US20160123338A1 - Method for controlling fan start-up and fan - Google Patents

Method for controlling fan start-up and fan Download PDF

Info

Publication number
US20160123338A1
US20160123338A1 US14/925,246 US201514925246A US2016123338A1 US 20160123338 A1 US20160123338 A1 US 20160123338A1 US 201514925246 A US201514925246 A US 201514925246A US 2016123338 A1 US2016123338 A1 US 2016123338A1
Authority
US
United States
Prior art keywords
driving signal
fan
signal
time period
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/925,246
Inventor
Yi-Fan Lin
Chung-Hung TANG
Cheng-Chieh Liu
Chun-Lung Chiu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Delta Electronics Inc
Original Assignee
Delta Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from TW104132038A external-priority patent/TWI576693B/en
Application filed by Delta Electronics Inc filed Critical Delta Electronics Inc
Priority to US14/925,246 priority Critical patent/US20160123338A1/en
Assigned to DELTA ELECTRONICS, INC. reassignment DELTA ELECTRONICS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHIU, CHUN-LUNG, LIN, YI-FAN, LIU, CHENG-CHIEH, TANG, CHUNG-HUNG
Publication of US20160123338A1 publication Critical patent/US20160123338A1/en
Priority to US16/524,814 priority patent/US11473584B2/en
Priority to US17/871,504 priority patent/US11933309B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/001Testing thereof; Determination or simulation of flow characteristics; Stall or surge detection, e.g. condition monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/002Axial flow fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/004Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids by varying driving speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/02Stopping, starting, unloading or idling control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/20Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by changing the driving speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/16Centrifugal pumps for displacing without appreciable compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • the invention relates to a fan and a method for controlling fan start-up, in particular to a three-phase fan and a method for controlling a three-phase fan in the start-up stage.
  • the NB system For saving energy of a NB system, the NB system is often switched between a sleep mode and a normal mode. Thus, the fan may frequently stop operating or restart to operate for different operation modes.
  • obvious start-up noise usually occurs while the fan restart to operate from stopping operation.
  • the reason for the start-up noise is that: when the fan restarts to operate, a driving signal with constant high energy is provided in the open loop control stage to obligately start the fan, and no feedback signal from any sensor is utilized to adjust the driving signal.
  • the start-up noise depends on the energy of the driving signal.
  • FIG. 1 is a schematic diagram showing the duty cycle, noise and rotational speed of the conventional fan in the start-up stage.
  • the fan continuously increases its rotational speed according to the driving signal S so the noise becomes worsened.
  • the driving signal S drives the fan for a time period T openloop namely the impeller of the fan is successfully rotated and the rotational speed of the fan reaches a target rotational speed
  • the fan switches to a close loop control stage.
  • a feedback signal from a detection circuit is utilized to adjust the signal value of the driving signal (i.e. the duty cycle decreases from A to A′), and the fan rotates at a target rotational speed.
  • the target rotational speed for the fan is much lower than the threshold rotational speed for the open loop control stage so the overshoot of the fan rotational speed occurs in the start-up procedure and thus obvious start-up noise occurs.
  • An aspect of the disclosure is to provide a fan and a method for controlling fan start-up with reduced noise.
  • a method for controlling a fan in a fan start-up stage which includes a first time period and a second time period, comprises: during the first time period, continuously providing a first driving signal to drive the fan; and during the second time period, continuously providing a second driving signal to drive the fan; wherein, during the first time period the signal value of the first driving signal gradually decreases until being equal to the signal value of the second driving signal, and the signal value of the first driving signal is initially greater than the signal value of the second driving signal.
  • the signal value of the second driving signal is an unchanged value.
  • the fan comprises an impeller, a motor and a control circuit.
  • the motor is connected to the impeller and drives the impeller to operate, and the motor is electrically connected to the control circuit.
  • the control circuit comprises a control unit and a detection unit, and the detection unit detects the current phase or back emf of the motor to output a feedback signal to the control unit.
  • the method further comprises: after completing the fan start-up stage, providing a third driving signal to drive the fan according to the feedback signal.
  • the first driving signal, the second driving signal and the third driving signal are provided by the control unit.
  • the first driving signal, the second driving signal and the third driving signal are PWM signals or DC voltage signals.
  • the signal value of the first driving signal linearly decreases.
  • the signal value of the first driving signal non-linearly decreases.
  • the sum of the first time period and the second time period is constant.
  • a fan comprises an impeller, a motor and a control circuit.
  • the motor is connected to the impeller and drives the impeller to operate.
  • the control circuit is electrically connected to the motor and comprises a control unit.
  • the control unit provides a first driving signal and a second driving signal to drive the fan.
  • the fan start-up stage includes a first time period and a second time period.
  • the control unit continuously provides the first driving signal to drive the fan, and during the first time period the signal value of the first driving signal gradually decreases until being equal to the signal value of the second driving signal.
  • the control unit continuously provides the second driving signal to drive the fan, and the signal value of the first driving signal is initially greater than the signal value of the second driving signal.
  • the signal value of the second driving signal is an unchanged value.
  • control circuit further comprises a detection unit which detects the current phase or back emf of the motor and outputs a feedback signal to the control unit. After completing the fan start-up stage, the control unit provides a third driving signal to drive the fan according to the feedback signal.
  • the fan and the method for controlling fan start-up in the fan start-up stage, by gradually decreasing the energy of the first driving signal and by controlling the rotational speed of the fan with the second driving signal in the open loop control stage, the overshoot of the rotational speed of the fan occurs as little as possible. Therefore, the start-up noise is reduced and the start-up capability is robust so continuously outputting higher energy is not needed and the electrical energy is saved.
  • FIG. 1 is a schematic diagram showing the duty cycle, noise and rotational speed of the conventional fan in the start-up stage
  • FIG. 2 is a block diagram of the fan according to the embodiment
  • FIG. 3A is a schematic diagram showing the duty cycle, noise and rotational speed according to the embodiment
  • FIG. 3B to FIG. 3E are schematic diagrams of the first driving signal in FIG. 3A in different decrease modes
  • FIG. 4 is a flow chart of the steps of the method for controlling start-up according to the embodiment.
  • FIG. 5 is a control flow chart of the method for controlling start-up according to the embodiment.
  • FIG. 2 is a block diagram of the fan according to the embodiment.
  • FIG. 3A is a schematic diagram showing the duty cycle, noise and rotational speed according to the embodiment.
  • FIG. 3B to FIG. 3E are schematic diagrams of the first driving signal S 1 in FIG. 3A in different decrease modes.
  • the fan 20 comprises an impeller 21 , a motor 22 and a control circuit 23 .
  • the motor 22 is a three-phase motor. It is connected to the impeller 21 and the electrically connected to the control circuit 23 , and drives the impeller 21 to operate for example to rotate according to the driving signal outputted by the control circuit 23 .
  • the control circuit 23 comprises a control unit 231 and a detection unit 232 .
  • the control unit 231 provides the driving signal to drive the impeller 21 .
  • the detection unit 232 detects the current phase or back emf of the motor 22 , and sends a feedback signal to the control unit 231 .
  • the control unit 231 adjusts the driving signal according to the feedback signal.
  • the control unit 231 and the detection unit 232 may constitute the same element for example they are integrated in the same element.
  • a variable output control is utilized.
  • the control unit 231 continuously provides a first driving signal S 1 to drive the motor 22 to rotate the impeller 21 .
  • the control unit 231 continuously provides a second driving signal S 2 to drive the impeller 21 .
  • the signal value of the first driving signal S 1 has larger output energy and the output energy gradually decreases (the signal value decreases from B to B′).
  • the signal value of the second driving signal S 2 is an unchanged output energy value (B′), and the signal value of the first driving signal S 1 initially at B is greater than the signal value of the second driving signal S 2 at B′.
  • the final signal value of the first driving signal S 1 at B′ is equal to the initial signal value of the second driving signal S 2 at B′.
  • the initial signal value of the first driving signal S 1 at B may be a minimum duty cycle for starting the fan 20
  • the initial signal value of the second driving signal S 2 at B′ may be the minimum duty cycle for operating the fan 20 .
  • the first driving signal S 1 and the second driving signal S 2 may be PWM signals or DC voltage signals.
  • the signal values for the first driving signal S 1 and the second driving signal S 2 may be preset in the control unit 231 .
  • the sum of the first time period T 1 and the second time period T 2 mentioned above is constant, namely the time period for open loop T in the open loop control stage (i.e. the fan start-up stage).
  • the first time period T 1 and the second time period T 2 are within the open loop control stage.
  • the close loop control stage is entered.
  • the fan overshoot occurs as little as possible.
  • the time period for open loop T may vary due to various types of fans.
  • the designer should adjust the first time period T 1 , the second time period T 2 , and the sum of the first time period T 1 and the second time period T 2 (the time period for open loop T in the open loop control stage) depending on various types of fans so the fan 20 would stably operate in the fan start-up stage and the start-up noise caused by the fan 20 would occur as little as possible.
  • the control unit 231 of the control circuit 23 begins to provide a third driving signal S 3 to drive the motor 22 to rotate the impeller 21 according to the feedback signal from the detection unit 232 .
  • the signal value of the third driving signal S 3 may be greater than the signal value of the second driving signal S 2 (i.e. the third driving signal S 3 A in FIG. 3A ) or equal to the signal value of the second driving signal S 2 (i.e. the third driving signal S 3 in FIG. 3A ) or smaller than the signal value of the second driving signal S 2 (i.e. the third driving signal S 3 B in FIG.
  • the designer may adjust it depending on demand.
  • the close loop control stage is entered and the control unit 231 provides the third driving signal S 3 , which is the same with the second driving signal S 2 , to continuously drive the motor 22 to rotate the impeller 21 for a short time. Then, it adjusts the rotational speed according to the feedback signal outputted from the detection unit 232 .
  • the signal value of the second driving signal S 2 (the open loop control stage) may slightly higher or slightly lower than the signal value of the third driving signal S 3 (the close loop control stage) to slightly change the rotational speed so as to reduce switching noise when switching control modes.
  • the signal value of the first driving signal S 1 gradually decreases. For example, it may linearly decrease or non-linearly decrease, and the designer may adjust it depending on demand.
  • the decrease of the first driving signal may refer to FIG. 3B to FIG. 3E which indicate the curve in linear decrease mode S 1 A (shown in FIG. 3B ), the curve in curved line decrease mode S 1 B (shown in FIG. 3C ), the curve in ladder decrease mode S 1 C (shown in FIG. 3D ), or the curve in combination mode of linear decrease and curved line decrease S 1 D (shown in FIG. 3E ).
  • the curves S 1 A ⁇ S 1 D in the above mentioned decrease modes may be parabolas, hyperbolas or any curved lines to make the signal value of the first driving signal S 1 gradually decrease during the first time period T 1 .
  • FIG. 4 is a flow chart of the steps of the method for controlling start-up according to the embodiment.
  • the method is adapted to the control for the fan start-up stage.
  • the fan start-up stage includes a first time period and a second time period.
  • the method comprises at least the following steps of: during the first time period continuously providing a first driving signal to drive the fan (the step S 10 ); and during the second time period continuously providing a second driving signal to drive the fan; wherein during the first time period, the signal value of the first driving signal gradually decreases until the signal value of the first driving signal is equal to the signal value of the second driving signal.
  • the signal value of the first driving signal is initially greater than the signal value of the second driving signal (the step S 20 ).
  • the signal value of the first driving signal S 1 gradually decreases during the first time period T 1 . For example, it linearly decreases or non-linearly decreases, and the designer may adjust them depending on demand.
  • the signal value of the second driving signal S 2 is an unchanged value.
  • the signal value of the second driving signal S 2 may gradually decrease or gradually increase, and the designer may adjust it depending on demand.
  • the length of the second time period T 2 may be adjusted depending on the stable operation duration of the fan. The designer may adjust it according to the required time for the fan to operate stably.
  • the first driving signal S 1 and the second driving signal S 2 may be PWM signals or DC voltage signals, and the designer may adjust them depending on demand.
  • the initial signal value B of the first driving signal S 1 is the minimum duty cycle for the fan 20 to start, namely the torque provided by the first driving signal S 1 on the fan needs to be greater than the torque caused by the maximum static friction on the fan 20 . Due to various kinds of fan structures, the maximum static friction on the fan 20 may be different.
  • the initial signal value B′ of the second driving signal S 2 is the minimum duty cycle for the fan 20 to operate, namely the torque provided by the second driving signal S 2 on the fan needs to be greater than the torque caused by the kinetic friction during the operation of the fan 20 . Therefore, the first driving signal S 1 and the second driving signal S 2 should be adjusted depending on different fan structures and/or motors.
  • FIG. 5 is a control flow chart of the method for controlling start-up according to the embodiment.
  • the method is adapted to the control in the fan start-up stage.
  • the control procedure of the method for controlling start-up comprises at least following steps: providing the first driving signal to drive the fan (the step S 100 ); determining whether the signal value of the first driving signal is equal to the signal value of the second driving signal (the step S 200 ). If not, decreasing the signal value of the first driving signal (the step S 300 ); if yes, providing the second driving signal to drive the fan (the step S 400 ); then determining whether the driving time reaches the time period for open loop (the step S 500 ).
  • the first driving signal is provided to drive the fan.
  • the step S 200 is performed. Namely, after the predefined time period, the method determines whether the signal value of the first driving signal is equal to the signal value of the second driving signal.
  • step S 200 if the signal value of the first driving signal is not equal to the signal value of the second driving signal, then the step S 300 is performed. Namely, the signal value of the first driving signal is decreased, and then the step S 100 is performed to drive the fan with the decreased first driving signal after decreasing the signal value of the first driving signal. Besides, in the step S 200 , if the signal value of the first driving signal is equal to the signal value of the second driving signal, then the step S 400 is performed. Namely, the second driving signal is provided to drive the fan. Finally, the step S 500 is performed.
  • step S 500 it is determined whether the time reaches the time period for open loop T. If the driving time reaches the time period for open loop T, the open loop control stage for the fan is complete and then the close loop control stage is entered; if the driving time does not reach the time period for open loop T, the step S 400 is performed.
  • the signal value of the first driving signal S 1 gradually decreases during the first time period T 1 .
  • the required time for the signal value of the first driving signal S 1 to decrease to the signal value of the second driving signal S 2 is the first time period T 1 mentioned above.
  • the time period for open loop T (the sum of the first time period T 1 and the second time period T 2 ) is constant. Because the time period for open loop T is constant, the second time period T 2 is subsequent to the first time period T 1 , and then the second driving signal S 2 is continuously provided to drive the fan until reaching the time period for open loop T.
  • the fan and the method for controlling fan start-up in the fan start-up stage, by gradually decreasing the energy of the first driving signal and by controlling the rotational speed of the fan with the second driving signal in the open loop control stage, the overshoot of the rotational speed of the fan occurs as little as possible. Therefore, the start-up noise is reduced and the start-up capability is robust so continuously outputting higher energy is not needed and the electrical energy is saved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)
  • Motor And Converter Starters (AREA)

Abstract

A method for controlling a fan in a fan start-up stage including a first time period and a second time period comprises the following steps of: during the first time period, continuously providing a first driving signal to drive the fan; and during the second time period, continuously providing a second driving signal to drive the fan; wherein, during the first time period the signal value (driving energy) of the first driving signal gradually decreases until being equal to the signal value of the second driving signal, and the signal value of the first driving signal is initially greater than the signal value of the second driving signal. A fan is also disclosed.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application claims the priority benefits of U.S. provisional application Ser. No. 62/073,477, filed on Oct. 31, 2014 and Taiwan application serial No. 104132038, filed on Sep. 30, 2015. The entirety of the above-mentioned patent applications are hereby incorporated by references herein and made a part of specification.
  • BACKGROUND
  • 1. Technical Field
  • The invention relates to a fan and a method for controlling fan start-up, in particular to a three-phase fan and a method for controlling a three-phase fan in the start-up stage.
  • 2. Related Art
  • For saving energy of a NB system, the NB system is often switched between a sleep mode and a normal mode. Thus, the fan may frequently stop operating or restart to operate for different operation modes. However, obvious start-up noise usually occurs while the fan restart to operate from stopping operation. The reason for the start-up noise is that: when the fan restarts to operate, a driving signal with constant high energy is provided in the open loop control stage to obligately start the fan, and no feedback signal from any sensor is utilized to adjust the driving signal. However, the start-up noise depends on the energy of the driving signal.
  • Referring to FIG. 1, FIG. 1 is a schematic diagram showing the duty cycle, noise and rotational speed of the conventional fan in the start-up stage. The fan continuously increases its rotational speed according to the driving signal S so the noise becomes worsened. After the driving signal S drives the fan for a time period Topenloop namely the impeller of the fan is successfully rotated and the rotational speed of the fan reaches a target rotational speed, the fan switches to a close loop control stage. In other words, in this stage, a feedback signal from a detection circuit is utilized to adjust the signal value of the driving signal (i.e. the duty cycle decreases from A to A′), and the fan rotates at a target rotational speed. However, because the energy of the driving signal for the fan at the start-up stage is too large, the target rotational speed for the fan is much lower than the threshold rotational speed for the open loop control stage so the overshoot of the fan rotational speed occurs in the start-up procedure and thus obvious start-up noise occurs.
  • Therefore, a fan and a method for controlling fan start-up with reduced noise as much as possible are desirable.
  • SUMMARY
  • An aspect of the disclosure is to provide a fan and a method for controlling fan start-up with reduced noise.
  • A method for controlling a fan in a fan start-up stage, which includes a first time period and a second time period, comprises: during the first time period, continuously providing a first driving signal to drive the fan; and during the second time period, continuously providing a second driving signal to drive the fan; wherein, during the first time period the signal value of the first driving signal gradually decreases until being equal to the signal value of the second driving signal, and the signal value of the first driving signal is initially greater than the signal value of the second driving signal.
  • In one embodiment, the signal value of the second driving signal is an unchanged value.
  • In one embodiment, the fan comprises an impeller, a motor and a control circuit. The motor is connected to the impeller and drives the impeller to operate, and the motor is electrically connected to the control circuit. The control circuit comprises a control unit and a detection unit, and the detection unit detects the current phase or back emf of the motor to output a feedback signal to the control unit. The method further comprises: after completing the fan start-up stage, providing a third driving signal to drive the fan according to the feedback signal.
  • In one embodiment, the first driving signal, the second driving signal and the third driving signal are provided by the control unit.
  • In one embodiment, the first driving signal, the second driving signal and the third driving signal are PWM signals or DC voltage signals.
  • In one embodiment, the signal value of the first driving signal linearly decreases.
  • In one embodiment, the signal value of the first driving signal non-linearly decreases.
  • In one embodiment, the sum of the first time period and the second time period is constant.
  • A fan comprises an impeller, a motor and a control circuit. The motor is connected to the impeller and drives the impeller to operate. The control circuit is electrically connected to the motor and comprises a control unit. In a fan start-up stage, the control unit provides a first driving signal and a second driving signal to drive the fan. The fan start-up stage includes a first time period and a second time period. During the first time period the control unit continuously provides the first driving signal to drive the fan, and during the first time period the signal value of the first driving signal gradually decreases until being equal to the signal value of the second driving signal. During the second time period the control unit continuously provides the second driving signal to drive the fan, and the signal value of the first driving signal is initially greater than the signal value of the second driving signal.
  • In one embodiment, the signal value of the second driving signal is an unchanged value.
  • In one embodiment, the control circuit further comprises a detection unit which detects the current phase or back emf of the motor and outputs a feedback signal to the control unit. After completing the fan start-up stage, the control unit provides a third driving signal to drive the fan according to the feedback signal.
  • In summary, regarding the fan and the method for controlling fan start-up, in the fan start-up stage, by gradually decreasing the energy of the first driving signal and by controlling the rotational speed of the fan with the second driving signal in the open loop control stage, the overshoot of the rotational speed of the fan occurs as little as possible. Therefore, the start-up noise is reduced and the start-up capability is robust so continuously outputting higher energy is not needed and the electrical energy is saved.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The embodiments will become more fully understood from the detailed description and accompanying drawings, which are given for illustration only, and thus are not limitative of the present invention, and wherein:
  • FIG. 1 is a schematic diagram showing the duty cycle, noise and rotational speed of the conventional fan in the start-up stage;
  • FIG. 2 is a block diagram of the fan according to the embodiment;
  • FIG. 3A is a schematic diagram showing the duty cycle, noise and rotational speed according to the embodiment;
  • FIG. 3B to FIG. 3E are schematic diagrams of the first driving signal in FIG. 3A in different decrease modes;
  • FIG. 4 is a flow chart of the steps of the method for controlling start-up according to the embodiment; and
  • FIG. 5 is a control flow chart of the method for controlling start-up according to the embodiment.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The embodiments of the invention will be apparent from the following detailed description, which proceeds with reference to the accompanying drawings, wherein the same references relate to the same elements.
  • Referring to FIG. 2 and FIG. 3A to FIG. 3E. FIG. 2 is a block diagram of the fan according to the embodiment. FIG. 3A is a schematic diagram showing the duty cycle, noise and rotational speed according to the embodiment. FIG. 3B to FIG. 3E are schematic diagrams of the first driving signal S1 in FIG. 3A in different decrease modes.
  • Referring to FIG. 2, the fan 20 comprises an impeller 21, a motor 22 and a control circuit 23. The motor 22 is a three-phase motor. It is connected to the impeller 21 and the electrically connected to the control circuit 23, and drives the impeller 21 to operate for example to rotate according to the driving signal outputted by the control circuit 23. Furthermore, the control circuit 23 comprises a control unit 231 and a detection unit 232. The control unit 231 provides the driving signal to drive the impeller 21. The detection unit 232 detects the current phase or back emf of the motor 22, and sends a feedback signal to the control unit 231. Thus, in the close loop control stage, the control unit 231 adjusts the driving signal according to the feedback signal. In other embodiments, the control unit 231 and the detection unit 232 may constitute the same element for example they are integrated in the same element.
  • To reduce start-up noise together with start-up capability, in the open loop control stage during the start-up procedure, a variable output control is utilized. Referring to FIG. 2 and FIG. 3A, when the impeller 21 restarts to operate from stop, in the open loop control stage during the first time period T1 the control unit 231 continuously provides a first driving signal S1 to drive the motor 22 to rotate the impeller 21. After the impeller 21 is successfully rotated, in the open loop control stage during the second time period T2 the control unit 231 continuously provides a second driving signal S2 to drive the impeller 21. During the first time period T1, the signal value of the first driving signal S1 has larger output energy and the output energy gradually decreases (the signal value decreases from B to B′). The signal value of the second driving signal S2 is an unchanged output energy value (B′), and the signal value of the first driving signal S1 initially at B is greater than the signal value of the second driving signal S2 at B′. The final signal value of the first driving signal S1 at B′ is equal to the initial signal value of the second driving signal S2 at B′. The initial signal value of the first driving signal S1 at B may be a minimum duty cycle for starting the fan 20, and the initial signal value of the second driving signal S2 at B′ may be the minimum duty cycle for operating the fan 20. In the embodiment, the first driving signal S1 and the second driving signal S2 may be PWM signals or DC voltage signals. The signal values for the first driving signal S1 and the second driving signal S2 may be preset in the control unit 231.
  • Besides, the sum of the first time period T1 and the second time period T2 mentioned above is constant, namely the time period for open loop T in the open loop control stage (i.e. the fan start-up stage). The first time period T1 and the second time period T2 are within the open loop control stage. After the time period for open loop T in the open loop control stage, the close loop control stage is entered. Thus, as shown in FIG. 3A, while the rotational speed of the impeller 21 gradually increases until the time reaches the time period for open loop T, the corresponding noise does not obviously become worsened. Because the signal value of the first driving signal S1 gradually decreases to the signal value of the second driving signal S2 (the signal value decreases from B to B′), the fan overshoot occurs as little as possible. Moreover, the time period for open loop T may vary due to various types of fans. Thus, the designer should adjust the first time period T1, the second time period T2, and the sum of the first time period T1 and the second time period T2 (the time period for open loop T in the open loop control stage) depending on various types of fans so the fan 20 would stably operate in the fan start-up stage and the start-up noise caused by the fan 20 would occur as little as possible.
  • After the fan 20 stably operates, it enters or begins to operate in the close loop control stage (i.e. the regular operation stage). Here, the control unit 231 of the control circuit 23 begins to provide a third driving signal S3 to drive the motor 22 to rotate the impeller 21 according to the feedback signal from the detection unit 232. In the embodiment, the signal value of the third driving signal S3 may be greater than the signal value of the second driving signal S2 (i.e. the third driving signal S3A in FIG. 3A) or equal to the signal value of the second driving signal S2 (i.e. the third driving signal S3 in FIG. 3A) or smaller than the signal value of the second driving signal S2 (i.e. the third driving signal S3B in FIG. 3A), and the designer may adjust it depending on demand. In other embodiments, after the second time period T2 ends (i.e. the open loop control stage ends), the close loop control stage is entered and the control unit 231 provides the third driving signal S3, which is the same with the second driving signal S2, to continuously drive the motor 22 to rotate the impeller 21 for a short time. Then, it adjusts the rotational speed according to the feedback signal outputted from the detection unit 232. In other embodiments, the signal value of the second driving signal S2 (the open loop control stage) may slightly higher or slightly lower than the signal value of the third driving signal S3 (the close loop control stage) to slightly change the rotational speed so as to reduce switching noise when switching control modes.
  • In the embodiment, the signal value of the first driving signal S1 gradually decreases. For example, it may linearly decrease or non-linearly decrease, and the designer may adjust it depending on demand. The decrease of the first driving signal may refer to FIG. 3B to FIG. 3E which indicate the curve in linear decrease mode S1A (shown in FIG. 3B), the curve in curved line decrease mode S1B (shown in FIG. 3C), the curve in ladder decrease mode S1C (shown in FIG. 3D), or the curve in combination mode of linear decrease and curved line decrease S1D (shown in FIG. 3E). The curves S1A˜S1D in the above mentioned decrease modes may be parabolas, hyperbolas or any curved lines to make the signal value of the first driving signal S1 gradually decrease during the first time period T1.
  • Referring to FIG. 4, FIG. 4 is a flow chart of the steps of the method for controlling start-up according to the embodiment. The method is adapted to the control for the fan start-up stage. The fan start-up stage includes a first time period and a second time period. The method comprises at least the following steps of: during the first time period continuously providing a first driving signal to drive the fan (the step S10); and during the second time period continuously providing a second driving signal to drive the fan; wherein during the first time period, the signal value of the first driving signal gradually decreases until the signal value of the first driving signal is equal to the signal value of the second driving signal. The signal value of the first driving signal is initially greater than the signal value of the second driving signal (the step S20).
  • In the step S10, the signal value of the first driving signal S1 gradually decreases during the first time period T1. For example, it linearly decreases or non-linearly decreases, and the designer may adjust them depending on demand.
  • Besides, in the step S20 in the embodiment, the signal value of the second driving signal S2 is an unchanged value. In other embodiments, the signal value of the second driving signal S2 may gradually decrease or gradually increase, and the designer may adjust it depending on demand. Moreover, the length of the second time period T2 may be adjusted depending on the stable operation duration of the fan. The designer may adjust it according to the required time for the fan to operate stably.
  • In the embodiment, the first driving signal S1 and the second driving signal S2 may be PWM signals or DC voltage signals, and the designer may adjust them depending on demand. Moreover, the initial signal value B of the first driving signal S1 is the minimum duty cycle for the fan 20 to start, namely the torque provided by the first driving signal S1 on the fan needs to be greater than the torque caused by the maximum static friction on the fan 20. Due to various kinds of fan structures, the maximum static friction on the fan 20 may be different. Besides, the initial signal value B′ of the second driving signal S2 is the minimum duty cycle for the fan 20 to operate, namely the torque provided by the second driving signal S2 on the fan needs to be greater than the torque caused by the kinetic friction during the operation of the fan 20. Therefore, the first driving signal S1 and the second driving signal S2 should be adjusted depending on different fan structures and/or motors.
  • Referring to FIG. 5, FIG. 5 is a control flow chart of the method for controlling start-up according to the embodiment. The method is adapted to the control in the fan start-up stage. The control procedure of the method for controlling start-up comprises at least following steps: providing the first driving signal to drive the fan (the step S100); determining whether the signal value of the first driving signal is equal to the signal value of the second driving signal (the step S200). If not, decreasing the signal value of the first driving signal (the step S300); if yes, providing the second driving signal to drive the fan (the step S400); then determining whether the driving time reaches the time period for open loop (the step S500).
  • In the step S100, the first driving signal is provided to drive the fan. After a predefined time period, the step S200 is performed. Namely, after the predefined time period, the method determines whether the signal value of the first driving signal is equal to the signal value of the second driving signal.
  • In the step S200, if the signal value of the first driving signal is not equal to the signal value of the second driving signal, then the step S300 is performed. Namely, the signal value of the first driving signal is decreased, and then the step S100 is performed to drive the fan with the decreased first driving signal after decreasing the signal value of the first driving signal. Besides, in the step S200, if the signal value of the first driving signal is equal to the signal value of the second driving signal, then the step S400 is performed. Namely, the second driving signal is provided to drive the fan. Finally, the step S500 is performed.
  • In the step S500, it is determined whether the time reaches the time period for open loop T. If the driving time reaches the time period for open loop T, the open loop control stage for the fan is complete and then the close loop control stage is entered; if the driving time does not reach the time period for open loop T, the step S400 is performed.
  • In the embodiment, the signal value of the first driving signal S1 gradually decreases during the first time period T1. The required time for the signal value of the first driving signal S1 to decrease to the signal value of the second driving signal S2 is the first time period T1 mentioned above. Besides, since the sum of the first time period T1 and the second time period T2 mentioned above is constant, the time period for open loop T (the sum of the first time period T1 and the second time period T2) is constant. Because the time period for open loop T is constant, the second time period T2 is subsequent to the first time period T1, and then the second driving signal S2 is continuously provided to drive the fan until reaching the time period for open loop T.
  • In summary, regarding the fan and the method for controlling fan start-up, in the fan start-up stage, by gradually decreasing the energy of the first driving signal and by controlling the rotational speed of the fan with the second driving signal in the open loop control stage, the overshoot of the rotational speed of the fan occurs as little as possible. Therefore, the start-up noise is reduced and the start-up capability is robust so continuously outputting higher energy is not needed and the electrical energy is saved.
  • Although the invention has been described with reference to specific embodiments, this description is not meant to be construed in a limiting sense. Various modifications of the disclosed embodiments, as well as alternative embodiments, will be apparent to persons skilled in the art. It is, therefore, contemplated that the appended claims will cover all modifications that fall within the true scope of the invention.

Claims (10)

What is claimed is:
1. A method for controlling a fan in a fan start-up stage including a first time period and a second time period, comprising:
during the first time period, continuously providing a first driving signal to drive the fan; and
during the second time period, continuously providing a second driving signal to drive the fan;
wherein, during the first time period the signal value of the first driving signal gradually decreases until being equal to the signal value of the second driving signal, and the signal value of the first driving signal is initially greater than the signal value of the second driving signal.
2. The method of claim 1, wherein the signal value of the second driving signal is an unchanged value.
3. The method of claim 1, wherein the fan comprises an impeller, a motor and a control circuit, the motor is connected to the impeller and drives the impeller to operate, the motor is electrically connected to the control circuit, the control circuit comprises a control unit and a detection unit, the detection unit detects the current phase or back emf of the motor to output a feedback signal to the control unit, the method further comprises:
after completing the fan start-up stage, providing a third driving signal to drive the fan according to the feedback signal.
4. The method of claim 3, wherein the first driving signal, the second driving signal and the third driving signal are provided by the control unit.
5. The method of claim 3, wherein the first driving signal, the second driving signal and the third driving signal are PWM signals or DC voltage signals.
6. The method of claim 1, wherein the signal value of the first driving signal linearly decreases or non-linearly decreases.
7. The method of claim 1, wherein the sum of the first time period and the second time period is constant.
8. A fan, comprising:
an impeller;
a motor, connected to the impeller and drive the impeller to operate; and
a control circuit, electrically connected to the motor, comprising:
a control unit, in a fan start-up stage providing a first driving signal and a second driving signal to drive the fan;
wherein, the fan start-up stage includes a first time period and a second time period,
during the first time period the control unit continuously provides the first driving signal to drive the fan, and during the first time period the signal value of the first driving signal gradually decreases until being equal to the signal value of the second driving signal,
during the second time period the control unit continuously provides the second driving signal to drive the fan, and the signal value of the first driving signal is initially greater than the signal value of the second driving signal.
9. The fan of claim 8, wherein the signal value of the second driving signal is an unchanged value.
10. The fan of claim 8, wherein the control circuit further comprises:
a detection unit, detecting the current phase or back emf of the motor and outputting a feedback signal to the control unit,
wherein after completing the fan start-up stage, the control unit provides a third driving signal to drive the fan according to the feedback signal.
US14/925,246 2014-10-31 2015-10-28 Method for controlling fan start-up and fan Abandoned US20160123338A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/925,246 US20160123338A1 (en) 2014-10-31 2015-10-28 Method for controlling fan start-up and fan
US16/524,814 US11473584B2 (en) 2014-10-31 2019-07-29 Method of starting a fan using an open loop starting stage with a decreasing drive signal value
US17/871,504 US11933309B2 (en) 2014-10-31 2022-07-22 Method of starting a fan using an open loop starting stage with a decreasing drive signal value

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201462073477P 2014-10-31 2014-10-31
TW104132038A TWI576693B (en) 2014-10-31 2015-09-30 Start-control method of fan and fan
TW104132038 2015-09-30
US14/925,246 US20160123338A1 (en) 2014-10-31 2015-10-28 Method for controlling fan start-up and fan

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/524,814 Continuation US11473584B2 (en) 2014-10-31 2019-07-29 Method of starting a fan using an open loop starting stage with a decreasing drive signal value

Publications (1)

Publication Number Publication Date
US20160123338A1 true US20160123338A1 (en) 2016-05-05

Family

ID=55852184

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/925,246 Abandoned US20160123338A1 (en) 2014-10-31 2015-10-28 Method for controlling fan start-up and fan
US16/524,814 Active 2036-03-29 US11473584B2 (en) 2014-10-31 2019-07-29 Method of starting a fan using an open loop starting stage with a decreasing drive signal value

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/524,814 Active 2036-03-29 US11473584B2 (en) 2014-10-31 2019-07-29 Method of starting a fan using an open loop starting stage with a decreasing drive signal value

Country Status (1)

Country Link
US (2) US20160123338A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2578615B (en) * 2018-11-01 2021-10-13 Dyson Technology Ltd A fan assembly

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5125571A (en) * 1990-05-21 1992-06-30 Kansas State University Research Foundation Variable speed control of livestock ventilation fans using discrete feedback of motor speed
US5327052A (en) * 1991-03-29 1994-07-05 Kabushiki Kaisha Toshiba Method and apparatus for controlling brushless DC motor
US5484012A (en) * 1994-03-15 1996-01-16 Fujitsu Limited Electronic apparatus having cooling system
US6040668A (en) * 1996-11-14 2000-03-21 Telcom Semiconductor, Inc. Monolithic fan controller
US20030193307A1 (en) * 2002-04-10 2003-10-16 Steven Burstein Method and apparatus for controlling a fan
US20070001635A1 (en) * 2005-07-01 2007-01-04 International Rectifier Corporation Method and system for starting a sensorless motor
US20070046230A1 (en) * 2005-08-30 2007-03-01 Kabushiki Kaisha Toshiba Information processing apparatus and fan control method
US20070292257A1 (en) * 2006-06-15 2007-12-20 Ghee Beng Ooi Apparatus and method to provide reduced fan noise at startup
US20080037164A1 (en) * 2006-08-08 2008-02-14 Samsung Electronics Co., Ltd Adaptive spindle motor startup method and disk drive using the same
US20090045762A1 (en) * 2005-12-06 2009-02-19 Rohm Co., Ltd. Motor drive circuit, method, and cooling device using the same
US20100026219A1 (en) * 2006-08-30 2010-02-04 Rohm Co., Ltd. Motor drive circuit with short startup time

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4347446A (en) * 1979-12-10 1982-08-31 Amdahl Corporation Emitter coupled logic circuit with active pull-down
USRE34399E (en) * 1987-02-26 1993-10-05 Micropolis Corporation Winchester disk drive motor circuitry
US5744923A (en) * 1996-11-22 1998-04-28 National Environmental Products, Ltd., Inc. Microprocessor-based controller for actuator motors with capacitive power backup and method therefor
JP4131588B2 (en) 1998-07-29 2008-08-13 三洋電機株式会社 DC motor control device
US7098617B1 (en) * 2005-02-16 2006-08-29 Texas Instruments Incorporated Advanced programmable closed loop fan control method
EP2107677B1 (en) * 2008-04-05 2016-12-21 Ebm-Papst St. Georgen GmbH & CO. KG Electronically commutated electric motor

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5125571A (en) * 1990-05-21 1992-06-30 Kansas State University Research Foundation Variable speed control of livestock ventilation fans using discrete feedback of motor speed
US5327052A (en) * 1991-03-29 1994-07-05 Kabushiki Kaisha Toshiba Method and apparatus for controlling brushless DC motor
US5484012A (en) * 1994-03-15 1996-01-16 Fujitsu Limited Electronic apparatus having cooling system
US6040668A (en) * 1996-11-14 2000-03-21 Telcom Semiconductor, Inc. Monolithic fan controller
US20030193307A1 (en) * 2002-04-10 2003-10-16 Steven Burstein Method and apparatus for controlling a fan
US20070001635A1 (en) * 2005-07-01 2007-01-04 International Rectifier Corporation Method and system for starting a sensorless motor
US20070046230A1 (en) * 2005-08-30 2007-03-01 Kabushiki Kaisha Toshiba Information processing apparatus and fan control method
US20090045762A1 (en) * 2005-12-06 2009-02-19 Rohm Co., Ltd. Motor drive circuit, method, and cooling device using the same
US20070292257A1 (en) * 2006-06-15 2007-12-20 Ghee Beng Ooi Apparatus and method to provide reduced fan noise at startup
US20080037164A1 (en) * 2006-08-08 2008-02-14 Samsung Electronics Co., Ltd Adaptive spindle motor startup method and disk drive using the same
US20100026219A1 (en) * 2006-08-30 2010-02-04 Rohm Co., Ltd. Motor drive circuit with short startup time

Also Published As

Publication number Publication date
US11473584B2 (en) 2022-10-18
US20190353170A1 (en) 2019-11-21

Similar Documents

Publication Publication Date Title
JP6277796B2 (en) Electric pump
TWI576693B (en) Start-control method of fan and fan
JP5164974B2 (en) Control unit for electric motors, especially fan motors
EP2501033B1 (en) Control systems and methods for electronically commutated motors
CN104980067A (en) DC brushless motor system for drainage motor, and DC brushless motor control method and control apparatus for drainage motor
US8415907B2 (en) Motor control method
US9806650B1 (en) Motor driving apparatus
US11473584B2 (en) Method of starting a fan using an open loop starting stage with a decreasing drive signal value
US11933309B2 (en) Method of starting a fan using an open loop starting stage with a decreasing drive signal value
WO2016102934A1 (en) Control module for an electric motor
US11754084B2 (en) Motor drive control device using feedback speed control and motor current control
JP2004166436A (en) Electric fluid pump arrangement
US10396697B2 (en) Motor operating systems and methods thereof
US20080265811A1 (en) DC motor variable kick-start
JP4422514B2 (en) Power converter
WO2016047081A1 (en) Motor control device and motor control method
JP2016046874A (en) Dc motor driving device and ceiling embedded ventilation device comprising the same
JP6357649B2 (en) DC motor drive device and ceiling-embedded ventilator equipped with the same
KR20100075064A (en) Method for controlling velocity of bldc motor
JP2024013355A (en) motor control device
US20160290349A1 (en) Control method for the accerlation of a vacuum pump, in which method the input current of the control device is limited
JP4589026B2 (en) Pump device
JP2007014075A (en) Motor driving unit
JP2018121456A (en) Inverter driver and refrigerator using the same
CN116260362A (en) Method for adjusting the lead angle of a brushless DC motor

Legal Events

Date Code Title Description
AS Assignment

Owner name: DELTA ELECTRONICS, INC., TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LIN, YI-FAN;TANG, CHUNG-HUNG;LIU, CHENG-CHIEH;AND OTHERS;REEL/FRAME:036904/0875

Effective date: 20151014

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION