虫は孵化する前にも伝染能を有するが、一般的には、成虫になってから同じく吸汁時にTSWVを伝染させる。当初、日本でTSWVを媒介するアザミウマは、在来種であるヒラズハナアザミウマやダイズウスイロアザミウマであったが、TSWV重要媒介虫として知られるミカンキイロアザミウマが1990年に海外から日本に侵入し、その遠距離移動能力から発生分布を拡大するのに伴い、TSWVの発生様相は激変した。
 アザミウマ類は、花粉を好むため、TSWVを含むトスポウイルス属ウイルスは様々な花卉類に大きな被害を及すとともに、その周辺で栽培される野菜類にも被害を拡大させる。TSWVの宿主範囲は、900植物種以上と非常に広く、現在では、トマト、ピーマン、タバコ、メロン、キク、ダリア、ガーベラ及びトルコキキョウなどの野菜・花卉植物を中心に世界的に発生が見られる(例えば、非特許文献4を参照)。また、TSWVは、キク科やタデ科のような雑草にも感染することが可能で、越冬するものもあり、翌年の伝染源となる。トスポウイルス属のウイルスは、一度感染すると植物に定着しやすく、根絶は困難である。
 これまでのTSWVを含むトスポウイルス属のウイルスの防除法は、抵抗性育種による品種対策、若しくは媒介虫であるアザミウマの徹底した進入阻止防除とTSWV感染株の早期抜き取り処分しかなかった。しかし、アザミウマは、1mm以下の非常に小さな虫で、侵入阻止のためには圃場を目の細かい網で隔離せざるを得ず、圃場内の気温上昇が懸念されることから、容易には実施されていないのが現状である。さらに、アザミウマは花粉を好み、花被の中に入ってしまい薬剤を回避するため、農薬防除も有効な手段にはならなかった。
 また、TSWVへの抵抗性を植物に付与する育種的手法としては、例えば、1998年にトスポウイルス属に対する抵抗性をもつ野生トマトSolanum peruvianum L.から抵抗性遺伝子Sw-5が特定され、栽培種に導入された(例えば、非特許文献5を参照)。Sw-5は、トマトにおける有望な抵抗性遺伝子であったが、広く実用化されるより前に、当該遺伝子の抵抗性を打破するTSWV分離株が世界中の各地で現れた(例えば、非特許文献6を参照)。同様のことはトウガラシ属のTSWV抵抗性遺伝子Tswでも起こっている。このような現象は、これら優性の抵抗性遺伝子にはしばしば見られる現象であり、現在有用な抵抗性遺伝子が乏しい状況にある。
 この他に遺伝子工学的手法として、TSWVのウイルス外被タンパク質(コートプロテイン)遺伝子や、ウイルスRNA複製中間体の少なくとも一部に対して相補性を有する配列遺伝子を、遺伝子操作及び植物形質転換法により植物ゲノムに導入する、所謂遺伝子組み換えによって、ウイルス抵抗性を植物に付与する方法が、タバコ、トマト、ジャガイモ及びパパイヤ等において開発されている(例えば、非特許文献7、8、特許文献1、2を参照)。
 しかし、上記の遺伝子組み換え植物は、世界の多くの国で未だ商業栽培が難しい。また、栽培可能な国においても、現状では非常に多くの証明実験が必要である。
特開平6-90758号公報 特開平6-343469号公報
SCHOLTHOF et al., "MOLECULAR PLANT PATHOLOGY," 2011, 12(9): 938-954 津田著、「ウイルス」1999、49(2):119-130 Adkins, "MOLECULAR PLANT PATHOLOGY," 2000, 1(3): 151-157 奥田著、「日植病報」2016、82:169-184 Brommonschenkel et al., "Mol Gen Genet," 1997, 256: 121-126 Lo’pez et al., "Journal of General Virology," 2011, 92: 210-215 Abel et al., "Science," 1986 May 9; 232(4751):738-743 Gonsalves, "Annu. Rev. Phytopathol.," 1998, 36:415-437
 前述のように、TSWVによる植物の病害を防除する方法として、以下の方法が挙げられる。
 (1)TSWVを媒介するアザミウマを防除する。
 (2)TSWV抵抗性品種を開発する。
 (3)遺伝子組み換えによって、TSWV抵抗性トランスジェニック植物を開発する。
 (4)TSWVを防除する弱毒ウイルスを開発する。
 しかし、(1)及び(3)の方法は、前述のように困難である。また、(4)の方法については、弱毒ウイルスが植物の生育に及ぼす副作用が、ごく小さいものであるか、又は全くない限り、実用化には難しい。これまで、ナス科の野菜に対して有用なTSWVを用いた弱毒ウイルスは開発されていない。
 以上のような背景のもと、本発明者らは、上記(2)の方法によってTSWVによる植物の病害を防除する方法について鋭意検討を行った。その結果、新たな抵抗性遺伝子を発見し、この遺伝子を保有する植物を品種として開発することで、TSWVの防除法及びTSWV抵抗性植物を提供することを課題とする。
 本発明は、以下のナス科植物、その部分及びそれらの加工品を提供する。
 [1] 受容体様キナーゼRLK遺伝子及びその相同遺伝子からなる群より選ばれる少なくとも1種の遺伝子が変異を有し、前記変異によって、前記変異を有する前記遺伝子の発現が抑制されているか、又は前記変異を有する前記遺伝子のコードするタンパク質がトマト黄化えそウイルスに対して非機能的であり、トマト黄化えそウイルス抵抗性を有する、ナス科植物。
 [2] 前記変異が、ゲノム編集技術によってゲノム内の遺伝子に導入されたものである、[1]に記載のナス科植物。
 [3] 前記変異が、下記(a)~(d)の少なくとも1種である、[1]又は[2]に記載のナス科植物。
 (a)フレームシフト変異、
 (b)ナンセンス変異、
 (c)連続又は非連続の3n塩基(n=1~7)の欠損、及び
 (d)1又は複数の塩基の置換、欠失、付加、及び/又は挿入。
 [4] 前記受容体様キナーゼRLK遺伝子又はその相同遺伝子に変異を有する、[1]~[3]のいずれかに記載のナス科植物。
 [5] 前記受容体様キナーゼRLK遺伝子は、そのcDNA配列が配列番号1に示される塩基配列を含むものであり、前記翻訳受容体様キナーゼRLK遺伝子の相同遺伝子は、そのcDNA配列が配列番号1に示される塩基配列に対して85%以上の配列相同性を有する塩基配列を含むものである、[4]に記載のナス科植物。
 [6] 前記受容体様キナーゼRLK遺伝子又はその相同遺伝子内の、配列番号3に示される塩基配列に対応する領域に変異を有する、[5]に記載のナス科植物。
 [7] 前記配列番号3に示される塩基配列に対応する領域が、配列番号8又は配列番号9に示される塩基配列に変異している、[6]に記載のナス科植物。
 [8] トマトである、[1]~[7]のいずれかに記載のナス科植物。
 [9] [1]~[8]のいずれかに記載のナス科植物の部分。
 [10] 果実である、[9]に記載のナス科植物の部分。
 [11] 種子である、[9]に記載のナス科植物の部分。
 [12] [1]~[11]のいずれかに記載のナス科植物又はその部分の加工品。
 [13] 食用である、[12]に記載の加工品。
 さらに本発明は、以下のナス科植物細胞、ならびにそれを有するナス科植物及びその部分を提供する。
 [14] 受容体様キナーゼRLK遺伝子及びその相同遺伝子からなる群より選ばれる少なくとも1種の遺伝子が変異を有し、前記変異によって、前記変異を有する前記遺伝子の発現が抑制されているか、又は前記変異を有する前記遺伝子のコードするタンパク質がトマト黄化えそウイルスに対して非機能的であり、トマト黄化えそウイルス抵抗性を有する、ナス科植物細胞。
 [15] 前記変異が、ゲノム編集技術によってゲノム内の遺伝子に導入されたものである、[14]に記載のナス科植物細胞。
 [16] 前記変異が、下記(a)~(d)の少なくとも1種である、[14]又は[15]に記載のナス科植物。
 (a)フレームシフト変異、
 (b)ナンセンス変異、
 (c)連続又は非連続の3n塩基(n=1~7)の欠損、及び
 (d)1又は複数の塩基の置換、欠失、付加、及び/又は挿入。
 [17] 前記受容体様キナーゼRLK遺伝子又はその相同遺伝子に変異を有する、[14]~[16]のいずれかに記載のナス科植物細胞。
 [18] 前記受容体様キナーゼRLK遺伝子は、そのcDNA配列が配列番号1に示される塩基配列を含むものであり、前記翻訳受容体様キナーゼRLK遺伝子の相同遺伝子は、そのcDNA配列が配列番号1に示される塩基配列に対して85%以上の配列相同性を有する塩基配列を含むものである、[17]に記載のナス科植物細胞。
 [19] 前記受容体様キナーゼRLK遺伝子又はその相同遺伝子内の、配列番号3に示される塩基配列に対応する領域に変異を有する、[18]に記載のナス科植物細胞。
 [20] 前記配列番号3に示される塩基配列に対応する領域が、配列番号8又は配列番号9に示される塩基配列に変異している、[19]に記載のナス科植物細胞。
 [21] 前記ナス科植物がトマトである、[14]~[20]のいずれかに記載のナス科植物細胞。
 [22] [14]~[21]のいずれかに記載のナス科植物細胞を有し、トマト黄化えそウイルス抵抗性を有する、ナス科植物及びその部分。
 [23] 果実である、[22]に記載のナス科植物の部分。
 [24] 種子である、[22]に記載のナス科植物の部分。
 [25] [22]~[24]のいずれかに記載のナス科植物またはその部分の加工品。
 [26] 食用である、[25]に記載の加工品。
 さらに本発明は、以下のナス科植物の作出方法、及び当該作出方法によって得られたナス科植物を提供する。
 [27] 受容体様キナーゼRLK遺伝子及びその相同遺伝子からなる群より選ばれる少なくとも1種の遺伝子を選択する工程と、ナス科植物のゲノム内の選択した遺伝子に対して、前記選択した遺伝子の発現が抑制される変異、又は前記選択した遺伝子のコードするタンパク質がトマト黄化えそウイルスに対して非機能的になる変異を導入する工程と、トマト黄化えそウイルスに対して抵抗性を有するナス科植物を選別する工程とを含む、トマト黄化えそウイルス抵抗性ナス科植物の作出方法。
 [28] 前記変異を、ゲノム編集技術によってゲノム内の遺伝子に導入する、[27]に記載のトマト黄化えそウイルス抵抗性ナス科植物の作出方法。
 [29] 前記変異が、下記(a)~(d)の少なくとも1種である、請求項27又は28に記載のトマト黄化えそウイルス抵抗性ナス科植物の作出方法。
 (a)フレームシフト変異、
 (b)ナンセンス変異、
 (c)連続又は非連続の3n塩基(n=1~7)の欠損、及び
 (d)1又は複数の塩基の置換、欠失、付加、及び/又は挿入。
 [30] 前記受容体様キナーゼRLK遺伝子又はその相同遺伝子に変異を導入する、[27]~[29]のいずれかに記載のトマト黄化えそウイルス抵抗性ナス科植物の作出方法。
 [31] 前記受容体様キナーゼRLK遺伝子は、そのcDNA配列が配列番号1に示される塩基配列を含むものであり、前記受容体様キナーゼRLK遺伝子の相同遺伝子は、そのcDNA配列が配列番号1に示される塩基配列に対して85%以上の配列相同性を有する塩基配列を含むものである、[30]に記載のトマト黄化えそウイルス抵抗性ナス科植物の作出方法。
 [32] 前記受容体様キナーゼRLK遺伝子又はその相同遺伝子内の、配列番号3に示される塩基配列に対応する領域に変異を導入する、[31]に記載のトマト黄化えそウイルス抵抗性ナス科植物の作出方法。
 [33] 前記配列番号3に示される塩基配列に対応する領域が、配列番号8又は配列番号9に示される塩基配列になるように変異を導入する、[32]に記載のトマト黄化えそウイルス抵抗性ナス科植物の作出方法。
 [34] 前記ナス科植物がトマトである、[27]~[33]のいずれかに記載のトマト黄化えそウイルス抵抗性ナス科植物の作出方法。
 [35] [27]~[34]のいずれかに記載の作出方法によって得られた、トマト黄化えそウイルス抵抗性ナス科植物。
 さらに本発明は、以下のナス科植物育種後代の作出方法及び当該作出方法によって得られたナス科植物を提供する。
 [36] [27]~[34]のいずれかに記載の作出方法によって得られたトマト黄化えそウイルス抵抗性ナス科植物又はその後代を、自家受粉又は他家受粉させる工程を含む、トマト黄化えそウイルス抵抗性ナス科植物の育種後代の作出方法。
 [37] [36]に記載の作出方法によって得られた、トマト黄化えそウイルス抵抗性ナス科植物。
 本発明によれば、TSWVの感染を阻害する性質、感染後のTSWVの増殖を抑制する性質及び/又はTSWVの感染症状の発現を抑制する性質を有する、TSWV抵抗性ナス科植物、ナス科植物細胞、及びナス科植物の作出方法が提供される。
図1は、トマトの受容体様キナーゼRLK遺伝子(Solyc02g091840)のcDNA配列であり、下線部がエクソン1であり、2重下線部がガイドRNA認識部分(エクソン1の790番塩基~809番塩基)であり、四角で囲った部分がPAM配列である。 図2は、1回目のTSWV接種試験の逆転写PCR(以下RT-PCRとも書く)分析結果を示す電気泳動写真である。 図3は、2回目のTSWV接種試験のRT-PCR分析結果を示す電気泳動写真である。 図4は、RLK変異系統のTSWV接種試験により求めたウイルス罹病率を示すグラフである。 図5は、RLK変異系統の変異領域の塩基配列を示す図であり、(A)はC74-1系統の5塩基欠損、(B)はC74-7系統の1塩基挿入を示す。 図6は、トマトの受容体様キナーゼRLK遺伝子内の変異パターンを示す図である。
 本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、ナス科植物が受容体様キナーゼRLK遺伝子又はその相同遺伝子に変異を有し、当該変異によって、変異を有するRLK遺伝子あるいはそれらの相同遺伝子の発現が抑制されているか、又は、変異を有する遺伝子のコードするタンパク質がTSWVに対して非機能的であると、ナス科植物がTSWV抵抗性を有することを見出した。このようなTSWV抵抗性の植物は、ナス科では初めての報告である。
 以下、本発明を実施するための形態(以下、「本実施形態」ともいう。)について詳細に説明する。なお、本発明は、以下の本実施形態及び図面に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
 [I]TSWV抵抗性のナス科植物
 一態様において、本実施形態は、TSWV抵抗性ナス科植物に関する。本実施形態において、TSWV抵抗性ナス科植物とは、TSWVの感染を阻害する性質、感染してもTSWVの増殖を抑制する性質及び/又はTSWVの感染症状の発現を抑制する性質を有する植物である。TSWV抵抗性ナス科植物は、TSWVの感染を阻害するか、感染してもTSWVの増殖を抑制する性質を有する植物であることが好ましい。
 本実施形態においてナス科植物は、Solanaceae科に属する植物である限り特に限定はなく、ナス属(Solanum属)、Nicotiana属、Capsicum属等に属する植物が挙げられる。具体的には、トマト(Solanum lycopersicum)、ナス(Solanum melongena)、タバコ(Nicotiana tabacum)、トウガラシ(Capsicum annuum)、ジャガイモ(Solanum tuberosum)等が挙げられ、好ましくはトマト、ナス、ジャガイモであり、特に好ましくはトマトである。
(RLK遺伝子)
 本実施形態のTSWV抵抗性ナス科植物は、受容体様キナーゼRLK遺伝子及びその相同遺伝子が変異を有する。
 RLK遺伝子とは、“Receptor-Like Kinase”、即ち、受容体様キナーゼをコードするトマトの遺伝子である。RLKは、シロイヌナズナではBAM1(Barely Any Meristem 1)と呼ばれ、葉や配偶子形成に関わる、シュートと花分裂組織機能に必要なCLAVATA1関連レセプター様キナーゼタンパク質をコードしている。また、シロイヌナズナのBAM1にはかなり相同性の高いBAM2の存在が認められており、トマトにおいても、近年の研究から、相同性の高い相同体の存在がわかってきた。このような相同体とは、本実施形態に係わるRLKを「RLK1」(Solyc02g091840、2番染色体上)とすると、「RLK2」として知られるものである。なお、シロイヌナズナのBAM1については、ジェミニウイルス科ベゴモウイルス属のウイルスのC4タンパク質との関連や、近縁ウイルスの複製にも関与することが示唆されているものの、トマトのRLKとTSWVを含むトスポウイルス属との関係については、今まで報告はない。
 本実施形態において、「RLK遺伝子」は、そのcDNA配列が配列番号1に示される塩基配列を含むもの、又は配列番号1に示される塩基配列からなるものであることが好ましい。
 本実施形態において「RLK遺伝子の相同遺伝子」とは、そのcDNA配列が、配列番号1に示される塩基配列に対して配列相同性を有する塩基配列を含むもの、あるいは配列番号1に示される塩基配列に対して配列相同性を有する塩基配列からなるものであることが好ましい。配列番号1の塩基配列との相同性に特に限定はないが、85%以上、100%未満であることが好ましい。また、相同性の下限値は、87%以上、90%以上、93%以上、95%以上、97%以上、99%以上、99.5%以上など、どのような値でもかまわない。なお、配列番号1に示す塩基配列と、相同性遺伝子のcDNA配列との相同性は、公知の方法で決定することができる。例えば、BLASTといった公知の相同性検索プログラムを使用して、塩基配列の相同性を決定することができる。
(TSWV抵抗性遺伝子)
 本実施形態において、ナス科植物は、受容体様キナーゼRLK遺伝子及びその相同遺伝子からなる群より選ばれる少なくとも1種の遺伝子に変異を有する(以下、変異を有する遺伝子を「TSWV抵抗性遺伝子」ともいう)。当該変異とは、変異を有する遺伝子の発現を抑制するか、又は遺伝子がコードするタンパク質をTSWVに対して非機能的とするものである。TSWVに対して非機能的なタンパク質とは、TSWVが植物に感染し、増殖する際に利用できないか、TSWVの感染及び増殖を低減させるタンパク質を指す。一態様において、TSWV抵抗性遺伝子は、タンパク質をコードしないように変異したものであってもよい。
 理論に束縛されるものではないが、TSWVが植物に感染する際には、ナス科植物に存在する複数のRLKのアイソフォームのうち、特定のRLKを用いると考えられる。このとき、TSWVの使用する特定のアイソフォーム(即ち、TSWVに対して機能的なRLK)をコードする遺伝子が変異し、TSWVが使用する特定のRLKタンパク質が産生されなくなるか、又は産生されたRLKタンパク質がTSWVに対して非機能的なものであると、ウイルスゲノム上にコードされる、感染増殖に必要なタンパク質の翻訳が進行しなくなると考えられる。もしくはRLKとの相互作用を必要とするTSWVタンパク質がその機能を果たせなくなり、TSWVの感染及び増殖が阻害されることで、ナス科植物がTSWV抵抗性を獲得すると考えられる。
 一方、ナス科植物に存在する複数のRLK相同体のうちの1つが変異しても、植物自体は他の相同体を利用可能であるか、又は植物自体はTSWVに非機能的RLKタンパク質を利用可能であるため、宿主であるナス科植物の生育に影響を与えることなく、TSWV抵抗性を付与することが可能であると考えられる。具体的には、RLK1(Solyc02g091840、2番染色体上)と相同性の高いRLK2の存在が知られており、植物において互いに補佐しながら存在していると考えられる。
 上述したようにTSWV抵抗性遺伝子を有するナス科植物は、TSWV抵抗性を獲得する。例えば、TSWV接種から20日以上経っても、植物体中のTSWVの蓄積量が、TSWV非接種株と同程度又はそれ以下であること、及び/又はTSWV感染症状が目視により確認できないことをもって、植物が「TSWV抵抗性」を有すると判定することができる。具体的には、後述の実施例に示すとおり、常法により植物にTSWVを感染させ、植物体中のTSWVの蓄積をELISA法、逆転写PCR法等の公知の手法で確認することにより、植物のTSWV抵抗性を判断することができる。また、TSWVを感染させた植物のTSWV感染症状(葉のモザイク化や黄化、糸葉、矮化、壊疽等)の有無を確認することによっても、植物のTSWV抵抗性を判断することができる。
 ナス科植物が上述したTSWV抵抗性を有する限り、遺伝子変異は、受容体様キナーゼRLK遺伝子及びその相同遺伝子からなる群より選ばれる少なくとも1種の遺伝子に存在すればよい。よって、受容体様キナーゼRLK遺伝子及び/又はその相同遺伝子に変異を有するナス科植物が本実施形態には含まれ得る。
 さらに、本実施形態におけるTSWV抵抗性ナス科植物は、RLK遺伝子に変異を有する場合、TSWVに対して機能的なRLK遺伝子タンパク質をコードする遺伝子の全てに変異を有してもよい。例えば、複二倍体等の倍数体植物の場合、複数存在する、TSWVに対して機能的なRLK遺伝子タンパク質をコードする遺伝子が、全てTSWV抵抗性遺伝子に変異していることが好ましい。このようなTSWV抵抗性ナス科植物は、TSWVに対して機能的なRLK遺伝子タンパク質をコードする遺伝子が変異している限り、他の正常なRLK遺伝子遺伝子を有するものであってもよい。また、TSWVに対して機能的なRLK遺伝子タンパク質をコードする内生の遺伝子が全て欠失、破壊等して機能を喪失し、代わりに外来のRLK遺伝子遺伝子を導入したものであってもよい。
 即ち、本発明に係るTSWVに対して機能的ないずれかのタンパク質をコードする遺伝子の全てに変異を有してもよく、TSWVに対して機能的なタンパク質をコードする遺伝子が、全てTSWV抵抗性遺伝子に変異していることが好ましい。このようなTSWV抵抗性ナス科植物は、TSWVに対して機能的ないずれかのタンパク質をコードする遺伝子が変異している限り、他の正常な遺伝子を有するものであってもよい。また、TSWVに対して機能的ないずれかのタンパク質をコードする内生の遺伝子を全て欠失、破壊等して機能を喪失し、代わりに外来の相同な遺伝子を導入したものであってもよい。
 一態様において、本実施形態におけるTSWV抵抗性ナス科植物は、そのゲノム内の遺伝子に変異を有する。遺伝子変異の具体例としては、以下の(a)~(d)が挙げられる。
 (a)フレームシフト変異、
 (b)ナンセンス変異、
 (c)連続又は非連続の3n塩基(n=1~7)の欠損、及び
 (d)1又は複数の塩基の置換、欠失、付加、及び/又は挿入。
 (a)フレームシフト変異は、塩基の欠失又は挿入により、コドンの読み枠がずれ、異なるアミノ酸配列をコードするようになる変異である。コードするアミノ酸配列が変わることにより、変異遺伝子はTSWV抵抗性遺伝子となる。
 (b)ナンセンス変異は、本来アミノ酸をコードしていたコドンが終止コドンに変わる変異であり、これにより、TSWV抵抗性遺伝子となる。
 (c)連続又は非連続の3n塩基(n=1~7、好ましくはn=1~3、例えば3n塩基は、3、6又は9塩基)の欠損により、当該欠損領域から下流の塩基配列によってコードされるアミノ酸配列が変化する。このような変化が生じるため、TSWV抵抗性遺伝子となる。
 (d)1又は複数の塩基の置換、欠失、付加、及び/又は挿入により、変異領域の下流の塩基配列がコードするアミノ酸配列の読み枠が変化する。読み枠の変化により、元々コードしていたアミノ酸配列が変わり、タンパク質の構造変化等が生じるため、TSWV抵抗性遺伝子となる。一態様において、この変異は、コドンの3番目以外の塩基の変異であることが好ましい。置換、欠失、付加、及び/又は挿入される塩基の個数は、TSWV抵抗性遺伝子が得られる限り特に限定されないが、例えば、1~5個、1~3個、又は1~2個とすることができる。
 TSWV抵抗性遺伝子の有する変異は、上記(a)~(d)からなる群より選ばれる少なくとも1種であることが好ましい。尚、上記(a)~(d)の変異は、択一的なものではなく、例えば、(c)や(d)の変異の結果として、(a)や(b)の変異が起こることもある。
 ナス科植物のゲノム内の変異は、変異を有する遺伝子の発現を抑制するもの、又は当該遺伝子のコードするタンパク質をTSWVに対して非機能的にするものであって、変異遺伝子を有する植物にTSWV抵抗性を付与し、且つ当該植物の生命及び生育に著しい障害を与えないものである限り、特に限定はない。
 次に、このような変異について具体的に説明する。
 一態様において、ナス科植物がRLK遺伝子に変異を有する場合、当該変異は、RLK遺伝子のエクソン1(配列番号2)内に存在することが好ましく、エクソン1内の790番~809番塩基を含む領域、即ち、配列番号3に示したTCTCTAGAGTACCTTGCAGTを含む領域内に存在することがより好ましい。ナス科植物がRLK遺伝子の相同遺伝子に変異を有する場合、当該変異は、当該相同遺伝子内の、配列番号2に示される塩基配列に対応する領域に存在することが好ましく、当該領域内の配列番号3に示される塩基配列に対応する領域に存在することがより好ましい。
 ナス科植物が配列番号3に示したTCTCTAGAGTACCTTGCAGT又はそれに対応する領域に変異を有する場合、当該変異は、5塩基欠損又は1塩基の挿入であることが好ましい。このような変異を有する領域の塩基配列配列番号8と9並びに図5及び図6に示した。また、当該5塩基欠損を有するRLK遺伝子の塩基配列を配列番号10に示し、当該1塩基挿入を有するRLK遺伝子の塩基配列を配列番号11に示した。
 なお、ナス科植物の有する変異は、上述した領域に限定されるものではなく、TSWV抵抗性が損なわれない限り、RLK遺伝子内の他の領域や、他の遺伝子に変異が存在してもよい。
 一態様において、ナス科植物の遺伝子の変異は、後述するCRISPRシステム等のゲノム編集技術によってゲノム内の遺伝子に導入されたものであることが好ましい。
 ゲノム内の変異遺伝子は、2つの対立遺伝子の両方に存在するホモ接合型であっても、一方の対立遺伝子にのみ存在するヘテロ接合型であってもよいが、ホモ接合型であることが好ましい。これは同じ変異配列によって2つの対立遺伝子が特徴付けられるホモ接合型の方が、変異遺伝子によってもたらされる性質が、より強く発現されると考えられるためである。
(TSWV抵抗性のナス科植物及びその部分)
 本実施形態におけるTSWV抵抗性のナス科植物は、TSWVに抵抗性を示す限り、他のウイルスや細菌に対する抵抗性を示す、複合抵抗性ナス科植物であってもよい。他のウイルスの具体例としては、ナス科に感染する全てのポティウイルス(PVY等)、PVYと同様のVPgをウイルスゲノムの5’末端に有し、翻訳開始因子の変異による抵抗性が報告されているBymovirus属及びSobemovirus属に属するウイルス、翻訳開始因子の変異による抵抗性が報告されているCarmovirus属に属するウイルス等が挙げられる。
 一態様において、本実施形態は、TSWV抵抗性を有するナス科植物の部分に関する。当該部分には、上記特徴を有するナス科植物及びその後代植物やクローンの植物体から採取される部分、あるいは植物体又は部分から得られる派生物が含まれる。部分の具体例としては、果実、シュート、茎、根、若枝、葯といった器官、ならびに植物の組織や細胞が挙げられる。このような部分はいかなる形態であってもよく、懸濁培養物、プロトプラスト、胚、カルス組織、葉片、配偶体、胞子体、花粉及び小胞子でもよい。ナス科植物の派生物としては、種子が挙げられる。
 また、本実施形態におけるTSWV抵抗性ナス科植物の部分は、接ぎ木に利用する穂木、台木等であってもよい。また、一態様において、本実施形態は、上述のTSWV抵抗性ナス科植物を再生し得る植物細胞(カルスを含む)等にも関し、本実施形態におけるTSWV抵抗性ナス科植物は、このような植物細胞から得られた植物も含む。
 TSWV抵抗性を有するナス科植物の部分は、生食用や加工用に有用である果実が好ましい。また、後代の作出等に有用であることから、当該部分は種子であることも好ましい。
(ナス科植物又はその部分の加工品)
 一態様において、本実施形態は、ナス科植物又はその部分の加工品に関する。当該加工品に特に限定はなく、食用、工業用、医療用などの加工品が挙げられ、特に食用の加工品であることが好ましい。
 例えばTSWV抵抗性を有するナス科植物がトマトの場合、トマトの食用加工品としては、缶詰トマト、トマトペースト、ケチャップ、トマトソース、トマトスープ、乾燥トマト、トマトジュース、トマトパウダー、トマト濃縮物等が挙げられる。また、トマトを原料とする栄養補助食品(サプリメント)等も加工品の一例である。
 [II]TSWV抵抗性を有する、ナス科植物細胞
 一態様において、本実施形態は、TSWV抵抗性を有するナス科植物細胞に関する。
 本実施形態のナス科植物細胞は、受容体様キナーゼRLK遺伝子及びその相同遺伝子からなる群より選ばれる少なくとも1種の遺伝子が変異を有する。これら遺伝子及びその変異については、TSWV抵抗性のナス科植物に関連して上述した通りである。
 ナス科植物細胞のTSWV抵抗性は、上述した方法によって確認することができる。例えば、常法により植物細胞にTSWVを感染させ、細胞中のTSWVの蓄積をELISA法、逆転写PCR法等の公知の手法で検出することにより、TSWV抵抗性の有無を確認することができる。
 本実施形態のTSWV抵抗性ナス科植物細胞は、上述したTSWV抵抗性のナス科植物及びその後代植物やクローンの植物体又は部分から単離したものであってもよいし、後述するTSWV抵抗性のナス科植物の作出方法によって得られる、遺伝子変異を導入した植物細胞でもよい。さらにTSWV抵抗性ナス科植物細胞の形態にも特に限定はなく、懸濁培養物やプロトプラストも含まれる。
 当該植物細胞は、ナス科植物の細胞である限りその種類に特に限定はないが、トマト、ナス、タバコ、トウガラシ、ジャガイモの細胞であることが好ましく、トマト、ナス、ジャガイモの細胞であることがより好ましく、トマトの細胞であることがさらに好ましい。
 一態様において、本実施形態は、上述したナス科植物細胞を有し、TSWV抵抗性を有する、ナス科植物体及びその部分に関する。当該ナス科植物体及びその部分には、遺伝子変異を導入した植物細胞から再生した植物体又は組織や器官といった部分が含まれる。植物細胞から再生した植物体の部分もまた、上述したナス科植物細胞を有する部分である。尚、部分の詳細については、TSWV抵抗性ナス科植物に関連して上述した通りである。
 また、ナス科植物の部分は、生食用や加工用に有用である果実が好ましい。また、後代の作出等に有用であることから、当該部分は種子であることも好ましい。
 一態様において、本実施形態は、ナス科植物又はその部分の加工品に関する。当該加工品に特に限定はなく、食用、工業用、医療用などの加工品が挙げられ、特に食用の加工品であることが好ましい。
 [III]TSWV抵抗性のナス科植物の作出方法
 一態様において、本実施形態は、本発明のTSWV抵抗性ナス科植物の作出方法に関する。具体的には、下記の工程を含む作出方法に関する。
 受容体様キナーゼRLK遺伝子及びその相同遺伝子からなる群より選ばれる少なくとも1種の遺伝子を選択する工程と、
 ナス科植物のゲノム内の選択した遺伝子に対して、選択した遺伝子の発現が抑制される変異、又は選択した遺伝子のコードするタンパク質がTSWVに対して非機能的になる変異を導入する工程と、
 TSWVに対して抵抗性を有するナス科植物を選別する工程。
 初めに、変異を導入する標的遺伝子を選択する。受容体様キナーゼRLK遺伝子及びその相同遺伝子からなる群より少なくとも1種の遺伝子を標的遺伝子として選択する。選択する遺伝子は、1種でもよいし、2種以上の遺伝子の組み合わせでもよい。これら遺伝子については、TSWV抵抗性のナス科植物に関連して上述した通りである。
 次に、選択した遺伝子に変異を導入する。ゲノム内の遺伝子に変異を導入するための方法としては、大別すると、以下に例示する2通りの方法を挙げることができる。
 (1)直接ゲノム編集: TSWVに対して機能的なRLKを有する植物のゲノムを直接編集することにより、目的とする箇所にピンポイントで変異を導入し、TSWV抵抗性遺伝子を有する植物を作出する方法。
 (2)変異遺伝子導入: 次の手順(A)と(B)とを組み合わせた方法である。(A):TSWV抵抗性遺伝子を作製し、適当なプロモーターを用いて植物に導入する。(B):植物が有する、上記(A)で作製したTSWV抵抗性遺伝子に対応する内生の遺伝子の内、TSWVに対して機能的な遺伝子をTSWVに対して非機能的なものとする。
 以下、それぞれの方法について説明する。
 (1)直接ゲノム編集
 直接ゲノム編集は、CRISPR、TALEN等、部位特異的ヌクレアーゼを用いた公知のゲノム編集技術を用いて実施することができる。ゲノムの特定部位を切断可能な制限酵素を用いて二本鎖切断を導入すると、これが修復される際に、修復エラーにより各種変異が導入される。その結果、標的遺伝子(本実施形態ではTSWVに対して機能的なRLKをコードする遺伝子)に変異が導入される。
 特に高い特異性及び高効率で変異を導入することができるため、CRISPRシステムを用いることが好ましく、CRISPR/Cas9システムを用いることが特に好ましい。CRISPR/Cas9システムでは、標的遺伝子と相補的な20塩基長程度の配列を含むガイドRNA(sgRNA)が標的を認識し、Cas9タンパク質が二本鎖を切断し、これが非相同性末端結合(NHEJ)修復経路によって修復される際に、修復エラーにより標的部位に変異が導入される。
 植物へのCas9タンパク質及びsgRNAの送達は、それらをコードするベクターを介して、当業者に公知の方法、例えば、アグロバクテリウム法、標準的なトランスフェクション法、エレクトロポレーション法、パーティクルボンバードメント法等を用いて行うことができる。
 簡便には、後述の実施例に示すように、Cas9遺伝子及びsgRNAを組み込んだバイナリベクターを構築し、これを用いてアグロバクテリウムを形質転換した後、このアグロバクテリウムを用いて植物を形質転換することで、植物へのCas9タンパク質及びsgRNAの送達を行うことができる(Friedrich Fauser et al., "The Plant Journal," 2014, 79: 348-359、及び大澤良及び江面浩、「新しい植物育種技術を理解しよう-NBT(New plant breeding techniques)」、国際文献社、2013等を参照)。
 アグロバクテリウムにより形質転換する植物の形態は、植物体を再生しうるものであれば特に限定されず、例えば、懸濁培養細胞、プロトプラスト、葉の切片、カルス等が挙げられる。アグロバクテリウムの除去後、用いたベクターに応じた薬剤を含む培地中で培養して、薬剤耐性を指標に目的遺伝子が組み込まれた切片の選別培養をすることができる。
 高効率で標的部位への変異導入が可能になるように、ガイドRNAを設計することができる。CRISPRシステムでは、PAM配列と呼ばれる3塩基の配列(最も一般的なpyogenes由来Cas9を用いる場合はNGG)の3塩基前が基本的に切断される。標的配列の直後にPAM配列が存在する必要があるため、PAM配列の上流を標的配列として、ガイドRNAを設計することができる。
 ガイドRNAの設計においては、塩基配列のGC含有率が高いほど切断効率が高くなるため、GC含有率を考慮することが好ましい。また、オフターゲット効果による非特異的な切断を極力減らすよう設計することができる。
 トマトの2番染色体上に存在するRLK遺伝子のcDNA配列(配列番号1)を示す図1中、エクソン1(図1中の下線部、配列番号2)に存在する四角で示した箇所をPAM配列とし、この3塩基から上流の通常20塩基(配列番号3)を標的としてガイドRNAを設計することができる。ナス科の他の植物に対して直接ゲノム編集を行う場合も、トマトの場合と同様に、RLK遺伝子の相同遺伝子内の、配列番号3に示される塩基配列に対応する領域を標的として選択し、PAM配列の選択及びガイドRNAの設計を行うことができる。このようにして標的部位に変異を導入して、TSWV抵抗性のRLK遺伝子を有する植物を作出することができる。
 CRISPRシステムにより遺伝子内に1箇所の二本鎖切断を導入すると、20塩基程度が修復され、修復エラーにより変異が導入されると考えられる。よって、一態様において、本実施形態のTSWV抵抗性遺伝子が有する変異は、連続又は非連続の3n塩基(n=1~7、好ましくは1~3)の変異である。
 さらに本実施形態は、上記TSWV抵抗性ナス科植物を作出するために使用したガイドRNA及びガイドRNAを含むベクターにも関する。ガイドRNAが有する配列は上述したとおりである。本実施形態は、さらに、上記ガイドRNAを含むキットにも関する。当該キットは、CRISPRシステムによるゲノム編集を実施するために必要な部位特異的ヌクレアーゼ等を含んでいてもよく、TSWV抵抗性ナス科植物を作出するために使用することができる。
 (2)変異遺伝子導入
 変異遺伝子導入は、下記(A)と(B)の手順を組み合わせた方法である。
 (A):TSWV抵抗性遺伝子を作製し、適当なプロモーターを用いて植物に導入する。
 (B):植物が有する、上記(A)で作製したTSWV抵抗性遺伝子に対応する内生の遺伝子の内、TSWVに対して機能的な遺伝子をTSWVに対して非機能的なものとする。
 上記(A)と(B)を実施する順序は、植物が死に至らない限り、特に限定はなく、(B)を先に実施してもよい。なお、(B)のみを特定の部位において実施する方法が、上記(1)直接ゲノム編集である。
 手順(A)において、TSWVに対して非機能的なRLKタンパク質をコードする変異遺伝子を作製し、適当なプロモーターを用いて植物に導入する。変異遺伝子の作製は、当業者に公知の手法を用いて実施することができる。例えば、所望の変異を有する塩基配列を合成し、これをPCR等で増幅して得ることができる。ここで導入する変異は、TSWV抵抗性のナス科植物に関連して上述した通りである。
 作製した変異遺伝子の植物への導入も、当業者に公知の手法を用いて実施することができる。簡便には、変異遺伝子を搭載したベクターを用いて、例えば、ポリエチレングリコール法、エレクトロポレーション法、アグロバクテリウム法、パーティクルガン法等を用いて実施することができる。ここで導入する変異遺伝子は、ナス科植物由来のRLK遺伝子(又はその相同遺伝子)を変異させたTSWV抵抗性遺伝子であり、別種の植物のTSWV抵抗性遺伝子であってもよい。
 上記ベクターを導入する植物の形態は、植物体を再生しうるものであれば特に限定されず、例えば、懸濁培養細胞、プロトプラスト、葉の切片、カルス等が挙げられる。
 次に手順(B)において、植物が有する内生のRLK遺伝子(又はその相同遺伝子)の中でTSWVに対して機能的なものを、TSWVに対して非機能的なものに変化させる。手順(B)の実施には、植物に変異を導入する方法として公知の手法を用いることができる。例えば、イオンビーム、EMSなどの変異原処理を用いることができる。上述のCRISPRやTALENなどのゲノム編集技術等によっても実施することができる。内生RLKの中で、TSWVに対して機能的なものの全てを、TSWVに対して非機能的なものとすることが望ましい。
 次に、TSWV抵抗性遺伝子を有する植物の部分(葉片や植物細胞等)から植物体を再生する。植物体の再生は、植物の種類に応じて当業者に公知の方法で行うことができる。例えば、トマトについては、Sun H.J. et al., "Plant Cell Physiol.," 2006, 47: 426等、タバコについては、Jefferson R.A. et al., "EMBO J.," 1987, 6: 3901等を参照して行うことができる。
 さらに再生した植物の中から、TSWVに対して抵抗性を有するナス科植物を選別する。当該選別は、上述したTSWV抵抗性を確認するための方法によって行うことができる。例えば、常法により植物にTSWVを感染させ、植物体中のTSWVの蓄積をELISA法、逆転写PCR方等の公知の手法で確認することにより、TSWV抵抗性を有する植物を選別することができる。また、TSWVを感染させた植物のTSWV感染症状(葉のモザイク化や黄化、糸葉、矮化、壊疽等)の有無を確認することによっても、TSWVに対して抵抗性を有するナス科植物を選別することができる。
 上記方法によって作出するナス科植物としては、トマト、ナス、タバコ、トウガラシ、ジャガイモ等が挙げられ、好ましくはトマト、ナス、ジャガイモであり、特に好ましくはトマトである。
 一態様において、本実施形態は、上述した方法により作出したナス科植物に関する。当該ナス科植物は、上記で説明したTSWV抵抗性のナス科植物と同様である。
 TSWV抵抗性遺伝子を有するTSWV抵抗性ナス科植物が一旦得られれば、当該植物の後代やクローンを公知の手法により得ることができる。したがって、本実施形態のTSWV抵抗性ナス科植物には、これらの後代及びクローンも含まれる。
 一態様において、本実施形態は、上述の作出方法によって得られたTSWV抵抗性ナス科植物(初代)又はその後代を、自家受粉又は他家受粉させる工程を含む、TSWV抵抗性ナス科植物の育種後代の作出方法に関する。植物の自家受粉又は他家受粉は、当業界で公知の方法で実施することが可能であり、自然状態で行われてもよいし、人為的に行われてもよい。このようにして得られた後代をさらに自家受粉又は他家受粉させて、さらなる後代を作出することもできる。
 劣性抵抗性は、優性抵抗性のような免疫的抵抗性を示さず、時にウイルスの感染若しくは移動、増殖を許容してしまうも可能性もある。しかし、優性抵抗性のようにウイルスの特異的遺伝子と植物の特異的遺伝子のリガンドレセプター反応とで抵抗性を成立させているものと異なり、ウイルスが感染増殖に必要不可欠な宿主因子が変異によって利用できなくなることで、感染率を大幅に抑えている。劣性抵抗性は、ウイルスの僅かな変異によって抵抗性が打破される優性抵抗性とは違った効果として、持続的育種に適していると考えられる。
<変異体作製>
 [実施例1]
・RLK遺伝子に変異を導入するための組換えアグロバクテリウムの作製
 トマトの2番染色体に存在するとされるRLK遺伝子(Solyc02g091840)のエクソン1(配列番号2)内に、ガイドRNAが認識する部位を任意に設定した。設定した20塩基長の部位(配列番号3:TCTCTAGAGTACCTTGCAGT)に対応する二本鎖DNAを合成し、ベクターpUC19_AtU6oligo(国立研究開発法人 農業生物資源研究所より入手)内の制限酵素BbsIサイトに挿入し、組換えベクターを構築した。なお、野生株のトマトの2番染色体に存在するRLK遺伝子のcDNA配列を図1及び配列番号1に示した。
 構築した組換えベクターからガイドRNA配列領域を含むカセット部位を切り出し、バイナリベクター pZD_OsU3gYSA_HolgerCas9_NPTII内の制限酵素I-SceIサイトに挿入し、組換えバイナリベクターを得た。このバイナリベクターを用いて、アグロバクテリウムLBA4404(タカラバイオ社製)を常法により形質転換させ、組換えアグロバクテリウムを得た。
 [実施例2]
・トマトの形質転換
 形質転換するトマトとして、公知の品種であるマニーメーカー若しくは自社品種Sを用いた。アグロバクテリウムを用いたトマトの形質転換は一般的な教科書(例えば、田部井豊編、「形質転換プロトコール<植物編> (Protocolsfor plant transformation)」、株式会社化学同人社、2012)に記載の方法に準じて実施した。具体的には、トマトの種子を無菌培地中で発芽させて得た子葉片、又は通常播種した子葉片若しくは本葉片を殺菌したものを用意した。次に、実施例1で得た組換えアグロバクテリウムをその濁度が0.1~1.0になるまで培養した培養液を用意し、当該培養液に葉片を10分程度浸漬して、アグロバクテリウムに感染させた。
 感染から3日後に、アグロバクテリウムを除去した。トマトの葉片をカルベニシリン(100~500mg/ml)及びカナマイシン(20~100mg/ml)を加えたムラシゲスクーグ培地(以下、「MS基本培地」と略すこともある。MS基本培地に3%ショ糖、1.5mg/Lゼアチン、1%寒天を添加しもの)上に移し、25℃照明下(16時間照明/8時間暗黒)での選抜培養に付した。培養開始から10日~2週間毎に培地を交換して移植継代することで、葉片からのカルス形成を促した。引き続き継代培養を繰り返すことで不定芽を誘導した。
 不定芽が数センチほどに大きくなったら、発根培地(MS基本培地に1.5%ショ糖、1%寒天、50~250mg/mlカルベニシリン、20~100mg/mlカナマイシン、場合によってナフタレン酢酸(NAA)を添加したもの)に移植し、1ヶ月毎に継代しながら1~3ヶ月培養した。
 発根培地による培養までは全て無菌培養とした。発根した個体は、無菌培地から取り出し、市販の黒土や赤玉土などを混合したポット培土に移植し、生育させた。このようにして得られた再生個体をトランスジェニック当代(以下、「T0」と略すこともある。)とした。
 [実施例3]
・遺伝子編集系統の選抜
 トランスジェニック当代の標的遺伝子内に遺伝子組み換え及び編集(塩基の欠損、挿入又は置換)部位が存在するか否かを確認するために、下記プライマーを用いたPCRによって目的の部位を増幅した。
 RLK(Solyc02g091840)内の領域に対しては、プライマー1(TTAACACGTCTGCGTAACCTC(配列番号4))及びプライマー2(CCGGTGAAGGTATTGTAGTATCC(配列番号5))。
 なお、PCRには東洋紡社製の「KOD Plus Neo」を使用し、添付のマニュアルに従ってDNAの増幅を実施した。
 次に、標的部位内に制限酵素切断部位の存在する制限酵素、具体的には、XbaIによって、増幅断片を処理し、当該増幅断片が切断されるか否かを確認した。遺伝子組み換え及び編集が生じた遺伝子においては、制限酵素部位が変化していることから、制限酵素によって増幅断片が切断されない。これをもって、遺伝子組み換え及び編集が標的遺伝子内で生じたと判断した(データ非表示)。
 その結果、いくつかの再生個体において、RLK遺伝子の配列が編集されていることが確認され、編集系統が選抜された。選抜されたRLK編集系統をC74系統と命名した。
 選抜した編集系統の個体(T0)を隔離温室内で生育し、自家受粉させて種子を回収した。トランスジェニック後代(T1)を回収した。T1の種子をさらに自家受粉させて後代種子を回収したものをT2世代とした。
 [実施例4]
<TSWV接種試験>
・方法
 上記実施例3で得た、RLK編集系統であるC74系統のT2世代を播種し、10cm程のトマト実生苗を得た。得られたトマト実生苗に対して、TSWV感染葉磨砕粗汁液を機械的接種した。TSWV感染葉の磨砕粗汁液(ウイルス粗汁液とも言う)としては、Nicotiana rustica(タバコ)にTSWVを接種し増殖させ、壊疽斑の出始めた感染葉を採取して-80℃で凍結しておいたもの0.5gを0.05Mリン酸バッファー(pH7.0、10mM亜硫酸ナトリウムを含む)中で磨砕し、10~20倍に希釈したものを用いた。また、機械的接種は、ウイルス粗汁液を綿棒に染み込ませ、セライト(No.454)とともにトマトの第1又は第2の本葉に擦りつけることで行った。対照の植物には、変異前の野生種(WT)である品種S8を用いた。
 ウイルス粗汁液の接種から15~30日後に、接種葉及び上位葉のモザイク、黄化、えそ症状を陽性と判定する、目視による病徴観察を行った。
 さらに、生長点付近の葉(各0.1g程度)をサンプリングして、PLANT TOTAL RNA mini kit(VIOGENE社製)を用いてそこから全RNAを抽出した。全RNAをテンプレートとして、Primescript II 1ST Strand cDNA synthesis kit(タカラバイオ社製)により逆転写でcDNAを合成し、さらにトスポ属ウイルスに共通する配列に基づく、トスポ属ウイルス検出用プライマー3(5’-CTGTARTGKTCCATWGCARCA(配列番号6))及びプライマー4(5’-GAYATGACYTTCMGAAGRCTTGAT(配列番号7))、ならびにGO Taq Green master polymerase(プロメガ社製)を用いて、PCR(条件:95℃2分:94℃30秒-56℃40秒-72℃45秒、31サイクル:72℃3分)を行い、増幅産物を得た。得られた増幅産物を1%アガロースゲル電気泳動に供試し、TSWVの感染を確認した。
 上記接種試験は3回繰り返した。尚、1回目の試験では、接種25日後に病徴観察及びRT-PCRを実施し、2回目の試験では、接種27日後に病徴観察及びRT-PCRを実施し、3回目の試験では、接種25日後に病徴観察のみを実施した。
・結果
 図2に、C74系統及び対照である変異を導入していない野生型トマトの1回目の試験のRT-PCRの結果を示した。図中のMは分子量マーカー、Pは陽性対照、Nは陰性対照であり、Mより左側のレーンがC74系統、右側が対照であり、対照としては、病徴のないものを中心に、病徴の見られたものも任意に分析した。図2においては、上側のバンドがウイルスの存在を示す。また、図3に、C74系統及び対照である変異を導入していない野生型トマトの2回目の試験のRT-PCRの結果を示した。図中のMは分子量マーカー、Pは陽性対照、Nは陰性対照、MoはMock(バッファのみ接種)であり、レーンの下に「C74」と記載されているのがC74系統、「Cont」と記載されているのが対照である。上のバンドがウイルスの存在を示す。
 検査した植物個体数(供試本数)に対する、病徴(葉のモザイク、黄化、えそ症状等)を示した植物個体及びPCRで陽性を示した植物個体数の合計の割合を、罹病率とし、図4に示した。図中の()内の数字は、供試本数である。図4から明らかなように、対照の罹病率は0.5超~0.8と高いが、RFL編集系統C74の罹病率は高くても0.4未満と低かった。尚、ここで実施した試験方法は、自然界の虫媒によるウイルス感染よりも感染圧が高い方法であるため、本試験における罹病率0.4未満は、自然界においてウイルス感染が生じないと推定される値である。
 [実施例5]
<変異パターンの確認>
・方法
 C74系統のT1世代から本葉0.1gを採取し、MonoFas植物DNA抽出キット(GLサイエンス社製)を用いて全DNAを抽出した。次に、抽出したDNAをテンプレートとし、RLK検出用のプライマー1(5’-TTAACACGTCTGCGTAACCTC(配列番号4))及びプライマー2(5’-CCGGTGAAGGTATTGTAGTATCC(配列番号5))、ならびにKOD FX-Neo(タカラバイオ社製)を用いて、「95℃2分:98℃10秒-60℃20秒-68℃15秒、31サイクル:72℃3分」の条件でPCRを行い、増幅産物を得た。TAクローニングキットTArgetClone(東洋紡社製)を用いて、増幅産物をクローニングプラスミドにクローニングし、増幅産物の塩基配列をシーケンシングにより決定した。
・結果
 増幅した領域から2種の変異パターンが検出された、1種はC74-1系統の5塩基欠損であり、もう1種はC74-7系統の1塩基挿入である。確認した塩基配列を野生型の塩基配列と共に、図5の(A)及び(B)に示した。図5中の「RLKwt」が野生型、その下は各クローンの配列で有り、白い箱で示した“CCG”がPAM配列であり、グレーの箱で示した部分がガイドRNA認識20塩基である(但し、実際のガイドRNAはこの配列の相補鎖(逆鎖)を認識する)。また、図6には、野生型、C74-1系統の変異領域(変異領域R-A)及びC74-7系統の変異領域(変異領域R-B)を並べて示した。図中の下線は変異部を表し、「・」は塩基の不在(欠損)を表す。
 本出願は、2019年12月24日出願の特願2019-232766に基づく優先権を主張する。当該出願明細書に記載された内容は、全て本明細書に援用される。
 本発明は、TSWVの感染を阻害する性質、感染後のTSWVの増殖を抑制する性質及び/又はTSWVの感染症状の発現を抑制する性質を有する、TSWV抵抗性ナス科植物、ナス科植物細胞、及びナス科植物の作出方法を提供する。本発明によって、TSWV感染によるナス科植物の収穫量の低減といった、主に農業分野における問題を解消することができる。
 配列番号1: RLK遺伝子(Solyc02g091840)のcDNA配列であり、1番~2818番塩基がエクソン1であり、790番~809番塩基が標的配列である。
 配列番号2: RLK遺伝子のエクソン1であり、790番~809番塩基が標的配列である。
 配列番号3: RLK遺伝子のエクソン1内の標的配列
 配列番号4: RLK遺伝子検出用のプライマー1
 配列番号5: RLK遺伝子検出用のプライマー2
 配列番号6: トスポウイルス属検出用のプライマー3
 配列番号7: トスポウイルス属検出用のプライマー4
 配列番号8: RLK遺伝子の変異領域R-A
 配列番号9: RLK遺伝子の変異領域R-B
 配列番号10: 変異RLK遺伝子のcDNA配列であり、790番~804番塩基が変異領域R-Aである。
 配列番号11: 変異RLK遺伝子のcDNA配列であり、790番~810番塩基が変異領域R-Bである。

Claims (26)

  1.  受容体様キナーゼRLK遺伝子及びその相同遺伝子からなる群より選ばれる少なくとも1種の遺伝子が変異を有し、
     前記変異によって、前記変異を有する前記遺伝子の発現が抑制されているか、又は前記変異を有する前記遺伝子のコードするタンパク質がトマト黄化えそウイルスに対して非機能的であり、
     トマト黄化えそウイルス抵抗性を有する、ナス科植物。
  2.  前記変異が、ゲノム編集技術によってゲノム内の遺伝子に導入されたものである、請求項1に記載のナス科植物。
  3.  前記変異が、下記(a)~(d)の少なくとも1種である、請求項1又は2に記載のナス科植物。
     (a)フレームシフト変異、
     (b)ナンセンス変異、
     (c)連続又は非連続の3n塩基(n=1~7)の欠損、及び
     (d)1又は複数の塩基の置換、欠失、付加、及び/又は挿入。
  4.  前記受容体様キナーゼRLK遺伝子又はその相同遺伝子に変異を有する、請求項1~3のいずれか一項に記載のナス科植物。
  5.  前記受容体様キナーゼRLK遺伝子は、そのcDNA配列が配列番号1に示される塩基配列を含むものであり、
     前記受容体様キナーゼRLK遺伝子の相同遺伝子は、そのcDNA配列が配列番号1に示される塩基配列に対して85%以上の配列相同性を有する塩基配列を含むものである、請求項4に記載のナス科植物。
  6.  前記受容体様キナーゼRLK遺伝子又はその相同遺伝子内の、配列番号3に示される塩基配列に対応する領域に変異を有する、請求項5に記載のナス科植物。
  7.  前記配列番号3に示される塩基配列に対応する領域が、配列番号8又は配列番号9に示される塩基配列に変異している、請求項6に記載のナス科植物。
  8.  トマトである、請求項1~7のいずれか一項に記載のナス科植物。
  9.  請求項1~8のいずれか一項に記載のナス科植物の部分。
  10.  果実である、請求項9に記載のナス科植物の部分。
  11.  種子である、請求項9に記載のナス科植物の部分。
  12.  請求項1~11のいずれか一項に記載のナス科植物又はその部分の加工品。
  13.  食用である、請求項12に記載の加工品。
  14.  受容体様キナーゼRLK遺伝子及びその相同遺伝子からなる群より選ばれる少なくとも1種の遺伝子が変異を有し、
     前記変異によって、前記変異を有する前記遺伝子の発現が抑制されているか、又は前記変異を有する前記遺伝子のコードするタンパク質がトマト黄化えそウイルスに対して非機能的であり、
     トマト黄化えそウイルス抵抗性を有する、ナス科植物細胞。
  15.  ナス科植物がトマトである、請求項14に記載のナス科植物細胞。
  16.  請求項14又は15に記載のナス科植物細胞を有し、トマト黄化えそウイルス抵抗性を有する、ナス科植物及びその部分。
  17.  受容体様キナーゼRLK遺伝子及びその相同遺伝子からなる群より選ばれる少なくとも1種の遺伝子を選択する工程と、
     ナス科植物のゲノム内の選択した遺伝子に対して、前記選択した遺伝子の発現が抑制される変異、又は前記選択した遺伝子のコードするタンパク質がトマト黄化えそウイルスに対して非機能的になる変異を導入する工程と、
     トマト黄化えそウイルスに対して抵抗性を有するナス科植物を選別する工程とを含む、トマト黄化えそウイルス抵抗性ナス科植物の作出方法。
  18.  前記変異を、ゲノム編集技術によってゲノム内の遺伝子に導入する、請求項17に記載のトマト黄化えそウイルス抵抗性ナス科植物の作出方法。
  19.  前記変異が、下記(a)~(d)の少なくとも1種である、請求項17又は18に記載のトマト黄化えそウイルス抵抗性ナス科植物の作出方法。
     (a)フレームシフト変異、
     (b)ナンセンス変異、
     (c)連続又は非連続の3n塩基(n=1~7)の欠損、及び
     (d)1又は複数の塩基の置換、欠失、付加、及び/又は挿入。
  20.  前記受容体様キナーゼRLK遺伝子又はその相同遺伝子に変異を導入する、請求項17~19のいずれか一項に記載のトマト黄化えそウイルス抵抗性ナス科植物の作出方法。
  21.  前記受容体様キナーゼRLK遺伝子は、そのcDNA配列が配列番号1に示される塩基配列を含むものであり、
     前記受容体様キナーゼRLK遺伝子の相同遺伝子は、そのcDNA配列が配列番号1に示される塩基配列に対して85%以上の配列相同性を有する塩基配列を含むものである、請求項20に記載のトマト黄化えそウイルス抵抗性ナス科植物の作出方法。
  22.  前記受容体様キナーゼRLK遺伝子又はその相同遺伝子内の、配列番号3に示される塩基配列に対応する領域に変異を導入する、請求項21に記載のトマト黄化えそウイルス抵抗性ナス科植物の作出方法。
  23.  前記配列番号3に示される塩基配列に対応する領域が、配列番号8又は配列番号9に示される塩基配列になるように変異を導入する、請求項22に記載のトマト黄化えそウイルス抵抗性ナス科植物の作出方法。
  24.  請求項17~23のいずれか一項に記載の作出方法によって得られた、トマト黄化えそウイルス抵抗性ナス科植物。
  25.  請求項17~23のいずれか一項に記載の作出方法によって得られたトマト黄化えそウイルス抵抗性ナス科植物又はその後代を、自家受粉又は他家受粉させる工程を含む、トマト黄化えそウイルス抵抗性ナス科植物の育種後代の作出方法。
  26.  請求項25に記載の作出方法によって得られた、トマト黄化えそウイルス抵抗性ナス科植物。
PCT/JP2020/045381 2019-12-24 2020-12-07 トマト黄化えそウイルス抵抗性のナス科植物、ナス科植物細胞、及びナス科植物の作出方法 WO2021131628A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080086530.6A CN114828621A (zh) 2019-12-24 2020-12-07 具有番茄斑萎病毒抗性的茄科植物、茄科植物细胞及茄科植物的制作方法
JP2021567161A JPWO2021131628A1 (ja) 2019-12-24 2020-12-07
EP20907296.6A EP4082332A4 (en) 2019-12-24 2020-12-07 SOLANACEOUS PLANT AND SOLANACEOUS PLANT CELL HAVING RESISTANCE TO TOMATO BLANK DISEASE VIRUS, AND METHOD FOR PRODUCING SOLANACEOUS PLANT
US17/788,160 US20230030612A1 (en) 2019-12-24 2020-12-07 Solanaceous plant and solanaceous plant cell having resistance to tomato spotted wilt virus, and method for producing solanaceous plant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-232766 2019-12-24
JP2019232766 2019-12-24

Publications (1)

Publication Number Publication Date
WO2021131628A1 true WO2021131628A1 (ja) 2021-07-01

Family

ID=76573973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/045381 WO2021131628A1 (ja) 2019-12-24 2020-12-07 トマト黄化えそウイルス抵抗性のナス科植物、ナス科植物細胞、及びナス科植物の作出方法

Country Status (5)

Country Link
US (1) US20230030612A1 (ja)
EP (1) EP4082332A4 (ja)
JP (1) JPWO2021131628A1 (ja)
CN (1) CN114828621A (ja)
WO (1) WO2021131628A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116426567B (zh) * 2023-03-29 2023-11-03 潍坊科技学院 一种n基因及其蛋白在抗番茄黄化曲叶病毒中的应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0690758A (ja) 1992-02-06 1994-04-05 Max Planck Ges Foerderung Wissenschaft Ev ウイルス耐性を得るためのrnaおよびdna分子
JPH06343469A (ja) 1993-05-28 1994-12-20 Bayer Ag デオキシリボ核酸
WO2013010064A1 (en) * 2011-07-13 2013-01-17 The Curators Of The University Of Missouri Crop resistance to nematodes

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102113167B1 (ko) * 2012-03-02 2020-05-21 넌헴스 비.브이. Tswv 저항성 캅시쿰 식물
WO2015090468A1 (en) * 2013-12-20 2015-06-25 ISI Sementi s.p.a. Isolated nucleotide sequence from solanum lycopersicum for improved resistance to tomato spotted wilt virus, tswv.
WO2020111149A1 (ja) * 2018-11-28 2020-06-04 キッコーマン株式会社 トマトに黄化葉巻様症状を呈するベゴモウイルス属ウイルスに抵抗性のナス科植物、ナス科植物細胞、およびナス科植物の作出方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0690758A (ja) 1992-02-06 1994-04-05 Max Planck Ges Foerderung Wissenschaft Ev ウイルス耐性を得るためのrnaおよびdna分子
JPH06343469A (ja) 1993-05-28 1994-12-20 Bayer Ag デオキシリボ核酸
WO2013010064A1 (en) * 2011-07-13 2013-01-17 The Curators Of The University Of Missouri Crop resistance to nematodes

Non-Patent Citations (15)

* Cited by examiner, † Cited by third party
Title
"Keishitutenkan Purotokoru <Shokubutu-hen> (Protocols for plant transformation", 2012, KAGAKU-DOJIN PUBLISHING COMPANY, INC
ABEL ET AL., SCIENCE, vol. 232, no. 4751, 9 May 1986 (1986-05-09), pages 738 - 743
ADKINS, MOLECULAR PLANT PATHOLOGY, vol. 1, no. 3, 2000, pages 151 - 157
BROMMONSCHENKEL ET AL., MOL GEN GENET, vol. 256, 1997, pages 121 - 126
FRIEDRICH FUSER ET AL., THE PLANT JOURNAL, vol. 79, 2014, pages 348 - 359
GONSALVES, ANNU. REV. PHYTOPATHOL., vol. 36, 1998, pages 415 - 437
JEFFERSON R.A. ET AL., EMBO J., vol. 6, 1987, pages 3901
LO' PEZ ET AL., JOURNAL OF GENERAL VIROLOGY, vol. 92, 2011, pages 210 - 215
OKUDA, JOURNAL OF PHYTOPATHOLOGICAL SOCIETY OF JAPAN, vol. 82, 2016, pages 169 - 184
QUEZADA, E. H. ET AL.: "Cysteine-rich receptor- like kinase gene family identification in the phaseolus genome and comparative analysis of their expression profiles specific to mycorrhizal and rhizobial symbiosis", GENES, vol. 10, no. 1, 17 January 2019 (2019-01-17), pages 1 - 21, XP055837839, DOI: 10.3390/genes10010059 *
RYO OOSAWAHIROSHI EZURA: "Understanding New Plant Breeding Techniques - NBT (New plant breeding techniques", 2013, INTERNATIONAL ACADEMIC PUBLISHING CO., LTD., article "Atarashii Shokubutu Ikushu Gijyutu wo Rikaisiyou - NBT (New plant breeding techniques"
SCHOLTHOF ET AL., MOLECULAR PLANT PATHOLOGY, vol. 12, no. 9, 2011, pages 938 - 954
See also references of EP4082332A4
SUN H.J. ET AL., PLANT CELL PHYSIOL., vol. 47, 2006, pages 426
TSUDA, UIRUSU (VIRUS, vol. 49, no. 2, 1999, pages 119 - 130

Also Published As

Publication number Publication date
CN114828621A (zh) 2022-07-29
EP4082332A4 (en) 2024-01-24
US20230030612A1 (en) 2023-02-02
EP4082332A1 (en) 2022-11-02
JPWO2021131628A1 (ja) 2021-07-01

Similar Documents

Publication Publication Date Title
US11299746B2 (en) Disease resistant pepper plants
US20190309319A1 (en) Phytophthora resistant plants belonging to the solanaceae family
Sidorova et al. Agrobacterium-mediated transformation of Russian commercial plum cv.“Startovaya”(Prunus domestica L.) with virus-derived hairpin RNA construct confers durable resistance to PPV infection in mature plants
US20220403409A1 (en) CCA Gene For Virus Resistance
Dunemann et al. Using CRISPR/Cas9 to produce haploid inducers of carrot through targeted mutations of centromeric histone H3 (CENH3)
JP7282382B2 (ja) ゲノム編集植物の生産方法
CN113163728B (zh) 菜豆金色花叶病毒属病毒抗性番茄细胞的制作方法
Lee et al. CRISPR/Cas9-mediated gene editing to confer turnip mosaic virus (TuMV) resistance in Chinese cabbage (Brassica rapa)
Fidan et al. Knockout of elF4E using CRISPR/Cas9 for large-scale production of resistant cucumber cultivar against WMV, ZYMV, and PRSV
WO2021131628A1 (ja) トマト黄化えそウイルス抵抗性のナス科植物、ナス科植物細胞、及びナス科植物の作出方法
Schaart et al. Novel plant breeding techniques. Consequences of new genetic modification-based plant breeding techniques in comparison to conventional plant breeding
KR102517095B1 (ko) 바이러스 저항성 식물 및 그의 작출 방법
WO2022186197A1 (ja) トマトに黄化葉巻様症状を呈するベゴモウイルス属ウイルスに抵抗性のナス科植物、ナス科植物細胞、およびナス科植物の作出方法
Flachowsky et al. Gene transfer as an important approach to resistance breeding in apple
Schaart et al. Novel plant breeding techniques
CN115216486B (zh) 一种负链rna病毒载体及无需转化的植物基因组编辑方法
Elegba Engineering Cassava Mosaic Disease (CMD) Resistance in a Ghanaian Cassava Cultivar
US20150259700A1 (en) Transgenic Plants With RNA Interference-Mediated Resistance Against Root-Knot Nematodes
Zhong et al. Mutation of GmDMP genes triggers haploid induction in soybean
EP4186917A1 (en) Tobamovirus resistant plants

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907296

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021567161

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020907296

Country of ref document: EP

Effective date: 20220725