US20150241142A1 - Heat Exchanger Insert - Google Patents

Heat Exchanger Insert Download PDF

Info

Publication number
US20150241142A1
US20150241142A1 US14/426,999 US201314426999A US2015241142A1 US 20150241142 A1 US20150241142 A1 US 20150241142A1 US 201314426999 A US201314426999 A US 201314426999A US 2015241142 A1 US2015241142 A1 US 2015241142A1
Authority
US
United States
Prior art keywords
insert
fluid
flow
corrugations
ridges
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/426,999
Other languages
English (en)
Inventor
Nicolas Vallee
Joaquim Guitart
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Systemes Thermiques SAS
Original Assignee
Valeo Systemes Thermiques SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques SAS filed Critical Valeo Systemes Thermiques SAS
Publication of US20150241142A1 publication Critical patent/US20150241142A1/en
Assigned to VALEO SYSTEMES THERMIQUES reassignment VALEO SYSTEMES THERMIQUES ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GUITART, Joaquim, VALLEE, NICOLAS
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • F28F3/027Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements with openings, e.g. louvered corrugated fins; Assemblies of corrugated strips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/046Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being linear, e.g. corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • F28D1/0325Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another
    • F28D1/0333Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members
    • F28D1/0341Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members with U-flow or serpentine-flow inside the conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0082Charged air coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/04Assemblies of fins having different features, e.g. with different fin densities

Definitions

  • the invention relates to an insert for a heat exchanger of a motor vehicle, a heat exchange bundle comprising such an insert and a heat exchanger comprising such a bundle.
  • It relates in particular to the field of exchangers for the supply of air to an engine of a motor vehicle.
  • turbocharged engines can be supplied via an air intake system or via a system for the intake of a mixture of air and exhaust gases collected as they exit from the engine, known as recirculated exhaust gases, the air or the mixture of air and recirculated exhaust gases having been compressed beforehand.
  • recirculated exhaust gases the air or the mixture of air and recirculated exhaust gases having been compressed beforehand.
  • charge air of the engine is used to denote both the air coming from an air intake system and the mixture coming from a system for the intake of a mixture of air and recirculated exhaust gases.
  • CAC charge air cooler
  • inserts also referred to as turbulators or disruptors, disposed in the charge air circuit. They are present in the form of a rectangular plate concertina-folded in such a way as to form a plurality of corrugations extending in a longitudinal axis.
  • the charge air enters on one side of the insert and exits on the other side, substantially following the direction of the corrugations.
  • the apices of the corrugations are in thermal contact with the coolant circuit. The transfer of heat between the two fluids is encouraged by the additional thermal exchange surface provided by the inserts.
  • Modifications to the configuration of the inserts allow the thermal exchange to be further reinforced. They involve the creation of disruptions for the purpose of imparting a turbulent flow to the air during the circulation of the flow through the insert.
  • louvers are apertures produced through the material; they are provided with flaps, adjacent to the aperture and oriented transversely to the incident direction of the charge air. Inserts of which the corrugations are divided and are offset transversely one after the other are also known.
  • the aim of the invention is to improve the structure of the insert, by restricting the loss of pressure, while maintaining a significant thermal transfer between the fluids.
  • the invention also has as its object an insert intended to encourage the exchange of heat between a first fluid and a second fluid, said insert comprising a concertina-folded plate for the circulation of the first fluid, said plate being intended to come into thermal contact with circulation channels for the second fluid, said plate including a multiplicity of ridges able to divert the circulation of said first fluid from one direction of flow, said insert having an increasing density of ridges in said direction of flow.
  • the insert comprises, between the inlet and the outlet, a progressively larger number of elements causing disruptions.
  • the invention is based on the observation that the ratio between the thermal performance and the loss of pressure is dependent on the flow velocity of the air and its temperature; it is higher in particular at a low flow velocity. It is consequently more useful to have disruptions when the flow velocity has already decreased, that is to say towards the outlet from the insert, rather than at the inlet, where the flow velocity is highest. It is thus possible to reduce the loss of pressure by avoiding causing disruptions at the inlet of the flow of air, while maintaining an effective thermal transfer by providing disruptions at the outlet from the conduit. In fact, the disruptions encourage the thermal exchange by increasing the coefficient of thermal transfer between the fluids. On the other hand, the presence of disruptions at the inlet is of little use since the loss of pressure generated is not very effective.
  • said plate comprises a plurality of corrugations intended to guide said fluid in the direction of flow, each corrugation being offset, one in relation to the other, in a direction transverse to said direction of flow, in such a way that said ridges are formed by opposed end edges of said corrugations.
  • the offset between the corrugations causes said ridges to appear in the flow of the fluid arriving from the preceding corrugation.
  • the fluid, guided by the corrugations is disrupted by the ridges disposed at the junction of two successive corrugations.
  • the length of said corrugations is decreasing.
  • the invention also has as its object a heat exchange bundle comprising a plurality of inserts as described previously.
  • the invention also has as its object a heat exchanger comprising a heat exchange bundle as described previously.
  • This may be, for example, a cooler for charge air, in particular a cooler for charge air in which the charge air is cooled with the help of a coolant.
  • FIG. 1 illustrates, in perspective, an example of an insert according to the invention
  • FIG. 2 illustrates schematically a view in transverse section of a corrugation of the insert in FIG. 1 ,
  • FIG. 3 illustrates, in perspective, a heat exchanger comprising inserts according to the invention.
  • the invention relates to an insert 1 intended to encourage the exchange of heat between a first fluid and a second fluid. It comprises a plate 2 concertina-folded in such a way that the thermal exchange surface with the first fluid is large. Said first fluid, circulating along the insert 1 in a direction of flow 5 , is intended to be placed in thermal contact with circulation channels, which are not represented in this drawing, for the second fluid.
  • the first fluid is a gas, for example, in particular the charge air for a turbocharged engine of a vehicle, which must be cooled with the help of a second heat transfer fluid.
  • the second fluid is a liquid, in particular an antifreeze liquid, in particular a mixture of water and glycol, obtained from a low-temperature cooling loop of the vehicle.
  • the air enters on one side, referred to as the inlet 7 of the insert, at a high temperature, before being cooled, in contact with the plate 2 , as far as the outlet 8 from the insert on the other side.
  • Said plate 2 includes a multiplicity of ridges 9 , able to divert the circulation of said first fluid from the direction of flow 5 .
  • the ridges 9 cause disruptions in the flow of the air, which encourage the thermal transfer between the two fluids, via the surface 6 of the insert 1 .
  • the insert 1 has an increasing density of ridges 9 in the direction of flow 5 , in order to prevent an unnecessary loss of pressure at the inlet 7 of the insert, while increasing the coefficient of thermal exchange at the outlet 8 .
  • the insert in this case comprises a plurality of corrugations 10 intended to guide the air in the direction of flow 5 .
  • Each corrugation 10 defines a series of parallel channels 30 in which the first fluid circulates in said direction of flow.
  • Each corrugation includes a series of parallel folds 11 , separated by apices 32 , intended to come into contact with the circulation conduits for the second fluid.
  • the ridges 9 are formed by the edges referred to as being transverse 34 , at opposite ends of said corrugations 10 , and perpendicular to a longitudinal direction of extension of said apices 32 .
  • a corrugation 10 has, on its transverse edges 34 , a multiplicity of ridges 9 disrupting the circulation of the air.
  • Said ridges 9 correspond in particular to each opposite end of the folds 11 , in said longitudinal direction of extension of said apices 32 .
  • Said transverse edges 34 may have a sinusoidal shape, in the form of castellations, triangular or any other recurring form, or not.
  • FIG. 2 depicts a view in section of a corrugation 10 , in which a series of folds 11 and apices 32 can be seen, as well as the pitch p and the height h of one of the corrugations 10 , being respectively equal to a period of said corrugation 10 and to the distance between two neighboring apices 32 .
  • the folds 11 in this embodiment are smooth.
  • the plate 2 forming the insert 1 is rectangular in this case, in such a way that said direction of flow 5 is parallel to two edges 15 of said plate, which we will designate as parallel edges, and perpendicular to the two others, which we will designate as inlet edges 16 and outlet edge 17 .
  • the corrugations 10 are disposed one after the other, with two of their transverse edges 34 in contact.
  • Each corrugation 10 is offset, one in relation to the other, in a direction transverse to the direction of flow 5 .
  • This offset causes the ridges 9 of the transverse edge 34 of the following corrugation to appear in the circulation of the fluid arriving from the preceding corrugation. It does not modify the deployed width of the corrugation, that is to say the deployed dimension of the insert in the direction perpendicular to said direction of longitudinal extension of said apices 32 .
  • the profiles of the corrugations 10 are identical, two by two, the corrugations 10 being offset in relation to one another and the apices 32 of the corrugations 10 being collinear.
  • the pitch p of the corrugations is the same for all the corrugations 10 . In this way, the choice and the adjustment of the density is easier to realize.
  • the length 13 of said corrugations 10 is decreasing in the direction of flow 5 .
  • An increasing density of ridges is obtained as a result.
  • the corrugations 10 are offset one after the other, the density of the ridges increases if the length 13 of the corrugations 10 reduces.
  • the insert may comprise a plurality of zones 18 , each having a constant density of ridges. In this case, this is manifested as zones 18 of which the corrugations are of identical dimensions, in particular the length l. Thus, the greater the number of corrugations 10 in a zone 18 , the higher the density of the ridges 9 .
  • the first zone 19 is provided with only a single corrugation 10 .
  • the first zone 19 has a zero density of ridges.
  • the insert 1 has four zones 18 with different densities.
  • the first 19 has only a single corrugation 10 .
  • the second comprises ten corrugations of the same length l, the third having twenty, and the fourth having thirty thereof.
  • the insert 1 is made from a single plate 2 , that is to say that the zones 18 and the corrugations 10 are obtained from material one from the other. The use of assembly processes for zones 18 which could have been realized separately is thus avoided.
  • the thermal exchange surface 6 is substantially the same for the corrugations of said zone, irrespective of the number of corrugations 10 .
  • the offset 20 between the corrugations 10 has a value substantially equal to half of the pitch p of the corrugation 10 . This characteristic permits centering of the ridges 9 in the middle of the flow of air exiting from the folds 11 of the preceding corrugation, so that the disruptions are larger and more effective.
  • the zones 18 in this case have the same length in said direction of longitudinal extension of the apices 32 .
  • the thermal exchange surface 6 is thus substantially the same for each of said zones.
  • the insert has a height which lies in the interval from 1 to 15 mm, in particular about 5 mm. It comprises four zones 18 having a length lying in the range from 10 to 50 mm, in particular about 30 mm.
  • the first zone 19 has a length of corrugation of about 30 mm, while the second zone has corrugations having a length of about 3 mm, that of the third being about 1.5 mm and that of the fourth being about 1 mm.
  • the insert 1 comprises a corrugation provided with louvers forming said ridges. More precisely, the flaps of the louvers have ridges playing the role of a disruptor.
  • the louvers are present in an increasing number between the inlet and the outlet of the insert, in order to achieve an effect similar to that of the preceding embodiment.
  • the folds of the corrugations are not smooth, as a result of the presence of the louvers.
  • the invention likewise relates to a heat exchange bundle 21 comprising a plurality of inserts 1 .
  • the first fluid F 1 as it enters the bundle, is divided into a plurality of flows, each passing into an insert.
  • the heat exchange bundle 21 comprises a plurality of blades 22 , 23 , forming a pair, said pair defining a channel for the circulation 25 of the first fluid F 1 .
  • the inserts 1 are disposed in each channel 25 and are bordered by the blades 22 , 23 of the pair. They are secured to the blades 22 , 23 by the apices of the folds 11 of the corrugations 10 and act as a thermal bridge between the two fluids.
  • the second fluid F 2 circulates in circulation channels 28 formed by the blades 23 , 26 of two different pairs. Said second fluid F 2 makes its way into the bundle via a pipe 36 and exits via a pipe 38 . It circulates between the pairs of plates through stampings, not visible here, formed in said plates and connecting between them the circulation channels for said second fluid.
  • the bundle comprises, as an alternative, circulation channels 25 for the charge air and circulation channels 28 for the coolant, being superposed one above the other.
  • the bundle is thus formed from a stack of plates and inserts.
  • the heat exchange bundle 21 is configured in such a way that the second fluid F 2 circulates in the channels formed between the plates in a flow perpendicular to the direction of flow 5 .
  • the channel for the circulation 28 of the second fluid comprises, in particular, a circuit in the form of a coil, not visible here, formed from a plurality of passages arranged between the blades 23 , 26 .
  • Each passage is defined as a conduit element, passing through the bundle 21 from one transverse edge 40 to the other 42 .
  • the blades thus comprise, in the area of each passage, a zone for the exchange of heat between the first fluid and the second fluid, said blades being configured in such a way that the liquid changes its direction of circulation between each passage.
  • the bundle will have as many passages in the blades as there are zones 18 of inserts 1 , in such a way that each passage for the second fluid corresponds to an insert zone 18 .
  • This arrangement ensures a better distribution in the exchange of heat.
  • the inserts 1 are preferably assembled to the blades 22 , 23 , 26 by brazing the material, based on aluminum or an aluminum alloy, of the constituent components of the bundle.
  • the invention further relates to a heat exchanger.
  • Said exchanger comprises a bundle 21 , as represented in FIG. 3 . It comprises in addition, for example, inlet boxes and/or outlet boxes for the first fluid, not represented here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
US14/426,999 2012-09-10 2013-09-10 Heat Exchanger Insert Abandoned US20150241142A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1258476 2012-09-10
FR1258476A FR2995397B1 (fr) 2012-09-10 2012-09-10 Intercalaire d'echangeur de chaleur.
PCT/EP2013/002711 WO2014037122A1 (fr) 2012-09-10 2013-09-10 Intercalaire d'echangeur de chaleur

Publications (1)

Publication Number Publication Date
US20150241142A1 true US20150241142A1 (en) 2015-08-27

Family

ID=47022934

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/426,999 Abandoned US20150241142A1 (en) 2012-09-10 2013-09-10 Heat Exchanger Insert

Country Status (5)

Country Link
US (1) US20150241142A1 (ko)
EP (1) EP2893282A1 (ko)
KR (1) KR20150043388A (ko)
FR (1) FR2995397B1 (ko)
WO (1) WO2014037122A1 (ko)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107228576A (zh) * 2017-06-27 2017-10-03 哈尔滨工程大学 一种基于变长度锯齿翅片的逆流式间冷器芯体
US20180244127A1 (en) * 2017-02-28 2018-08-30 General Electric Company Thermal management system and method
WO2018180058A1 (ja) * 2017-03-29 2018-10-04 株式会社デンソー 熱交換器
US20180372416A1 (en) * 2017-06-26 2018-12-27 United Technologies Corporation Manufacturing a heat exchanger using a material buildup process
JP2019158180A (ja) * 2018-03-08 2019-09-19 株式会社デンソー 車両用熱交換器
EP3196582B1 (en) * 2016-01-21 2019-10-16 Hamilton Sundstrand Corporation Heat exchanger with enhanced heat transfer
US10830540B2 (en) 2017-02-28 2020-11-10 General Electric Company Additively manufactured heat exchanger
US20210127524A1 (en) * 2019-10-23 2021-04-29 Lumentum Operations Llc Progressive heatsink
US11193722B2 (en) * 2018-05-01 2021-12-07 Dana Canada Corporation Heat exchanger with multi-zone heat transfer surface
US20220082448A1 (en) * 2020-09-11 2022-03-17 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Device for measuring temperatures in a heat exchanger
US11828543B2 (en) * 2018-06-06 2023-11-28 Kobe Steel, Ltd. Stacked heat exchanger

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3027662B1 (fr) * 2014-10-28 2019-03-22 Valeo Systemes Thermiques Intercalaire d'echangeur thermique.
FR3106001B1 (fr) * 2020-01-03 2022-12-02 Valeo Systemes Thermiques Échangeur de chaleur à tubes comportant des intercalaires
FR3106000B1 (fr) * 2020-01-03 2022-01-14 Valeo Systemes Thermiques Échangeur de chaleur à tubes comportant des intercalaires
EP3943863A1 (en) * 2020-07-23 2022-01-26 Valeo Autosystemy SP. Z.O.O. A heat exchanger

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4282927A (en) * 1979-04-02 1981-08-11 United Aircraft Products, Inc. Multi-pass heat exchanger circuit
US4815532A (en) * 1986-02-28 1989-03-28 Showa Aluminum Kabushiki Kaisha Stack type heat exchanger
US5107922A (en) * 1991-03-01 1992-04-28 Long Manufacturing Ltd. Optimized offset strip fin for use in contact heat exchangers
US5600053A (en) * 1993-07-05 1997-02-04 Uop Process and apparatus for controlling reaction temperatures
US6273183B1 (en) * 1997-08-29 2001-08-14 Long Manufacturing Ltd. Heat exchanger turbulizers with interrupted convolutions
EP1519133A2 (en) * 2003-09-29 2005-03-30 Sanden Corporation Heat exchanging apparatus
US7073573B2 (en) * 2004-06-09 2006-07-11 Honeywell International, Inc. Decreased hot side fin density heat exchanger
US8151617B2 (en) * 2008-05-23 2012-04-10 Dana Canada Corporation Turbulizers and method for forming same
US8167028B2 (en) * 2008-01-03 2012-05-01 Denso Corporation Heat exchanger fin with planar crests and troughs having slits

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3542124A (en) * 1968-08-08 1970-11-24 Garrett Corp Heat exchanger
US4049051A (en) * 1974-07-22 1977-09-20 The Garrett Corporation Heat exchanger with variable thermal response core
JP2003042677A (ja) * 2001-07-27 2003-02-13 Calsonic Kansei Corp 熱交換器用インナーフィン
JP4178944B2 (ja) * 2002-04-10 2008-11-12 株式会社デンソー 熱交換器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4282927A (en) * 1979-04-02 1981-08-11 United Aircraft Products, Inc. Multi-pass heat exchanger circuit
US4815532A (en) * 1986-02-28 1989-03-28 Showa Aluminum Kabushiki Kaisha Stack type heat exchanger
US5107922A (en) * 1991-03-01 1992-04-28 Long Manufacturing Ltd. Optimized offset strip fin for use in contact heat exchangers
US5600053A (en) * 1993-07-05 1997-02-04 Uop Process and apparatus for controlling reaction temperatures
US6273183B1 (en) * 1997-08-29 2001-08-14 Long Manufacturing Ltd. Heat exchanger turbulizers with interrupted convolutions
EP1519133A2 (en) * 2003-09-29 2005-03-30 Sanden Corporation Heat exchanging apparatus
US7073573B2 (en) * 2004-06-09 2006-07-11 Honeywell International, Inc. Decreased hot side fin density heat exchanger
US8167028B2 (en) * 2008-01-03 2012-05-01 Denso Corporation Heat exchanger fin with planar crests and troughs having slits
US8151617B2 (en) * 2008-05-23 2012-04-10 Dana Canada Corporation Turbulizers and method for forming same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3196582B1 (en) * 2016-01-21 2019-10-16 Hamilton Sundstrand Corporation Heat exchanger with enhanced heat transfer
US20180244127A1 (en) * 2017-02-28 2018-08-30 General Electric Company Thermal management system and method
US10830540B2 (en) 2017-02-28 2020-11-10 General Electric Company Additively manufactured heat exchanger
CN110300878A (zh) * 2017-03-29 2019-10-01 株式会社电装 热交换器
WO2018180058A1 (ja) * 2017-03-29 2018-10-04 株式会社デンソー 熱交換器
JP2018169073A (ja) * 2017-03-29 2018-11-01 株式会社デンソー 熱交換器
US10823511B2 (en) * 2017-06-26 2020-11-03 Raytheon Technologies Corporation Manufacturing a heat exchanger using a material buildup process
US20180372416A1 (en) * 2017-06-26 2018-12-27 United Technologies Corporation Manufacturing a heat exchanger using a material buildup process
US11835304B2 (en) 2017-06-26 2023-12-05 Rtx Corporation Heat exchanger with stacked flow channel modules
CN107228576A (zh) * 2017-06-27 2017-10-03 哈尔滨工程大学 一种基于变长度锯齿翅片的逆流式间冷器芯体
JP2019158180A (ja) * 2018-03-08 2019-09-19 株式会社デンソー 車両用熱交換器
US11193722B2 (en) * 2018-05-01 2021-12-07 Dana Canada Corporation Heat exchanger with multi-zone heat transfer surface
US11828543B2 (en) * 2018-06-06 2023-11-28 Kobe Steel, Ltd. Stacked heat exchanger
US20210127524A1 (en) * 2019-10-23 2021-04-29 Lumentum Operations Llc Progressive heatsink
US11937403B2 (en) * 2019-10-23 2024-03-19 Lumentum Operations Llc Progressive heatsink
US20220082448A1 (en) * 2020-09-11 2022-03-17 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Device for measuring temperatures in a heat exchanger

Also Published As

Publication number Publication date
WO2014037122A1 (fr) 2014-03-13
FR2995397A1 (fr) 2014-03-14
KR20150043388A (ko) 2015-04-22
EP2893282A1 (fr) 2015-07-15
FR2995397B1 (fr) 2014-08-22

Similar Documents

Publication Publication Date Title
US20150241142A1 (en) Heat Exchanger Insert
US9951995B2 (en) Heat exchanger with self-retaining bypass seal
US10378835B2 (en) Heat exchanger with non-orthogonal perforations
US9328968B2 (en) Low profile, split flow charge air cooler with uniform flow exit manifold
US10145295B2 (en) Supercharge air cooler
US20140246179A1 (en) Plate For A Heat Exchanger And Heat Exchanger Equipped With Such Plates
US9951724B2 (en) Heat exchanger having wave fin plate for reducing EGR gas pressure difference
US9593647B2 (en) Gas-to-liquid heat exchanger
US9903661B2 (en) Heat exchanger plate with bypass zone
US10047663B2 (en) Charge air cooler with multi-piece plastic housing
US20070193732A1 (en) Heat exchanger
CN108603735B (zh) 塑料外壳内的结构整体的热交换器
US20170211896A1 (en) Heat exchanger with center manifold
KR20140118878A (ko) 공기 대 공기 열 교환기
EP3553446B1 (en) Shaped leading edge of cast plate fin heat exchanger
RU146883U1 (ru) Теплообменник (варианты)
US20150253085A1 (en) Heat exchange for gas, particularly the exhaust gases of an engine
US20130284409A1 (en) Heat Exchanger And Associated Method Of Forming Flow Perturbators
US6883502B2 (en) Fluid/liquid heat exchanger with variable pitch liquid passageways and engine system using same
GB2132748A (en) Improvements relating to heat exchangers
US9733026B2 (en) Heat exchanger with fluid guiding members
US11187470B2 (en) Plate fin crossflow heat exchanger
US8689858B2 (en) Cooler block, especially for a change air cooler/coolant cooler
KR20170122663A (ko) 열 교환기용 플랫 튜브
EP2746711A1 (en) Heat exchanger core plate, heat exchanger provided with such plate and manufacturing process of such heat exchanger

Legal Events

Date Code Title Description
AS Assignment

Owner name: VALEO SYSTEMES THERMIQUES, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VALLEE, NICOLAS;GUITART, JOAQUIM;SIGNING DATES FROM 20160414 TO 20160420;REEL/FRAME:038858/0052

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION