US20160319505A1 - Soil conditioning apparatus and method - Google Patents

Soil conditioning apparatus and method Download PDF

Info

Publication number
US20160319505A1
US20160319505A1 US15/141,592 US201615141592A US2016319505A1 US 20160319505 A1 US20160319505 A1 US 20160319505A1 US 201615141592 A US201615141592 A US 201615141592A US 2016319505 A1 US2016319505 A1 US 2016319505A1
Authority
US
United States
Prior art keywords
structural frame
conditioning apparatus
soil
mixer
burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US15/141,592
Other versions
US10526760B2 (en
Inventor
Charles Hensley
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CA2984397A priority Critical patent/CA2984397C/en
Priority to US15/141,592 priority patent/US10526760B2/en
Priority to PCT/US2016/029869 priority patent/WO2016176498A1/en
Publication of US20160319505A1 publication Critical patent/US20160319505A1/en
Priority to US16/733,674 priority patent/US10689822B2/en
Application granted granted Critical
Publication of US10526760B2 publication Critical patent/US10526760B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/11Improving or preserving soil or rock, e.g. preserving permafrost soil by thermal, electrical or electro-chemical means

Definitions

  • the present invention is directed to a method and apparatus for quickly and effectively conditioning soil to make it workable for construction projects and other work projects. More specifically the present invention changes the moisture content of soil at a work site.
  • Construction projects that cover an area of ground require a stable foundation. Construction projects that fit into this class of projects include roads, airport runways, warehouses, and earth works such as levees, dams, and landscapes having steep grades. Other construction projects have this need as well. A subsidence of the earth beneath all of these types of projects causes immense damage and can be catastrophic to the point of risking lives, so the stable base is a must.
  • the ground is compacted to form a layer of solid, stable, earth to support the structure over the life of the structure.
  • This compaction may take multiple iterations where compacting equipment passes over an area to compact the soil.
  • soil in place is compacted and then additional soil is brought to the location and compacted on top of the original, compacted soil.
  • the process necessarily requires high repetitions of the process of adding soil and compacting.
  • the added soil has specific characteristics for specific properties. Clay, for example, is frequently used as a constituent ingredient for its properties.
  • the soil compaction process is highly sensitive to the moisture content level in the soil. If the moisture content is too high, the compaction process does not work. This can essentially halt major construction projects until the issue is addressed which results in huge costs in time and money.
  • One method is removing earth from a location and spreading it for drying. Once the spread earth is sufficiently dry, it is moved back to the location and compacted.
  • Another method is mixing in other components such as lime, etc. to reduce the moisture content. The different methods are not mutually exclusive. Once the moisture content of the soil is tested and meets the required low moisture content, the compaction process can begin.
  • Embodiments of the present invention provide an additional method for controlling the moisture content of soil at a construction site.
  • Embodiments of the present invention create a flow of air and add heat to the air by burning fuel. At least some embodiments burn the fuel directly in the flow of air.
  • the heated air is directed toward the ground and a soil mixer.
  • the soil mixer churns the soil to expose the soil to the heated air.
  • the soil is mixed to the depth reachable by the mixer and in some embodiments, the mixer will propel the soil up into the air into the stream of heated air which effectively exposes a greater surface area of the soil to the heated air.
  • Some embodiments of the soil conditioner utilize a drying chamber to contain the mixing process.
  • the mixer is powered by the vehicle towing the soil conditioner. This can be accomplished by a power-take-off shaft on the towing vehicle. Other power requirements onboard the soil conditioner may be satisfied by an onboard generator for controls and for the blowers creating the flow of air.
  • Embodiments of the soil conditioner can condition the soil in the location where the soil is to be used and compacted. This removes the need for spreading the soil for drying. Multiple passes of the soil conditioner can be used when needed.
  • the mixer of the soil conditioner can also facilitate the mixing of additives to the soil.
  • FIG. 1 shows an embodiment of the soil conditioning apparatus invention of the present application being towed by a vehicle.
  • FIG. 2 is a left side perspective view of an embodiment of the soil conditioning apparatus invention of the present application.
  • FIG. 3 is a right side perspective view of an embodiment of the soil conditioning apparatus invention of the present application.
  • FIG. 4 is a rear detailed view of elements of an embodiment of the soil conditioning apparatus invention of the present application.
  • FIG. 5 is a rear perspective view of an embodiment of the soil conditioning apparatus invention of the present application.
  • FIG. 6 is a lower rear view of an embodiment of the soil conditioning apparatus invention of the present application.
  • FIG. 7 is an upper perspective view of elements of an embodiment of the soil conditioning apparatus invention of the present application.
  • FIG. 8 is a front perspective view of elements of an embodiment of the soil conditioning apparatus invention of the present application.
  • FIG. 9 is a front perspective view of an embodiment of the conditioning apparatus invention of the present application with covers removed.
  • FIG. 10 is a front perspective view of an embodiment of the conditioning apparatus invention of the present application showing a power-take-off connector.
  • FIG. 11 is a front perspective view of an embodiment of the conditioning apparatus invention of the present application showing a drive shaft driven by a power-take-off connector.
  • FIG. 12 is a rear perspective view of an embodiment of the soil conditioning apparatus invention of the present application.
  • FIG. 13 is a side view of an embodiment of the soil conditioning apparatus invention of the present application.
  • FIG. 14 is a rear view of an embodiment of the soil conditioning apparatus invention of the present application.
  • FIG. 15 is a side view of an embodiment of the soil conditioning apparatus invention of the present application.
  • FIG. 1 shows an embodiment of the soil conditioning apparatus 10 of the present application being towed by a vehicle 100 .
  • FIG. 2 is a left side perspective view of an embodiment of the soil conditioning apparatus 10 of the present application.
  • Soil conditioning apparatus 10 heats air and directs it toward the ground while mixing soil in the path of the heated air.
  • Control box 20 houses the centralized electrical controls for the apparatus. Some electrical controls are necessarily dispersed about the apparatus as well.
  • Fuel housings 30 enclose fuel tanks or cells which contain the fuel burned to heat the air. Blowers 40 take in air at intakes 41 and move air into burner 42 which ducts toward the ground. Drying chamber 43 encloses the outlet of burner 42 and provides an initial drying space. Cowling 44 further contains heated air close to the ground.
  • wheel 90 supports soil conditioning apparatus 10 on the ground.
  • FIG. 3 is a right side perspective view of an embodiment of the soil conditioning apparatus 10 of the present application.
  • Motors 45 drive blowers 40 .
  • Mixer cover 46 encloses a soil mixer.
  • FIG. 4 is a rear detailed view of elements of an embodiment of soil conditioning apparatus 10 of the present application.
  • Gas pipes 32 provide gas to burner 42 at gas inlets 33 .
  • Thermocouple 21 shuts off the gas to burner 42 if blowers 40 stop.
  • the backside of generator 50 is visible in FIG. 4 .
  • Generator 50 provides the electrical power for motors 45 and the electrical controls of soil conditioner 10 .
  • FIG. 5 is a rear perspective view of an embodiment of the soil conditioning apparatus 10 of the present application.
  • Exit 48 in Cowling 44 directs the air to generally exit at the rear of apparatus 10 .
  • Cowling 44 further contains the activity of the mixer and drying chamber 43 and dampens the turbulent exit of air from drying chamber 43 .
  • Cowling 44 also provides a more extensive area for additional drying of the soil and a zone of further cooling of the heated air before final exit from soil conditioning apparatus 10 .
  • FIG. 6 is a lower rear view of an embodiment of soil conditioning apparatus 10 .
  • soil mixer 60 is visible.
  • soil mixer 60 has a shaft 61 with a series of tines 62 extending from it.
  • tines 62 throw the soil into the air at the exit of burner 42 in drying chamber 43 . If the soil is not already broken up, tines 62 can break up the soil to throw it in the air.
  • mixer drive cover 63 encloses transmission elements which drive shaft 61 of mixer 60 .
  • bearing cap 64 marks the opposite end of shaft 61 of mixer 60 .
  • mixer 60 is driven by a power-take-off shaft (PTO) of the vehicle towing soil conditioner 10 .
  • PTO power-take-off shaft
  • FIG. 7 is an upper perspective view of elements of an embodiment of soil conditioning apparatus 10 .
  • Fuel reservoir 51 contains fuel to power generator 50 .
  • Manifold 34 receives gas lines from several gas tanks and combines them into a single source for burner 42 .
  • FIG. 8 is a front perspective view of elements of an embodiment of soil conditioning apparatus 10 .
  • Internal combustion engine 52 of generator 50 turns the armature of generator 50 to generate the power for motors 45 and other electrical elements of soil conditioner 10 .
  • Upper arm 70 provides the top connection point for a three point hitch of a towing, or carrying, vehicle.
  • FIG. 9 is a front perspective view of an embodiment of soil conditioning apparatus 10 of the present application with covers of fuel housings 30 removed.
  • Fuel tanks 31 hold the fuel for burner 42 .
  • Lower pivots 71 provide the lower connecting points for a three point hitch of a vehicle carrying or towing soil conditioner 10 .
  • FIG. 10 is a front perspective view of an embodiment of the conditioning apparatus 10 of the present application showing power-take-off connector 65 .
  • FIG. 11 is a front perspective view of an embodiment of the conditioning apparatus invention of the present application showing drive shaft 66 driven by power-take-off connector 65 .
  • soil mixer 60 is driven by a PTO shaft on a towing or carrying vehicle.
  • the PTO shaft drives power-take-off connector 65 which turns drive shaft 66 . This powers the whole drive train for mixer 60 .
  • FIG. 12 is a rear perspective view of an embodiment of soil conditioning apparatus 10 of the present application.
  • filters 47 are mounted on blowers 40 .
  • Drying chamber 43 is uncovered, showing the downward curvature of the top wall of drying chamber 43 in the embodiment of FIG. 12 .
  • FIG. 13 is a side view of an embodiment of the soil conditioning apparatus 10 of the present application.
  • Cowling 44 further contains heated air close to the ground and extends between the rear wheels of a self-propelled vehicle.
  • a mobile ground soil conditioning apparatus with a structural frame is carried by a self-propelled vehicle.
  • FIG. 13 further depicts fuel housings 30 and controls 20 located on the front of the self-propelled vehicle with burner 42 above mixer 60 located on the rear of the self-propelled vehicle.
  • FIG. 14 is a rear view of a mobile ground soil conditioning apparatus with a frame, carried by a self-propelled vehicle with cowling 44 extending between the rear wheels of a self-propelled vehicle. Exit 48 depicts where hot air is exhausted from soil conditioning apparatus 10 .
  • FIG. 15 is another side view of an embodiment of the soil conditioning apparatus 10 of the present application.
  • the embodiments of soil conditioner 10 of the figures is pulled along an area of ground that needs to be conditioned for work.
  • Fuel and air are induced into burner 42 and the fuel is combusted to heat the air which passes into drying chamber 43 .
  • Soil mixer 60 mixes the soil beneath drying chamber 43 as soil conditioner 10 moves along the ground which results in reduced moisture in the soil, rendering the soil into a more workable state. This exposes soil as deep beneath the surface as mixer 60 is capable of reaching.
  • mixer 60 propels soil up into the air within drying chamber 43 . When the soil is propelled into the air, greater surface area of pieces of soil are exposed to the heated air.
  • Embodiments of soil conditioner 10 have multiple adjustable parameters to optimize the process. Rate of travel over the ground being conditioned can be adjusted. The rate of air flow into burner 42 and drying chamber 43 can be adjusted by varying the speed of motors 45 . The heat added to the air can be adjusted by the amount fuel introduced into burner 42 . The rate of mixing of the soil can be varied by adjusting the rate of turn of mixer 60 . In some embodiments of soil conditioner 10 the rate of mixer 60 is controlled by varying the rate of turn of the PTO of a towing vehicle.
  • the fuel tanks could be moved to a trailer pulled behind a frame carrying the blowers, burner, mixer, and drying chamber. Moving the tanks to a separate trailer would distribute the weight and make the frame carrying the working elements of the soil conditioner lighter. It would also make the fuel source portion of the apparatus interchangeable which is helpful for apparatuses working in the field.
  • the apparatus and method could be adapted to soil stabilizers such as those made by Caterpillar, for example CAT SS-250, CAT RM-500 or built upon a self propelled chassis to create a vehicle dedicated to soil conditioning.
  • soil stabilizers such as those made by Caterpillar, for example CAT SS-250, CAT RM-500 or built upon a self propelled chassis to create a vehicle dedicated to soil conditioning.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Agronomy & Crop Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Processing Of Solid Wastes (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

A soil conditioner apparatus and method condition soil for compaction. The soil conditioner apparatus creates a heated stream of air directed toward the ground as the conditioner moves along the ground. A mixer on the conditioner mixes soil in the path of the heated air to dry the soil. Some embodiments of the mixer will propel the soil into the air in the stream of heated air. The conditioner can decrease moisture in the soil in the location where the soil will be compacted. The mixer can also mix added soil and other additives to the soil in location. The soil conditioner apparatus may take the form of an apparatus towed by another vehicle, a set of towed apparatuses, an apparatus carried by another vehicle, or a self propelled vehicle having the operational elements of the soil conditioner.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application claims the priority benefit of U.S. Provisional Patent Application Ser. No. 62/154,050, “Soil Conditioning Apparatus,” filed Apr. 28, 2015, which is hereby expressly incorporated by reference herein in its entirety.
  • FIELD OF THE INVENTION
  • The present invention is directed to a method and apparatus for quickly and effectively conditioning soil to make it workable for construction projects and other work projects. More specifically the present invention changes the moisture content of soil at a work site.
  • BACKGROUND OF THE INVENTION
  • Similar to buildings that require a stable foundation to support the building for the duration of the life of the building, construction projects that cover an area of ground require a stable foundation. Construction projects that fit into this class of projects include roads, airport runways, warehouses, and earth works such as levees, dams, and landscapes having steep grades. Other construction projects have this need as well. A subsidence of the earth beneath all of these types of projects causes immense damage and can be catastrophic to the point of risking lives, so the stable base is a must.
  • To establish this stable base at large area construction sites, the ground is compacted to form a layer of solid, stable, earth to support the structure over the life of the structure. This compaction may take multiple iterations where compacting equipment passes over an area to compact the soil. In some cases, soil in place is compacted and then additional soil is brought to the location and compacted on top of the original, compacted soil. For levees and dams that require a build-up of earth, the process necessarily requires high repetitions of the process of adding soil and compacting. In many cases, the added soil has specific characteristics for specific properties. Clay, for example, is frequently used as a constituent ingredient for its properties.
  • The soil compaction process is highly sensitive to the moisture content level in the soil. If the moisture content is too high, the compaction process does not work. This can essentially halt major construction projects until the issue is addressed which results in huge costs in time and money. There currently are methods for adjusting, i.e. removing, moisture from soil at construction sites. One method is removing earth from a location and spreading it for drying. Once the spread earth is sufficiently dry, it is moved back to the location and compacted. Another method is mixing in other components such as lime, etc. to reduce the moisture content. The different methods are not mutually exclusive. Once the moisture content of the soil is tested and meets the required low moisture content, the compaction process can begin.
  • SUMMARY OF THE INVENTION
  • Embodiments of the present invention provide an additional method for controlling the moisture content of soil at a construction site. Embodiments of the present invention create a flow of air and add heat to the air by burning fuel. At least some embodiments burn the fuel directly in the flow of air. The heated air is directed toward the ground and a soil mixer. The soil mixer churns the soil to expose the soil to the heated air. The soil is mixed to the depth reachable by the mixer and in some embodiments, the mixer will propel the soil up into the air into the stream of heated air which effectively exposes a greater surface area of the soil to the heated air. Some embodiments of the soil conditioner utilize a drying chamber to contain the mixing process. In some embodiments of the soil conditioner, the mixer is powered by the vehicle towing the soil conditioner. This can be accomplished by a power-take-off shaft on the towing vehicle. Other power requirements onboard the soil conditioner may be satisfied by an onboard generator for controls and for the blowers creating the flow of air.
  • Embodiments of the soil conditioner can condition the soil in the location where the soil is to be used and compacted. This removes the need for spreading the soil for drying. Multiple passes of the soil conditioner can be used when needed. The mixer of the soil conditioner can also facilitate the mixing of additives to the soil.
  • Before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and to the arrangement of the components set forth in the following description or illustrated in the figures. The invention is capable of other embodiments and of being practiced and carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein are for the purposes of description and should not be regarded as limiting.
  • Accordingly, those skilled in the art will appreciate that the conception upon which this invention is based may readily be utilized as the basis for other structures, methods, and systems for carrying out the purposes of the present invention. It is important, therefore, that the specification be regarded as including such equivalent constructions insofar as they do not depart from the spirit of the present invention.
  • Furthermore, the purpose of the foregoing abstract is to enable the U.S. Patent and Trademark Office and the public generally, and especially including the practitioners in the art who are not familiar with patent or legal terms or phraseology, to determine quickly from a cursory inspection, the nature and essence of the technical disclosure of the application. The Abstract is neither intended to define the invention of the application nor is it intended to be limiting to the scope of the invention in any way.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Additional utility and features of this invention will become more fully apparent to those skilled in the art by reference to the following drawings.
  • FIG. 1 shows an embodiment of the soil conditioning apparatus invention of the present application being towed by a vehicle.
  • FIG. 2 is a left side perspective view of an embodiment of the soil conditioning apparatus invention of the present application.
  • FIG. 3 is a right side perspective view of an embodiment of the soil conditioning apparatus invention of the present application.
  • FIG. 4 is a rear detailed view of elements of an embodiment of the soil conditioning apparatus invention of the present application.
  • FIG. 5 is a rear perspective view of an embodiment of the soil conditioning apparatus invention of the present application.
  • FIG. 6 is a lower rear view of an embodiment of the soil conditioning apparatus invention of the present application.
  • FIG. 7 is an upper perspective view of elements of an embodiment of the soil conditioning apparatus invention of the present application.
  • FIG. 8 is a front perspective view of elements of an embodiment of the soil conditioning apparatus invention of the present application.
  • FIG. 9 is a front perspective view of an embodiment of the conditioning apparatus invention of the present application with covers removed.
  • FIG. 10 is a front perspective view of an embodiment of the conditioning apparatus invention of the present application showing a power-take-off connector.
  • FIG. 11 is a front perspective view of an embodiment of the conditioning apparatus invention of the present application showing a drive shaft driven by a power-take-off connector.
  • FIG. 12 is a rear perspective view of an embodiment of the soil conditioning apparatus invention of the present application.
  • FIG. 13 is a side view of an embodiment of the soil conditioning apparatus invention of the present application.
  • FIG. 14 is a rear view of an embodiment of the soil conditioning apparatus invention of the present application.
  • FIG. 15 is a side view of an embodiment of the soil conditioning apparatus invention of the present application.
  • DETAILED DESCRIPTION OF EMBODIMENTS
  • FIG. 1 shows an embodiment of the soil conditioning apparatus 10 of the present application being towed by a vehicle 100. FIG. 2 is a left side perspective view of an embodiment of the soil conditioning apparatus 10 of the present application. Soil conditioning apparatus 10 heats air and directs it toward the ground while mixing soil in the path of the heated air. Control box 20 houses the centralized electrical controls for the apparatus. Some electrical controls are necessarily dispersed about the apparatus as well. Fuel housings 30 enclose fuel tanks or cells which contain the fuel burned to heat the air. Blowers 40 take in air at intakes 41 and move air into burner 42 which ducts toward the ground. Drying chamber 43 encloses the outlet of burner 42 and provides an initial drying space. Cowling 44 further contains heated air close to the ground. In this embodiment, wheel 90 supports soil conditioning apparatus 10 on the ground.
  • FIG. 3 is a right side perspective view of an embodiment of the soil conditioning apparatus 10 of the present application. Motors 45 drive blowers 40. Mixer cover 46 encloses a soil mixer.
  • FIG. 4 is a rear detailed view of elements of an embodiment of soil conditioning apparatus 10 of the present application. Gas pipes 32 provide gas to burner 42 at gas inlets 33. Thermocouple 21 shuts off the gas to burner 42 if blowers 40 stop. The backside of generator 50 is visible in FIG. 4. Generator 50 provides the electrical power for motors 45 and the electrical controls of soil conditioner 10.
  • FIG. 5 is a rear perspective view of an embodiment of the soil conditioning apparatus 10 of the present application. Exit 48 in Cowling 44 directs the air to generally exit at the rear of apparatus 10. Cowling 44 further contains the activity of the mixer and drying chamber 43 and dampens the turbulent exit of air from drying chamber 43. Cowling 44 also provides a more extensive area for additional drying of the soil and a zone of further cooling of the heated air before final exit from soil conditioning apparatus 10.
  • FIG. 6 is a lower rear view of an embodiment of soil conditioning apparatus 10. In this view, soil mixer 60 is visible. In the embodiment of FIG. 6 soil mixer 60 has a shaft 61 with a series of tines 62 extending from it. As mixer 60 rotates, tines 62 throw the soil into the air at the exit of burner 42 in drying chamber 43. If the soil is not already broken up, tines 62 can break up the soil to throw it in the air. As the soil is thrown up through drying chamber 43, a high proportion of moisture is removed from the soil. Returning to FIG. 2, mixer drive cover 63 encloses transmission elements which drive shaft 61 of mixer 60. Returning to FIG. 3, bearing cap 64 marks the opposite end of shaft 61 of mixer 60. In some embodiments of soil conditioner 10, mixer 60 is driven by a power-take-off shaft (PTO) of the vehicle towing soil conditioner 10.
  • FIG. 7 is an upper perspective view of elements of an embodiment of soil conditioning apparatus 10. Fuel reservoir 51 contains fuel to power generator 50. Manifold 34 receives gas lines from several gas tanks and combines them into a single source for burner 42. FIG. 8 is a front perspective view of elements of an embodiment of soil conditioning apparatus 10. Internal combustion engine 52 of generator 50 turns the armature of generator 50 to generate the power for motors 45 and other electrical elements of soil conditioner 10. Upper arm 70 provides the top connection point for a three point hitch of a towing, or carrying, vehicle. FIG. 9 is a front perspective view of an embodiment of soil conditioning apparatus 10 of the present application with covers of fuel housings 30 removed. Fuel tanks 31 hold the fuel for burner 42. Lower pivots 71 provide the lower connecting points for a three point hitch of a vehicle carrying or towing soil conditioner 10.
  • FIG. 10 is a front perspective view of an embodiment of the conditioning apparatus 10 of the present application showing power-take-off connector 65. FIG. 11 is a front perspective view of an embodiment of the conditioning apparatus invention of the present application showing drive shaft 66 driven by power-take-off connector 65. In some embodiments of soil conditioner 10, soil mixer 60 is driven by a PTO shaft on a towing or carrying vehicle. The PTO shaft drives power-take-off connector 65 which turns drive shaft 66. This powers the whole drive train for mixer 60.
  • FIG. 12 is a rear perspective view of an embodiment of soil conditioning apparatus 10 of the present application. In FIG. 12, filters 47 are mounted on blowers 40. Drying chamber 43 is uncovered, showing the downward curvature of the top wall of drying chamber 43 in the embodiment of FIG. 12.
  • FIG. 13 is a side view of an embodiment of the soil conditioning apparatus 10 of the present application. Cowling 44 further contains heated air close to the ground and extends between the rear wheels of a self-propelled vehicle. In this embodiment, a mobile ground soil conditioning apparatus with a structural frame is carried by a self-propelled vehicle. FIG. 13 further depicts fuel housings 30 and controls 20 located on the front of the self-propelled vehicle with burner 42 above mixer 60 located on the rear of the self-propelled vehicle. FIG. 14 is a rear view of a mobile ground soil conditioning apparatus with a frame, carried by a self-propelled vehicle with cowling 44 extending between the rear wheels of a self-propelled vehicle. Exit 48 depicts where hot air is exhausted from soil conditioning apparatus 10. FIG. 15 is another side view of an embodiment of the soil conditioning apparatus 10 of the present application.
  • In operation, the embodiments of soil conditioner 10 of the figures is pulled along an area of ground that needs to be conditioned for work. Fuel and air are induced into burner 42 and the fuel is combusted to heat the air which passes into drying chamber 43. Soil mixer 60 mixes the soil beneath drying chamber 43 as soil conditioner 10 moves along the ground which results in reduced moisture in the soil, rendering the soil into a more workable state. This exposes soil as deep beneath the surface as mixer 60 is capable of reaching. In some embodiments, mixer 60 propels soil up into the air within drying chamber 43. When the soil is propelled into the air, greater surface area of pieces of soil are exposed to the heated air.
  • Embodiments of soil conditioner 10 have multiple adjustable parameters to optimize the process. Rate of travel over the ground being conditioned can be adjusted. The rate of air flow into burner 42 and drying chamber 43 can be adjusted by varying the speed of motors 45. The heat added to the air can be adjusted by the amount fuel introduced into burner 42. The rate of mixing of the soil can be varied by adjusting the rate of turn of mixer 60. In some embodiments of soil conditioner 10 the rate of mixer 60 is controlled by varying the rate of turn of the PTO of a towing vehicle.
  • While specific embodiments have been discussed for the sake of illustrating the current invention, particulars of the description of the embodiment should not be construed as limiting the invention. The apparatus may vary in many ways while still staying within the scope of this specification. For example, the fuel tanks could be moved to a trailer pulled behind a frame carrying the blowers, burner, mixer, and drying chamber. Moving the tanks to a separate trailer would distribute the weight and make the frame carrying the working elements of the soil conditioner lighter. It would also make the fuel source portion of the apparatus interchangeable which is helpful for apparatuses working in the field. Further, the apparatus and method could be adapted to soil stabilizers such as those made by Caterpillar, for example CAT SS-250, CAT RM-500 or built upon a self propelled chassis to create a vehicle dedicated to soil conditioning. Those well versed in the art can see the wide range of applications for such an apparatus with its high degree of adaptability. The independent adjustment of the air blowers, the burner, the rate of soil mixing, and the rate of conveying the apparatus, allows a wide variation of embodiments and operations for the apparatus and methods.

Claims (22)

I claim:
1. A ground soil conditioning apparatus, comprising:
a blower for blowing non-recirculating air;
a burner for heating said non-recirculating air;
a mixer for mixing soil in said non-recirculating air;
a duct for directing said non-recirculating air onto said mixer; and
a wheel for moving said apparatus.
2. The ground soil conditioning apparatus of claim 1, further comprising;
a drying chamber, said drying chamber receiving said non-recirculating air from said duct, and having an exit for said non-recirculating air away from said duct, said drying chamber being open to the ground.
3. The ground soil conditioning apparatus of claim 1, wherein;
said burner burns fuel directly in the flow of said non-recirculating air.
4. The ground soil conditioning apparatus of claim 1, wherein;
the controls for said burner are powered by an onboard generator.
5. The ground soil conditioning apparatus of claim 4, wherein;
said onboard generator is driven by an internal combustion engine.
6. The ground soil conditioning apparatus of claim 1, wherein;
said mixer is driven by a power take-off
7. The ground soil conditioning apparatus of claim 1, further comprising;
a trailer chassis having wheels and a hitch for attaching to a towing vehicle.
8. The ground soil conditioning apparatus of claim 7, wherein;
the other elements of said apparatus are built upon said chassis.
9. The ground soil conditioning apparatus of claim 1, further comprising;
a structural frame upon which the other elements of said apparatus are built, said structural frame fitting into, or upon a self-propelled vehicle.
10. The ground soil conditioning apparatus of claim 1, further comprising;
a self-propelled vehicle upon which the other elements of said apparatus are built.
11. A method of ground soil conditioning, comprising;
taking air into a blower;
passing said air through a burner which heats said air by burning fuel directly in the flow of said air, wherein the controls for said burner are powered by an onboard generator;
directing a stream of heated air onto said mixer, said mixer propelling ground soil into said stream of air, while moving said blower, burner, and duct along the ground;
wherein, said generator is driven by an internal combustion engine.
12. The method of claim 11, further comprising;
directing said stream of heated air into a drying chamber proximal to the mixer and exhausting the stream of air from said drying chamber.
13. The method of claim 11, wherein;
said mixer is driven by a power take-off
14. The method of claim 11, wherein;
said blower is driven by an internal combustion engine.
15. A mobile ground soil conditioning apparatus comprising:
a structural frame;
a first reservoir of a first fuel mounted on said structural frame;
a second reservoir of a second fuel mounted on said structural frame;
a burner mounted on said structural frame and capable of receiving and burning said first fuel;
electrical controls mounted on said structural frame, said electrical controls controlling the reception and burning of said first fuel by said burner;
a generator mounted on said structural frame, said generator providing electricity to said electrical controls;
a second reservoir of a second fuel mounted on said structural frame;
an internal combustion engine mounted on said structural frame and receiving and consuming said second fuel, said internal combustion engine driving said generator;
a blower mounted on said structural frame, said blower blowing non-recirculating air through said burner, said blower being driven by said internal combustion engine;
a mixer for mixing ground soil with said non-recirculating air;
a duct for directing said non-recirculating air blown through said burner onto said mixer; and, at least one wheel attached to said structural frame and a hitch extending from said structural frame, said hitch being adapted to connect to a self-propelled vehicle propelled by its own internal combustion engine.
16. The mobile ground soil conditioning apparatus of claim 15, further comprising;
a drying chamber, wherein said drying chamber receives said heated non-recirculating air from said duct and directs said non-recirculating air to exit said apparatus.
17. The mobile ground soil conditioning apparatus of claim 15, wherein;
said burner burns fuel directly in the flow of said non-recirculating air.
18. The mobile ground soil conditioning apparatus of claim 15, wherein;
said mixer is driven by a power take-off
19. A mobile ground soil conditioning apparatus comprising:
a structural frame;
a first reservoir of a first fuel mounted on said structural frame;
a second reservoir of a second fuel mounted on said structural frame;
a burner mounted on said structural frame and capable of receiving and burning said first fuel;
electrical controls mounted on said structural frame, said electrical controls controlling the reception and burning of said first fuel by said burner;
a generator mounted on said structural frame, said generator providing electricity to said electrical controls;
a second reservoir of a second fuel mounted on said structural frame;
an internal combustion engine mounted on said structural frame and receiving and consuming said second fuel, said internal combustion engine driving said generator;
a blower mounted on said structural frame, said blower blowing non-recirculating air through said burner, said blower being driven by said internal combustion engine;
a mixer for mixing soil of a ground surface with said non-recirculating air;
a duct for directing said non-recirculating air blown through said burner onto said mixer; and, a self-propelled vehicle, said structural frame being carried by said self-propelled vehicle, said self-propelled vehicle being propelled by its own internal combustion engine.
20. The mobile ground soil conditioning apparatus of claim 19, further comprising;
a drying chamber, wherein said drying chamber receives said heated non-recirculating air from said duct and directs said non-recirculating air to exit the rear of said apparatus.
21. The mobile ground soil conditioning apparatus of claim 19, wherein;
said burner burns fuel directly in the flow of said non-recirculating air.
22. The mobile ground soil conditioning apparatus of claim 19, wherein;
said mixer is driven by a power take-off.
US15/141,592 2015-04-28 2016-04-28 Soil conditioning apparatus and method Expired - Fee Related US10526760B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA2984397A CA2984397C (en) 2015-04-28 2016-04-28 Soil conditioning apparatus and method
US15/141,592 US10526760B2 (en) 2015-04-28 2016-04-28 Soil conditioning apparatus and method
PCT/US2016/029869 WO2016176498A1 (en) 2015-04-28 2016-04-28 Soil conditioning apparatus and method
US16/733,674 US10689822B2 (en) 2015-04-28 2020-01-03 Soil conditioning apparatus and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562154050P 2015-04-28 2015-04-28
US15/141,592 US10526760B2 (en) 2015-04-28 2016-04-28 Soil conditioning apparatus and method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/733,674 Continuation-In-Part US10689822B2 (en) 2015-04-28 2020-01-03 Soil conditioning apparatus and method

Publications (2)

Publication Number Publication Date
US20160319505A1 true US20160319505A1 (en) 2016-11-03
US10526760B2 US10526760B2 (en) 2020-01-07

Family

ID=57198804

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/141,592 Expired - Fee Related US10526760B2 (en) 2015-04-28 2016-04-28 Soil conditioning apparatus and method

Country Status (3)

Country Link
US (1) US10526760B2 (en)
CA (1) CA2984397C (en)
WO (1) WO2016176498A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10404137B2 (en) * 2017-10-24 2019-09-03 Deere & Company Off-board power and implement coupler for a work vehicle

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2966128A (en) * 1953-09-03 1960-12-27 Ohio Commw Eng Co Machine for conditioning soil
US4420901A (en) * 1982-02-08 1983-12-20 Clarke Howard Y Implement for flame treating soil
US4974528A (en) * 1989-12-08 1990-12-04 Ryan-Murphy, Inc. Method and apparatus for the treatment of contaminated soil
US5111756A (en) * 1990-09-21 1992-05-12 Enviro-Klean Soils, Inc. Apparatus for cleaning contaminated soil
US5199212A (en) * 1991-04-08 1993-04-06 Arc Management, Co. Soil decontamination system
US5382002A (en) * 1993-10-08 1995-01-17 Evans; Marvin Apparatus for heat treating a particulate material
US5553415A (en) * 1992-07-01 1996-09-10 Harvey Bush Ltd. Burners
JP2001353205A (en) * 2000-06-16 2001-12-25 Shiyoujiyo Shimokawa Soil disinfecting method and self-advancing earth burner
US20050008440A1 (en) * 2003-07-09 2005-01-13 Hauni Maschinenbau Ag Discharging filter rods from a conveying conduit
US20080115410A1 (en) * 2006-11-16 2008-05-22 Igor Fridman Method And System For Disinfection And Aeration Of Soil

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB120587A (en) 1917-06-05 1918-11-21 Johannes Robert Carl August An Improved Machine for Drying or Torrefying Soil.
US2132165A (en) 1935-12-13 1938-10-04 Jeffrey Mfg Co Foundry sand conditioning apparatus
US2858755A (en) 1955-02-15 1958-11-04 Ohio Commw Eng Co Mobile implement for flame treating soil
US3745700A (en) 1971-06-16 1973-07-17 L Hahn Soil drier
US5273164A (en) 1992-09-30 1993-12-28 Lyon John A Soil conditioning apparatus
IL127838A (en) 1998-12-30 2001-03-19 H K M Advanced Agriculture Ltd Soil disinfecting machine
ITBO20000453A1 (en) 2000-07-26 2002-01-26 Cevolini Alfredo GROUND STERILIZATION EQUIPMENT AND PROCEDURE.
US7470395B2 (en) 2003-10-17 2008-12-30 Flame Engineering, Inc. Mobile flame sterilizer
KR101272328B1 (en) 2005-12-14 2013-06-07 삼성디스플레이 주식회사 Ink jet printing system and manufacturing method of thin film transistor array panel using the same
EP2962037A4 (en) * 2013-02-26 2016-03-16 Jason Force Mobile platform based biomass powered harvester

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2966128A (en) * 1953-09-03 1960-12-27 Ohio Commw Eng Co Machine for conditioning soil
US4420901A (en) * 1982-02-08 1983-12-20 Clarke Howard Y Implement for flame treating soil
US4974528A (en) * 1989-12-08 1990-12-04 Ryan-Murphy, Inc. Method and apparatus for the treatment of contaminated soil
US5111756A (en) * 1990-09-21 1992-05-12 Enviro-Klean Soils, Inc. Apparatus for cleaning contaminated soil
US5199212A (en) * 1991-04-08 1993-04-06 Arc Management, Co. Soil decontamination system
US5553415A (en) * 1992-07-01 1996-09-10 Harvey Bush Ltd. Burners
US5382002A (en) * 1993-10-08 1995-01-17 Evans; Marvin Apparatus for heat treating a particulate material
JP2001353205A (en) * 2000-06-16 2001-12-25 Shiyoujiyo Shimokawa Soil disinfecting method and self-advancing earth burner
US20050008440A1 (en) * 2003-07-09 2005-01-13 Hauni Maschinenbau Ag Discharging filter rods from a conveying conduit
US20080115410A1 (en) * 2006-11-16 2008-05-22 Igor Fridman Method And System For Disinfection And Aeration Of Soil

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10404137B2 (en) * 2017-10-24 2019-09-03 Deere & Company Off-board power and implement coupler for a work vehicle
US11031844B2 (en) 2017-10-24 2021-06-08 Deere & Company Off-board power and implement coupler for a work vehicle

Also Published As

Publication number Publication date
CA2984397C (en) 2021-10-26
WO2016176498A1 (en) 2016-11-03
US10526760B2 (en) 2020-01-07
CA2984397A1 (en) 2016-11-03

Similar Documents

Publication Publication Date Title
US3805766A (en) Field burning apparatus
CN107366394B (en) Hot melt paving waterproof coiled material locomotive
US7300225B2 (en) Apparatus and method for heating road building equipment
US10689822B2 (en) Soil conditioning apparatus and method
CA1258834A (en) Spray unit for controlled droplet atomization
US7503268B2 (en) Transportable incineration apparatus and method
US7520935B2 (en) Sprayed insulation application system having variably locatable components
US10526760B2 (en) Soil conditioning apparatus and method
EP3599810B1 (en) System and method for processing soil
US7712999B1 (en) Method and apparatus for drying soil
EP3163162A1 (en) Mobile radiant heater
CN103993537A (en) Moving type asphalt mixture regeneration equipment
US20050000109A1 (en) Surface drying apparatus and method
US20220354093A1 (en) Litter conditioner and method of using the same
WO2009016394A1 (en) Apparatus and method for dispersing frost and fog
US2041969A (en) Temperature modifier for protecting growing crops
US2530894A (en) Flame cultivator
WO2020157545A1 (en) Soil pests elimination equipment
CN215585301U (en) Forest fire extinguishing device
US3120949A (en) Two-directional agricultural heater
GB2391445A (en) The extermination of underground pests using engine exhaust gases
CN205124391U (en) Machine is picked up to forage grass
US20200055212A1 (en) Platform with an autonomous powering engine for mounting onto a firewood splitting apparatus
CN111207403A (en) Movable directional burning station for barren vegetation
JP2016217127A (en) Soil improvement machine

Legal Events

Date Code Title Description
STCV Information on status: appeal procedure

Free format text: NOTICE OF APPEAL FILED

STCV Information on status: appeal procedure

Free format text: APPEAL BRIEF (OR SUPPLEMENTAL BRIEF) ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

ZAAA Notice of allowance and fees due

Free format text: ORIGINAL CODE: NOA

ZAAB Notice of allowance mailed

Free format text: ORIGINAL CODE: MN/=.

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20240107