US20160084247A1 - High Pressure Pump - Google Patents

High Pressure Pump Download PDF

Info

Publication number
US20160084247A1
US20160084247A1 US14/892,250 US201414892250A US2016084247A1 US 20160084247 A1 US20160084247 A1 US 20160084247A1 US 201414892250 A US201414892250 A US 201414892250A US 2016084247 A1 US2016084247 A1 US 2016084247A1
Authority
US
United States
Prior art keywords
plunger
seal
pump head
pump unit
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/892,250
Other languages
English (en)
Inventor
Onur Mehmet Tansug
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Delphi Technologies IP Ltd
Original Assignee
Delphi International Operations Luxembourg SARL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delphi International Operations Luxembourg SARL filed Critical Delphi International Operations Luxembourg SARL
Assigned to DELPHI INTERNATIONAL OPERATIONS LUXEMBOURG S.A.R.L. reassignment DELPHI INTERNATIONAL OPERATIONS LUXEMBOURG S.A.R.L. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TANSUG, ONUR MEHMET
Publication of US20160084247A1 publication Critical patent/US20160084247A1/en
Assigned to DELPHI TECHNOLOGIES IP LIMITED reassignment DELPHI TECHNOLOGIES IP LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DELPHI INTERNATIONAL OPERATIONS LUXEMBOURG S.A.R.L.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/14Pistons, piston-rods or piston-rod connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/04Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B1/0404Details or component parts
    • F04B1/0408Pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/04Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B1/0404Details or component parts
    • F04B1/0426Arrangements for pressing the pistons against the actuated cam; Arrangements for connecting the pistons to the actuated cam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/04Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B1/0404Details or component parts
    • F04B1/0448Sealing means, e.g. for shafts or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/02Packing the free space between cylinders and pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/80Fuel injection apparatus manufacture, repair or assembly
    • F02M2200/8023Fuel injection apparatus manufacture, repair or assembly the assembly involving use of quick-acting mechanisms, e.g. clips

Definitions

  • the present invention relates to a high pressure fuel pump actuated by an oil lubricated cam follower.
  • a plunger extends from an upper extremity forming a piston in a pump head to a lower extremity provided with a cam follower and a pin bush roller.
  • the cam follower follows a cam which rotations actuate the plunger and consequently the piston is reciprocally moving inside the pump head.
  • a coil spring compressed between the cam follower and the pump head maintains permanent contact between the roller and the cam.
  • the piston is wetted by fuel while the lower extremity and the cam follower are lubricated by engine oil and, as the plunger reciprocally slides within the pump head, some small quantities of oil and fuel mix and generate undesirable pollution.
  • EP2317120 disclosed an assembly where a double lip seal is provided to avoid mixing oil and fuel.
  • a high pressure fuel pump unit comprising a pump head, a cam-follower for cooperating with a rotating cam, a plunger extending along a longitudinal axis from the pump head to a cam follower and a spring compressed between the pump head and the cam-follower for soliciting the cam-follower toward the cam.
  • the plunger extends from a first extremity slidably arranged in a pumping bore of the pump head, where is pumped the fuel, to a second extremity cooperating with the cam-follower lubricated by oil.
  • the pump unit further comprises an annular seal arranged around the plunger and fixed to the pump head in order to prevent mixing of fuel with oil.
  • the seal is a double lip seal, its two lips cooperating with the plunger.
  • the seal may solicit the plunger with a surrounding radial force inwardly oriented sufficient to retain the plunger in the pump head and to prevent the plunger to accidently fall-off the pump head during the assembly of the pump unit.
  • the seal is arranged within a seal retaining sleeve attached to the pump head.
  • the pumping bore opens out of the pump head in a cylindrical recess, the seal being arranged in said cylindrical recess.
  • a pump unit comprises a bell shape member fixed to the pump head in a location surrounding said cylindrical recess, and axially extending to a distal end having an aperture through which the plunger extends.
  • the plunger may be provided with an annular groove in a location that is permanently inside the bell shape member.
  • the groove receives an annular retaining clip which outer diameter is larger than the diameter of the aperture so as to prevent the plunger from accidentally falling off the pumping bore during the assembly of the pump unit.
  • FIG. 1 is an axial section of a pump unit as per the invention.
  • FIG. 2 is a detail of part of FIG. 1 .
  • FIG. 3 is another embodiment of a pump unit as per the invention.
  • top, bottom, upper, lower . . . as well as the orientations downward, downwardly, upward, upwardly may be utilized without any intention to limit the scope of the invention, especially in regards of the numerous possibilities of installation of the pump in a vehicle.
  • a high pressure fuel pump 10 extends along a longitudinal axis A and comprises a pump head 12 fixed directly to the engine (not represented). Alternatively it may be fixed on a separate housing.
  • the head 12 is provided with an axial bore 14 which upper extremity is a compression chamber receiving fuel from an inlet controlled by a valve. The pressurized fuel leaves the compression chamber through an outlet controlled by another valve.
  • the pump head 12 is further provided with a cylindrical member 16 that axially extends downwardly, the bore 14 centrally extending in said cylindrical member 16 .
  • a plunger 18 which upper extremity is a piston.
  • the diametral clearance C between the bore 14 and the plunger 18 is typically of few microns enabling on one end, the plunger 18 to slide in the bore 14 and, on the other end to compress the fuel in ensuring there is minimal leakage through the diametral clearance C.
  • the plunger 18 downwardly extends to a lower extremity 22 that abuts against a cam follower 24 comprising a cup-like member 26 and a pin bush roller 28 rolling on the rotating cam.
  • a coil spring 30 is arranged around the plunger 18 and is compressed between the pump head 12 and the cam follower 24 . More particularly, as it can be seen on FIG. 1 , the top part of the spring 30 is engaged around the cylindrical member 16 , the final spiral abutting against a flat surface of the head 12 . The lower part of the spring 30 is received on a spring seat 32 arranged inside the cup-like member 26 .
  • the pump unit 10 further comprises a seal 34 arranged in a seal retaining sleeve 36 .
  • the seal retaining sleeve 36 has a cylindrical wall 38 engaged and fixed, by crimping, screwing, gluing or any other mean, over the lower end of the cylindrical member 16 and a disc-shape bottom wall 40 provided with a central aperture 42 .
  • the plunger 18 extends out of the cylindrical member 16 through the aperture 42 .
  • the seal 34 is arranged in the internal tubular space defined between the cylindrical wall 38 , the bottom wall 40 and the plunger 18 .
  • the plunger 18 reciprocally moves up-and-down actuated by the displacement of the cam follower 24 rolling on the rotating cam.
  • the piston is wetted by fuel while the cam follower is lubricated by engine oil.
  • a first function of the seal 34 is to ensure total separation between the two fluids by creating a barrier around the plunger 18 .
  • the seal 34 is a double lip seal 34 so to circumferentially contact the plunger 18 in two parallel zones.
  • a second function of the seal 34 is related to the assembly process particularly when assembling the pump unit directly to an engine.
  • the pump unit 10 is assembled by inserting the plunger 18 into the bore 14 .
  • the integrity of the pump unit 10 is maintained when it is finally fixed on the engine.
  • the pump head 12 is fixed to the engine and on the opposite side the cam follower 24 is against the rotating cam and, in between, the spring 30 is compressed ensuring zero free play.
  • the plunger 18 Prior to this assembly into the engine, the plunger 18 may accidentally fall off the pump head 12 .
  • the second function of the seal 34 is to retain the plunger 18 in place and avoid these accidents.
  • the seal 34 is then further designed to generate on the plunger 18 circumferential forces radially inwardly oriented. The forces are sufficient to retain the plunger 18 in place after it is engaged in the bore 14 .
  • the seal retaining sleeve 36 is fixed on the pump head 12 then the seal 34 is arranged inside the seal retaining sleeve 36 . Afterward, the plunger 18 is inserted through the seal 34 and inside the bore 14 . Alternatively, should the fixation process allow this, the seal 34 may be set in the seal retaining sleeve 36 before the seal retaining sleeve 36 is fixed on the pump head 12 .
  • a second embodiment is now described in reference to FIG. 3 .
  • the cylindrical member is much shorter than in the first embodiment.
  • This short cylindrical member 44 is provided with an internal axial recess 46 wherein opens the bore 14 and wherein is arranged the seal 34 .
  • the short cylindrical member 44 is provided with an attachment mean such as a thread, as represented on FIG. 3 , or alternatively a crimping geometry, a gluing surface or even radial threaded holes for receiving radially oriented screws.
  • the pump head 12 is further equipped with a bell-shape-member 48 attached via attachment mean complementary to the mean provided with the head 12 .
  • the bell-member 48 has a cylindrical hole 50 that diameter D 1 is smaller than the external diameter D 2 of the seal 34 so, when fixing the bell member 48 , the inner part of its wall comes in contact with the pumping head 12 creating a stop preventing removal of the seal 34 during operation.
  • the bell member 48 is axially provided with an aperture 52 which diameter D 3 is smaller than the diameter D 1 of the cylindrical hole 50 and, when assembled the plunger 18 extends out of the bore 14 , through the seal 34 , through the cylindrical hole 50 and out through the aperture 52 .
  • seal 34 also ensures the two functions of sealing and retaining the plunger.
  • the plunger 18 may be provided with a further retaining mean that is a retaining clip 54 with outer diameter D 4 larger than the diameter D 3 of the aperture 52 .
  • the clip 54 is set in a groove arranged in the plunger 18 in a location that is proximate the seal 34 when the plunger 18 is fully inserted inside the bore 14 .
  • the bell member 48 has to be sufficiently long so, when the plunger 18 travels downwardly the clip 54 remains inside the cylindrical hole 50 travelling from proximate the seal 34 to proximate the aperture 52 .
  • the plunger 18 will slide until the clip 54 abuts against the bottom wall of the bell member 48 preventing a total disassembly of the plunger 18 and an undesirable fall off.
  • the outer face 56 of the bell member 48 is slightly conical with apex toward the cam so to ease the engagement and positioning of the spring 30 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
US14/892,250 2013-07-01 2014-06-04 High Pressure Pump Abandoned US20160084247A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP13174546.5A EP2821646A1 (fr) 2013-07-01 2013-07-01 Pompe haute pression
EP13174546.5 2013-07-01
PCT/EP2014/061529 WO2015000654A1 (fr) 2013-07-01 2014-06-04 Pompe haute pression

Publications (1)

Publication Number Publication Date
US20160084247A1 true US20160084247A1 (en) 2016-03-24

Family

ID=48782179

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/892,250 Abandoned US20160084247A1 (en) 2013-07-01 2014-06-04 High Pressure Pump

Country Status (6)

Country Link
US (1) US20160084247A1 (fr)
EP (2) EP2821646A1 (fr)
JP (1) JP6203389B2 (fr)
KR (1) KR20160026871A (fr)
CN (1) CN105658958A (fr)
WO (1) WO2015000654A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016133058A (ja) * 2015-01-20 2016-07-25 株式会社デンソー 高圧ポンプ及びその製造方法
GB201505089D0 (en) 2015-03-26 2015-05-06 Delphi International Operations Luxembourg S.�.R.L. An oil lubricated common rail diesel pump
DE102016203768B4 (de) * 2015-11-12 2017-10-26 Robert Bosch Gmbh Pumpe, insbesondere Hochdruckpumpe eines Kraftstoffeinspritzsystems, mit einem Montageverbund von Stößel-Baugruppe und Pumpenzylinderkopf, insbesondere durch eine Rastverbindung zwischen Federteller und Stößelkörper
WO2019160533A1 (fr) 2018-02-13 2019-08-22 Cummins Inc. Pompe à carburant comprenant un couvercle et un joint de piston indépendants

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040164496A1 (en) * 2001-06-04 2004-08-26 Masatoshi Okada Sealing device
US20060104843A1 (en) * 2004-11-16 2006-05-18 Denso Corporation High pressure fuel pump
US20080056914A1 (en) * 2006-08-31 2008-03-06 Hitachi, Ltd. High-Pressure Fuel Supply Pump
US20090044783A1 (en) * 2007-08-17 2009-02-19 Michael Fischer Fuel pump for a fuel system of an internal combustion engine
US20120247591A1 (en) * 2011-03-31 2012-10-04 Denso Corporation High-pressure pump
US20130104730A1 (en) * 2010-06-24 2013-05-02 Robert Bosch Gmbh Pump, in particular a high-pressure fuel pump
US8495987B2 (en) * 2010-06-10 2013-07-30 Stanadyne Corporation Single piston pump with dual return springs
US20130230417A1 (en) * 2012-03-05 2013-09-05 Denso Corporation High-pressure pump

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3199105B2 (ja) * 1994-06-24 2001-08-13 株式会社デンソー 高圧燃料供給ポンプ
JP2003206825A (ja) * 2002-01-16 2003-07-25 Denso Corp 代替燃料用の高圧ポンプ
JP2005133681A (ja) * 2003-10-31 2005-05-26 Nok Corp 往復動部材の密封構造
DE102006055298A1 (de) * 2006-11-23 2008-06-05 Elringklinger Ag Dichtungsanordnung
US9151289B2 (en) * 2008-08-21 2015-10-06 Cummins Inc. Fuel pump
JP2010127153A (ja) * 2008-11-26 2010-06-10 Yanmar Co Ltd 燃料噴射ポンプ
IT1396143B1 (it) * 2009-11-03 2012-11-16 Magneti Marelli Spa Pompa carburante con ridotta usura di una guarnizione per un sistema di iniezione diretta
JP5724303B2 (ja) * 2010-11-05 2015-05-27 いすゞ自動車株式会社 Dmeサプライポンプのシール構造
DE102010063363A1 (de) * 2010-12-17 2012-06-21 Robert Bosch Gmbh Hochdruckpumpe
JP5352646B2 (ja) * 2011-01-27 2013-11-27 株式会社日本自動車部品総合研究所 高圧ポンプ
JP2013050081A (ja) * 2011-08-31 2013-03-14 Denso Corp 高圧ポンプ
DE102012204264A1 (de) * 2012-03-19 2013-09-19 Robert Bosch Gmbh Hochdruckpumpe
DE102012218122A1 (de) * 2012-10-04 2014-04-10 Robert Bosch Gmbh Kraftstoffhochdruckpumpe für ein Kraftstoffeinspritzsystem

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040164496A1 (en) * 2001-06-04 2004-08-26 Masatoshi Okada Sealing device
US20060104843A1 (en) * 2004-11-16 2006-05-18 Denso Corporation High pressure fuel pump
US20080056914A1 (en) * 2006-08-31 2008-03-06 Hitachi, Ltd. High-Pressure Fuel Supply Pump
US20090044783A1 (en) * 2007-08-17 2009-02-19 Michael Fischer Fuel pump for a fuel system of an internal combustion engine
US8495987B2 (en) * 2010-06-10 2013-07-30 Stanadyne Corporation Single piston pump with dual return springs
US20130104730A1 (en) * 2010-06-24 2013-05-02 Robert Bosch Gmbh Pump, in particular a high-pressure fuel pump
US20120247591A1 (en) * 2011-03-31 2012-10-04 Denso Corporation High-pressure pump
US20130230417A1 (en) * 2012-03-05 2013-09-05 Denso Corporation High-pressure pump

Also Published As

Publication number Publication date
JP2016526632A (ja) 2016-09-05
JP6203389B2 (ja) 2017-09-27
EP2821646A1 (fr) 2015-01-07
CN105658958A (zh) 2016-06-08
EP3017192A1 (fr) 2016-05-11
KR20160026871A (ko) 2016-03-09
WO2015000654A1 (fr) 2015-01-08

Similar Documents

Publication Publication Date Title
US20160084247A1 (en) High Pressure Pump
US10273921B2 (en) High pressure pump
KR20150093709A (ko) 내연기관용 피스톤 연료 펌프
CN103244327B (zh) 供应泵
KR102398783B1 (ko) 플런저 조립체
CN108474337B (zh) 具有泵弹簧密封套筒的高压泵
US10107245B2 (en) Plunger fuel pump for an internal combustion engine
US10995718B2 (en) High pressure diesel pump
US10393112B2 (en) Piston fuel pump for an internal combustion engine
US10947942B2 (en) High-pressure fuel pump
US10436164B2 (en) Tappet roller retaining approach
US20170089311A1 (en) Single piston pump with reduced piston side loads
CN104685202A (zh) 用于流体喷射器的喷嘴组件和流体喷射器
CN105378263A (zh) 内燃机燃料、优选是柴油的供油泵总成
US20170159835A1 (en) Pressure limiting valve
CN106232980A (zh) 燃料泵
CN106460753B (zh) 燃料喷射器的燃料供给装置和燃料喷射器
US20160222960A1 (en) High-pressure fuel pump
EP3239514A1 (fr) Pompe à carburant haute pression
CN108138734A (zh) 用于内燃机的流体喷射装置
JP2010084920A (ja) シール装置
WO2016108846A1 (fr) Écarteur de piston de pompage amovible pour pompe d'injection de carburant
JP2018112186A (ja) 流体を調量する弁、弁のための接続部品、及び、弁を備えた構成
US20150135532A1 (en) Low leakage seat valve guide

Legal Events

Date Code Title Description
AS Assignment

Owner name: DELPHI INTERNATIONAL OPERATIONS LUXEMBOURG S.A.R.L

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TANSUG, ONUR MEHMET;REEL/FRAME:037204/0998

Effective date: 20151119

AS Assignment

Owner name: DELPHI TECHNOLOGIES IP LIMITED, BARBADOS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DELPHI INTERNATIONAL OPERATIONS LUXEMBOURG S.A.R.L.;REEL/FRAME:044653/0411

Effective date: 20171129

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION