US20150354096A1 - Processing of chemically modified cellulosic fibres - Google Patents

Processing of chemically modified cellulosic fibres Download PDF

Info

Publication number
US20150354096A1
US20150354096A1 US14/654,498 US201314654498A US2015354096A1 US 20150354096 A1 US20150354096 A1 US 20150354096A1 US 201314654498 A US201314654498 A US 201314654498A US 2015354096 A1 US2015354096 A1 US 2015354096A1
Authority
US
United States
Prior art keywords
fibres
weight
moisture content
chemically modified
web
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/654,498
Inventor
Wayne Lee Bonnefin
Lucy Louisa BALLAMY
Sarah Wroe
David Parsons
Garry STOREY
Joseph Thompson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Convatec Technologies Inc
Original Assignee
Convatec Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GBGB1223408.4A external-priority patent/GB201223408D0/en
Priority claimed from GB201308774A external-priority patent/GB201308774D0/en
Application filed by Convatec Technologies Inc filed Critical Convatec Technologies Inc
Assigned to CONVATEC TECHNOLOGIES INC. reassignment CONVATEC TECHNOLOGIES INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BALLAMY, LUCY LOUISA, BONNEFIN, WAYNE LEE, PARSONS, DAVID, STOREY, Garry, THOMPSON, JOSEPH, WROE, Sarah
Publication of US20150354096A1 publication Critical patent/US20150354096A1/en
Assigned to WILMINGTON TRUST (LONDON) LIMITED, AS COLLATERAL AGENT reassignment WILMINGTON TRUST (LONDON) LIMITED, AS COLLATERAL AGENT SECURITY AGREEMENT Assignors: 180 MEDICAL, INC., CONVATEC INC., CONVATEC TECHNOLOGIES INC., PRN MEDICAL SERVICES, LLC
Assigned to CONVATEC TECHNOLOGIES INC. reassignment CONVATEC TECHNOLOGIES INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: WILMINGTON TRUST (LONDON) LIMITED
Abandoned legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
    • D01F2/24Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof from cellulose derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/00051Accessories for dressings
    • A61F13/00063Accessories for dressings comprising medicaments or additives, e.g. odor control, PH control, debriding, antimicrobic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/01Non-adhesive bandages or dressings
    • A61F13/01008Non-adhesive bandages or dressings characterised by the material
    • A61F13/01012Non-adhesive bandages or dressings characterised by the material being made of natural material, e.g. cellulose-, protein-, collagen-based
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/02Adhesive bandages or dressings
    • A61F13/0276Apparatus or processes for manufacturing adhesive dressings or bandages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/28Polysaccharides or their derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B55/00Preserving, protecting or purifying packages or package contents in association with packaging
    • B65B55/02Sterilising, e.g. of complete packages
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01GPRELIMINARY TREATMENT OF FIBRES, e.g. FOR SPINNING
    • D01G15/00Carding machines or accessories; Card clothing; Burr-crushing or removing arrangements associated with carding or other preliminary-treatment machines
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/425Cellulose series
    • D04H1/4258Regenerated cellulose series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B1/00Applying liquids, gases or vapours onto textile materials to effect treatment, e.g. washing, dyeing, bleaching, sizing or impregnating
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/38Oxides or hydroxides of elements of Groups 1 or 11 of the Periodic Table
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/184Carboxylic acids; Anhydrides, halides or salts thereof
    • D06M13/207Substituted carboxylic acids, e.g. by hydroxy or keto groups; Anhydrides, halides or salts thereof
    • D06M13/21Halogenated carboxylic acids; Anhydrides, halides or salts thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/244Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing sulfur or phosphorus
    • D06M13/248Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing sulfur or phosphorus with compounds containing sulfur
    • D06M13/272Unsaturated compounds containing sulfur atoms
    • D06M13/278Vinylsulfonium compounds; Vinylsulfone or vinylsulfoxide compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/02Synthetic cellulose fibres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F2013/00361Plasters
    • A61F2013/00902Plasters containing means
    • A61F2013/0091Plasters containing means with disinfecting or anaesthetics means, e.g. anti-mycrobic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F2013/00361Plasters
    • A61F2013/00902Plasters containing means
    • A61F2013/00936Plasters containing means metal
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/02Natural fibres, other than mineral fibres
    • D06M2101/04Vegetal fibres
    • D06M2101/06Vegetal fibres cellulosic

Definitions

  • This invention relates to chemically modified cellulosic fibres and processes for making nonwoven fibre webs from them.
  • chemically modified cellulosic fibres which may be carded on a carding machine to produce a web.
  • the fibres may be ultimately processed into nonwoven fabrics for instance by needling or entangling the web, the fabrics being suitable for use in absorbent personal products or absorbent medical products such as wound dressings.
  • carding processes suitable for forming webs of chemically modified cellulosic fibres or blends of chemically modified fibres with other non-gelling fibres, for example viscose or Tencel or other cellulosic fibres.
  • Absorbent cellulosic fibres are well known.
  • GB-A-2220881 and GB-A-2094802 describe the production of carboxymethyl cellulose fibres from regenerated cellulose fibres (viscose rayon) fibres or from cotton.
  • carboxymethyl cellulose fibre of greater absorbency and strength can be produced from solvent-spun cellulose fibre.
  • Such fibres are described in EP 0616650 and are manufactured by reacting solvent spun cellulose fibre with a strong alkali and a monochloroacetic acid reagent.
  • alternative chemical modification of cellulose fibres is possible and also has the effect of increasing the absorbency of the cellulose fibre.
  • the cellulose fibre can for instance be modified by sulphonation, for example by substitution with an alkyl sulphonate at one or more of the hydroxyl groups on the anhydroglucose monomers that make up the cellulose backbone forming ether linkages.
  • Modified cellulose of this type is known as cellulose sulphonate or cellulose alkyl sulphonate some of the insoluble forms of which are described in WO2012/061225.
  • Modifying the cellulose fibre requires the fibre to be exposed to one or more reagents which modify the cellulose by substitution, the degree of substitution determining the absorbency and solubility of the fibre. As the degree of substitution is increased the modified cellulose becomes increasingly soluble. As the solubility increases, absorbency also increases.
  • the chemically modified fibres need to be insoluble and retain some of their fibrous form when exposed to wound fluid and consequently a balance needs to be found between solubility and absorbency.
  • the chemically modified fibre can be in the form of a tow, filament, sliver, yarn or staple fibre, woven, non-woven or knitted fabric.
  • an aqueous wash is generally used initially, preferably a mixture of water with a water-miscible organic solvent such as water and IMS, the major portion of the wash being organic solvent.
  • the wash may contain an organic hydroxyl compound, a surfactant, and/or acid.
  • the organic hydroxyl compound is a compound containing at least one alcoholic hydroxyl group, for example ethanol, methanol or another low molecular weight alcohol and/or a compound such as ethylene glycol or propylene glycol.
  • the final wash or finish typically comprises a large percentage of alcohol for instance, 99% industrial alcohol and 1% emulsifier or 100% alcohol.
  • the fibres are dried at low temperature for instance as described in EP 0680344, by forced air drying or radiant heat drying.
  • the drying of the fibres requires the solvents that are released to be managed from an environmental and safety perspective. It would be desirable to reduce the percentage of organic solvents used in the washing process so that environmental and safety standards can be readily met. There are also potential cost and efficiency advantages to using a lower percentage of organic solvents as the cost of materials and duty are reduced.
  • Fibre breakage can also adversely affect the staple length which has the effect of reducing the strength of a carded web and nonwoven fabric made from the fibres. It is possible that fibre breakage leads to a failed card process where no non-woven mat is produced. A weaker product can be more difficult to remove from the wound as the integrity of the dressing can be compromised.
  • the invention provides a chemically modified cellulosic web of fibres having a tensile strength of at least 3N per cm (N/cm) in the cross direction produced by processing fibres having a moisture content of at least 7% by weight.
  • Controlling the moisture content of the fibres either by controlling the drying process following washing of the modified fibres as part of the chemical modification process or by conditioning the fibres to increase their moisture content to at least 7% subsequent to drying, increases the tensile strength of the fibres to the point where it is possible to process the fibres for example on a carding machine to produce a non-woven fibre web without the production of excessive fly or shedding from a fabric produced from the web.
  • the moisture content of the fibres is kept at between 11 and 20% by controlling the drying process following washing of the modified fibres as part of the chemical modification process.
  • the tensile strength is measured in the cross direction on needled webs having a basis weight in the range of 80 to 120 gsm.
  • the invention provides, in a further aspect, a process for producing a non-woven web of chemically modified cellulosic fibres comprising the steps of:
  • the fibres are typically those resulting from a modification process using a wash or final rinse comprising less than 99% by weight such as 95% by weight of organic solvent in the wash liquor.
  • the fibres can be processed into a consolidated form that allows a fabric to be produced by conventional carding means while mitigating the problem of fibre breakage and fly in the environment of the fabric production plant.
  • a consolidated form could for example be a yarn, sliver, woven, non-woven or knitted fabric.
  • the moisture content of the modified cellulosic fibres is increased by exposing the fibres to a moisture rich environment for at least 24 hours.
  • the drying of the fibres at the end of the chemical modification process can be controlled so that the moisture content of the fibres is maintained above 7% until the fibres are subjected to further processing such as with textiling machinery for instance by carding and needling.
  • the carded, needled fibre web has a tensile strength of from 3N/cm to 25 N/cm, more preferably from 7N/cm to 25N/cm and most preferably from 10N/cm to 25N/cm.
  • the tensile strength of the carded, needled web is measured by cutting five specimens to a size of 25 mm ⁇ 75 mm with the long dimension being in the direction to be tested. Tensile testing is carried out at a gauge length (effective test fabric length) of 50 mm. One end of the sample is fixed in an upper jaw of a tensile testing machine and allowed to dangle into the lower jaw. The sample is then fixed by closing the jaws without stretching the sample or allowing it to be slack. The crosshead speed is set to 100 mm/min and the sample pulled to break. The tensile strength is calculated by dividing the force at break by the sample width in cm.
  • the moisture content of the fibres prior to processing with textiling machinery is from 7% to 20% by weight and more preferably from 11% to 18%. More preferably the moisture content is from 11.5% and 15% by weight and most preferably it is between 12 and 15% by weight. A moisture content of 12.5% to 15% is particularly preferred and 15% is most preferred.
  • moisture content is meant the amount of moisture (measured by weight) contained in the sample of fibres as a percentage of its conditioned weight and measured by the loss on drying.
  • the moisture content of the fibres is measured by calculating the loss on drying using a moisture balance operated in accordance with the instrument manual.
  • a moisture balance operated in accordance with the instrument manual.
  • comparative measurements of moisture content can be made using a moisture meter for instance an Aquaboy (TEMI).
  • carding in the present invention is meant a mechanical process that disentangles, cleans and intermixes fibres to produce a continuous web or sliver suitable for further processing.
  • the invention provides a chemically modified cellulosic fibre having a moisture content of at least 7% by weight.
  • FIG. 1 shows the fibre moisture content vs tensile strength of carded needled fabric in the transverse (cross) direction before and after moisture conditioning to increase the moisture content.
  • the column headed IDA in the table of FIG. 1 refers to the percentage of IDA (industrial denatured alcohols) used in the wash liquor as part of the modification process.
  • the columns headed % refer to the % moisture in the fibre and N/cm to the tensile strength of the resulting carded needled web in the transverse direction. It can be seen from FIG. 1 that decreasing the % of IDA in the wash liquor has a negative influence on tensile strength for carded and needled webs made from unconditioned fibres. It can also be seen that once the moisture content of those fibres is raised to more than 11%, such as 12.5 to 14% moisture those tensile strength values of the carded needled web increase.
  • Dressings were prepared by modification of solvent spun cellulose tow to a degree of substitution of 0.3 to form carboxymethylcellulose, neutralising to a pH of 5.5 with an organic acid. Adding 1.2% cationic silver by an ion exchange process in a largely organic solvent such as by the process described in Ep1343510, washing in an aqueous organic solution containing sodium chloride and di-sodium EDTA for light stabilisation and to entrain approximately 0.4% EDTA.
  • the dressings were removed from the packs and then subjected to various controlled environments.
  • Samples were tested immediately after opening the packs. Samples removed from the other environments were sealed into plastic bags during removal, and then tested immediately. The plastic bags (also preconditioned in corresponding controlled environments) were used to maintain the humidity of the environment of the samples until the point of testing.
  • LOD of the samples was determined using the Ohaus moisture balance MB23 operated in accordance with the instruction manual. A sample mass of greater than 1 gram was used. Samples were cut to fit within the weighing pan, ensuring there was adequate clearance from the heating element. A standardised method was used with a maximum temperature limit of 110° C. The endpoint was determined automatically when the sample mass stopped reducing and was stable. Under these conditions the fabric did not char. Typically, samples would be subjected to a 10 minute cycle.
  • Loss on drying is the summation of all the volatile substances that can be removed by heating at 110° C. These include ethanol, water and to some degree acetic acid.
  • fibres for use in wound dressings according to the invention can be successfully textiled between 42% and 50% RH at around 18 to 20° C.
  • Trials suggest that fibres with 10.5% to 11.5% w/w moisture content can be carded efficiently.
  • cellulose ethylsulphonate CES
  • carboxymethyl cellulose CMC
  • tow bundles were prepared to assess the moisture content.
  • Fibres were oven dried at 105° C. for one hour prior to being conditioned at the chosen relative humidity for a minimum of 16 hours.
  • the mass of the oven dried tow bundles (W 1 ) and the conditioned tow bundles (W 2 ) was taken to assess the moisture content of the fibres, using Equation 1.
  • Fibres were tested at 45% RH, 65% RH, and 85% RH.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Textile Engineering (AREA)
  • Veterinary Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Chemical & Material Sciences (AREA)
  • Vascular Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Epidemiology (AREA)
  • Materials Engineering (AREA)
  • Hematology (AREA)
  • Mechanical Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Nonwoven Fabrics (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Artificial Filaments (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

A chemically modified cellulosic fibre or filament having a moisture content of at least 7% by weight obtained by a process comprising the steps of (i) obtaining cellulosic fibres or filament and chemically modifying the cellulose by substitution to increase its absorbency; (ii) washing the fibres after step (i) in a mixture comprising water and up to 99% by weight of water-miscible organic solvent; (iii) drying the fibres to a moisture content of at least 7% by weight, tart abstract here

Description

  • This invention relates to chemically modified cellulosic fibres and processes for making nonwoven fibre webs from them. In particular it relates to chemically modified cellulosic fibres which may be carded on a carding machine to produce a web. The fibres may be ultimately processed into nonwoven fabrics for instance by needling or entangling the web, the fabrics being suitable for use in absorbent personal products or absorbent medical products such as wound dressings. Also described are carding processes suitable for forming webs of chemically modified cellulosic fibres or blends of chemically modified fibres with other non-gelling fibres, for example viscose or Tencel or other cellulosic fibres.
  • Absorbent cellulosic fibres are well known. For instance GB-A-2220881 and GB-A-2094802 describe the production of carboxymethyl cellulose fibres from regenerated cellulose fibres (viscose rayon) fibres or from cotton. It is also known that carboxymethyl cellulose fibre of greater absorbency and strength can be produced from solvent-spun cellulose fibre. Such fibres are described in EP 0616650 and are manufactured by reacting solvent spun cellulose fibre with a strong alkali and a monochloroacetic acid reagent. It is also known that alternative chemical modification of cellulose fibres is possible and also has the effect of increasing the absorbency of the cellulose fibre. The cellulose fibre can for instance be modified by sulphonation, for example by substitution with an alkyl sulphonate at one or more of the hydroxyl groups on the anhydroglucose monomers that make up the cellulose backbone forming ether linkages. Modified cellulose of this type is known as cellulose sulphonate or cellulose alkyl sulphonate some of the insoluble forms of which are described in WO2012/061225.
  • Modifying the cellulose fibre requires the fibre to be exposed to one or more reagents which modify the cellulose by substitution, the degree of substitution determining the absorbency and solubility of the fibre. As the degree of substitution is increased the modified cellulose becomes increasingly soluble. As the solubility increases, absorbency also increases.
  • For some applications, for instance for absorbent gelling wound dressings, the chemically modified fibres need to be insoluble and retain some of their fibrous form when exposed to wound fluid and consequently a balance needs to be found between solubility and absorbency. The chemically modified fibre can be in the form of a tow, filament, sliver, yarn or staple fibre, woven, non-woven or knitted fabric.
  • Once the modification and neutralisation in acid has taken place, the fibres need to be washed to remove any unreacted alkali, chloroacetate, alkylsulphonate, other modifying agent or any by-products such as sodium chloride or sodium glycollate. An aqueous wash is generally used initially, preferably a mixture of water with a water-miscible organic solvent such as water and IMS, the major portion of the wash being organic solvent. The wash may contain an organic hydroxyl compound, a surfactant, and/or acid. The organic hydroxyl compound is a compound containing at least one alcoholic hydroxyl group, for example ethanol, methanol or another low molecular weight alcohol and/or a compound such as ethylene glycol or propylene glycol.
  • The final wash or finish typically comprises a large percentage of alcohol for instance, 99% industrial alcohol and 1% emulsifier or 100% alcohol. After washing, the fibres are dried at low temperature for instance as described in EP 0680344, by forced air drying or radiant heat drying.
  • As the washing step or steps to which the fibres are subjected following modification involve the use of relatively high percentages of organic solvents such as industrial alcohol, the drying of the fibres requires the solvents that are released to be managed from an environmental and safety perspective. It would be desirable to reduce the percentage of organic solvents used in the washing process so that environmental and safety standards can be readily met. There are also potential cost and efficiency advantages to using a lower percentage of organic solvents as the cost of materials and duty are reduced.
  • We have found that reducing, for instance, the percentage of organic solvent in the wash liquor used to wash modified cellulose fibres results in fibres that have a lower tensile strength making them less suitable for processing on textile machinery such as a carding machine. The lower tensile strength can lead to the problem of fibre breakage on carding which gives higher levels of airborne lint or dust (fly) and greater shedding of broken fibre from the finished fabric. The higher level of fly necessitates increased cleaning and environment management in the fabric production process which in turn increases cost. There is also more wastage in the process as fibres tend to drop out of the fabric during the process of manufacture.
  • Fibre breakage can also adversely affect the staple length which has the effect of reducing the strength of a carded web and nonwoven fabric made from the fibres. It is possible that fibre breakage leads to a failed card process where no non-woven mat is produced. A weaker product can be more difficult to remove from the wound as the integrity of the dressing can be compromised.
  • We have now found that it is possible to mitigate the problem of low tensile strength in modified fibres by controlled management of the moisture content of the fibres.
  • Accordingly the invention provides a chemically modified cellulosic web of fibres having a tensile strength of at least 3N per cm (N/cm) in the cross direction produced by processing fibres having a moisture content of at least 7% by weight.
  • Controlling the moisture content of the fibres, either by controlling the drying process following washing of the modified fibres as part of the chemical modification process or by conditioning the fibres to increase their moisture content to at least 7% subsequent to drying, increases the tensile strength of the fibres to the point where it is possible to process the fibres for example on a carding machine to produce a non-woven fibre web without the production of excessive fly or shedding from a fabric produced from the web. Preferably the moisture content of the fibres is kept at between 11 and 20% by controlling the drying process following washing of the modified fibres as part of the chemical modification process.
  • Preferably the tensile strength is measured in the cross direction on needled webs having a basis weight in the range of 80 to 120 gsm.
  • Accordingly the invention provides, in a further aspect, a process for producing a non-woven web of chemically modified cellulosic fibres comprising the steps of:
  • (i) obtaining chemically modified cellulosic fibres with a moisture content of at least 7%;
  • (ii) carding the fibres to make a nonwoven web of fibres.
  • The fibres are typically those resulting from a modification process using a wash or final rinse comprising less than 99% by weight such as 95% by weight of organic solvent in the wash liquor. By controlling the moisture content, the fibres can be processed into a consolidated form that allows a fabric to be produced by conventional carding means while mitigating the problem of fibre breakage and fly in the environment of the fabric production plant. A consolidated form could for example be a yarn, sliver, woven, non-woven or knitted fabric.
  • When the fibres are to be processed using textiling machinery, if it is found that the moisture content of the fibres is too low, the moisture content of the modified cellulosic fibres is increased by exposing the fibres to a moisture rich environment for at least 24 hours. Alternatively the drying of the fibres at the end of the chemical modification process can be controlled so that the moisture content of the fibres is maintained above 7% until the fibres are subjected to further processing such as with textiling machinery for instance by carding and needling.
  • Preferably the carded, needled fibre web has a tensile strength of from 3N/cm to 25 N/cm, more preferably from 7N/cm to 25N/cm and most preferably from 10N/cm to 25N/cm.
  • The tensile strength of the carded, needled web is measured by cutting five specimens to a size of 25 mm×75 mm with the long dimension being in the direction to be tested. Tensile testing is carried out at a gauge length (effective test fabric length) of 50 mm. One end of the sample is fixed in an upper jaw of a tensile testing machine and allowed to dangle into the lower jaw. The sample is then fixed by closing the jaws without stretching the sample or allowing it to be slack. The crosshead speed is set to 100 mm/min and the sample pulled to break. The tensile strength is calculated by dividing the force at break by the sample width in cm.
  • Preferably the moisture content of the fibres prior to processing with textiling machinery is from 7% to 20% by weight and more preferably from 11% to 18%. More preferably the moisture content is from 11.5% and 15% by weight and most preferably it is between 12 and 15% by weight. A moisture content of 12.5% to 15% is particularly preferred and 15% is most preferred.
  • By the term moisture content is meant the amount of moisture (measured by weight) contained in the sample of fibres as a percentage of its conditioned weight and measured by the loss on drying.
  • The moisture content of the fibres is measured by calculating the loss on drying using a moisture balance operated in accordance with the instrument manual. For convenience, during the process for making the fibres, comparative measurements of moisture content can be made using a moisture meter for instance an Aquaboy (TEMI).
  • By the term carding in the present invention is meant a mechanical process that disentangles, cleans and intermixes fibres to produce a continuous web or sliver suitable for further processing.
  • In a further aspect of the invention, the invention provides a chemically modified cellulosic fibre having a moisture content of at least 7% by weight.
  • The invention will now be illustrated by the following examples.
  • EXAMPLE 1
  • Comparison of the moisture content of fibres vs their tensile strengths once carded and needled was made by measuring the initial moisture content of dried modified cellulosic fibres produced using washes of varying alcohol content. That initial moisture content was then increased by conditioning the fibres in a moist atmosphere for 24 hours at a relative humidity of 55 to 60% and the tensile strength of the needled fabric measured again. FIG. 1 shows the fibre moisture content vs tensile strength of carded needled fabric in the transverse (cross) direction before and after moisture conditioning to increase the moisture content.
  • The results show that the moisture content of the fibres influences the tensile strength of the resulting carded and needled web. The column headed IDA in the table of FIG. 1 refers to the percentage of IDA (industrial denatured alcohols) used in the wash liquor as part of the modification process. The columns headed % refer to the % moisture in the fibre and N/cm to the tensile strength of the resulting carded needled web in the transverse direction. It can be seen from FIG. 1 that decreasing the % of IDA in the wash liquor has a negative influence on tensile strength for carded and needled webs made from unconditioned fibres. It can also be seen that once the moisture content of those fibres is raised to more than 11%, such as 12.5 to 14% moisture those tensile strength values of the carded needled web increase.
  • EXAMPLE 2
  • Effect of moisture content on the tensile strength of silver containing wound dressings.
  • Dressings were prepared by modification of solvent spun cellulose tow to a degree of substitution of 0.3 to form carboxymethylcellulose, neutralising to a pH of 5.5 with an organic acid. Adding 1.2% cationic silver by an ion exchange process in a largely organic solvent such as by the process described in Ep1343510, washing in an aqueous organic solution containing sodium chloride and di-sodium EDTA for light stabilisation and to entrain approximately 0.4% EDTA. Followed by washing in organic solvent wash containing fibre finishing agents including tween 20 and benzethonium chloride (to give 0.135% wt/wt BeCl on the finished product) and subsequently warm air drying, cutting to staple and processing into a nonwoven felt by carding and a needle punching process. The dressings were cut to size from the web and packaged in a light, moisture and vapour impermeable heat sealed foil pouch.
  • The dressings were removed from the packs and then subjected to various controlled environments.
  • Controlled Environments
      • Ambient as packed, tested without any preconditioning
      • Zero humidity: Stored in a square desiccator with 3 perforated perspex shelves above a layer of silica gel desiccant, conditioned for a minimum of 5 days
      • 25° C./60% RH, for a minimum of 6 days
      • 30° C./65% RH, for a minimum of 6 days
      • 40° C./75% RH, for a minimum of 6 days
  • Samples (ambient as packed) were tested immediately after opening the packs. Samples removed from the other environments were sealed into plastic bags during removal, and then tested immediately. The plastic bags (also preconditioned in corresponding controlled environments) were used to maintain the humidity of the environment of the samples until the point of testing.
  • Loss on Drying (LOD)
  • LOD of the samples was determined using the Ohaus moisture balance MB23 operated in accordance with the instruction manual. A sample mass of greater than 1 gram was used. Samples were cut to fit within the weighing pan, ensuring there was adequate clearance from the heating element. A standardised method was used with a maximum temperature limit of 110° C. The endpoint was determined automatically when the sample mass stopped reducing and was stable. Under these conditions the fabric did not char. Typically, samples would be subjected to a 10 minute cycle.
  • Fabric Thickness (Loft)
  • Samples were tested using the Hampden Soft Materials Thickness Gauge, Model FMTml-4D, S/N 14082. Fabric thickness (sometimes referred to as loft) was determined for 6 dressings per batch.
  • Fabric Dry Tensile Strength
  • 2.5 cm×7.5 cm rectangular strips were cut from along the length (machine direction) and across the width (transverse direction) using a ribbon cutting die and press. Samples were conditioned as described Table 1. The peak force and the extension at which that force occurred were recorded when a 50 mm test length was stretched at a constant separation rate of 100 mm per minute.
  • Results
  • TABLE 1
    Relationship between absolute and relative humidity
    25° C./ 30° C./ 40° C./
    Conditioning Dry Ambient 60% RH 65% RH 75% RH
    Moisture 0.00 9.50 13.81 19.71 38.29
    (g/m3)
    Thickness 0.170 0.190 0.198 0.183 0.202
    (mm)
    LOD % 9.28 1.93 14.17 15.27 18.10
    Tensile 3.10 5.19 5.80 5.36 7.75
    Machine
    (N/cm)
    Tensile 5.15 6.53 11.12 10.23 14.28
    Transverse
    (N/Cm)
    GSM 91 102 105 98 108
    (g/m2)
  • Loss on drying is the summation of all the volatile substances that can be removed by heating at 110° C. These include ethanol, water and to some degree acetic acid.
  • For this particular fibre, for this example, textile trials have shown that fibres for use in wound dressings according to the invention can be successfully textiled between 42% and 50% RH at around 18 to 20° C. Trials suggest that fibres with 10.5% to 11.5% w/w moisture content can be carded efficiently.
  • The results show that tensile strength, loft and LOD are all functions of equilibrium moisture content. The results suggest that fibres with a moisture content of greater than 9% will be able to be textiled to produce dressings suitable for use in the present invention.
  • EXAMPLE 3 Materials
  • Two gelling fibre types were used in this study; cellulose ethylsulphonate (CES) and carboxymethyl cellulose (CMC).
  • TABLE 1
    Summary of gelling fibres used
    Gelling Fibre
    CES fibre tow
    CMC fibre tow
  • Methods
  • Single fibres were mounted onto card windows as described in BS EN 5079:1996.
  • In addition, tow bundles were prepared to assess the moisture content.
  • Fibres were oven dried at 105° C. for one hour prior to being conditioned at the chosen relative humidity for a minimum of 16 hours. The mass of the oven dried tow bundles (W1) and the conditioned tow bundles (W2) was taken to assess the moisture content of the fibres, using Equation 1.
  • Moisture Content ( % ) = W 2 - W 1 W 2 × 100 Equation 1
  • Single fibre tensile strength of the conditioned samples was undertaken using the method described in BS EN 5079:1996.
  • Fibres were tested at 45% RH, 65% RH, and 85% RH.
  • Results
  • Results found that a significantly higher (P≦0.05) tensile strength was seen in the samples conditioned at 65% RH than those conditioned at 45% RH and 85% RH as shown in Table 2.
  • TABLE 2
    Summary of results
    Relative Humidity of Atmosphere
    (%) Ambient
    45 65 85
    CES Moisture Content in fibre (%) 9 15 22
    w/w
    Mean Fibre Breaking Strength 4.85 6.16 3.79
    (cN)
    Standard Deviation (cN) 1.08 3.61 1.21
    T-Test against 65% RH data 0.016 N/A 0.000
    P value
    CMC Moisture Content in fibre (%) 12 15 21
    Mean Fibre Breaking Strength 6.04 8.24 4.16
    (cN)
    Standard Deviation (cN) 2.65 6.06 1.55
    T-Test against 65% RH data 0.029 N/A 0.000
    P value

Claims (43)

1. A chemically modified cellulosic web of needled fibres having a tensile strength of at least 3N per cm measured in the cross direction obtained by processing fibres having a moisture content of at least 7% by weight.
2. A chemically modified cellulosic fibre having a moisture content of at least 7% by weight.
3. A chemically modified web of fibres or fibre as claimed in claim 1 or claim 2 having a moisture content from 11% to 18% by weight.
4. A chemically modified web of fibres or fibre as claimed in claim 1 or claim 2 having a moisture content from 12% and 15% by weight.
5. A chemically modified web of fibres or fibre as claimed in claim 1 or claim 2 having a moisture content of 15% by weight.
6. A chemically modified web of fibres or fibre as claimed in any preceding claim wherein the fibres are obtained from a chemical modification process comprising a wash step that uses a wash composition comprising less than 99% by weight of a water-miscible organic solvent.
7. A chemically modified web of fibres as claimed in claim 1 or any of claims 3 to 6 processed by carding and needling having a tensile strength of 3N/cm to 25N/cm.
8. A chemically modified web of fibres as claimed in claim 7 having a basis weight of between 80 and 120 gsm.
9. A chemically modified web or fibres as claimed in claim 7 or 8 having a tensile strength of from 7N/cm to 25N/cm.
10. A chemically modified web or fibres as claimed in claim 7, 8 or 9 having a tensile strength of from 10N/cm to 25N/cm
11. A process for producing a non-woven web of chemically modified cellulosic fibres comprising the steps of:
(i) obtaining chemically modified cellulosic fibres with a moisture content of at least 7%;
(ii) carding and needling the fibres to make a nonwoven web of fibres.
12. A process as claimed in claim 11 wherein the fibres are obtained from a chemical modification process which comprises a step wherein the fibres are washed with a composition comprising less than 99% by weight of an organic solvent.
13. A process as claimed in claim 12 wherein the wash composition comprises less than 95% by weight of a water-miscible organic solvent.
14. A process as claimed in any of claims 12 to 13 wherein after the washing step, the fibres are dried to a moisture content of at least 7%.
15. A process as claimed in claim 12 wherein the fibres are obtained by conditioning the fibres in air having a relative humidity of at least 40% to increase the moisture content of the fibres to least 7%.
16. A process as claimed in claim 18 wherein the relative humidity is from 45% to 85%.
17. A process as claimed in claim 18 or 19 wherein the relative humidity is from 50% to 65%.
18. A process as claimed in any of claims 11 to 17 wherein the fibres have a moisture content of from 11% to 18% by weight.
19. A process as claimed in any of claims 11 to 18 wherein the fibres have a moisture content from 12% and 15% by weight.
20. A process as claimed in any of claims 11 to 19 wherein the fibres have a moisture content of 14% to 15% by weight.
21. A process for producing a non-woven web of chemically modified cellulosic fibres comprising the steps of:
(i) obtaining cellulosic fibres or filament and chemically modifying the cellulose by substitution to increase its absorbency, then;
(ii) washing the fibres with a composition comprising water and up to 99% by weight of water-miscible organic solvent; and then
(iii) drying the fibres in a controlled atmosphere to a moisture content of at least 7% by weight.
22. A process as claimed in claim 21 wherein the wash composition comprises less than 95% by weight of an organic solvent.
23. A process as claimed in claim 21 or 22 wherein the process comprises the additional step of needling the web to form a wound dressing.
24. A process as claimed in claim 23 wherein the process comprises the additional step of sealing and sterilising the dressing in a pouch that maintains the dressing in a sterile and controlled environment.
25. A process as claimed in any of claims 21 to 24 wherein the fibres have a moisture content of from 11% to 18% by weight.
26. A process as claimed in any of claims 21 to 25 wherein the fibres have a moisture content from 12% and 15% by weight.
27. A process as claimed in any of claims 21 to 26 wherein the fibres have a moisture content of 14% to 15% by weight.
28. A chemically modified cellulosic fibre or filament having a moisture content of at least 7% by weight obtained by a process comprising the steps of
(i) obtaining cellulosic fibres or filament and chemically modifying the cellulose by substitution to increase its absorbency;
(ii) washing the fibres after step (i) in a mixture comprising water and up to 99% by weight of water-miscible organic solvent;
(iii) drying the fibres to a moisture content of at least 7% by weight.
29. A process as claimed in claim 28 wherein the wash composition comprises less than 95% by weight of an organic solvent.
30. A process as claimed in claim 28 or 29 wherein the process comprises the additional step of carding and needling the fibre to form a wound dressing.
31. A process as claimed in claim 30 wherein the process comprises the additional step of sealing and sterilising the dressing in a pouch that maintains the moisture content of the dressing in a sterile environment.
32. A process as claimed in any of claims 28 to 31 wherein the fibres or filaments have a moisture content of from 11% to 18% by weight.
33. A process as claimed in any of claims 28 to 32 wherein the fibres or filaments have a moisture content from 12% and 15% by weight.
34. A process as claimed in any of claims 28 to 33 wherein the fibres or filaments have a moisture content of 14% to 15% by weight.
35. A process for producing a non-woven web of chemically modified cellulosic fibres comprising the steps of:
(i) obtaining cellulosic fibres or filament and chemically modifying the cellulose by substitution to increase its absorbency, then;
(ii) washing the fibres with a composition comprising up to 99% by weight of an organic solvent; and then
(iii) conditioning the fibres in an atmosphere having a relative humidity of at least 40% to increase the moisture content of the fibres to least 7%.
36. A process as claimed in claim 35 wherein the wash composition comprises less than 95% by weight of an organic solvent.
37. A process as claimed in claim 35 or 36 wherein the conditioning is in air having a relative humidity of 45% to 85%.
38. A process as claimed in claim 35 to 37 wherein the relative humidity is from 50% to 65%.
39. A process as claimed in any of claims 35 to 38 wherein the fibres have a moisture content of from 11% to 18% by weight.
40. A process as claimed in any of claims 35 to 39 wherein the fibres have a moisture content from 12% and 15% by weight.
41. A process as claimed in any of claims 35 to 40 wherein the fibres have a moisture content of 14% to 15% by weight.
42. A process as claimed in claims 35 to 41 wherein the process comprises the additional step of carding and needling the fibres to form a wound dressing.
43. A process as claimed in claim 42 wherein the process comprises the additional step of sealing and sterilising the dressing in a pouch that maintains the moisture content of the dressing in a sterile environment.
US14/654,498 2012-12-20 2013-12-20 Processing of chemically modified cellulosic fibres Abandoned US20150354096A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
GBGB1223408.4A GB201223408D0 (en) 2012-12-20 2012-12-20 Processing of chemically modified cellulosic fibres
GB1223408.4 2012-12-20
GB1308774.7 2013-05-15
GB201308774A GB201308774D0 (en) 2013-05-15 2013-05-15 Processing of chemically modified cellulosic fibres
PCT/GB2013/053374 WO2014096843A2 (en) 2012-12-20 2013-12-20 Processing of chemically modified cellulosic fibres

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2013/053374 A-371-Of-International WO2014096843A2 (en) 2012-12-20 2013-12-20 Processing of chemically modified cellulosic fibres

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/806,255 Continuation US11286601B2 (en) 2012-12-20 2020-03-02 Processing of chemically modified cellulosic fibres

Publications (1)

Publication Number Publication Date
US20150354096A1 true US20150354096A1 (en) 2015-12-10

Family

ID=49956229

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/654,498 Abandoned US20150354096A1 (en) 2012-12-20 2013-12-20 Processing of chemically modified cellulosic fibres
US16/806,255 Active US11286601B2 (en) 2012-12-20 2020-03-02 Processing of chemically modified cellulosic fibres

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/806,255 Active US11286601B2 (en) 2012-12-20 2020-03-02 Processing of chemically modified cellulosic fibres

Country Status (10)

Country Link
US (2) US20150354096A1 (en)
EP (1) EP2935688A2 (en)
JP (2) JP2016507663A (en)
KR (1) KR20150099776A (en)
CN (1) CN105008611A (en)
AU (2) AU2013366038A1 (en)
BR (1) BR112015014816A2 (en)
CA (1) CA2895896A1 (en)
MX (1) MX2015007771A (en)
WO (1) WO2014096843A2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0808376D0 (en) 2008-05-08 2008-06-18 Bristol Myers Squibb Co Wound dressing
GB0817796D0 (en) 2008-09-29 2008-11-05 Convatec Inc wound dressing
GB201020236D0 (en) 2010-11-30 2011-01-12 Convatec Technologies Inc A composition for detecting biofilms on viable tissues
CN103347561B (en) 2010-12-08 2016-09-07 康沃特克科技公司 For assessing the integrated system of wound exudate
EP2648794B1 (en) 2010-12-08 2019-08-28 ConvaTec Technologies Inc. Wound exudate system accessory
GB201115182D0 (en) 2011-09-02 2011-10-19 Trio Healthcare Ltd Skin contact material
GB2497406A (en) 2011-11-29 2013-06-12 Webtec Converting Llc Dressing with a perforated binder layer
GB201120693D0 (en) 2011-12-01 2012-01-11 Convatec Technologies Inc Wound dressing for use in vacuum therapy
JP2016507663A (en) 2012-12-20 2016-03-10 コンバテック・テクノロジーズ・インコーポレイテッドConvatec Technologies Inc Processing of chemically modified cellulosic fibers
EP3436820A2 (en) 2016-03-30 2019-02-06 Qualizyme Diagnostics GmbH&Co KG Detecting microbial infection in wounds
TW201800069A (en) 2016-03-30 2018-01-01 康華特科技有限公司 Detecting microbial infection in wounds
CN107281534A (en) * 2016-04-11 2017-10-24 宣晓星 A kind of preparation method of natural bamboo fibres hemostatic gauze
KR20190028467A (en) 2016-07-08 2019-03-18 컨바텍 테크놀러지스 인크 Body fluid collecting device
KR20190026858A (en) 2016-07-08 2019-03-13 컨바텍 테크놀러지스 인크 Flexible negative pressure system
TW201805035A (en) 2016-07-08 2018-02-16 美商康瓦鐵克科技股份有限公司 Fluid flow sensing
WO2018184038A1 (en) * 2017-04-03 2018-10-11 Lenzing Ag Continuous filament cellulose nonwoven made with multiple bonding techniques
US20200323710A1 (en) * 2017-11-27 2020-10-15 Essity Hygiene And Health Aktiebolag Pant-type absorbent article with a disposal tape
USD893514S1 (en) 2018-11-08 2020-08-18 11 Health And Technologies Limited Display screen or portion thereof with graphical user interface
US11771819B2 (en) 2019-12-27 2023-10-03 Convatec Limited Low profile filter devices suitable for use in negative pressure wound therapy systems
US11331221B2 (en) 2019-12-27 2022-05-17 Convatec Limited Negative pressure wound dressing

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6075177A (en) * 1993-01-22 2000-06-13 Acordis Fibres (Holdings) Limited Wound dressing
US6207601B1 (en) * 1996-03-08 2001-03-27 Rhodia Acetow Ag Melt-blown nonwoven fabric, process for producing same and the uses thereof
US6238691B1 (en) * 1996-10-24 2001-05-29 Sherwood Services Ag Hydrogel wound dressing and the method of making and using the same
US6548730B1 (en) * 1998-07-01 2003-04-15 Acordis Speciality Fibres Limited Wound dressings and materials suitable for use therein
US20060019571A1 (en) * 2004-07-09 2006-01-26 Rainer Lange Absorbent personal care and/or cleansing product for cosmetic and/or dermatological applications comprising at least one absorbent sheet
US20100129633A1 (en) * 2008-11-27 2010-05-27 Stephen Law Absorbent Material
US20100310845A1 (en) * 2009-06-03 2010-12-09 Eric Bryan Bond Fluid permeable structured fibrous web
US20120202398A1 (en) * 2009-10-23 2012-08-09 Innovia Films Limited Biodegradable fibre and its process of manufacture
US20120232502A1 (en) * 2009-06-10 2012-09-13 Systagenix Wound Management (Us), Inc. Hydrogel wound dressing for use with suction

Family Cites Families (755)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2396514A (en) 1943-03-20 1946-03-12 Ludwig Jekels Sterilizing materials and methods for making the same
GB735462A (en) 1951-12-20 1955-08-24 Dow Chemical Co Improvements in or relating to iodine-containing ethylenediaminetetraacetic acid compounds and methods of making same
US2785106A (en) 1952-08-16 1957-03-12 Ions Exchange And Chemical Cor Process for making antiseptic article
US3092552A (en) 1958-05-19 1963-06-04 Albert C Nolte Oligodynamic silver compositions and uses
US3061469A (en) 1959-11-05 1962-10-30 Givaudan Corp Antibacterial textile fabrics
US3246624A (en) 1965-02-05 1966-04-19 Novo Ind Corp Pressure indicating device
JPS5738564B2 (en) 1974-09-27 1982-08-16
US4258056A (en) 1978-12-18 1981-03-24 Economics Laboratory, Inc. Control of mastitis and compositions therefor
US4344324A (en) 1979-02-23 1982-08-17 Mts Systems Corporation Flat belt tire tester
JPS6015641B2 (en) 1981-03-18 1985-04-20 花王株式会社 Method for producing fibrous carboxymethyl cellulose
EP0124536A4 (en) 1982-11-05 1985-06-06 Baxter Travenol Lab Antimicrobial compositions.
US4655758A (en) 1982-12-16 1987-04-07 Johnson & Johnson Products, Inc. Microbial polysaccharide articles and methods of production
US4889654A (en) 1984-07-31 1989-12-26 Rio Linda Chemical Company, Inc. Aqueous foam disinfectant containing chlorine dixoide and preparation and use thereof
US4612337A (en) 1985-05-30 1986-09-16 The Trustees Of Columbia University In The City Of New York Method for preparing infection-resistant materials
US4728323A (en) 1986-07-24 1988-03-01 Minnesota Mining And Manufacturing Company Antimicrobial wound dressings
FR2604900B1 (en) 1986-10-08 1989-01-13 Blomet Marie Claude PHYSIOLOGICAL SOLUTION FOR THE WASHING OF THE PARTS OF THE HUMAN BODY WHICH HAVE BEEN IN CONTACT WITH A FLUORHYDRIC ACID AND CONCENTRATED FOR ITS PREPARATION
GB8709498D0 (en) 1987-04-22 1987-05-28 Bay M Wound dressing
US4829129A (en) 1987-05-29 1989-05-09 International Dioxcide, Inc. Reaction product of polymer with chlorine dioxide
GB2220881B (en) 1988-04-28 1992-07-08 Toyo Boseki Improvements in or relating to superabsorbent materials
US4906100A (en) 1988-05-13 1990-03-06 University Of Cincinnati Method of detecting adriamycin (doxorubicin) or daunomycin in the environment
RU2092180C1 (en) 1988-06-22 1997-10-10 Эпплаид Микробиолоджи Инк. Antibacterial composition
US4973848A (en) 1989-07-28 1990-11-27 J. Mccaughan Laser apparatus for concurrent analysis and treatment
US5340924A (en) 1990-01-18 1994-08-23 Morinaga Milk Industry Co., Ltd. Method for heat treatment of lactoferrin without losing physiological activities thereof
DE4001690A1 (en) 1990-01-22 1990-08-09 Daimler Benz Ag Tyre testing set-up - has tyre holding wheel and road-simulating drum with variable speed device, applying braking at different torques to simulate service loads
US6066469A (en) 1990-03-08 2000-05-23 Ferro Dynamics, Inc. Cloning, expression, and uses of human lactoferrin
BR9205879A (en) 1991-04-10 1994-07-05 Christopher C Capelli Antimicrobial composition, adhesive composition, mammalian infection treatment process and process for providing antimicrobial protection to a patient
US5662913A (en) 1991-04-10 1997-09-02 Capelli; Christopher C. Antimicrobial compositions useful for medical applications
GB9126193D0 (en) 1991-12-10 1992-02-12 Courtaulds Plc Cellulosic fibres
US5407656A (en) 1992-03-04 1995-04-18 Arco Research Co., Inc. Method and compositions for the production of chlorine dioxide
EP0631610B1 (en) 1992-03-20 1997-06-18 Unilever Plc Improvements in or relating to cleaning compositions
US5762620A (en) 1992-04-02 1998-06-09 Ndm Acquisition Corp. Wound dressing containing a partially dehydrated hydrogel
WO1994002022A1 (en) 1992-07-22 1994-02-03 Unilever Plc Improvements in or relating to germicidal compositions
DE69332954D1 (en) 1992-10-21 2003-06-12 Gynetech Lab Inc DISPENSING SYSTEM CONSISTING OF A VAGINASCHWAMM
WO1994016746A1 (en) 1993-01-22 1994-08-04 Courtaulds Plc Wound dressings
US5848995A (en) 1993-04-09 1998-12-15 Walder; Anthony J. Anti-infective medical article and method for its preparation
US5567495A (en) 1993-08-06 1996-10-22 The Trustees Of Columbia University In The City Of New York Infection resistant medical devices
US5744155A (en) 1993-08-13 1998-04-28 Friedman; Doron Bioadhesive emulsion preparations for enhanced drug delivery
NO301555B1 (en) 1994-08-23 1997-11-10 Oil Engineering Consultants Dr Submarine bottom frame for petroleum production
JP3121503B2 (en) 1994-10-18 2001-01-09 レンゴー株式会社 Antibacterial agent
JP3297969B2 (en) 1994-12-26 2002-07-02 ライオン株式会社 Eye drops
US5616347A (en) 1995-02-14 1997-04-01 Alliger; Howard Chlorine dioxide skin medicating compositions for preventing irritation
WO1997002038A1 (en) 1995-06-30 1997-01-23 Capelli Christopher C Silver-based pharmaceutical compositions
SE506869C2 (en) 1995-06-30 1998-02-23 Inst Polymerutveckling Ab Method of lamination by photo-grafting, laminates made according to the method and its use
IN192791B (en) * 1996-06-28 2004-05-22 Johnson & Johnson Medical
US5820918A (en) 1996-07-11 1998-10-13 Hercules Incorporated Medical devices containing in-situ generated medical compounds
US20030104018A1 (en) 1996-12-31 2003-06-05 Griscom Bettle Skin product having micro-spheres, and processes for the production thereof
ATE239116T1 (en) 1997-04-11 2003-05-15 Bristol Myers Squibb Co KNITTED WOUND COMPOSITE
KR20010013377A (en) 1997-06-04 2001-02-26 데이비드 엠 모이어 Mild, leave-on antimicrobial compositions
US5993864A (en) 1997-07-11 1999-11-30 Kross; Robert D. Chlorine dioxide chelate compositions and method of use
US5860947A (en) 1997-08-20 1999-01-19 Stamler; Keith D. Wound irrigation device and method
US6605751B1 (en) 1997-11-14 2003-08-12 Acrymed Silver-containing compositions, devices and methods for making
US6753063B1 (en) 1997-11-19 2004-06-22 The Procter & Gamble Company Personal cleansing wipe articles having superior softness
IL123437A0 (en) 1998-02-24 1998-09-24 Shalev Pinchas Apparatus and method for photothermal destruction of oral bacteria
US8267982B2 (en) 1998-08-25 2012-09-18 Advanced Photodynamic Technologies, Inc. Photodynamic cellular and acellular organism eradication utilizing a photosensitive material and surfactant
EP1129730B2 (en) 1998-11-09 2013-01-02 Kao Corporation Products for thickening processing bodily fluids or bodily wastes
JP4514256B2 (en) * 1998-11-09 2010-07-28 花王株式会社 Body fluid or excrement thickened article
US6413556B1 (en) 1999-01-08 2002-07-02 Sky High, Llc Aqueous anti-apoptotic compositions
DE19909214A1 (en) 1999-03-03 2000-09-07 Basf Ag Water-absorbent, foam-like, crosslinked polymers with improved distribution effect, process for their preparation and their use
GB9905663D0 (en) 1999-03-12 1999-05-05 Bristol Myers Squibb Co Iodine preparation composition
ATE337765T1 (en) 1999-04-02 2006-09-15 Kinetic Concepts Inc VACUUM-ASSISTED CLOSURE DEVICE WITH HEATING AND COOLING DEVICE
US6172040B1 (en) 1999-05-28 2001-01-09 A. Satyanarayan Naidu Immobilized lactoferrin antimicrobial agents and the use thereof
EP1216319B1 (en) 1999-09-27 2004-04-07 BHK Holding Ltd. Absorptive fabric
WO2001024839A1 (en) 1999-10-01 2001-04-12 Acrymed Silver-containing compositions, devices and methods for making
US6592890B1 (en) 1999-10-20 2003-07-15 Oxibio, Inc. Conveyance of anti-infective activity to wound dressings
US6584835B2 (en) 2000-02-11 2003-07-01 Mts Systems Corporation Spindle assembly for a tire or wheel testing machine
US6555508B1 (en) 2000-02-17 2003-04-29 Leonard Paul Liquid foaming soap compositions
GB0011202D0 (en) 2000-05-09 2000-06-28 Kci Licensing Inc Abdominal wound dressing
AU2000265516A1 (en) 2000-08-11 2002-02-25 The Lawson Health Research Institute Compositions and methods for inhibiting islet dysfunction and autoimmune disorders
US20070003508A1 (en) 2005-07-01 2007-01-04 Wooley Richard E Methods and compositions for promoting wound healing
US20020091074A1 (en) 2000-09-20 2002-07-11 Wooley Richard E. Medical compositions, dressings and methods for treating microbial infections of skin lesions
GB2370226A (en) 2000-09-21 2002-06-26 Acordis Speciality Fibres Ltd Wound dressing
CA2430001C (en) 2000-11-29 2010-02-16 Bristol-Myers Squibb Company Light stabilized antimicrobial materials
US7700819B2 (en) 2001-02-16 2010-04-20 Kci Licensing, Inc. Biocompatible wound dressing
US20020172709A1 (en) 2001-03-30 2002-11-21 Brian Nielsen Medical dressing comprising an antimicrobial silver compound and a method for enhancing wound healing
JP4517101B2 (en) 2001-08-21 2010-08-04 学校法人日本大学 Plaque staining composition
PT1425050E (en) 2001-09-12 2008-01-16 Convatec Ltd Antibacterial wound dressing
GB2382527A (en) 2001-12-03 2003-06-04 Acordis Speciality Fibres Ltd Wound dressings
US8541472B2 (en) 2001-12-05 2013-09-24 Aseptica, Inc. Antiseptic compositions, methods and systems
US20040047763A1 (en) 2001-12-05 2004-03-11 Peter Kite Anti-microbial systems and methods
AU2003214793A1 (en) 2002-02-11 2003-09-04 Unimed Pharma Spol. Sr.O Eye installation based on iodine anions
US6468965B1 (en) 2002-04-22 2002-10-22 Paul Cutler Pharmaceutical composition for oral administration of a mixture of chelating agents
US20040033916A1 (en) 2002-06-28 2004-02-19 Kuzmin Vladimir Semenovich Disinfecting composition
GB0215023D0 (en) 2002-06-28 2002-08-07 Bristol Myers Squibb Co Wound dressing
GB2393120A (en) 2002-09-18 2004-03-24 Johnson & Johnson Medical Ltd Compositions for wound treatment
AU2003278961A1 (en) 2002-09-25 2004-04-19 Craig Norman Eatough Antiseptic solutions containing silver chelated with polypectate and edta
WO2004035718A2 (en) 2002-10-14 2004-04-29 Arconia Gmbh Composition
GB0224986D0 (en) 2002-10-28 2002-12-04 Smith & Nephew Apparatus
AU2003303207A1 (en) 2002-12-19 2004-07-14 University Of Georgia Research Foundation, Inc. Methods and compositions for wound management
AU2004204561B2 (en) 2003-01-09 2010-11-25 Stryker European Operations Holdings Llc Biomedical foams
US7629000B2 (en) 2003-05-13 2009-12-08 E.I. Du Pont De Nemours And Company Method for making antimicrobial polyester-containing articles with improved wash durability and articles made thereby
CN101669967B (en) 2003-08-14 2013-06-05 美利肯公司 Silver-containing wound care device, composition thereof, and method of producing same
US20050245605A1 (en) 2003-08-28 2005-11-03 Arata Andrew B Anhydrous silver dihydrogen citrate compositions
US20050059731A1 (en) 2003-09-16 2005-03-17 Ceramoptec Industries, Inc. Erythrosin-based antimicrobial photodynamic therapy compound and its use
GB0325129D0 (en) 2003-10-28 2003-12-03 Smith & Nephew Apparatus in situ
US7033511B2 (en) 2004-01-20 2006-04-25 A-Dec, Inc. Sustained water treatment in dental equipment
WO2005079582A1 (en) 2004-02-24 2005-09-01 Campina B.V. Antimicrobial lactoferrin compositions for surfaces, cavities, and foodstuff
US7909805B2 (en) 2004-04-05 2011-03-22 Bluesky Medical Group Incorporated Flexible reduced pressure treatment appliance
US20070254349A1 (en) 2004-04-16 2007-11-01 Helbo Photodynamic Systems Gmbh & Co.Kg Preparation for the Photodynamic Control of Micro-Organisms and Use Thereof
US10413644B2 (en) 2004-04-27 2019-09-17 Smith & Nephew Plc Wound treatment apparatus and method
GB0409446D0 (en) 2004-04-28 2004-06-02 Smith & Nephew Apparatus
JP4987715B2 (en) 2004-06-12 2012-07-25 シグナム バイオサイエンシズ, インク. Topical compositions and methods for epithelial related conditions
GB2415372A (en) 2004-06-23 2005-12-28 Destiny Pharma Ltd Non photodynamical or sonodynamical antimicrobial use of porphyrins and azaporphyrins containing at least one cationic-nitrogen-containing substituent
CA2573744A1 (en) 2004-07-22 2006-03-02 Ondine International Ltd. Sonophotodynamic therapy for dental applications
US10251392B2 (en) 2004-07-30 2019-04-09 Avent, Inc. Antimicrobial devices and compositions
US20060115440A1 (en) 2004-09-07 2006-06-01 Arata Andrew B Silver dihydrogen citrate compositions
US9028852B2 (en) 2004-09-07 2015-05-12 3M Innovative Properties Company Cationic antiseptic compositions and methods of use
US20060051430A1 (en) 2004-09-07 2006-03-09 Arata Andrew B Silver dihydrogen citrate compositions
GB0424833D0 (en) 2004-11-10 2004-12-15 Photocure Asa Method
AU2006204752A1 (en) 2005-01-14 2006-07-20 Neurogen Corporation Heteroaryl substituted quinolin-4-ylamine analogues
US20060234959A1 (en) 2005-04-14 2006-10-19 Advanced Photodynamic Technologies, Inc. Photodynamic therapy utilizing multiple duty cycle light modulation
FR2884422B1 (en) 2005-04-18 2008-04-11 Roquette Freres ANTI-INFLAMMATORY COMPOSITION OF INTESTINES COMPRISING BRANCHED MALTODEXTRINS
US9162005B2 (en) 2005-04-25 2015-10-20 Arch Biosurgery, Inc. Compositions for prevention of adhesions and other barrier applications
US20060254988A1 (en) 2005-05-10 2006-11-16 Confirm Monitoring Systems, Inc. Methods and compositions for the treatment of water
GB0513552D0 (en) 2005-07-01 2005-08-10 Bristol Myers Squibb Co Bandage
CA2923372C (en) 2005-09-07 2019-07-30 Smith & Nephew, Inc. Self contained wound dressing apparatus
EP1922095A2 (en) 2005-09-07 2008-05-21 Tyco Healthcare Group LP Wound dressing with vacuum reservoir
JP3877174B1 (en) 2005-09-13 2007-02-07 株式会社オーバル Third-order mode vibration straight tube Coriolis flowmeter with elastic connecting member and pedestal
GB0525504D0 (en) 2005-12-14 2006-01-25 Bristol Myers Squibb Co Antimicrobial composition
JP2007167266A (en) 2005-12-21 2007-07-05 Lion Corp Dental plaque detection system and method
US20070166399A1 (en) 2006-01-13 2007-07-19 3M Innovative Properties Company Silver-containing antimicrobial articles and methods of manufacture
US8075503B2 (en) 2006-01-23 2011-12-13 Kci Licensing, Inc. System and method for treating a wound using ultrasonic debridement
RU2436597C2 (en) 2006-02-06 2011-12-20 КейСиАй ЛАЙСЕНЗИНГ, ИНК. Methods and devices for advanced attachment of wound dressing to low-pressure wound healing systems
CA2646195C (en) 2006-04-11 2014-07-08 Tyco Healthcare Group Lp Wound dressings with anti-microbial and chelating agents
US7779625B2 (en) 2006-05-11 2010-08-24 Kalypto Medical, Inc. Device and method for wound therapy
GB2439928A (en) 2006-07-13 2008-01-16 Ethicon Inc Hydrogel wound dressings exhibiting reduced fiber losses
JP4826382B2 (en) 2006-08-08 2011-11-30 アルケア株式会社 Antibacterial cellulose fiber and textile product for skin contact
EP1925719B1 (en) 2006-09-21 2011-11-09 Alcare Co., Ltd. Antibacterial fiber, method for production of the fiber, antibacterial fiber product comprising the antibacterial fiber, method for production of the product, and method for regeneration of the product
CA2776011C (en) 2006-10-13 2017-01-10 Kci Licensing, Inc. Reduced pressure delivery system having a manually-activated pump for providing treatment to low-severity wounds
US9034352B2 (en) 2006-11-14 2015-05-19 Rohm And Haas Company Microbicide combinations containing silver
US20080226724A1 (en) 2007-01-19 2008-09-18 Genentech, Inc. Prevention of hydrogel viscosity loss
FR2916356B1 (en) 2007-05-25 2009-08-28 Urgo Soc Par Actions Simplifie NOVEL AGENT FOR RELOCATING ACTIVE INGREDIENTS IN DRESSINGS CONTAINING AT LEAST ONE FATTY BODY
GB0710846D0 (en) 2007-06-06 2007-07-18 Bristol Myers Squibb Co A wound dressing
US20090075891A1 (en) 2007-08-06 2009-03-19 Macphee Martin Methods and dressings for sealing internal injuries
GB2452720A (en) 2007-09-11 2009-03-18 Ethicon Inc Wound dressing with an antimicrobial absorbent layer and an apertured cover sheet
JP5511670B2 (en) 2007-10-11 2014-06-04 スピレイカー・インコーポレイテッド Sutured incision negative pressure wound treatment apparatus and method of use
ES2555204T3 (en) 2007-11-21 2015-12-29 T.J. Smith & Nephew Limited Suction and bandage device
ES2715605T3 (en) 2007-11-21 2019-06-05 Smith & Nephew Wound dressing
JP5432175B2 (en) 2007-12-12 2014-03-05 スリーエム イノベイティブ プロパティズ カンパニー Article manufacturing method and article
US20090234306A1 (en) 2008-03-13 2009-09-17 Tyco Healthcare Group Lp Vacuum wound therapy wound dressing with variable performance zones
US9199012B2 (en) 2008-03-13 2015-12-01 Smith & Nephew, Inc. Shear resistant wound dressing for use in vacuum wound therapy
GB0805162D0 (en) 2008-03-19 2008-04-23 Bristol Myers Squibb Co Antibacterial wound dressing
EP2282707A1 (en) 2008-04-04 2011-02-16 3M Innovative Properties Company Wound dressing with micropump
US20100015245A1 (en) 2008-04-24 2010-01-21 Joe Harrison Combination of Copper Cations with Peroxides or Quaternary Ammonium Compounds for the Treatment of Biofilms
GB0808376D0 (en) 2008-05-08 2008-06-18 Bristol Myers Squibb Co Wound dressing
EP2291640B1 (en) 2008-05-20 2018-12-26 University Health Network Device and method for fluorescence-based imaging and monitoring
CN102083478B (en) 2008-05-21 2014-05-21 莫利斯·托帕斯 Wound healing device
ITAR20080022A1 (en) 2008-05-26 2009-11-27 Daniele Guidi DRAINAGE DEVICE, IN PARTICULAR FOR ASPIRATION IN CASE OF SUCTION THERAPIES, FISTULAS, SURGICAL WOUND DEFICIENCIES, DECUBITUS INJURIES, TRAUMAS AND SIMILAR INJURIES.
EP3556407B1 (en) 2008-05-30 2023-03-15 3M Innovative Properties Company Reduced-pressure, linear-wound treatment systems
US8187237B2 (en) 2008-05-30 2012-05-29 Kci Licensing, Inc Reduced-pressure, linear wound closing bolsters and systems
WO2009158130A1 (en) 2008-05-30 2009-12-30 Kci Licensing, Inc. Reduced-pressure, compression systems and apparatuses for use on a curved body part
US20200113741A1 (en) 2008-05-30 2020-04-16 Kci Licensing, Inc. Dressing with tissue viewing capability
US8460698B2 (en) 2008-08-01 2013-06-11 Milliken & Company Composite article suitable for use as a wound dressing
CA2731427C (en) 2008-08-08 2020-01-28 Tyco Healthcare Group Lp Wound dressing of continuous fibers
GB2463523B (en) 2008-09-17 2013-05-01 Medtrade Products Ltd Wound care device
GB0904582D0 (en) 2008-09-24 2009-04-29 Lumina Adhesives Switchable adhesives
GB0817796D0 (en) 2008-09-29 2008-11-05 Convatec Inc wound dressing
US8624077B2 (en) 2008-10-02 2014-01-07 L.R.R.&D. Ltd. Interface layer wound dressing
US8460257B2 (en) 2008-11-07 2013-06-11 Kci Licensing, Inc. Reduced-pressure, wound-treatment dressings and systems
MX2011005075A (en) 2008-11-14 2011-05-25 Kci Licensing Inc Fluid pouch, system, and method for storing fluid from a tissue site.
WO2010059612A2 (en) 2008-11-18 2010-05-27 Kci Licensing, Inc. Reduced-pressure, composite manifolds
EP2358425B1 (en) 2008-11-25 2014-11-12 Spiracur Inc. Device for delivery of reduced pressure to body surfaces
GB0823265D0 (en) 2008-12-20 2009-01-28 Convatec Technologies Inc Antimicrobial Composition
US8361043B2 (en) 2009-01-07 2013-01-29 Spiracur Inc. Reduced pressure therapy of the sacral region
US8162907B2 (en) 2009-01-20 2012-04-24 Tyco Healthcare Group Lp Method and apparatus for bridging from a dressing in negative pressure wound therapy
GB0902368D0 (en) 2009-02-13 2009-04-01 Smith & Nephew Wound packing
US20190298578A1 (en) 2009-03-26 2019-10-03 Stephen Shulman Vented emergency wound dressings with anti-thrombogenic layers
US10792404B2 (en) 2009-04-10 2020-10-06 Kci Licensing, Inc. Methods and devices for applying closed incision negative pressure wound therapy
GB2470040A (en) 2009-05-06 2010-11-10 Systagenix Wound Man Ip Co Bv Wound dressing material comprising N-acetyl cysteine
EP2442770B1 (en) 2009-06-16 2016-03-30 3M Innovative Properties Company Conformable medical dressing with self supporting substrate
EP2442835B1 (en) 2009-06-16 2014-12-10 Baxter International Inc Hemostatic sponge
US20100324516A1 (en) 2009-06-18 2010-12-23 Tyco Healthcare Group Lp Apparatus for Vacuum Bridging and/or Exudate Collection
US8469936B2 (en) 2009-07-15 2013-06-25 Kci Licensing, Inc. Reduced-pressure dressings, systems, and methods employing desolidifying barrier layers
US20110066123A1 (en) 2009-09-15 2011-03-17 Aidan Marcus Tout Medical dressings, systems, and methods employing sealants
EP2498828B1 (en) 2009-11-09 2018-12-26 3M Innovative Properties Company Medical articles and methods of making using immiscible material
CN102596560B (en) 2009-11-09 2015-11-25 3M创新有限公司 Medical article and the method using miscible composition to be prepared
GB0919659D0 (en) 2009-11-10 2009-12-23 Convatec Technologies Inc A component for a wound dressing
CN102770165B (en) 2009-12-22 2016-07-06 史密夫和内修有限公司 Equipment for negative pressure wound therapy
AU2011207572A1 (en) 2010-01-20 2012-07-05 Kci Licensing, Inc. Foam wound inserts with regions of higher and lower densities, wound dressings, and methods
US8791315B2 (en) 2010-02-26 2014-07-29 Smith & Nephew, Inc. Systems and methods for using negative pressure wound therapy to manage open abdominal wounds
US10709883B2 (en) 2010-03-04 2020-07-14 Donald Spector Bandage with microneedles for antimicrobial delivery and fluid absorption from a wound
US8469935B2 (en) 2010-03-11 2013-06-25 Kci Licensing, Inc. Abdominal treatment systems, delivery devices, and methods
US8721606B2 (en) 2010-03-11 2014-05-13 Kci Licensing, Inc. Dressings, systems, and methods for treating a tissue site
US8430867B2 (en) 2010-03-12 2013-04-30 Kci Licensing, Inc. Reduced-pressure dressing connection pads, systems, and methods
US9358158B2 (en) 2010-03-16 2016-06-07 Kci Licensing, Inc. Patterned neo-epithelialization dressings, systems, and methods
US8814842B2 (en) 2010-03-16 2014-08-26 Kci Licensing, Inc. Delivery-and-fluid-storage bridges for use with reduced-pressure systems
US20110237994A1 (en) 2010-03-25 2011-09-29 Combat Medical Systems, Llc Void-filling wound dressing
WO2011121394A1 (en) 2010-03-31 2011-10-06 Pharmaplast Sae A wound care dressing, a method and a production line for manufacturing the wound care dressing
US8632512B2 (en) 2010-04-09 2014-01-21 Kci Licensing, Inc. Apparatuses, methods, and compositions for the treatment and prophylaxis of chronic wounds
JP6075732B2 (en) 2010-04-13 2017-02-08 ケーシーアイ ライセンシング インク Compositions containing reactive components and wound dressings, devices and methods
US20190381222A9 (en) 2010-04-16 2019-12-19 Kci Licensing, Inc. Reduced-Pressure Sources, Systems, And Methods Employing A Polymeric, Porous, Hydrophobic Material
US8604265B2 (en) 2010-04-16 2013-12-10 Kci Licensing, Inc. Dressings and methods for treating a tissue site on a patient
GB201008347D0 (en) 2010-05-19 2010-07-07 Smith & Nephew Wound protection
GB201006986D0 (en) 2010-04-27 2010-06-09 Smith & Nephew Wound dressing
USRE48117E1 (en) 2010-05-07 2020-07-28 Smith & Nephew, Inc. Apparatuses and methods for negative pressure wound therapy
US10639404B2 (en) 2010-06-03 2020-05-05 Wound Healing Technologies, Llc Wound dressing
KR101988418B1 (en) 2010-06-17 2019-09-24 코블론 테크놀로지스 인코포레이티드 Antimicrobial Silicone-Based Wound Dressings Containing Particulate Chlorhexidine
US9265665B2 (en) 2010-07-19 2016-02-23 Kci Licensing, Inc. Inflatable off-loading wound dressing assemblies, systems, and methods
US8795246B2 (en) 2010-08-10 2014-08-05 Spiracur Inc. Alarm system
GB201015656D0 (en) 2010-09-20 2010-10-27 Smith & Nephew Pressure control apparatus
ES2659543T3 (en) 2010-11-01 2018-03-16 Becton Dickinson And Company Gardnerella vaginalis trial
JP6078472B2 (en) 2010-11-25 2017-02-08 スミス アンド ネフュー ピーエルシーSmith & Nephew Public Limited Company Compositions I-II and products and their use
GB201020236D0 (en) 2010-11-30 2011-01-12 Convatec Technologies Inc A composition for detecting biofilms on viable tissues
US8613733B2 (en) 2010-12-15 2013-12-24 Kci Licensing, Inc. Foam dressing with integral porous film
GB2488749A (en) 2011-01-31 2012-09-12 Systagenix Wound Man Ip Co Bv Laminated silicone coated wound dressing
EP3932327A1 (en) 2011-02-04 2022-01-05 University Of Massachusetts Negative pressure wound closure device
US9107990B2 (en) 2011-02-14 2015-08-18 Kci Licensing, Inc. Reduced-pressure dressings, systems, and methods for use with linear wounds
GB201105829D0 (en) 2011-04-06 2011-05-18 Convatec Technologies Inc Antimicrobial compositions
EP2696826B1 (en) 2011-04-12 2018-09-19 KCI Licensing, Inc. Evaporative fluid pouch and systems for use with body fluids
GB201106491D0 (en) 2011-04-15 2011-06-01 Systagenix Wound Man Ip Co Bv Patterened silicone coating
AU2012249615A1 (en) 2011-04-29 2013-08-29 Kci Licensing, Inc. Aptamer-modified polymeric materials for the binding of therapeutic factors in a wound environment
GB201108229D0 (en) 2011-05-17 2011-06-29 Smith & Nephew Tissue healing
CA2834702C (en) 2011-05-26 2019-03-26 Kci Licensing, Inc. Systems and methods of stimulation and activation of fluids for use with instillation therapy
ES2610233T3 (en) 2011-06-07 2017-04-26 Smith & Nephew Plc Members and methods for contacting wounds
WO2012170744A2 (en) 2011-06-07 2012-12-13 Spiracur, Inc. Solutions for bridging and pressure concentration reduction at wound sites
CN103764186B (en) 2011-07-26 2016-05-04 凯希特许有限公司 With the system and method for decompression treatment tissue site, involve a decompressing connection with the multi lumen catheter for contacting manifold
JP6131253B2 (en) 2011-07-26 2017-05-17 スミス アンド ネフュー ピーエルシーSmith & Nephew Public Limited Company System and method for controlling operation of a reduced pressure treatment system
GB201113515D0 (en) 2011-08-04 2011-09-21 Convatec Technologies Inc A dressing
DE102011081818A1 (en) 2011-08-30 2013-02-28 Beiersdorf Ag Active skin coatings
US11534523B2 (en) 2011-08-30 2022-12-27 Avery Dennison Corporation Silicone absorbent adhesive layer
EP2944298B1 (en) 2011-08-31 2017-05-17 KCI Licensing, Inc. Inline storage pouches for use with body fluids
DE102011120492A1 (en) 2011-09-02 2013-03-07 BLüCHER GMBH Wound dressing, useful e.g. for topical wound care, comprises an air-permeable layer having a porous and/or foam-based structure, preferably in the form of a solid foam, and a sorbent in the form of an activated carbon
ES2523377T5 (en) 2011-09-09 2018-04-19 Paul Hartmann Ag Abdominal dressing with application help
CR20190006A (en) 2011-09-12 2019-03-18 Protege Biomedical Llc COMPOSITION AND CONTRIBUTION FOR WOUND TREATMENT
DK2572737T3 (en) 2011-09-26 2016-06-27 Bsn Medical Gmbh improved wound dressing
US20140309574A1 (en) 2011-11-01 2014-10-16 Brightwake Limited Wound dressings, and yarn useful therein
US9393354B2 (en) 2011-11-01 2016-07-19 J&M Shuler Medical, Inc. Mechanical wound therapy for sub-atmospheric wound care system
EP2779975B1 (en) 2011-11-15 2020-02-19 KCI Licensing, Inc. Medical dressings, systems, and methods with thermally- enhanced vapor transmission
US9132040B2 (en) 2011-11-17 2015-09-15 Ethicon, Inc. Dressing device
WO2013074829A1 (en) 2011-11-18 2013-05-23 Kci Licensing, Inc. Tissue treatment systems and methods having a porous substrate with a compressed region and an expanded region
US9204801B2 (en) 2011-11-21 2015-12-08 Kci Licensing, Inc. Systems, devices, and methods for identifying portions of a wound filler left at a tissue site
US10940047B2 (en) 2011-12-16 2021-03-09 Kci Licensing, Inc. Sealing systems and methods employing a hybrid switchable drape
CN104203301B (en) 2012-01-10 2017-12-15 凯希特许有限公司 System and method for applying from part delivering fluid to Wound healing and bone regeneration
CN107522880B (en) 2012-01-25 2020-07-24 阿克伦大学 Hydrogel and preparation method thereof
GB201201751D0 (en) 2012-02-01 2012-03-14 Haemostatix Ltd Haemostatic wound dressing
CN104053420B (en) 2012-02-02 2020-07-14 凯希特许有限公司 Foam structure wound insert for directional granulation
EP2817038B2 (en) 2012-02-21 2023-06-07 KCI Licensing, Inc. A multi-orientation canister for use with a reduced pressure treatment system
US10470936B2 (en) 2012-02-29 2019-11-12 Hollister Incorporated Buffered adhesive compositions for skin-adhering medical products
JP6092243B2 (en) 2012-02-29 2017-03-08 ホリスター・インコーポレーテッドHollister Incorporated Buffer adhesive composition for skin adhesive medical products
EP2636417B1 (en) 2012-03-05 2017-04-26 Lohmann & Rauscher GmbH Wound treatment assembly and covering device for same
CA3122007A1 (en) 2012-03-12 2013-09-19 Smith & Nephew Plc Reduced pressure apparatus and methods
US10576037B2 (en) 2012-03-14 2020-03-03 MAM Holdings of West Florida, L.L.C. Compositions comprising placental collagen for use in wound healing
US9427505B2 (en) 2012-05-15 2016-08-30 Smith & Nephew Plc Negative pressure wound therapy apparatus
EP2852419B1 (en) 2012-05-22 2019-11-20 Smith & Nephew plc Wound closure device
EP3650055A1 (en) 2012-05-23 2020-05-13 Smith & Nephew plc Apparatuses and methods for negative pressure wound therapy
GB201209745D0 (en) 2012-05-31 2012-07-18 Convatec Technologies Inc Wound dressing
EP2854893B1 (en) 2012-06-03 2019-10-02 Daniel Eduard Kleiner Endoluminal vacuum therapy device
WO2014004701A1 (en) 2012-06-28 2014-01-03 Kci Licensing, Inc. Wound connection pad with rfid and integrated strain gauge pressure sensor
CN109316279B (en) 2012-07-16 2022-10-25 马萨诸塞州大学 Negative pressure wound closure device
WO2014012171A1 (en) 2012-07-19 2014-01-23 Innovotech, Inc. Anti-microbial gel formulations containing a silver (i) periodate
EP2879633B1 (en) 2012-07-30 2018-08-22 KCI Licensing, Inc. Reduced-pressure absorbent dressing, system for treating a tissue site, and method of manufacturing the dressing
BR112015002154A2 (en) 2012-08-01 2017-07-04 Smith & Nephew wound dressing
US9662427B2 (en) 2012-08-13 2017-05-30 Kci Licensing, Inc. Intelligent therapy system with evaporation management
CA2883373A1 (en) 2012-08-28 2014-03-06 3M Innovative Properties Company Chlorhexidine gluconate compositions, resin systems and articles
EP3763397B1 (en) 2012-08-31 2023-07-12 Stryker European Operations Holdings LLC Hemostatic foam
WO2014039557A1 (en) 2012-09-04 2014-03-13 Integrated Healing Technologies Wound dressing
CA2884419A1 (en) 2012-09-12 2014-03-20 Kci Licensing, Inc. Systems and methods for collecting exudates in reduced-pressure therapy
BR112015005996A2 (en) 2012-09-20 2017-08-22 Loske Gunnar ARRANGEMENT FOR VACUUM TREATMENT AND FILM FOR PRODUCTION OF VACUUM TREATMENT ARRANGEMENT
GB201216928D0 (en) 2012-09-21 2012-11-07 I2R Medical Ltd Portable medical device system
US9877875B2 (en) 2012-10-09 2018-01-30 Parasol Medical LLC Antimicrobial hydrogel formulation
US9572968B2 (en) 2012-10-11 2017-02-21 Hanuman Pelican, Inc. Compressive oxygen diffusive wound dressings
JP6183831B2 (en) 2012-10-23 2017-08-23 義之 小山 Hydrogel forming material
US9616151B2 (en) 2012-10-24 2017-04-11 Kci Licensing, Inc. Sulfhydryl-functionalized polymeric compositions for medical devices
US9657132B2 (en) 2012-10-24 2017-05-23 Kci Licensing, Inc. Amine-functionalized polymeric compositions for medical devices
JP2016507663A (en) 2012-12-20 2016-03-10 コンバテック・テクノロジーズ・インコーポレイテッドConvatec Technologies Inc Processing of chemically modified cellulosic fibers
JP6495178B2 (en) 2012-12-21 2019-04-03 スリーエム イノベイティブ プロパティズ カンパニー Medical dressing with flap
EP2941232B2 (en) 2013-01-03 2019-04-10 KCI Licensing, Inc. Moisture absorbing seal
GB201309369D0 (en) 2013-05-24 2013-07-10 Smith & Nephew Moisture indicating system
US10973962B2 (en) 2013-01-16 2021-04-13 Kci Licensing, Inc. Ion exchange enhanced absorbent systems
EP3019547B1 (en) 2013-03-05 2020-07-22 The Penn State Research Foundation Composite materials
EP2968702B1 (en) 2013-03-13 2019-12-11 KCI Licensing, Inc. Expandable fluid collection canister
WO2014158526A1 (en) 2013-03-14 2014-10-02 Kci Licensing, Inc. Negative pressure therapy with dynamic profile capability
WO2014158529A1 (en) 2013-03-14 2014-10-02 Kci Licensing, Inc. A fluid collection canister with integrated moisture trap
CN105188792B (en) 2013-03-14 2017-05-10 凯希特许有限公司 Micro-porous conduit
CA2902181A1 (en) 2013-03-15 2014-09-25 Smith & Nephew, Inc. Dissolvable gel-forming film for delivery of active agents
ES2964341T3 (en) 2013-03-15 2024-04-05 Euromed Inc Adhesive composition
US20160022861A1 (en) 2013-03-15 2016-01-28 Martin MacPhee Compositions having absorbable materials, methods, and applicators for sealing injuries
US10492956B2 (en) 2013-03-15 2019-12-03 Kci Licensing, Inc. Topical vacuum-press surgical incisional dressings, surgical adjuncts, hybrids and composites
US20160120706A1 (en) 2013-03-15 2016-05-05 Smith & Nephew Plc Wound dressing sealant and use thereof
RU2015143729A (en) 2013-03-15 2017-04-21 СМИТ ЭНД НЕФЬЮ ПиЭлСи Wound dressing and method of treatment
US10792337B2 (en) 2013-03-15 2020-10-06 Kci Licensing, Inc. Wound healing compositions
GB2512841B (en) 2013-04-08 2020-07-15 Brightwake Ltd Absorbent wound dressings
ES2778375T3 (en) 2013-04-08 2020-08-10 Univ Yeditepe Polymer-based hydrogel
WO2014169250A1 (en) 2013-04-11 2014-10-16 President And Fellows Of Harvard College Prefabricated alginate-drug bandages
WO2014170461A1 (en) 2013-04-17 2014-10-23 Molnlycke Health Care Ab Wound pad
US10016380B2 (en) 2013-05-01 2018-07-10 Lanny Leo Johnson Antimicrobials and methods of use thereof
US9884087B1 (en) 2013-05-03 2018-02-06 Chan Soon-Shiong Nanthealth Foundation Compositions and methods of improved wound healing
EP2994176B1 (en) 2013-05-10 2020-07-08 Smith & Nephew plc Fluidic connector for irrigation and aspiration of wounds
GB201308770D0 (en) 2013-05-15 2013-06-26 Convatec Technologies Inc Wound Dressing Comprising an Antimicrobial Composition
AU2014268601B2 (en) 2013-05-22 2017-06-15 The Penn State Research Foundation Wound dressings and applications thereof
EP3013294B1 (en) 2013-06-28 2019-09-25 3M Innovative Properties Company Fibrin-coated wound dressing
WO2015002888A1 (en) 2013-07-01 2015-01-08 Trustees Of Boston University Dissolvable hydrogel compositions for wound management and methods of use
US10765774B2 (en) 2013-07-09 2020-09-08 Ethicon, Inc. Hemostatic pad assembly kit and method
CA2919973A1 (en) 2013-08-05 2015-02-12 3M Innovative Properties Company A support device with a contained cushioning element
BR112016002822B1 (en) 2013-08-12 2022-07-12 Bsn Medical Gmbh ARTICLE FOR PLAN WOUND TREATMENT AND ITS USE
WO2015022907A1 (en) 2013-08-13 2015-02-19 生化学工業株式会社 Drug containing cationized chitosan
US10117978B2 (en) 2013-08-26 2018-11-06 Kci Licensing, Inc. Dressing interface with moisture controlling feature and sealing function
GB2518199A (en) 2013-09-13 2015-03-18 Xiros Ltd Method of producing a swellable polymer fibre
US10342891B2 (en) 2013-09-19 2019-07-09 Medline Industries, Inc. Wound dressing containing saccharide and collagen
EP3281651B1 (en) 2013-10-02 2019-12-11 KCI Licensing, Inc. Disposable reduced-pressure therapy system with mechanical feedback
EP3054908B1 (en) 2013-10-10 2018-04-04 Roche Diabetes Care GmbH Carrier system for a body mounted object and method for manufacturing same
US20160271178A1 (en) 2013-10-18 2016-09-22 Agency For Science, Technology And Research Nanoparticle-containing hydrogels
EP3060181B1 (en) 2013-10-21 2021-11-03 Smith & Nephew, Inc. Negative pressure wound closure device
GB201318842D0 (en) 2013-10-24 2013-12-11 First Water Ltd Flexible hydrogel wound dressings
US10946124B2 (en) 2013-10-28 2021-03-16 Kci Licensing, Inc. Hybrid sealing tape
WO2015065612A1 (en) 2013-10-30 2015-05-07 Kci Licensing, Inc. Condensate absorbing and dissipating system
MX351120B (en) 2013-11-07 2017-10-03 Bsn Medical Gmbh Medical dressing.
GB2522178B (en) 2013-11-12 2018-07-18 First Water Ltd Multilayer composition
WO2015075406A1 (en) 2013-11-19 2015-05-28 Lipopeptide Ab New treatment of chronic ulcers
RU2682642C1 (en) 2013-12-12 2019-03-20 Инновейшн Текнолоджиз, Инк. Materials and methods for controlling infections
WO2015102981A1 (en) 2013-12-31 2015-07-09 3M Innovative Properties Company Conformable drape cover dressing
EP3096727B1 (en) 2014-01-24 2018-03-14 Avent, Inc. Traumatic wound dressing system with conformal cover
WO2015123340A1 (en) 2014-02-11 2015-08-20 Spiracur Inc. Methods and devices for applying closed incision negative pressure wound therapy
DE102014202578A1 (en) 2014-02-12 2015-08-13 Aesculap Ag Medical product and process for its preparation
WO2015123353A1 (en) 2014-02-14 2015-08-20 Kci Licensing, Inc. Systems and methods for increasing absorbent capacity of a dressing
AU2015218302B2 (en) 2014-02-14 2019-11-07 Atomic Medical Innovations, Inc. Systems and methods for tissue healing
EP3848009A1 (en) 2014-02-28 2021-07-14 3M Innovative Properties Company Hybrid drape having a gel-coated perforated mesh
GB201404021D0 (en) 2014-03-05 2014-04-23 Lumina Adhesives Ab Low cytotoxity switchable adhesive compositions, medical dressings and skin coverings, and methods of treatment using same
US20150367019A1 (en) 2014-03-12 2015-12-24 Stb, Ltd. Hemostatic compositions and methods
EP3119360B1 (en) 2014-03-21 2020-08-12 Medline Industries, Inc., Wound management system and methods of using
US10124084B2 (en) 2014-03-24 2018-11-13 Datt Life Sciences Private Limited Ready to use biodegradable and biocompatible device and a method of preparation thereof
GB2524510B (en) 2014-03-25 2020-02-19 Brightwake Ltd Wound dressing impregnated with honey
CA2947390C (en) 2014-04-30 2022-10-18 Matoke Holdings Limited Antimicrobial compositions
WO2015168681A1 (en) 2014-05-02 2015-11-05 Kci Licensing, Inc. Fluid storage devices, systems, and methods
CN111839658A (en) 2014-05-09 2020-10-30 凯希特许有限公司 Destructive dressing for use with negative pressure and fluid instillation
US9974694B2 (en) 2014-05-09 2018-05-22 RCI Licensing, Inc. Dressing with contracting layer for linear tissue sites
US10398610B2 (en) 2014-05-13 2019-09-03 The Procter & Gamble Company Absorbent article with dual core
GB2526267B (en) 2014-05-14 2020-10-28 Brightwake Ltd Dressing for surgical drain
AU2015269359B2 (en) 2014-06-05 2019-08-15 Kci Licensing, Inc. Dressing with fluid acquisition and distribution characteristics
KR101743274B1 (en) 2014-06-12 2017-06-02 주식회사 엘지화학 Super absorbent polymer
JP6586431B2 (en) 2014-06-18 2019-10-02 スミス アンド ネフュー ピーエルシーSmith & Nephew Public Limited Company Wound dressing and method of treatment
KR101786825B1 (en) 2014-06-18 2017-10-18 도레이 카부시키가이샤 Laminate and production method therefor
JP6659540B2 (en) 2014-07-07 2020-03-04 株式会社村田製作所 Negative pressure closure therapy device
BR112017000338B1 (en) 2014-07-09 2021-02-23 Lubrizol Advanced Materials, Inc HYDROGEL COMBINATION COMPOSITION, WOUND COVER, GEL, CREAM OR LOTION, AND, PROCESS FOR PREPARING A HYDROGEL COMBINATION COMPOSITION
CN106687801A (en) 2014-07-10 2017-05-17 史密夫及内修公开有限公司 Improvements in and relating to polymer materials
WO2016014158A1 (en) 2014-07-24 2016-01-28 Arthrocare Corporation Resilient polysaccharide foams and uses thereof
US20200289723A1 (en) 2014-07-31 2020-09-17 Smith & Nephew, Inc. Reduced pressure therapy apparatus construction and control
AU2014402290B2 (en) 2014-07-31 2020-05-21 Smith & Nephew, Inc. Systems and methods for applying reduced pressure therapy
CN106794275A (en) 2014-08-04 2017-05-31 圣胡安德申医院 For the system of release bioactive agent immediately
US10583042B2 (en) 2014-08-08 2020-03-10 Neogenix, Llc Wound care devices, apparatus, and treatment methods
US9770369B2 (en) 2014-08-08 2017-09-26 Neogenix, Llc Wound care devices, apparatus, and treatment methods
US10076587B2 (en) 2014-08-11 2018-09-18 Kci Licensing, Inc. Protease modulating wound interface layer for use with negative pressure wound therapy
JP6709780B2 (en) 2014-09-09 2020-06-17 ユニバーシティ・オブ・ワシントン Functional zwitterionic and mixed charge polymers, related hydrogels and methods of use thereof
EP2995324A1 (en) 2014-09-11 2016-03-16 Mölnlycke Health Care AB Medical dressing
EP2995287A1 (en) 2014-09-11 2016-03-16 Mölnlycke Health Care AB Medical dressing
CN107073161B (en) 2014-10-01 2020-11-03 3M创新有限公司 Porous devices, kits and methods for debridement
EP3446665B1 (en) 2014-10-06 2021-12-15 3M Innovative Properties Company Ion exchange absorbent systems, apparatuses
AU2015328825B2 (en) 2014-10-06 2019-02-21 Gatt Technologies B.V. Tissue-adhesive porous haemostatic product
US9855364B2 (en) 2014-10-15 2018-01-02 Allison Coomber Wound dressing materials incorporating anthocyanins derived from fruit or vegetable sources
ES2636823T3 (en) 2014-10-24 2017-10-09 Sefar Ag Wound coating material and manufacturing procedure
US10485893B2 (en) 2014-11-13 2019-11-26 Sarasota Medical Products, Inc. Antimicrobial hydrocolloid dressing containing sequestered peroxide and preparation thereof
EP3023083A1 (en) 2014-11-20 2016-05-25 Mölnlycke Health Care AB Wound dressings
WO2016086088A2 (en) 2014-11-25 2016-06-02 Northwestern University Wound healing through sirt1 overexpression
CN106999622A (en) 2014-12-04 2017-08-01 3M创新有限公司 Antimicrobial compositions comprising bio-vitric
US10525170B2 (en) 2014-12-09 2020-01-07 Tangible Science, Llc Medical device coating with a biocompatible layer
TW201622668A (en) 2014-12-16 2016-07-01 準訊生醫股份有限公司 Long-term effective patch structure
WO2016100098A1 (en) 2014-12-17 2016-06-23 Kci Licensing, Inc. Dressing with offloading capability
EP3233492B1 (en) 2014-12-18 2021-11-10 Kindeva Drug Delivery L.P. Methods of handling adhesive laminate patches
EP3234052B1 (en) 2014-12-19 2020-09-16 3M Innovative Properties Company Adhesive article comprising a poly(meth)acrylate-based primer layer and methods of making same
CA2971796C (en) 2014-12-22 2023-05-16 Smith & Nephew Plc Negative pressure wound therapy apparatus and methods
JP2018510035A (en) 2014-12-29 2018-04-12 スミス アンド ネフュー ピーエルシーSmith & Nephew Public Limited Company Negative pressure closure therapy device and method of operating the device
WO2016109418A1 (en) 2014-12-30 2016-07-07 3M Innovative Properties Company Wound dressing with multiple adhesive layers
CN107106742B (en) 2014-12-30 2020-12-15 史密夫和内修有限公司 Systems and methods for applying reduced pressure therapy
US10660851B2 (en) 2015-01-02 2020-05-26 Rxos Medical Polyfunctional radical scavenger hydrogel formulation
KR101949455B1 (en) 2015-01-07 2019-02-18 주식회사 엘지화학 Superabsorbent Polymers with Improved Anticaking Property And Method Of Preparing The Same
GB201500430D0 (en) 2015-01-12 2015-02-25 Univ Birmingham Dressing
WO2016115448A1 (en) 2015-01-15 2016-07-21 Marshall University Research Corporation Wound coverings comprising vitamin d and related methods
GB201501330D0 (en) 2015-01-27 2015-03-11 Medtrade Products Ltd Composition for a wound dressing
GB201501333D0 (en) 2015-01-27 2015-03-11 Medtrade Products Ltd Composition for a wound dressing
GB201501334D0 (en) 2015-01-27 2015-03-11 Medtrade Products Ltd Composition for a wound dressing
WO2016123539A1 (en) 2015-01-29 2016-08-04 Wardell Mark R Wound healing compositions involving medicinal honey, mineral ions, and methylglyoxal, and methods of use
US20200093756A1 (en) 2015-01-29 2020-03-26 Sanmelix Laboratories, Inc. Buckwheat honey and povidone-iodine wound-healing dressing
KR101841469B1 (en) 2015-01-30 2018-03-23 (주)메디팁 Method for manufacturing wound covering material using biopolymer and wound covering material using biopolymer manufactured by the same
EP3253426B1 (en) 2015-02-02 2019-11-20 KCI Licensing, Inc. Pressure-operated switch
WO2016126444A1 (en) 2015-02-02 2016-08-11 Kci Licensing, Inc. Customizable closed tissue site dressing for improved postoperative removal
US10512707B2 (en) 2015-02-02 2019-12-24 University Of Southern California System for sutureless closure of scleral perforations and other ocular tissue discontinuities
JP2018507033A (en) 2015-02-03 2018-03-15 マトケ・ホールディングス・リミテッド Antimicrobial fibers and compositions
GB201501965D0 (en) 2015-02-05 2015-03-25 Lumina Adhesives Ab Polyurethane based switchable adhesives
US10485892B2 (en) 2015-03-10 2019-11-26 Covalon Technologies Inc. Method for local reduction of microbial skin flora
ES2815660T3 (en) 2015-03-10 2021-03-30 Covalon Tech Inc Procedure for local reduction of cutaneous microbial flora
US10478394B2 (en) 2015-03-11 2019-11-19 Wayne State University Compositions and methods to promote wound healing
GB201506236D0 (en) 2015-04-13 2015-05-27 Jellagen Pty Ltd Modified collagen, methods of manufacture thereof
EP3085344B1 (en) 2015-04-21 2019-12-04 Mölnlycke Health Care AB A wound pad and a self-adhesive member comprising a wound pad
AU2016294135A1 (en) 2015-04-23 2017-11-09 Sharklet Technologies, Inc. Bilayered devices for enhanced healing
US10898388B2 (en) 2015-04-27 2021-01-26 Smith & Nephew Plc Reduced pressure apparatuses and methods
EP3936163B1 (en) 2015-05-07 2024-04-03 Solventum Intellectual Properties Company A controlled release iodine structure for use with wound care
WO2016182861A1 (en) 2015-05-08 2016-11-17 Kci Licensing, Inc. Wound debridement by irrigation with ultrasonically activated microbubbles
WO2016182977A1 (en) 2015-05-08 2016-11-17 Kci Licensing, Inc. Low acuity dressing with integral pump
US10507259B2 (en) 2015-05-08 2019-12-17 First Quality Retail Services, Llc Flexible absorbent pad
US20190298580A1 (en) 2015-05-08 2019-10-03 Kci Licensing, Inc. Low-acuity dressing with integral pump
EP3093031A1 (en) 2015-05-11 2016-11-16 3M Innovative Properties Company Wound care system
EP3092987A1 (en) 2015-05-11 2016-11-16 3M Innovative Properties Company System for treatment of wounds using serum
WO2016184918A1 (en) 2015-05-18 2016-11-24 Smith & Nephew Plc Heat-assisted pumping systems for use in negative pressure wound therapy
US10076594B2 (en) 2015-05-18 2018-09-18 Smith & Nephew Plc Fluidic connector for negative pressure wound therapy
AU2016267402A1 (en) 2015-05-26 2017-11-30 Monash University Antibacterial bismuth complexes
KR101889677B1 (en) 2015-06-12 2018-08-17 제이에프이미네라르 가부시키가이샤 Therapeutic agent for skin wound or rough skin
US11559421B2 (en) 2015-06-25 2023-01-24 Hill-Rom Services, Inc. Protective dressing with reusable phase-change material cooling insert
US11083884B2 (en) 2015-06-29 2021-08-10 Kci Licensing, Inc. Apparatus for negative-pressure therapy and irrigation
WO2017011204A1 (en) 2015-07-14 2017-01-19 Kci Licensing, Inc. Medical dressing interface devices, systems, and methods
EP3117806B1 (en) 2015-07-16 2020-06-10 Lohmann & Rauscher GmbH Wound treatment assembly
ES2945437T3 (en) 2015-07-24 2023-07-03 Moelnlycke Health Care Ab Absorbent Antimicrobial Wound Dressings
US10583228B2 (en) 2015-07-28 2020-03-10 J&M Shuler Medical, Inc. Sub-atmospheric wound therapy systems and methods
US10682257B2 (en) 2015-07-29 2020-06-16 Evophancie Biotech Ltd Biological fiber composite dressing
EP3328414B1 (en) 2015-07-31 2020-08-12 Blue Blood Biotech Corp. Composition for use in promoting wound healing
US10639350B2 (en) 2015-08-10 2020-05-05 The Medical Research, Infrastructure and Health Services Fund of the Tel Aviv Medical Center Methods and pharmaceutical compositions for improving wound healing using CD24
KR101787192B1 (en) 2015-08-12 2017-10-18 주식회사 제네웰 Antimicrbacterial dressing material and method for preparing thereof
EP3135304A1 (en) 2015-08-26 2017-03-01 Mölnlycke Health Care AB Foamed silicone in wound care
EP3344206B1 (en) 2015-08-31 2020-09-23 3M Innovative Properties Company Negative pressure wound therapy dressings comprising (meth)acrylate pressure-sensitive adhesive with enhanced adhesion to wet surfaces
US10617608B2 (en) 2015-09-25 2020-04-14 Lotte Fine Chemical Co., Ltd. Composition for hydrogel sheet, hydrogel sheet manufactured therefrom, and method for manufacturing same
EP3356485B1 (en) 2015-09-30 2020-08-05 3M Innovative Properties Company Hydrogel compositions bonded to polymeric substrates
GB2543307B (en) 2015-10-14 2020-12-09 Selentus Science Ltd Haemostatic device
KR20180078258A (en) 2015-10-30 2018-07-09 로레인 카운티 커뮤니티 칼리지 이노베이션 파운데이션 Wound treatment devices and methods
GB2544342B (en) 2015-11-13 2020-06-03 First Water Ltd Compositions for application to wounds
WO2017083166A1 (en) 2015-11-13 2017-05-18 3M Innovative Properties Company Anti-microbial articles and methods of using same
EP3377014A1 (en) 2015-11-18 2018-09-26 KCI Licensing, Inc. Medical drapes and methods for reducing trauma on removal
EP3669840B1 (en) 2015-11-20 2022-12-28 3M Innovative Properties Company Medical system with flexible fluid storage bridge
GB201520990D0 (en) 2015-11-27 2016-01-13 Edixomed Ltd Dressing system
FR3044893B1 (en) 2015-12-09 2018-05-18 Emile Droche DRESSING FOR SKIN CARE IN A WET MEDIUM
US11471586B2 (en) 2015-12-15 2022-10-18 University Of Massachusetts Negative pressure wound closure devices and methods
US10575991B2 (en) 2015-12-15 2020-03-03 University Of Massachusetts Negative pressure wound closure devices and methods
US11878106B2 (en) 2015-12-29 2024-01-23 3M Innovative Properties Company System and methods for the treatment of wounds with negative pressure and instillation of peroxide pyruvic acid
WO2017115146A1 (en) 2015-12-30 2017-07-06 Smith & Nephew Plc Absorbent negative pressure wound therapy dressing
EP3511031B1 (en) 2015-12-30 2023-05-03 Paul Hartmann AG Devices for controlling negative pressure wound therapy
WO2017114745A1 (en) 2015-12-30 2017-07-06 Smith & Nephew Plc Negative pressure wound therapy apparatus
JP7082057B2 (en) 2016-01-06 2022-06-07 スリーエム イノベイティブ プロパティズ カンパニー A system for the treatment of wounds with dressings with closed cells
US10426809B2 (en) 2016-01-12 2019-10-01 Council Of Scientific & Industrial Research Nanobiocomposite formulation for wound healing and a process for the preparation thereof
DE102016000569B3 (en) 2016-01-20 2017-06-22 Lohmann & Rauscher Gmbh Method for producing a film tube
US10918770B2 (en) 2016-02-12 2021-02-16 Corning Incorporated Vacuum assisted wound closure assembly and methods of irradiating a wound using the same
FR3047901B1 (en) 2016-02-22 2018-02-23 Universite Pierre Et Marie Curie (Paris 6) BIOMATERIAL COMPOSITIONS WITH CONTROLLED RELEASE OF ACTIVE INGREDIENTS
EP3423011B1 (en) 2016-03-01 2020-07-08 KCI Licensing, Inc. Drape for use with medical therapy systems
KR101958014B1 (en) 2016-03-14 2019-03-13 주식회사 엘지화학 Preparation method of super absorbent polymer
FR3048885A1 (en) 2016-03-17 2017-09-22 Bluestar Silicones France SILICONE ADHESIVE GEL WITH SKIN
EP3429643A1 (en) 2016-03-18 2019-01-23 KCI USA, Inc. Antimicrobial wound dressing
KR101959547B1 (en) 2016-03-25 2019-03-18 주식회사 엘지화학 Preparation method for super absorbent polymer
US20200023102A1 (en) 2016-04-05 2020-01-23 Patrick Kenneth Powell Wound therapy system
GB201608099D0 (en) 2016-05-09 2016-06-22 Convatec Technologies Inc Negative pressure wound dressing
EP3246050A1 (en) 2016-05-17 2017-11-22 BSN medical GmbH Wound or skin patch
ES2936807T3 (en) 2016-05-31 2023-03-22 Octapharma Ag Plasma-based films and methods of making and using them
JP2019517299A (en) 2016-06-01 2019-06-24 株式会社スリー・ディー・マトリックス Hemostatic bandage with self-assembling peptide hydrogel
KR20190028467A (en) 2016-07-08 2019-03-18 컨바텍 테크놀러지스 인크 Body fluid collecting device
TWI673056B (en) 2016-07-22 2019-10-01 大江生醫股份有限公司 Bacterium-containing hydrogel and method of making the same
US10076552B2 (en) 2016-08-09 2018-09-18 DATT MEDIPRODUCTS LIMITED and DATT LIFE SCIENCE PVT. LTD. Multifunctional formulation comprised of natural ingredients and method of preparation/manufacturing thereof
DE102016114819A1 (en) 2016-08-10 2018-02-15 Paul Hartmann Ag Absorbent body for endoluminal negative pressure therapy
ES2833899T3 (en) 2016-08-10 2021-06-16 Adv Med Solutions Ltd Wound dressing
WO2018031761A1 (en) 2016-08-10 2018-02-15 Argentum Medical, Llc Antimicrobial hydrogel dressings
US20180056087A1 (en) 2016-08-26 2018-03-01 Adolfo Ribeiro Wearable Micro-LED Healing Bandage
US10590184B2 (en) 2016-09-26 2020-03-17 National Yang-Ming University Process for a preparation of the modified porcine plasma fibronectin for enhance wound healing
US11111362B2 (en) 2016-09-26 2021-09-07 Becton, Dickinson And Company Breathable films with microbial barrier properties
IT201600096247A1 (en) 2016-09-26 2018-03-26 Emodial S R L Polyurethane-based bandage and hydrogel comprising chlorhexidine
US10940233B2 (en) 2016-10-05 2021-03-09 3M Innovative Properties Company Fibrinogen composition, method and wound articles
US10293080B2 (en) 2016-10-05 2019-05-21 The Arizona Board Of Regents On Behalf Of Northern Arizona University Ionic liquids that sterilize and prevent biofilm formation in skin wound healing devices
GB2555584B (en) 2016-10-28 2020-05-27 Smith & Nephew Multi-layered wound dressing and method of manufacture
CA3042673A1 (en) 2016-11-02 2018-05-11 Smith & Nephew Inc. Wound closure devices
EP3535590B1 (en) 2016-11-02 2023-05-03 Unilever IP Holdings B.V. Malodour sampling method
EP3538165B1 (en) 2016-11-11 2022-11-09 Avery Dennison Corporation Rubber-based soft gel skin adhesives
WO2018089563A1 (en) 2016-11-11 2018-05-17 3M Innovative Properties Company Trimmable conformable wound dressing
WO2018094061A1 (en) 2016-11-18 2018-05-24 Kci Licensing, Inc. Medical system and dressing for use under compression
WO2018102322A1 (en) 2016-12-02 2018-06-07 3M Innovative Properties Company Muscle or joint support article with bump
US10426874B2 (en) 2016-12-02 2019-10-01 Apex Medical Corp. Wound management assembly and negative pressure wound therapy system
AU2017366855B2 (en) 2016-12-02 2021-03-11 3M Innovative Properties Company Muscle or joint support article
US10500104B2 (en) 2016-12-06 2019-12-10 Novomer, Inc. Biodegradable sanitary articles with higher biobased content
US11590164B2 (en) 2016-12-06 2023-02-28 Sami Shamoon College Of Engineering (R.A.) Topical antimicrobial formulations containing monovalent copper ions and systems for generating monovalent copper ions
WO2018107130A1 (en) 2016-12-09 2018-06-14 Sanvio,Inc. Composition for treating wounds and other dermatological conditions
WO2018108784A1 (en) 2016-12-12 2018-06-21 Smith & Nephew Plc Wound dressing
EP3335740A1 (en) 2016-12-15 2018-06-20 UPM-Kymmene Corporation Medical hydrogel
EP3335695B1 (en) 2016-12-15 2020-02-05 UPM-Kymmene Corporation A method for freeze-drying hydrogel comprising nanofibrillar cellulose, a freeze-dried medical hydrogel comprising nanofibrillar cellulose, and a hydrogel comprising nanofibrillar cellulose
DK3335696T3 (en) 2016-12-15 2020-03-16 Upm Kymmene Corp Process for drying cell-free tissue extract in a hydrogel comprising nanofibrillar cellulose and a dried hydrogel comprising nanofibrillar cellulose and cell-free tissue extract
EP3338813B1 (en) 2016-12-20 2020-01-29 BSN Medical GmbH Multi-layer wound care product with perforated release layer
JP2020513909A (en) 2016-12-22 2020-05-21 アプライド ティシュ テクノロジーズ エルエルシーApplied Tissue Technologies Llc Devices and methods for wound healing
EP3401354B1 (en) 2016-12-22 2020-04-08 LG Chem, Ltd. Super absorbent polymer manufacturing method and super absorbent polymer
JP2020503107A (en) 2016-12-23 2020-01-30 カルゴン カーボン コーポレーション Activated carbon composite wound dressing
DE102016125579A1 (en) 2016-12-23 2018-06-28 Paul Hartmann Ag Hydrous hydrogel composition comprising elemental silver particles
US20200114040A1 (en) 2016-12-28 2020-04-16 Kci Usa, Inc. Antimicrobial wound dressings
US11952455B2 (en) 2016-12-29 2024-04-09 Alcare Co., Ltd. Foam and composition for foam
JP2020503946A (en) 2017-01-09 2020-02-06 ケーシーアイ ライセンシング インコーポレイテッド Wound dressing layer for improved fluid removal
TWI621453B (en) 2017-01-13 2018-04-21 廈門聖慈醫療器材有限公司 Suction disc
WO2018135813A1 (en) 2017-01-19 2018-07-26 최성현 Pad for alleviating and treating plasma protein exudation skin diseases including atopic diseases
CA3044955A1 (en) 2017-01-23 2018-07-26 Medela Holding Ag Porous wound dressing for use in negative-pressure therapy
US20190365948A1 (en) 2017-01-27 2019-12-05 Aziyo Biologics, Inc. Lyophilized placental composite sheet and uses thereof
WO2018141677A1 (en) 2017-02-06 2018-08-09 Basf Se Fluid-absorbent article
JP6926239B2 (en) 2017-02-15 2021-08-25 スミス・アンド・ネフュー・アジア・パシフィク・ピーティーイー・リミテッド Negative pressure wound treatment device and how to use it
EP3582816A1 (en) 2017-02-16 2019-12-25 Covestro Deutschland AG Method for producing an adhesive-free wound contact composite material
WO2018156730A1 (en) 2017-02-22 2018-08-30 Cornell University Mechanical vacuum dressing for mechanically managing, protecting and suctioning small incisional wounds
US11141521B2 (en) 2017-02-28 2021-10-12 T.J.Smith And Nephew, Limited Multiple dressing negative pressure wound therapy system
JP2020509094A (en) 2017-03-03 2020-03-26 ロマ リンダ ユニヴァーシティ ヘルス Compositions and methods for promoting hemostasis
CN110582257B (en) 2017-03-08 2022-03-15 史密夫及内修公开有限公司 Negative pressure wound therapy device control in the presence of fault conditions
CN110650755A (en) 2017-03-09 2020-01-03 生物技术秘书部 Wound dressing for combined negative pressure and fluid delivery system
EP3592212A1 (en) 2017-03-09 2020-01-15 Smith & Nephew PLC Wound dressing, patch member and method of sensing one or more wound parameters
EP3378450A1 (en) 2017-03-22 2018-09-26 Mölnlycke Health Care AB Method for manufacturing a wound dressing and a wound dressing
EP3600461B1 (en) 2017-03-29 2022-08-10 3M Innovative Properties Company Hydrogel compositions bonded to polymeric substrates
EP3932442A1 (en) 2017-04-04 2022-01-05 3M Innovative Properties Co. Apparatuses, systems, and methods for the treatment of a tissue site with negative pressure and oxygen
AU2018248422B2 (en) 2017-04-04 2024-02-15 Anti-Plasmin Technologies, Llc Methods to enhance a non-surgical medical treatment
KR101852718B1 (en) 2017-04-04 2018-05-18 주식회사 제네웰 Kit for pain reduction of incision site after surgical operation
GB201800057D0 (en) 2018-01-03 2018-02-14 Smith & Nephew Inc Component Positioning And stress Relief For Sensor Enabled Wound Dressings
CN108721677B (en) 2017-04-17 2021-11-19 广西美丽肤医疗器械有限公司 Composite material
WO2018195101A1 (en) 2017-04-19 2018-10-25 Smith & Nephew, Inc. Negative pressure wound therapy canisters
DE102017003826A1 (en) 2017-04-20 2018-10-25 Lohmann & Rauscher Gmbh Wound treatment arrangement for the negative pressure therapy
WO2018201257A1 (en) 2017-05-04 2018-11-08 Klox Technologies Inc. Absorbent biophotonic devices and systems for wound healing
CN110603061A (en) 2017-05-10 2019-12-20 东丽株式会社 Medical instrument
ES2896175T3 (en) 2017-05-10 2022-02-24 Moelnlycke Health Care Ab Composite foam in wound treatment
EP3624741B1 (en) 2017-05-16 2021-11-17 3M Innovative Properties Company An absorbent negative-pressure dressing system for use with post-surgical breast wounds
JP2020520781A (en) 2017-05-17 2020-07-16 ユービック インダストリー パートナーシップス インコーポレイテッドUvic Industry Partnerships Inc. Wound dressing for wound monitoring and therapeutic drug delivery
EP3634340A1 (en) 2017-05-19 2020-04-15 KCI USA, Inc. Dressings for filtering wound fluids
EP3630029A1 (en) 2017-05-22 2020-04-08 KCI USA, Inc. Extensible dressings
WO2018217619A1 (en) 2017-05-22 2018-11-29 Kci Usa, Inc. Post-operative surgical wound dressing
CN110785151A (en) 2017-05-22 2020-02-11 凯希美国公司 Elastically deformable wound dressing
EP3409248B1 (en) 2017-06-01 2019-11-06 Absorbest AB Wound dressing
RU2019139885A (en) 2017-06-07 2021-07-09 Кейсиай ЛАЙСЕНСИНГ, ИНК. INDIVIDUALLY VARIABLE COMPOSITE BANDAGES FOR IMPROVED GRANULATION AND REDUCED Maceration FOR NEGATIVE PRESSURE TREATMENT
RU2019139911A (en) 2017-06-07 2021-07-09 Кейсиай ЛАЙСЕНСИНГ, ИНК. Composite dressings for improved granulation and reduced maceration for negative pressure treatments
US11207217B2 (en) 2017-06-07 2021-12-28 Kci Licensing, Inc. Methods for manufacturing and assembling dual material tissue interface for negative-pressure therapy
EP3634338B1 (en) 2017-06-07 2022-07-27 KCI USA, Inc. Wound dressing with odor absorption and increased moisture vapor transmission
US11179512B2 (en) 2017-06-07 2021-11-23 Kci Licensing, Inc. Multi-layer wound filler for extended wear time
US20200085629A1 (en) 2017-06-07 2020-03-19 Kci Licensing, Inc. Composite dressings with even expansion profiles for treatment of wounds using negative-pressure treatment
CN110799222B (en) 2017-06-07 2023-03-07 3M创新知识产权公司 Systems, devices, and methods for negative pressure therapy to reduce tissue ingrowth
EP3634329B1 (en) 2017-06-07 2020-12-23 3M Innovative Properties Company Methods for manufacturing and assembling dual material tissue interface for negative-pressure therapy
SG11201909386SA (en) 2017-06-07 2019-11-28 Kci Licensing Inc Composite dressings for improved granulation and reduced maceration with negative-pressure treatment
EP3634339B1 (en) 2017-06-07 2022-07-27 3M Innovative Properties Company Peel and place dressing for negative-pressure therapy
CN110831553A (en) 2017-06-07 2020-02-21 凯希特许有限公司 Composite dressing for improving granulation growth and reducing maceration by negative pressure therapy
WO2018226707A1 (en) 2017-06-07 2018-12-13 Kci Licensing, Inc. Composite dressings for improved granulation reduced maceration with negative-pressure treatment
EP4124324A1 (en) 2017-06-07 2023-02-01 3M Innovative Properties Company Peel and place dressing for thick exudate and instillation
EP3634521A1 (en) 2017-06-08 2020-04-15 KCI Licensing, Inc. Negative-pressure therapy with oxygen
EP3412319A1 (en) 2017-06-09 2018-12-12 Mölnlycke Health Care AB Foam in wound treatment
EP3634327B1 (en) 2017-06-09 2023-08-30 3M Innovative Properties Company Granulating dressing for low exuding chronic wounds
US20210161723A1 (en) 2017-06-12 2021-06-03 Kci Licensing, Inc. Foamed and textured sintered polymer wound filler
US11872110B2 (en) 2017-06-13 2024-01-16 Smith & Nephew Plc Wound closure device and method of use
EP3638173A1 (en) 2017-06-14 2020-04-22 Smith & Nephew, Inc Control of wound closure and fluid removal management in wound therapy
CA3065380A1 (en) 2017-06-14 2018-12-20 T.J.Smith & Nephew, Limited Negative pressure wound therapy apparatus
CA3063859A1 (en) 2017-06-14 2018-12-20 Smith & Nephew, Inc. Fluid removal management and control of wound closure in wound therapy
US20210145646A1 (en) 2017-06-19 2021-05-20 Kci Usa, Inc. Wound dressing with saturation indicator
JP7189159B2 (en) 2017-06-23 2022-12-13 スミス アンド ネフュー ピーエルシー Sensor placement for sensor-enabled wound monitoring or therapy
US10751212B2 (en) 2017-06-26 2020-08-25 Maryam Raza Multilayer dressing device and method for preventing and treating pressure ulcers and chronic wounds
EP3644916A1 (en) 2017-06-26 2020-05-06 KCI USA, Inc. Absorbent wound dressing that incorporates a novel wound fluid indicating system
DE102017006025A1 (en) 2017-06-27 2018-12-27 Carl Freudenberg Kg Hydrogel-forming multicomponent fiber
AU2018293063B2 (en) 2017-06-30 2024-03-07 T.J.Smith & Nephew,Limited Negative pressure wound therapy apparatus
EP3648810A1 (en) 2017-07-07 2020-05-13 Smith & Nephew plc Wound therapy system and dressing for delivering oxygen to a wound
FR3068975B1 (en) 2017-07-12 2020-07-17 Urgo Recherche Innovation Et Developpement COMPOSITION FOR INTERFACE DRESSING
GB201711181D0 (en) 2017-07-12 2017-08-23 Smith & Nephew Polymer foam material, device and use
GB201711179D0 (en) 2017-07-12 2017-08-23 Smith & Nephew Wound care materials, devices and uses
GB201711183D0 (en) 2017-07-12 2017-08-23 Smith & Nephew Antimicrobial or wound care materials, devices and uses
FR3068974B1 (en) 2017-07-12 2019-08-02 Urgo Recherche Innovation Et Developpement DRESSING FOR THE CONTROLLED AND PROLONGED DELIVERY OF ASSETS
EA201992777A1 (en) 2017-07-21 2020-06-23 Спид Кеа Минерал Гмбх A NEW WOUNDING FOR HEMOSTASIS
GB201804502D0 (en) 2018-03-21 2018-05-02 Smith & Nephew Biocompatible encapsulation and component stress relief for sensor enabled negative pressure wound therapy dressings
WO2019022493A1 (en) 2017-07-26 2019-01-31 (주)유레 Wound dressing comprising hyaluronic acid-calcium and polylysine and manufacturing method therefor
GB201712165D0 (en) 2017-07-28 2017-09-13 Smith & Nephew Wound dressing and method of manufacture
US10780201B2 (en) 2017-07-29 2020-09-22 Edward D. Lin Control apparatus and related methods for wound therapy delivery
US10729826B2 (en) 2017-07-29 2020-08-04 Edward D. Lin Wound cover apparatus and related methods of use
US11717592B2 (en) 2017-07-31 2023-08-08 Kci Licensing, Inc. Bioresorbable dressing with structural support
US11285048B2 (en) 2017-08-02 2022-03-29 Kci Licensing, Inc. Multi-layer compartment dressing and negative-pressure treatment method
CN111031956A (en) 2017-08-02 2020-04-17 凯希特许有限公司 Systems and methods for wound debridement
EP3664756B1 (en) 2017-08-07 2024-01-24 Smith & Nephew plc Wound closure device with protective layer
DE102017117828A1 (en) 2017-08-07 2019-02-07 Ivf Hartmann Ag Bandage, in particular compression bandage
WO2019031477A1 (en) 2017-08-09 2019-02-14 東レ株式会社 Medical device and method for manufacturing same
WO2019030384A2 (en) 2017-08-10 2019-02-14 Smith & Nephew Plc Positioning of sensors for sensor enabled wound monitoring or therapy
US20200197580A1 (en) 2017-08-22 2020-06-25 Kci Licensing, Inc. In-line wound fluid sampling systems and methods for use with negative pressure wound therapy
WO2019040656A1 (en) 2017-08-23 2019-02-28 Cor Medical Ventures LLC Post-operative surgical site wound treatment and method for device removal
GB201713511D0 (en) 2017-08-23 2017-10-04 Scapa Uk Ltd Wound dressing
US11246756B2 (en) 2017-08-24 2022-02-15 The United States Of America, As Represented By The Secretary Of Agriculture Healthcare textiles
GB2565823A (en) 2017-08-24 2019-02-27 Xiros Ltd Psyllium based moisture absorbent material
EP3672655B1 (en) 2017-08-24 2022-01-19 KCI USA, Inc. Biomaterial and methods of making and using said biomaterial
JP2020532378A (en) 2017-09-05 2020-11-12 ケーシーアイ ライセンシング インコーポレイテッド Systems and methods that use a filtering layer to reduce the premature photoinactivation of photoinactivated adhesive drapes
EP3678620B1 (en) 2017-09-05 2023-07-12 3M Innovative Properties Company Systems and methods for mitigating premature light deactivation of light deactivated adhesive drapes
CN111093477B (en) 2017-09-10 2023-09-12 史密夫及内修公开有限公司 System and method for inspecting packaging and components in sensor-equipped wound dressings
SG11202001900UA (en) 2017-09-13 2020-04-29 Smith & Nephew Negative pressure wound treatment apparatuses and methods with integrated electronics
GB201718070D0 (en) 2017-11-01 2017-12-13 Smith & Nephew Negative pressure wound treatment apparatuses and methods with integrated electronics
WO2019055176A1 (en) 2017-09-14 2019-03-21 Kci Licensing, Inc. Oxygen therapy with fluid removal
CN111093721A (en) 2017-09-15 2020-05-01 巴德阿克塞斯系统股份有限公司 Antimicrobial dressing with liner for medical devices
US12004926B2 (en) 2017-09-18 2024-06-11 Kci Licensing, Inc. Wound dressings and systems with remote oxygen generation for topical wound therapy and related methods
US11547611B2 (en) 2017-09-22 2023-01-10 Kci Licensing, Inc. Wound dressings and systems with high-flow therapeutic gas sources for topical wound therapy and related methods
IL254636A0 (en) 2017-09-24 2017-11-30 Reddress Ltd Assembly and method for the preparation of a wound dressing
IL254644B (en) 2017-09-24 2021-06-30 Reddress Ltd Wound dressing device, assembly and method
GB2566951A (en) 2017-09-27 2019-04-03 Brightwake Ltd Compositions for wound treatment
EP3687467B1 (en) 2017-09-29 2022-02-23 3M Innovative Properties Company Dressing exhibiting low tissue ingrowth and negative-pressure treatment method
WO2019073326A1 (en) 2017-10-09 2019-04-18 3M Innovative Properties Company Securement dressing with conformal border
GB201716986D0 (en) 2017-10-16 2017-11-29 Matoke Holdings Ltd Antimicrobial compositions
AU2018352330B2 (en) 2017-10-20 2021-11-18 Safeguard Medical Technologies Limited Composition
US20190117466A1 (en) 2017-10-23 2019-04-25 Kci Licensing, Inc. Area management of tissue sites on articulating joints
WO2019083726A1 (en) 2017-10-23 2019-05-02 Kci Licensing, Inc. Wound dressing for use with anti-bacterial material
JP7263337B2 (en) 2017-10-23 2023-04-24 スリーエム イノベイティブ プロパティズ カンパニー Low profile dispensing component for wound care
WO2019083607A1 (en) 2017-10-23 2019-05-02 Kci Licensing, Inc. High-density evaporative bridge dressing
US11432967B2 (en) 2017-10-23 2022-09-06 Kci Licensing, Inc. Fluid bridge for simultaneous application of negative pressure to multiple tissue sites
WO2019083827A1 (en) 2017-10-24 2019-05-02 Kci Licensing, Inc. Debridement wound dressings and systems using the same
WO2019083563A1 (en) 2017-10-26 2019-05-02 Kci Licensing, Inc. Wound dressing with welded elastic structure
EP4268775A3 (en) 2017-10-26 2023-12-27 3M Innovative Properties Company Manifolding apparatus
US11466187B2 (en) 2017-10-26 2022-10-11 3M Innovative Properties Company Composition containing a silicone-based adhesive and cellulose nanocrystals, and methods and articles
KR102566942B1 (en) 2017-10-27 2023-08-14 주식회사 엘지화학 Preparation method of super absorbent polymer
JP7186775B2 (en) 2017-10-27 2022-12-09 スリーエム イノベイティブ プロパティズ カンパニー Contoured foam dressing that provides negative pressure to the breast incision
US11400202B2 (en) 2017-10-30 2022-08-02 Kci Licensing, Inc. Systems, apparatuses, and methods for negative-pressure treatment with pressure delivery indication
WO2019089856A1 (en) 2017-10-31 2019-05-09 InMEDBio, LLC Absorbent, breathable and pathogen blocking/killing wound care dressing and fabrication thereof
GB201718014D0 (en) 2017-11-01 2017-12-13 Smith & Nephew Dressing for negative pressure wound therapy with filter
GB201718054D0 (en) 2017-11-01 2017-12-13 Smith & Nephew Sterilization of integrated negative pressure wound treatment apparatuses and sterilization methods
WO2019086332A1 (en) 2017-11-01 2019-05-09 Smith & Nephew Plc Negative pressure wound treatment apparatuses and methods with integrated electronics
WO2019089522A1 (en) 2017-11-02 2019-05-09 Systagenix Wound Management, Limited Wound dressing with humidity colorimeter sensor
IL255404B (en) 2017-11-02 2018-10-31 Technion Res & Dev Foundation Hipe-templated zwitterionic hydrogels, process of preparation and uses thereof
JP7370973B2 (en) 2017-11-03 2023-10-30 スリーエム イノベイティブ プロパティズ カンパニー long-term dressing
WO2019089944A1 (en) 2017-11-03 2019-05-09 Kci Usa, Inc. Nutrient-enriched dressing
GB2568101B (en) 2017-11-06 2022-09-07 Brightwake Ltd Antimicrobial dressing
US20200261276A1 (en) 2017-11-08 2020-08-20 University Of Massachusetts Post-Operative Hybrid Dressing To Optimize Skin-Grafting Procedures In Reconstructive Surgery
WO2019094147A1 (en) 2017-11-09 2019-05-16 Kci Licensing, Inc. Multi-module dressing and therapy methods
CN107899061A (en) 2017-11-13 2018-04-13 广东泰宝医疗科技股份有限公司 A kind of alginates wound repair dressing and preparation method thereof
WO2019094923A1 (en) 2017-11-13 2019-05-16 Kci Licensing, Inc. Light-responsive pressure sensitive adhesives for wound dressings
US11559438B2 (en) 2017-11-15 2023-01-24 Smith & Nephew Plc Integrated sensor enabled wound monitoring and/or therapy dressings and systems
US20200289727A1 (en) 2017-12-06 2020-09-17 Kci Licensing, Inc. Wound dressing with negative pressure retaining valve
KR102649554B1 (en) 2017-12-06 2024-03-21 코넬 유니버시티 Manually operated negative pressure wound therapy (NPWT) bandage with improved pump efficiency, automatic pressure indicator and automatic pressure limiter
WO2019113623A1 (en) 2017-12-11 2019-06-20 Animal Ethics Pty Ltd Wound dressing
EP3498242A1 (en) 2017-12-15 2019-06-19 Mölnlycke Health Care AB Medical dressing
IL256405A (en) 2017-12-19 2018-01-31 Omrix Biopharmaceuticals Ltd Wound dressing and a method for producing the same
WO2019125962A1 (en) 2017-12-20 2019-06-27 Kci Licensing, Inc. Wound dressing for the harvesting of superficial epidermal grafts
WO2019126368A1 (en) 2017-12-20 2019-06-27 Kci Usa, Inc. Dressing including dehydrated placental tissue for wound healing
DE102017130893A1 (en) 2017-12-21 2019-06-27 Paul Hartmann Ag pH regulating wound dressing
US20200179673A1 (en) 2018-01-08 2020-06-11 Mianshui WAN Connecting device for wound protection dressing, and wound protection dressing
US11877912B2 (en) 2018-01-09 2024-01-23 3M Innovative Properties Company Systems and methods for coupling a wearable therapy system to a dressing
US11517480B2 (en) 2018-03-26 2022-12-06 Deroyal Industries, Inc. Multi-lumen bridge for negative pressure wound therapy system
US20190298882A1 (en) 2018-03-27 2019-10-03 Kevin M. Nelson Hydrogel bandage
JP7331002B2 (en) 2018-03-29 2023-08-22 スリーエム イノベイティブ プロパティズ カンパニー Wound therapy system with wound volume estimation
US20210015677A1 (en) 2018-03-30 2021-01-21 Kci Licensing, Inc. An absorbent dressing incorporating ph wound condition indication
GB201805584D0 (en) 2018-04-05 2018-05-23 Smith & Nephew Negative pressure wound treatment apparatuses and methods with integrated electronics
GB2572642B (en) 2018-04-06 2021-03-31 Pellis Care Ltd Treatment of diabetic foot ulcers
US11040127B2 (en) 2018-04-09 2021-06-22 Kci Licensing, Inc. Abdominal dressing with mechanism for fascial closure
US20210379273A1 (en) 2018-04-10 2021-12-09 Kci Licensing, Inc. Bridge dressing with fluid management
BR102018007306A2 (en) 2018-04-11 2019-10-29 Maria Cristina De Paula Mesquita specific shape adhesive tape / plate making process / silicone dressing
WO2019199596A1 (en) 2018-04-12 2019-10-17 Kci Licensing, Inc. Cutting template for a negative pressure wound therapy drape
WO2019200035A1 (en) 2018-04-13 2019-10-17 Kci Licensing, Inc. Npwt system with selectively controllable airflow
US20210137745A1 (en) 2018-04-13 2021-05-13 Kci Licensing, Inc. Dressing bolster with area pressure indicator
US11896464B2 (en) 2018-04-13 2024-02-13 Kci Licensing, Inc. Method to dynamically measure apposition and patient limb movement in a negative pressure closed incision dressing
US11406750B2 (en) 2018-04-13 2022-08-09 Kci Licensing, Inc. Compression strain and negative pressure delivery indicator for a wound dressing
EP3787705B1 (en) 2018-05-03 2023-07-19 KCI Licensing, Inc. Negative pressure wound therapy system with detection of full absorbant dressing
EP3787580A1 (en) 2018-05-04 2021-03-10 Dry See LLC Liquid detecting article and method of making same
US20210100925A1 (en) 2018-05-08 2021-04-08 Fidia Farmaceutici S.P.A. Wound dressing for treatment of damaged skin
EP3569261B1 (en) 2018-05-14 2024-04-03 Paul Hartmann AG Functional wound dressing
EP3569210B1 (en) 2018-05-15 2022-04-27 The Procter & Gamble Company Disposable absorbent articles
US10898606B2 (en) 2018-05-15 2021-01-26 Legacy Research and Development Group, LLC Self-fusing low density silicone
AU2019270795B2 (en) 2018-05-16 2024-04-04 Keith R. Berend Negative pressure wound apposition dressing system
PL239827B1 (en) 2018-05-18 2022-01-17 Centrum Mat Polimerowych I Weglowych Polskiej Akademii Nauk Dressing unwoven fabric and method for producing the dressing unwoven fabric
US20190351095A1 (en) 2018-05-21 2019-11-21 Milliken & Company Wound care device having fluid transfer and adhesive properties
US20190351094A1 (en) 2018-05-21 2019-11-21 Milliken & Company Wound care device having fluid transfer and adhesive properties
FR3082123B1 (en) 2018-06-07 2020-10-16 Urgo Rech Innovation Et Developpement CELLULARIZED DRESSING AND ITS MANUFACTURING PROCESS
NL2021186B1 (en) 2018-06-26 2020-01-06 Icap Holding B V Intelligent cap for skin tissue treatment
US11701264B2 (en) 2018-06-27 2023-07-18 Kci Licensing, Inc. Wound therapy system with wound volume estimation using geometric approximation
TWI693929B (en) 2018-06-27 2020-05-21 南六企業股份有限公司 Antibacterial wound dressing
WO2020005536A1 (en) 2018-06-27 2020-01-02 Kci Licensing, Inc. Wound dressing for wound volume estimation
EP3813747A1 (en) 2018-06-28 2021-05-05 KCI Licensing, Inc. A highly conformable wound dressing
EP3813750B1 (en) 2018-06-28 2022-03-02 KCI Licensing, Inc. Release liner with edge protection
US20200000643A1 (en) 2018-06-28 2020-01-02 Kci Licensing, Inc. Long-Duration, Deep Wound Filler With Means To Prevent Granulation In-Growth
WO2020005577A1 (en) 2018-06-28 2020-01-02 Kci Licensing, Inc. Distributed negative pressure wound therapy system incorporating an absorbent dressing and piezo-electric pump
US20200000642A1 (en) 2018-06-28 2020-01-02 Systagenix Wound Management, Limited Multilayer absorbent dressing construction
US20200000640A1 (en) 2018-06-29 2020-01-02 Milliken & Company Multi-Layer Wound Care Device Having Absorption and Fluid Transfer Properties
US20210178012A1 (en) 2018-07-04 2021-06-17 Coloplast A/S Foam wound dressing comprising an antiseptic
GB201811449D0 (en) 2018-07-12 2018-08-29 Smith & Nephew Apparatuses and methods for negative pressure wound therapy
WO2020014178A1 (en) 2018-07-12 2020-01-16 Kci Licensing, Inc. Abdominal dressing with user selection of fascial closure force profile
WO2020014310A1 (en) 2018-07-13 2020-01-16 Kci Licensing, Inc. Advanced wound dressing with compression and increased total fluid handling
WO2020018300A1 (en) 2018-07-16 2020-01-23 Kci Licensing, Inc. Fluid instillation apparatus for use with negative-pressure system incorporating wireless therapy monitoring
WO2020018538A1 (en) 2018-07-18 2020-01-23 Kci Licensing, Inc. Wound view dressing and customization kit
EP3829505A1 (en) 2018-07-30 2021-06-09 3M Innovative Properties Company Antimicrobial foam articles and method of making the same
US20200038252A1 (en) 2018-07-31 2020-02-06 Joseph Spiro Tri-layered wound dressing and method therefor
WO2020040863A2 (en) 2018-07-31 2020-02-27 Kci Licensing, Inc. Devices and methods for preventing localized pressure points in distribution components for tissue therapy
EP3829515A1 (en) 2018-08-01 2021-06-09 KCI Licensing, Inc. Soft-tissue treatment with negative pressure
WO2020026144A1 (en) 2018-08-01 2020-02-06 Systagenix Wound Management, Limited Dressing packaging with controlled hydration of fluid-activated dressing
US20200038251A1 (en) 2018-08-03 2020-02-06 Kci Licensing, Inc. Flexible and conformable wound dressing with enhanced fluid absorption capability
CN112423800B (en) 2018-08-03 2024-05-17 3M创新知识产权公司 Wound treatment system with wound volume estimation
US20210161725A1 (en) 2018-08-10 2021-06-03 Kci Licensing, Inc. Wound dressing system for management of fluids in a wound and methods for manufacturing same
EP3836872A1 (en) 2018-08-13 2021-06-23 KCI Licensing, Inc. Disruptive dressing for use with negative pressure and fluid instillation
US20200046876A1 (en) 2018-08-13 2020-02-13 Chuang Sheng Medicine Equipment Co. Ltd. Hydrogel surgical dressing product having a multi-dimensional flexible hydrophilic structure-linkage composite
US11938236B2 (en) 2018-08-17 2024-03-26 Seoul Viosys Co., Ltd. Medical dressing
US20210308318A1 (en) 2018-08-17 2021-10-07 3M Innovative Properties Company Wound dressing system
EP4302790A3 (en) 2018-08-21 2024-03-27 Solventum Intellectual Properties Company System for utilizing pressure decay to determine available fluid capacity in a negative pressure dressing
WO2020040917A1 (en) 2018-08-21 2020-02-27 Kci Licensing, Inc. Dressing and system with improved total fluid handling
WO2020040960A1 (en) 2018-08-24 2020-02-27 Kci Licensing, Inc. Methods of managing moisture when using a low profile wound connection conduit
US11395918B2 (en) 2018-08-24 2022-07-26 United States Government As Represented By The Department Of Veterans Affairs Devices, and systems for remotely monitoring and treating wounds or wound infections
WO2020043665A1 (en) 2018-08-27 2020-03-05 Claudia Eder Antiseptic gel
AU2019331721B2 (en) 2018-08-27 2022-04-21 Advamedica Inc. Composite dressings, manufacturing methods and applications thereof
US11007083B2 (en) 2018-08-28 2021-05-18 Aatru Medical, LLC Dressing
EP3843678B1 (en) 2018-08-28 2023-07-26 KCI Licensing, Inc. Dressings for reduced tissue ingrowth
WO2020046589A1 (en) 2018-08-30 2020-03-05 Kci Licensing, Inc. Electro-mechanical pump for negative-pressure treatment
WO2020047255A1 (en) 2018-08-31 2020-03-05 Kci Licensing, Inc. Cooling dressing for improved comfort
DE202019105913U1 (en) 2018-09-04 2019-11-20 Lohmann & Rauscher Gmbh Wound cleaning device
WO2020051089A1 (en) 2018-09-04 2020-03-12 Kci Licensing, Inc. Wound therapy device and kit
WO2020051273A1 (en) 2018-09-05 2020-03-12 Kci Licensing, Inc. Systems and methods for scheduling and controlling wound therapy
US11471335B2 (en) 2018-09-05 2022-10-18 University Of South Carolina Gel-within-gel wound dressing
WO2020055945A1 (en) 2018-09-12 2020-03-19 Kci Licensing, Inc. Negative pressure wound therapy systems and methods to indicate total fluid handling
EP3849626A1 (en) 2018-09-12 2021-07-21 KCI Licensing, Inc. Wound therapy system with instillation therapy and dynamic pressure control
US20220111138A1 (en) 2018-09-12 2022-04-14 Kci Licensing, Inc. Systems, apparatuses, and methods for negative-pressure treatment with reduced tissue in-growth
US20220040400A1 (en) 2018-09-14 2022-02-10 Kci Licensing, Inc. Differential Collapse Wound Dressings
US11806466B2 (en) 2018-09-17 2023-11-07 Kci Licensing, Inc. Fluid ingress protection for NPWT device
WO2020060918A1 (en) 2018-09-17 2020-03-26 Kci Licensing, Inc. Absorbent negative pressure dressing
US11305050B2 (en) 2018-09-19 2022-04-19 Deroyal Industries, Inc. Connector with valve for negative pressure wound therapy system
EP3852705A1 (en) 2018-09-20 2021-07-28 KCI Licensing, Inc. Super-absorbent, low trauma, advanced wound dressing
WO2020065531A1 (en) 2018-09-25 2020-04-02 Systagenix Wound Management, Limited Wound dressing compositions and uses thereof
DE102018007692A1 (en) 2018-09-30 2020-04-02 Alexander Folwarzny Wound dressing
US11432965B2 (en) 2018-10-05 2022-09-06 Deborah Kantor Medical bandage for the head, a limb or a stump
EP3632476A1 (en) 2018-10-05 2020-04-08 John J. Ryan (Sealing Products) Limited Wound contact surface and method of manufacture
US11266538B2 (en) 2018-10-07 2022-03-08 Michael David Francis Adhesive wound dressing
EP3636233B1 (en) 2018-10-12 2023-06-07 IVF Hartmann AG Wet wound dressing having an adhesive edge
EP3866871A1 (en) 2018-10-15 2021-08-25 KCI Licensing, Inc. Micro balloon-on-tube wound filler
FR3087126A1 (en) 2018-10-16 2020-04-17 Jean Francois Van Cleef COMPOSITE WOUND MOLDING PROTECTION DEVICE
WO2020081322A1 (en) 2018-10-17 2020-04-23 Kci Licensing, Inc. Peel and place dressing having a closed-cell contact layer
WO2020081259A1 (en) 2018-10-17 2020-04-23 Kci Licensing, Inc. Systems, apparatuses, and methods for negative-pressure treatment with reduce tissue in-growth
WO2020078993A1 (en) 2018-10-18 2020-04-23 T.J.Smith And Nephew,Limited Tissue treatment device
GB201817052D0 (en) 2018-10-19 2018-12-05 Smith & Nephew Tissue treatment device
US11839528B2 (en) 2018-10-22 2023-12-12 Medline Industries, Lp Drypad with rapid absorption and liquid removal
US20200129648A1 (en) 2018-10-24 2020-04-30 Hydrofera, Llc Sterilization of Medical Dressings with Enhanced Antimicrobial Properties
EP3643331A1 (en) 2018-10-24 2020-04-29 Paul Hartmann AG Ph-triggered therapeutic wound dressing
EP3643330A1 (en) 2018-10-24 2020-04-29 Paul Hartmann AG Ph-triggered buffered wound dressing
EP3643328A1 (en) 2018-10-24 2020-04-29 Paul Hartmann AG Ph-triggered diagnostic wound dressing
WO2020092598A1 (en) 2018-10-30 2020-05-07 Kci Licensing, Inc. Ease of use dressing with integrated pouch and release liner
CN113227255A (en) 2018-11-02 2021-08-06 科发龙技术公司 Foaming composition, foaming matrix and method
WO2020097467A1 (en) 2018-11-08 2020-05-14 Kci Licensing, Inc. Dressing with protruding layer allowing for cleansing of wound bed macro deformations
WO2020097529A1 (en) 2018-11-08 2020-05-14 Kci Licensing, Inc. Wound dressing with semi-rigid support to increase disruption using perforated dressing and negative pressure wound therapy
US20200146899A1 (en) 2018-11-09 2020-05-14 Kci Licensing, Inc. Hybrid adhesive tissue cover
CN116370192A (en) 2018-11-13 2023-07-04 3M创新知识产权公司 Thin dispensing member for wound treatment
GB2579211A (en) 2018-11-23 2020-06-17 Brightwake Ltd Medical tube
GB2579368B (en) 2018-11-29 2022-11-09 Nexa Medical Ltd Wound-dressing conditioning device
US20200179300A1 (en) 2018-12-10 2020-06-11 Joseph Urban Topical Formulation Cures and Heals a Variety of Skin Conditions Including Ulcers, Decubitus Ulcers, Cancer, Abrasions and other Conditions and also accelerates the curing and healing of those Conditions
GB2579800B (en) 2018-12-13 2021-11-03 Adv Med Solutions Ltd Resilient wound dressing
GB2579790B (en) 2018-12-13 2022-10-05 Adv Med Solutions Ltd Ribbon wound dressing
EP3669844B1 (en) 2018-12-21 2024-07-03 Paul Hartmann AG Superabsorbent wound dressing with silicone wound contact layer
EP3669838A1 (en) 2018-12-21 2020-06-24 Paul Hartmann S.A. Array of absorbent dressings for the treatment of wounds
EP3669843B1 (en) 2018-12-21 2023-10-25 Paul Hartmann AG Superabsorbent wound dressing with silicone wound contact layer
CN113508166A (en) 2018-12-27 2021-10-15 3M创新有限公司 Hot-melt processable (meth) acrylate-based medical adhesives
GB201900015D0 (en) 2019-01-02 2019-02-13 Smith & Nephew Negative pressure wound therapy apparatus
US20200214899A1 (en) 2019-01-03 2020-07-09 Kci Licensing, Inc. Superabsorbent laminate dressing
GB201900407D0 (en) 2019-01-11 2019-02-27 Smith & Nephew Method of manufacturing a component for a wound dressing
WO2020150548A1 (en) 2019-01-17 2020-07-23 Scapa Tapes Na Composition for use in wound dressings
CN109481731B (en) 2019-01-23 2020-03-27 中南大学 Nano oxide/kaolin composite hemostatic and antibacterial material, hemostatic and healing-promoting dressing and preparation method thereof
US20200237562A1 (en) 2019-01-24 2020-07-30 Kci Licensing, Inc. Variable density dressing
EP3917471B1 (en) 2019-01-28 2024-06-19 Solventum Intellectual Properties Company Tearable dressing structure
EP3917584A1 (en) 2019-01-28 2021-12-08 Hyprotek, Inc. Antimicrobial composition with procoagulant, immunomodulatory, and tissue regenerative properties
EP4385473A2 (en) 2019-01-29 2024-06-19 Solventum Intellectual Properties Company Removable and replaceable dressing interface for a negative-pressure therapy system
WO2020159678A1 (en) 2019-01-29 2020-08-06 Kci Licensing, Inc. Absorbent dressing with indicator and mechanical decoupling of expansion forces
TWM578166U (en) 2019-02-01 2019-05-21 嬌朋生技股份有限公司 Negative pressure wound dressing
US20220079815A1 (en) 2019-02-01 2022-03-17 Kci Licensing, Inc. Partially transparent wound dressing
US20220087871A1 (en) 2019-02-01 2022-03-24 Kci Licensing, Inc. Abdominal Negative Pressure Therapy Dressing With Remote Wound Sensing Capability
WO2020159752A1 (en) 2019-02-01 2020-08-06 Kci Licensing, Inc. Drape strip having selectable adhesive
US20220226536A1 (en) 2019-02-04 2022-07-21 T.J.Smith And Nephew,Limited Wound contact layer and dressing for iodine delivery
JP2022519365A (en) 2019-02-06 2022-03-23 ケーシーアイ ライセンシング インコーポレイテッド Wound therapy system with internal alternating orifices
CN113382700A (en) 2019-02-07 2021-09-10 凯希特许有限公司 Contoured foam dressing shaped to provide negative pressure to an incision in a shoulder
IT201900002767A1 (en) 2019-02-26 2020-08-26 Univ Bologna Alma Mater Studiorum MEDICAL DEVICE FOR THE TREATMENT OF SKIN DISEASES AND RELATIVE METHOD OF IMPLEMENTATION
JP2022523780A (en) 2019-02-27 2022-04-26 シスタジェニックス ウンド マネージメント,リミテッド Antibacterial dressings, dressing components, and methods
US11529504B2 (en) 2019-02-27 2022-12-20 Jeffrey Wayne Hegg Dynamic gas-flow wound dressing assembly and method for enhancing the effect of generated gas flow across a wound
EP3931231A1 (en) 2019-02-28 2022-01-05 Covestro Intellectual Property GmbH & Co. KG Thermoplastic foam prepared from two special polyurethane dispersions
EA202191884A1 (en) 2019-02-28 2021-12-08 Спид Кеа Минерал Гмбх PASTE FOR MARKING TEXTILE FABRICS AND/OR OTHER PRODUCTS NOT CAPABLE OF X-RAY CONTRAST
WO2020185810A1 (en) 2019-03-11 2020-09-17 Kci Licensing, Inc. Apparatus, system, and method for forming a compound film, and apparatus having a compound film
DE202019101382U1 (en) 2019-03-12 2020-06-15 Lohmann & Rauscher Gmbh Vacuum treatment arrangement
US20200289327A1 (en) 2019-03-14 2020-09-17 Coloplast A/S Data collection schemes for a wound dressing and related methods
US11540950B2 (en) 2019-03-14 2023-01-03 Coloplast A/S Moisture sensing wound dressing
US11998435B2 (en) 2019-03-14 2024-06-04 Coloplast A/S Wound dressing with electrode multiplexing and related methods
CN114025810A (en) 2019-03-25 2022-02-08 凯希特许有限公司 Systems and methods for sensing pH of fluid on a wound tissue interface
CN113631128A (en) 2019-03-25 2021-11-09 凯希特许有限公司 Absorbent dressing with remote measurement of dressing moisture
US11471573B2 (en) 2019-03-27 2022-10-18 Kci Licensing, Inc. Wound therapy system with wound volume estimation
US20220167987A1 (en) 2019-03-27 2022-06-02 Kci Licensing, Inc. Apparatus, system, and method for wound closure
US11344666B2 (en) 2019-03-29 2022-05-31 Kci Licensing, Inc. Negative-pressure treatment with area stabilization
EP3946499A1 (en) 2019-03-29 2022-02-09 KCI Licensing, Inc. Negative-pressure treatment with area stabilization
CN113677304A (en) 2019-04-01 2021-11-19 3M创新有限公司 Conformable dressing
US20200315894A1 (en) 2019-04-03 2020-10-08 Hill-Rom Services, Inc. Dressing with targeted low-intensity vibration
US11305052B2 (en) 2019-04-07 2022-04-19 Steven Simpson Suction-based medical dressing and method of dermal irrigation
US11504466B2 (en) 2019-04-08 2022-11-22 Jeffrey Hegg Medical gauze and gas flow assembly and method of applying a medical gauze with gas flow on a wound
KR102047942B1 (en) 2019-04-18 2019-11-22 충남대학교산학협력단 wound dressing patch

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6075177A (en) * 1993-01-22 2000-06-13 Acordis Fibres (Holdings) Limited Wound dressing
US6207601B1 (en) * 1996-03-08 2001-03-27 Rhodia Acetow Ag Melt-blown nonwoven fabric, process for producing same and the uses thereof
US6238691B1 (en) * 1996-10-24 2001-05-29 Sherwood Services Ag Hydrogel wound dressing and the method of making and using the same
US6548730B1 (en) * 1998-07-01 2003-04-15 Acordis Speciality Fibres Limited Wound dressings and materials suitable for use therein
US20060019571A1 (en) * 2004-07-09 2006-01-26 Rainer Lange Absorbent personal care and/or cleansing product for cosmetic and/or dermatological applications comprising at least one absorbent sheet
US20100129633A1 (en) * 2008-11-27 2010-05-27 Stephen Law Absorbent Material
US20100310845A1 (en) * 2009-06-03 2010-12-09 Eric Bryan Bond Fluid permeable structured fibrous web
US20120232502A1 (en) * 2009-06-10 2012-09-13 Systagenix Wound Management (Us), Inc. Hydrogel wound dressing for use with suction
US20120202398A1 (en) * 2009-10-23 2012-08-09 Innovia Films Limited Biodegradable fibre and its process of manufacture

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Birttleness, Defintion of Brittleness at Dictionary.com, https://www.dictionary.com/browse/brittleness, retrieved 25Sept2019. *
Sawhney, APS et. al., Advent of Greige Cotton Non-Wovens Made using a Hydro-Entanglement Process, Textile Research Journal, Vol. 80 (15), p.1540-1549, 2010. *
Waring, M.J. and D. Parsona, Physico-Chemical Characterisation of Carboxymethylated Spun Cellulose Fibres, Biomaterials, 2001, pp.903-912. *

Also Published As

Publication number Publication date
KR20150099776A (en) 2015-09-01
JP2016507663A (en) 2016-03-10
US11286601B2 (en) 2022-03-29
US20200299865A1 (en) 2020-09-24
EP2935688A2 (en) 2015-10-28
CA2895896A1 (en) 2014-06-26
JP2019065452A (en) 2019-04-25
AU2018204434B2 (en) 2020-05-14
CN105008611A (en) 2015-10-28
BR112015014816A2 (en) 2017-07-11
MX2015007771A (en) 2015-09-04
AU2018204434A1 (en) 2018-07-05
AU2013366038A1 (en) 2015-07-16
WO2014096843A2 (en) 2014-06-26
WO2014096843A3 (en) 2014-09-18

Similar Documents

Publication Publication Date Title
US11286601B2 (en) Processing of chemically modified cellulosic fibres
EP2785901B1 (en) A yarn comprising gel-forming filaments or fibres
JP5612551B2 (en) Manufacture of wound care products and materials suitable for their use
JP3170594B2 (en) Cellulosic fiber
CN103173881B (en) For the formation of the method for cross-linked cellulose fibres
CN105705690B (en) High-absorbable polysaccharide fiber and application thereof
EP2376132B1 (en) Absorbent material
CN102580136B (en) The wound dressing that high moisture absorption and full wafer are removed
CN105745368B (en) Polysaccharide fiber and preparation method thereof
KR20100031638A (en) Fibrefill fibre having improved opening characteristics, production and use thereof
CN109260500A (en) The medical material of carboxymethyl cellulose is used
JP4358106B2 (en) Method for producing solid recycled viscose fiber
CN108472403A (en) Wound is coating to use sheet material
CN102076903A (en) Cellulose fiber and method for the production thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: CONVATEC TECHNOLOGIES INC., NEVADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BONNEFIN, WAYNE LEE;BALLAMY, LUCY LOUISA;WROE, SARAH;AND OTHERS;SIGNING DATES FROM 20150427 TO 20150505;REEL/FRAME:035898/0826

AS Assignment

Owner name: WILMINGTON TRUST (LONDON) LIMITED, AS COLLATERAL AGENT, UNITED KINGDOM

Free format text: SECURITY AGREEMENT;ASSIGNORS:CONVATEC INC.;CONVATEC TECHNOLOGIES INC.;180 MEDICAL, INC.;AND OTHERS;REEL/FRAME:040552/0227

Effective date: 20161031

Owner name: WILMINGTON TRUST (LONDON) LIMITED, AS COLLATERAL A

Free format text: SECURITY AGREEMENT;ASSIGNORS:CONVATEC INC.;CONVATEC TECHNOLOGIES INC.;180 MEDICAL, INC.;AND OTHERS;REEL/FRAME:040552/0227

Effective date: 20161031

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

AS Assignment

Owner name: CONVATEC TECHNOLOGIES INC., NEVADA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST (LONDON) LIMITED;REEL/FRAME:050831/0001

Effective date: 20191024

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION