US20150239968A1 - Monoclonal antibodies to growth and differentiation factor 15 (gdf-15) - Google Patents

Monoclonal antibodies to growth and differentiation factor 15 (gdf-15) Download PDF

Info

Publication number
US20150239968A1
US20150239968A1 US14/431,281 US201314431281A US2015239968A1 US 20150239968 A1 US20150239968 A1 US 20150239968A1 US 201314431281 A US201314431281 A US 201314431281A US 2015239968 A1 US2015239968 A1 US 2015239968A1
Authority
US
United States
Prior art keywords
antibody
antigen
gdf
binding
binding portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/431,281
Other languages
English (en)
Inventor
Jörg Wischhusen
Markus Junker
Thomas Müller
Stefan Saremba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Julius-Maximilians-Universitat
Julius Maximilians Universitaet Wuerzburg
Original Assignee
Julius-Maximilians-Universitat
Julius Maximilians Universitaet Wuerzburg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Julius-Maximilians-Universitat, Julius Maximilians Universitaet Wuerzburg filed Critical Julius-Maximilians-Universitat
Publication of US20150239968A1 publication Critical patent/US20150239968A1/en
Assigned to JULIUS-MAXIMILIANS-UNIVERSITÄT reassignment JULIUS-MAXIMILIANS-UNIVERSITÄT ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Müller, Thomas , SAREMBA, Stefan, JUNKER, Markus, WISCHHUSEN, Jörg
Priority to US15/918,841 priority Critical patent/US10781251B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/22Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against growth factors ; against growth regulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/3955Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/34Identification of a linear epitope shorter than 20 amino acid residues or of a conformational epitope defined by amino acid residues
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value

Definitions

  • the present invention relates to novel monoclonal anti-human-GDF-15 antibodies, pharmaceutical compositions, kits, methods and uses and the cell lines capable of producing the monoclonal antibodies described herein.
  • the present invention further relates to novel antibodies to human GDF-15 capable of inhibiting cancer growth.
  • growth factors including factors such as VEGF, PDGF, TGF- ⁇ and GDF-15.
  • GDF-15 growth and differentiation factor-15
  • TGF- ⁇ superfamily a protein which is intracellularly expressed as a precursor, subsequently processed and eventually becomes secreted from the cell into the environment.
  • Both the active, fully processed (mature) form and the precursor of GDF-15 can be found outside cells.
  • the precursor covalently binds via its 000H-terminal amino acid sequence to the extracellular matrix (Bauskin A R et al., Cancer Research 2005) and thus resides on the exterior of a cell.
  • the active, fully processed (mature) form of GDF-15 is soluble and is found in blood sera.
  • the processed form of GDF-15 may potentially act on any target cell within the body that is connected to the blood circulation, provided that the potential target cell expresses a receptor for the soluble GDF-15 ligand.
  • GDF-15 is found under physiological conditions in the placenta.
  • malignant cancers especially aggressive brain cancers, melanoma, lung cancer, gastrointestinal tumors, colon cancer, pancreatic cancer, prostate cancer and breast cancer (Mimeault M and Batra S K, J. Cell Physiol 2010)
  • GDF-15 levels exhibit increased GDF-15 levels in the tumor as well as in blood serum.
  • correlations have been described between high GDF-15 expression and chemoresistance (Huang C Y et al., Clin. Cancer Res. 2009) and between high GDF-15 expression and poor prognosis, respectively (Brown D A et al., Clin. Cancer Res. 2009).
  • GDF-15 is expressed in gliomas of different WHO grades as assessed by immunohistochemistry (Roth et al., Clin. Cancer Res. 2010). Further, Roth et al. stably expressed short hairpin RNA-expressing DNA constructs targeting endogenous GDF-15 or control constructs in SMA560 glioma cells. When using these pre-established stable cell lines, they observed that tumor formation in mice bearing GDF-15 knockdown SMA560 cells was delayed compared to mice bearing control constructs.
  • Patent applications WO 2005/099746 and WO 2009/021293 relate to an anti-human-GDF-15 antibody (Mab26) capable of antagonizing effects of human GDF-15 on tumor-induced weight loss in vivo in mice:
  • immunologically compromised mice were administered with human tumor cells (prostate carcinoma cells DU145) transfected with plasmids overexpressing human GDF-15.
  • Tumor cells carrying plasmids lacking a GDF-15 sequence served as a negative control.
  • Those mice expressing xenograft GDF-15 exhibited a tumor-induced weight loss (clinical term: cachexia) and anorexia.
  • an antibody to human GDF-15 according to the present invention has an equilibrium dissociation constant of about 790 pM for recombinant GDF-15 even without additional affinity maturation, which is a higher affinity compared to most known therapeutic antibodies.
  • the antibody to human GDF-15 according to the present invention has superior properties compared to antibodies known from the art, and is particularly useful for inhibiting cancer growth. Accordingly, the present invention was completed.
  • the present invention solves the above-mentioned objects by providing the monoclonal antibodies, pharmaceutical compositions, kits, uses and the cell lines capable of producing the monoclonal antibodies described herein.
  • the present inventors surprisingly show that novel monoclonal antibodies to human GDF-15 and antigen binding portions thereof according to the invention are capable of inhibiting cancer growth. This was unexpected because those monoclonal antibodies to GDF-15 that were previously known from the art (WO 2005/099746, WO 2009/021293 and Johnen H et al., Nature Medicine, 2007) were known to cause a reversal of cancer-induced weight loss (i.e. a reversal of a secondary symptom induced by the GDF-15 expressed by the cancer), but were shown to fail at inhibiting growth of the cancer.
  • the present inventors also surprisingly show that human GDF-15 protein can be targeted by the antibodies of the invention in a way that cancer growth is inhibited. It is expected that the same mechanism of cancer growth inhibition is applicable to a large number of cancers that overexpress human GDF-15 including the cancers listed below.
  • the present invention relates to a monoclonal antibody capable of binding to human GDF-15, or an antigen-binding portion thereof, wherein the heavy chain variable domain comprises a CDR3 region comprising the amino acid sequence of SEQ ID NO: 5 or an amino acid sequence at least 90% identical thereto, and wherein the light chain variable domain comprises a CDR3 region comprising the amino acid sequence of SEQ ID NO: 7 or an amino acid sequence at least 85% identical thereto.
  • the invention also relates to a pharmaceutical composition comprising the antibody or antigen-binding portion thereof according to the invention.
  • the invention relates to an antibody or antigen-binding portion thereof or a pharmaceutical composition according to the invention for use in a method for treating cancer in a mammal, the method comprising administering the antibody or antigen-binding portion thereof or the pharmaceutical composition to said mammal.
  • the invention relates to a kit comprising the pharmaceutical composition according to the invention.
  • the invention also relates to an expression vector comprising a nucleotide sequence encoding the antibody or antigen-binding portion thereof according to the invention.
  • the invention relates to a cell line capable of producing an antibody or antigen-binding portion thereof according to the invention.
  • the present invention provides a novel cancer growth inhibitor that meets the above-defined needs in the art.
  • FIG. 1 NKG2D Expression on NK Cells after Treatment with or without GDF-15.
  • the cell surface expression of NKG2D was determined on NK cells after treatment with the indicated cytokines in the presence or absence of the anti-GDF-15 antibody mAb B1-23.
  • the figure displays specific fluorescence intensities determined by flow cytometry, quantified relative to an unspecific control antibody.
  • FIG. 2 Akt Phosphorylation in the Ovarian Carcinoma Cell Line SK-OV-3.
  • the ratio of phosphorylated Akt to the total amount of Akt was calculated and normalized to the untreated control.
  • FIG. 3 JNK1/2 Phosphorylation in Immune Cells.
  • the ratio of phosphorylated JNK1/2 to the total amount of JNK was calculated and normalized to the untreated control.
  • FIG. 4
  • antibody refers to any functional antibody that is capable of specific binding to the antigen of interest, as generally outlined in chapter 7 of Paul, W. E. (Ed.).: Fundamental Immunology 2nd Ed. Raven Press, Ltd., New York 1989, which is incorporated herein by reference.
  • the term “antibody” encompasses antibodies from any appropriate source species, including chicken and mammalian such as mouse, goat, non-human primate and human.
  • the antibody is a humanized antibody.
  • the antibody is preferably a monoclonal antibody which can be prepared by methods well-known in the art.
  • antibody encompasses an IgG-1, -2, -3, or -4, IgE, IgA, IgM, or IgD isotype antibody.
  • antibody encompasses monomeric antibodies (such as IgD, IgE, IgG) or oligomeric antibodies (such as IgA or IgM).
  • antibody also encompasses—without particular limitations—isolated antibodies and modified antibodies such as genetically engineered antibodies, e.g. chimeric antibodies.
  • each monomer of an antibody comprises two heavy chains and two light chains, as generally known in the art.
  • each heavy and light chain comprises a variable domain (termed V H for the heavy chain and V L for the light chain) which is important for antigen binding.
  • V H variable domain
  • V L variable domain
  • These heavy and light chain variable domains comprise (in an N-terminal to C-terminal order) the regions FR1, CDR1, FR2, CDR2, FR3, CDR3, and FR4 (FR, framework region; CDR, complementarity determining region which is also known as hypervariable region).
  • IMGT/V-QUEST an integrated software program for immunoglobulin and T cell receptor V-J and V-D-J rearrangement analysis. Nucleic Acids Res. 2004 Jul. 1; 32 (Web Server issue):W435-40.
  • the antibody regions indicated above are identified and assigned by using the IMGT/V-QUEST software.
  • a “monoclonal antibody” is an antibody from an essentially homogenous population of antibodies, wherein the antibodies are substantially identical in sequence (i.e. identical except for minor fraction of antibodies containing naturally occurring sequence modifications such as amino acid modifications at their N- and C-termini). Unlike polyclonal antibodies which contain a mixture of different antibodies directed to numerous epitopes, monoclonal antibodies are directed to the same epitope and are therefore highly specific.
  • the term “monoclonal antibody” includes (but is not limited to) antibodies which are obtained from a monoclonal cell population derived from a single cell clone, as for instance the antibodies generated by the hybridoma method described in Köhler and Milstein (Nature, 1975 Aug.
  • a monoclonal antibody may also be obtained from other suitable methods, including phage display techniques such as those described in Clackson et al. (Nature. 1991 Aug. 15; 352(6336):624-8) or Marks et al. (J Mol Biol. 1991 Dec. 5; 222(3):581-97).
  • a monoclonal antibody may be an antibody that has been optimized for antigen-binding properties such as decreased Kd values, optimized association and dissociation kinetics by methods known in the art.
  • Kd values may be optimized by display methods including phage display, resulting in affinity-matured monoclonal antibodies.
  • the term “monoclonal antibody” is not limited to antibody sequences from particular species of origin or from one single species of origin. Thus, the meaning of the term “monoclonal antibody” encompasses chimeric monoclonal antibodies such as humanized monoclonal antibodies.
  • Humanized antibodies are antibodies which contain human sequences and a minor portion of non-human sequences which confer binding specificity to an antigen of interest (e.g. human GDF-15).
  • humanized antibodies are generated by replacing hypervariable region sequences from a human acceptor antibody by hypervariable region sequences from a non-human donor antibody (e.g. a mouse, rabbit, rat donor antibody) that binds to an antigen of interest (e.g. human GDF-15).
  • framework region sequences of the acceptor antibody may also be replaced by the corresponding sequences of the donor antibody.
  • a “humanized antibody” may either contain other (additional or substitute) residues or sequences or not.
  • Such other residues or sequences may serve to further improve antibody properties such as binding properties (e.g. to decrease Kd values) and/or immunogenic properties (e.g. to decrease antigenicity in humans).
  • binding properties e.g. to decrease Kd values
  • immunogenic properties e.g. to decrease antigenicity in humans.
  • Non-limiting examples for methods to generate humanized antibodies are known in the art, e.g. from Riechmann et al. (Nature. 1988 Mar. 24; 332(6162):323-7) or Jones et al. (Nature. 1986 May 29-Jun. 4; 321(6069):522-5).
  • human antibody relates to an antibody containing human variable and constant domain sequences. This definition encompasses antibodies having human sequences bearing single amino acid substitutions or modifications which may serve to further improve antibody properties such as binding properties (e.g. to decrease Kd values) and/or immunogenic properties (e.g. to decrease antigenicity in humans).
  • human antibody excludes humanized antibodies where a portion of non-human sequences confers binding specificity to an antigen of interest.
  • an “antigen-binding portion” of an antibody as used herein refers to a portion of an antibody that retains the capability of the antibody to specifically bind to the antigen (e.g. GDF-15), i.e. the “antigen-binding portion” is capable of competing with the antibody for specific binding to the antigen.
  • the “antigen-binding portion” may contain one or more fragments of the antibody. Without particular limitation, it can be produced by any suitable method known in the art, including recombinant DNA methods and preparation by chemical or enzymatic fragmentation of antibodies.
  • Antigen-binding portions may be Fab fragments, F(ab′) fragments, F(ab′) 2 fragments, single chain antibodies (scFv), single-domain antibodies, diabodies or any other portion(s) of the antibody that allow(s) to retain binding to the antigen.
  • an “antibody” e.g. a monoclonal antibody
  • an “antigen-binding portion” may have been derivatized or be linked to a different molecule.
  • molecules that may be linked to the antibody are other proteins (e.g. other antibodies), a molecular label (e.g. a fluorescent, luminescent, colored or radioactive molecule), a pharmaceutical and/or a toxic agent.
  • the antibody or antigen-binding portion may be linked directly (e.g. in form of a fusion between two proteins), or via a linker molecule (e.g. any suitable type of chemical linker known in the art).
  • the terms “binding” or “bind” refer to specific binding to the antigen of interest (e.g. human GDF-15).
  • the Kd value is less than 100 nM, more preferably less than 50 nM, still more preferably less than nM, still more preferably less than 5 nM and most preferably less than 2 nM.
  • epitope refers to a small portion of an antigen that forms the binding site for an antibody.
  • binding or competitive binding of antibodies or their antigen-binding portions to the antigen of interest is measured by using surface plasmon resonance measurements as a reference standard assay, as described below.
  • K D or “K D value” relate to the equilibrium dissociation constant as known in the art. In the context of the present invention, these terms relate to the equilibrium dissociation constant of an antibody with respect to a particular antigen of interest (e.g. human GDF-15)
  • the equilibrium dissociation constant is a measure of the propensity of a complex (e.g. an antigen-antibody complex) to reversibly dissociate into its components (e.g. the antigen and the antibody).
  • K D values (such as those for the antigen human GDF-15) are generally determined by using surface plasmon resonance measurements as described below.
  • cancer growth as used herein relates to any measurable growth of the cancer.
  • cancer growth relates to a measurable increase in tumor volume over time. If the cancer has formed only a single tumor, “cancer growth” relates only to the increase in volume of the single tumor. If the cancer has formed multiple tumors such as metastases, “cancer growth” relates to the increase in volume of all measurable tumors.
  • the tumor volume can be measured by any method known in the art, including magnetic resonance imaging and computed tomography (CT scan).
  • cancer growth relates to a measurable increase in the number of cancer cells per blood volume.
  • cancer cells can be identified from blood samples by using any method known in the art, including cell morphology measurements, or staining of tumor cell marker proteins such as tumor marker cell surface proteins, e.g. by staining with specific antibodies, and the cancer cells can be counted.
  • inhibiting cancer growth refers to a measurable inhibition of cancer growth in patient treated with the antibody.
  • the inhibition is statistically significant. Inhibition of cancer growth may be assessed by comparing cancer growth in a group of patients treated in accordance with the present invention to a control group of untreated patients, or by comparing a group of patients that receive a standard cancer treatment of the art plus a treatment according to the invention with a control group of patients that only receive a standard cancer treatment of the art.
  • Such studies for assessing the inhibition of cancer growth are designed in accordance with accepted standards for clinical studies, e.g. double-blinded, randomized studies with sufficient statistical power.
  • inhibiting cancer growth includes an inhibition of cancer growth where the cancer growth is inhibited partially (i.e. where the cancer growth in the patient is delayed compared to the control group of patients), an inhibition where the cancer growth is inhibited completely (i.e. where the cancer growth in the patient is stopped), and an inhibition where cancer growth is reversed (i.e. the cancer shrinks).
  • an “isolated antibody” as used herein is an antibody that has been identified and separated from the majority of components (by weight) of its source environment, e.g. from the components of a hybridoma cell culture or a different cell culture that was used for its production (e.g. producer cells such as CHO cells that recombinantly express the antibody). The separation is performed such that it sufficiently removes components that may otherwise interfere with the suitability of the antibody for the desired applications (e.g. with a therapeutic use of the anti-human GDF-15 antibody according to the invention).
  • Methods for preparing isolated antibodies are known in the art and include Protein A chromatography, anion exchange chromatography, cation exchange chromatography, virus retentive filtration and ultrafiltration.
  • the isolated antibody preparation is at least 70% pure (w/w), more preferably at least 80% pure (w/w), still more preferably at least 90% pure (w/w), still more preferably at least 95% pure (w/w), and most preferably at least 99% pure (w/w), as measured by using the Lowry protein assay.
  • a “diabody” as used herein is a small bivalent antigen-binding antibody portion which comprises a heavy chain variable domain linked to a light chain variable domain on the same polypeptide chain linked by a peptide linker that is too short to allow pairing between the two domains on the same chain. This results in pairing with the complementary domains of another chain and in the assembly of a dimeric molecule with two antigen binding sites.
  • Diabodies may be bivalent and monospecific (such as diabodies with two antigen binding sites for human GDF-15), or may be bivalent and bispecific (e.g. diabodies with two antigen binding sites, one being a binding site for human GDF-15, and the other one being a binding site for a different antigen). A detailed description of diabodies can be found in Holliger P et al. (““Diabodies”: small bivalent and bispecific antibody fragments.” Proc Natl Acad Sci USA. 1993 Jul. 15; 90(14):6444-8.).
  • a “single-domain antibody” (which is also referred to as “NanobodyTM”) as used herein is an antibody fragment consisting of a single monomeric variable antibody domain. Structures of and methods for producing single-domain antibodies are known from the art, e.g. from Holt L J et al. (“Domain antibodies: proteins for therapy.” Trends Biotechnol. 2003 November; 21(11):484-90.), Saerens D et al. (“Single-domain antibodies as building blocks for novel therapeutics.” Curr Opin Pharmacol. 2008 October; 8(5):600-8. Epub 2008 Aug. 22.), and Arbabi Ghahroudi M et al. (“Selection and identification of single domain antibody fragments from camel heavy-chain antibodies.” FEBS Lett. 1997 Sep. 15; 414(3):521-6.).
  • a value e.g. a GDF-15 level
  • a value in a patient sample is higher than a value in a corresponding control sample or group of control samples.
  • the difference is statistically significant.
  • elevated GDF-15 levels means that the human patient has higher GDF-15 levels in blood serum before administration of the antibody or antigen-binding portion thereof or the pharmaceutical composition according to the invention, when compared to median GDF-15 levels in blood sera of healthy human control individuals as a reference.
  • a preferred median reference for GDF-15 level in blood sera of healthy human control individuals is ⁇ 0.8 ng/ml.
  • the expected range is between 0.2 ng/ml and 1.2 ng/ml in healthy human controls (Reference: Tanno T et al.: “Growth differentiation factor 15 in erythroid health and disease.” Curr Opin Hematol. 2010 May; 17(3): 184-190.).
  • the levels are 1.2-fold higher, more preferably 1.5-fold higher, still more preferably 2-fold higher and most preferably 5-fold higher.
  • prior to administration means the period of time immediately before administration of the antibody, fragment thereof or the pharmaceutical composition according to the invention.
  • the term “prior to administration” means a period of 30 days immediately before administration; most preferably a period of one week immediately before administration.
  • cancer and “cancer cell” is used herein in accordance with their common meaning in the art (see for instance Weinberg R. et al.: The Biology of Cancer. Garland Science: New York 2006. 850p.).
  • each occurrence of the term “comprising” may optionally be substituted with the term “consisting of”.
  • the methods used in the present invention are performed in accordance with procedures known in the art, e.g. the procedures described in Sambrook et al. (“Molecular Cloning: A Laboratory Manual.”, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. 1989), Ausubel et al. (“Current Protocols in Molecular Biology.” Greene Publishing Associates and Wiley Interscience; New York 1992), and Harlow and Lane (“Antibodies: A Laboratory Manual” Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. 1988), all of which are incorporated herein by reference.
  • Binding of monoclonal anti-human-GDF-15 antibodies according to the invention is generally assessed by employing surface plasmon resonance measurements using a Biorad ProteOn XPR36 system and Biorad GLC sensor chips as described for anti-human GDF-15 mAb-B1-23 in Example 1.
  • Sequence Alignments of sequences according to the invention are performed by using the BLAST algorithm (see Altschul et al. (1990) “Basic local alignment search tool.” Journal of Molecular Biology 215. p. 403-410.; Altschul et al.: (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:3389-3402.).
  • the following parameters are used: Max target sequences 10; Word size 3; BLOSUM 62 matrix; gap costs: existence 11, extension 1; conditional compositional score matrix adjustment.
  • terms such as “identity” or “identical” refer to the identity value obtained by using the BLAST algorithm.
  • Monoclonal antibodies according to the invention can be produced by any method known in the art, including but not limited to the methods referred to in Siegel D L (“Recombinant monoclonal antibody technology.” Transfus Clin Biol. 2002 January; 9(1):15-22.).
  • an antibody according to the invention is produced by the hybridoma cell line B1-23 deposited with the Deutsche Sammlung für Mikroorganismen und Zellkulturen GmbH (DSMZ) under the accession No. DSM ACC3142 under the Budapest treaty. The deposit was filed on Sep. 29, 2011.
  • Cell proliferation can be measured by suitable methods known in the art, including (but not limited to) visual microscopy, metabolic assays such as those which measure mitochondrial redox potential (e.g. MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay; Resazurin staining which is also known as Alamar Blue® assay), staining of known endogenous proliferation biomarkers (e.g. Ki-67), and methods measuring cellular DNA synthesis (e.g. BrdU and [ 3 H]-Thymidine incorporation assays).
  • MTT 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
  • Resazurin staining which is also known as Alamar Blue® assay
  • staining of known endogenous proliferation biomarkers e.g. Ki-67
  • methods measuring cellular DNA synthesis e.g. BrdU and
  • Immunosuppression can be measured by suitable methods known in the art, including (but not limited to) immune cell proliferation, cytokine secretion, intracellular cytokine staining by flow cytometry, cytokine measurement by qRT-PCR, redirected target cell lysis, further cytotoxicity or degranulation assays, downregulation of activating immune cell receptors (like NKG2D), upregulation of inhibitory immune cell receptors, immunological synapse formation, immune cell infiltration.
  • suitable methods known in the art including (but not limited to) immune cell proliferation, cytokine secretion, intracellular cytokine staining by flow cytometry, cytokine measurement by qRT-PCR, redirected target cell lysis, further cytotoxicity or degranulation assays, downregulation of activating immune cell receptors (like NKG2D), upregulation of inhibitory immune cell receptors, immunological synapse formation, immune cell infiltration.
  • an effect shall be measurable in at least one of these or in any other
  • Human GDF-15 levels can be measured by any method known in the art, including measurements of GDF-15 mRNA levels by methods including (but not limited to) quantitative real-time PCR (qRT-PCR) for human GDF-15 mRNA using primers specific to human GDF-15, mRNA in situ hybridization with probes specific to human GDF-15, mRNA deep sequencing methods; and including measurements of GDF-15 protein levels by methods including (but not limited to) mass spectrometry for proteins or peptides derived from human GDF-15, Western Blotting using antibodies specific to human GDF-15, flow cytometry using antibodies specific to human GDF-15, strip tests using antibodies specific to human GDF-15, or immunocytochemistry using antibodies specific to human GDF-15.
  • qRT-PCR quantitative real-time PCR
  • the anti-human GDF-15 antibodies of the present invention are preferred, and the antibody of the invention produced by the hybridoma cell line B1-23 deposited with the Deutsche Sammlung für Mikroorganismen and Zellkulturen GmbH (DSMZ) under the accession No. DSM ACC3142 is most preferred.
  • DSMZ Deutsche Sammlung für Mikroorganismen and Zellkulturen GmbH
  • Human GDF-15 protein can be targeted by an antibody of the invention in a way that cancer growth is inhibited.
  • the anti-GDF-15 antibodies known from WO 2005/099746, WO 2009/021293 and Johnen H et al., Nature Medicine, 2007 only inhibit one of the effects of human GDF-15 (i.e. cancer-induced weight loss), but fail to inhibit other effects of human GDF-15 such as those related to cancer growth.
  • the antibodies known from the above documents may only interfere with transport of human GDF-15 across the blood-brain barrier (by forming a large complex that cannot be transported across the blood-brain barrier) but are incapable of binding human GDF-15 in a way that renders it generally unable to interact with its receptor (e.g. a receptor residing on cells outside the brain).
  • the following properties of the antibodies of the present invention are expected to contribute to their capability of inhibiting the effects of human GDF-15 more completely, including the inhibition of cancer growth:
  • the antibodies of the present invention are capable of binding to mature recombinant human GDF-15 (represented by SEQ ID No: 8) and are therefore capable of binding to active, fully processed (mature) human GDF-15.
  • the inventors show that the mAb-B1-23 antibody according to the invention is capable of binding to the human GDF-15 precursor on human cells.
  • binding and effects of the antibodies of the present invention are not limited to effects on a particular form of human GDF-15.
  • the antibodies and antigen binding portions thereof according to the invention have high binding affinity, as demonstrated by the mAb-B1-23 antibody according to the invention which has an equilibrium dissociation constant of about 790 pM for recombinant human GDF-15.
  • affinity values are superior to most of the existing therapeutic antibodies, e.g. to the therapeutic antibody Rituximab which has an equilibrium dissociation constant of about 8 nM.
  • High binding affinity will ensure that the antibody to human GDF-15 according to the invention stably binds to human GDF-15, such that effects of human GDF-15 including effects on cancer growth are effectively inhibited.
  • the antibodies and antigen binding portions thereof according to the invention bind to a discontinuous or conformational epitope, as demonstrated below for the mAb-B1-23 antibody according to the invention.
  • Binding of antibodies and antigen binding portions thereof according to the invention to a discontinuous or conformational GDF-15 epitope may help to keep human GDF-15 in a specific conformation and thereby contribute to the effective inhibition of effects of human GDF-15 including effects on cancer growth.
  • the invention relates to a monoclonal antibody capable of binding to human GDF-15, or an antigen-binding portion thereof, wherein the heavy chain variable domain comprises a CDR3 region comprising the amino acid sequence of SEQ ID NO: 5 or an amino acid sequence at least 90% identical thereto, and wherein the light chain variable domain comprises a CDR3 region comprising the amino acid sequence of SEQ ID NO: 7 or an amino acid sequence at least 85% identical thereto.
  • the invention relates to a monoclonal antibody capable of binding to human GDF-15, or an antigen-binding portion thereof, wherein the heavy chain variable domain comprises a CDR3 region comprising the amino acid sequence of SEQ ID NO: 5 or an amino acid sequence that differs by not more than one amino acid from the amino acid sequence of SEQ ID NO: 5, and wherein the light chain variable domain comprises a CDR3 region comprising the amino acid sequence of SEQ ID NO: 7 or an amino acid sequence or an amino acid sequence that differs by not more than one amino acid from the amino acid sequence of SEQ ID NO: 7.
  • the heavy chain variable domain of the monoclonal antibody or antigen-binding portion thereof comprises a CDR3 region comprising the amino acid sequence of SEQ ID NO: 5, or the light chain variable domain comprises a CDR3 region comprising the amino acid sequence of SEQ ID NO: 7.
  • the heavy chain variable domain of the monoclonal antibody or antigen-binding portion thereof comprises a CDR3 region comprising the amino acid sequence of SEQ ID NO: 5
  • the light chain variable domain comprises a CDR3 region comprising the amino acid sequence of SEQ ID NO:
  • the heavy chain variable domain comprises a region comprising an FR1, a CDR1, an FR2, a CDR2 and an FR3 region and comprising the amino acid sequence of SEQ ID NO: 1 or a sequence 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical thereto
  • the light chain variable domain comprises a region comprising an FR1, a CDR1, an FR2, a CDR2 and an FR3 region and comprising the amino acid sequence of SEQ ID NO: 2 or a sequence 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical thereto.
  • the heavy chain variable domain comprises a region comprising an FR1, a CDR1, an FR2, a CDR2 and an FR3 region and comprising the amino acid sequence of SEQ ID NO: 1 or a sequence 95% identical thereto
  • the light chain variable domain comprises a region comprising an FR1, a CDR1, an FR2, a CDR2 and an FR3 region and comprising the amino acid sequence of SEQ ID NO: 2 or a sequence 95% identical thereto.
  • the heavy chain variable domain comprises a region comprising an FR1, a CDR1, an FR2, a CDR2 and an FR3 region and comprising the amino acid sequence of SEQ ID NO: 1 or a sequence 98% identical thereto
  • the light chain variable domain comprises a region comprising an FR1, a CDR1, an FR2, a CDR2 and an FR3 region and comprising the amino acid sequence of SEQ ID NO: 2 or a sequence 98% identical thereto.
  • the heavy chain variable domain comprises a region comprising an FR1, a CDR1, an FR2, a CDR2 and an FR3 region and comprising the amino acid sequence of SEQ ID NO: 1
  • the light chain variable domain comprises a region comprising an FR1, a CDR1, an FR2, a CDR2 and an FR3 region and comprising the amino acid sequence of SEQ ID NO: 2.
  • the invention also relates to a monoclonal antibody capable of binding to human GDF-15, or an antigen-binding portion thereof, wherein the heavy chain variable domain comprises a CDR1 region comprising the amino acid sequence of SEQ ID NO: 3 and a CDR2 region comprising the amino acid sequence of SEQ ID NO: 4, and wherein the light chain variable domain comprises a CDR1 region comprising the amino acid sequence of SEQ ID NO: 6 and a CDR2 region comprising the amino acid sequence of SEQ ID NO: 7.
  • the antibody may have CDR3 sequences as defined in any of the embodiments of the invention described above.
  • the invention relates to a monoclonal antibody capable of binding to human GDF-15, or an antigen-binding portion thereof, wherein the antibody or antigen-binding portion thereof is capable of inhibiting cancer growth in a mammal, preferably a human patient.
  • the invention relates to an antigen-binding portion capable of binding to human GDF-15, wherein the antigen-binding portion is a single-domain antibody (also referred to as “NanobodyTM”).
  • the single-domain antibody comprises the CDR1, CDR2, and CDR3 amino acid sequences of SEQ ID NO: 3, SEQ ID NO: 4, and SEQ ID NO: 5, respectively.
  • the single-domain antibody comprises the CDR1, CDR2, and CDR3 amino acid sequences of SEQ ID NO: 6, SEQ ID NO: 7, and SEQ ID NO: 7, respectively.
  • the single-domain antibody is a humanized antibody.
  • the antibodies of the invention capable of binding to human GDF-15 or the antigen-binding portions thereof have an equilibrium dissociation constant for human GDF-15 that is equal to or less than 100 nM, less than 20 nM, preferably less than 10 nM, more preferably less than 5 nM and most preferably between 0.1 nM and 2 nM.
  • the antibody capable of binding to human GDF-15 or the antigen-binding portion thereof binds to the same human GDF-15 epitope as the antibody to human GDF-15 obtainable from the cell line B1-23 deposited with the Deutsche Sammlung für Mikroorganismen and Zellkulturen GmbH (DMSZ) under the accession No. DSM ACC3142.
  • DMSZ Deutsche Sammlung für Mikroorganismen and Zellkulturen GmbH
  • antibody binding to human GDF-15 in accordance with the present invention is assessed by surface plasmon resonance measurements as a reference standard method, in accordance with the procedures described in Example 1.
  • Binding to the same epitope on human GDF-15 can be assessed similarly by surface plasmon resonance competitive binding experiments of the antibody to human GDF-15 obtainable from the cell line B1-23 and the antibody that is expected to bind to the same human GDF-15 epitope as the antibody to human GDF-15 obtainable from the cell line B1-23.
  • the antibody of the invention is the monoclonal antibody capable of binding to human GDF-15 obtainable from the cell line B1-23 deposited with the Deutsche Sammlung für Mikroorganismen und Zellkulturen GmbH (DMSZ) under the accession No. DSM ACC3142 or an antigen-binding portion thereof.
  • DMSZ Deutsche Sammlung für Mikroorganismen und Zellkulturen GmbH
  • the antibody capable of binding to human GDF-15 or the antigen-binding portion thereof according to the invention is a humanized monoclonal antibody or an antigen-binding portion thereof.
  • humanized monoclonal anti-human-GDF-15 antibodies of the invention or antigen-binding portions thereof can be generated in accordance with techniques known in the art, as described above.
  • the monoclonal antibody capable of binding to human GDF-15 or antigen-binding portion thereof is a humanized antibody derived from the monoclonal antibody capable of binding to human GDF-15 obtainable from the cell line B1-23 deposited with the Deutsche Sammlung für Mikroorganismen und Zellkulturen GmbH (DMSZ) under the accession No. DSM ACC3142, or an antigen-binding portion thereof.
  • the heavy chain variable domain of the humanized antibody or antigen-binding portion thereof comprises a CDR3 region comprising the amino acid sequence of SEQ ID NO: 5
  • the light chain variable domain of the humanized antibody or antigen-binding portion thereof comprises a CDR3 region comprising the amino acid sequence of SEQ ID NO: 7.
  • the heavy chain variable domain of the humanized antibody or antigen-binding portion thereof comprises or further comprises a CDR1 region comprising the amino acid sequence of SEQ ID NO: 3 and a CDR2 region comprising the amino acid sequence of SEQ ID NO: 4, and the light chain variable domain of the humanized antibody or antigen-binding portion thereof comprises or further comprises a CDR1 region comprising the amino acid sequence of SEQ ID NO: 6 and a CDR2 region comprising the amino acid sequence of SEQ ID NO: 7.
  • the present invention also relates to a monoclonal antibody capable of binding to human GDF-15, or an antigen-binding portion thereof, wherein the binding is binding to a conformational or discontinuous epitope on human GDF-15 comprised by the amino acid sequences of SEQ ID No: 25 and SEQ ID No: 26.
  • the antibody or antigen-binding portion thereof is an antibody or antigen-binding portion thereof as defined in any one of the above embodiments.
  • the antibody capable of binding to human GDF-15 or the antigen-binding portion thereof is a diabody.
  • the diabody is bivalent and monospecific, with two identical antigen binding sites for human GDF-15.
  • the diabody is bivalent and bispecific, with one antigen binding site being a binding site for human GDF-15, and the other antigen binding site being a binding site for a different antigen.
  • Non-limiting examples for the different antigen according to this second aspect of this embodiment are i) cell surface antigens that are co-expressed with GDF-15 at high levels on the same cancer (e.g.
  • the antibody capable of binding to human GDF-15 or the antigen-binding portion thereof is linked to a drug.
  • the drug can be a known anticancer agent and/or an immune-stimulatory molecule.
  • known anticancer agents include alkylating agents such as cisplatin, carboplatin, oxaliplatin, mechlorethamine, cyclophosphamide, chlorambucil, and ifosfamide; anti-metabolites such as azathioprine and mercaptopurine; alkaloids such as vinca alkaloids (e.g.
  • vincristine, vinblastine, vinorelbine, and vindesine taxanes (e.g. paclitaxel, docetaxel) etoposide and teniposide; topoisomerase inhibitors such as camptothecins (e.g. irinotecan and topotecan); cytotoxic antibiotics such as actinomycin, anthracyclines, doxorubicin, daunorubicin, valrubicin, idarubicin, epirubicin, bleomycin, plicamycin and mitomycin; and radioisotopes.
  • taxanes e.g. paclitaxel, docetaxel
  • topoisomerase inhibitors such as camptothecins (e.g. irinotecan and topotecan)
  • cytotoxic antibiotics such as actinomycin, anthracyclines, doxorubicin, daunorubicin, valrubicin, idarubi
  • Linking of the antibodies or the antigen-binding portions thereof of the invention to anticancer agents is expected to result in stronger cancer tumor growth inhibition compared to the antibody without the anticancer agent, because the resulting conjugate will accumulate at the site of the tumor due to the presence of GDF-15 in the tumor, leading to the accumulation of the anticancer agent at the site of the tumor and to enhanced effects of the anticancer agent on the tumor.
  • the antibody capable of binding to human GDF-15 or the antigen-binding portion thereof is modified by an amino acid tag.
  • tags include Polyhistidin (His-) tags, FLAG-tag, Hemagglutinin (HA) tag, glycoprotein D (gD) tag, and c-myc tag. Tags may be used for various purposes. For instance, they may be used to assist purification of the antibody capable of binding to human GDF-15 or the antigen-binding portion thereof, or they may be used for detection of the antibody or the antigen-binding portion thereof (e.g. when used in diagnostic assays). Preferably, such tags are present at the C-terminus or N-terminus of the antibody capable of binding to human GDF-15 or the antigen-binding portion thereof.
  • the antibody capable of binding to human GDF-15 or the antigen-binding portion thereof is capable of inhibiting cancer growth in a mammal, preferably a human patient.
  • the human GDF-15 is recombinant human GDF-15 having the amino acid sequence represented by SEQ ID No: 8.
  • the binding of the antibody capable of binding to human GDF-15 or the antigen-binding portion thereof is a binding to a conformational or discontinuous epitope on human GDF-15.
  • the monoclonal antibodies of the present invention capable of binding to human GDF-15 or the antigen-binding portions thereof are isolated antibodies.
  • the invention also relates to an expression vector comprising a nucleotide sequence encoding the antibody or antigen-binding portion thereof as defined above.
  • the present invention also provides a cell line capable of producing an antibody or antigen-binding portion thereof according to the present invention.
  • the cell line can be derived from any cell line that is known in that art and suitable for the production of antibodies or antigen-binding portions thereof.
  • the cell line is the cell line B1-23 deposited with the Deutsche Sammlung für Mikroorganismen and Zellkulturen GmbH (DMSZ) under the accession No. DSM ACC3142.
  • the cell line contains an expression vector according to the invention as defined above.
  • the present invention relates to a pharmaceutical composition
  • a pharmaceutical composition comprising any of the antibodies or antigen-binding portions thereof as defined above.
  • compositions in accordance with the present invention are prepared in accordance with known standards for the preparation of pharmaceutical compositions containing antibodies and portions thereof.
  • compositions are prepared in a way that they can be stored and administered appropriately, e.g. by using pharmaceutically acceptable components such as carriers, excipients or stabilizers.
  • Such pharmaceutically acceptable components are not toxic in the amounts used when administering the pharmaceutical composition to a patient.
  • the pharmaceutical acceptable components added to the pharmaceutical compositions may depend on the particular intended use of the pharmaceutical compositions and the route of administration.
  • the pharmaceutically acceptable components used in connection with the present invention are used in accordance with knowledge available in the art, e.g. from Remington's Pharmaceutical Sciences, Ed. A R Gennaro, 20th edition, 2000, Williams & Wilkins, PA, USA.
  • the present invention further relates to a method for treating a cancer in a mammal, the method comprising administering an antibody or antigen-binding portion thereof as defined above, or a pharmaceutical composition as defined above to said mammal.
  • the present invention relates to an antibody or antigen-binding portion thereof as defined above, or a pharmaceutical composition as defined above for use in these methods.
  • the mammal is a human patient.
  • All of the methods for treating a cancer according to the invention exclude a treatment of cancer-induced weight loss according to WO 2005/099746, WO 2009/021293 and Johnen H et al., Nature Medicine, 2007. This reflects the fact that according to these art teachings only cancer-induced weight loss can be reversed by anti-GDF-15 antibodies, and that growth of the cancer cannot be inhibited.
  • the inhibition of cancer growth according to the present invention does not exclude that additional or secondary therapeutic benefits also occur in patients.
  • an additional or secondary benefit may be an influence on cancer-induced weight loss.
  • any secondary or additional effects only reflect optional, additional advantages of the treatment of cancer growth.
  • the human patient has elevated GDF-15 levels in blood serum before administration.
  • the treatment methods according to the invention are expected to be particularly effective at inhibiting cancer growth.
  • GDF-15 levels are GDF-15 protein levels measured using the antibody according to the invention obtainable from the hybridoma cell line B1-23 deposited with the Deutsche Sammlung für Mikroorganismen und Zellkulturen GmbH (DSMZ) under the accession No. DSM ACC3142, preferably measured by immunochemistry.
  • the antibody or antigen-binding portion thereof is the sole ingredient pharmaceutically active against cancer used in the method.
  • the antibody or antigen-binding portion thereof is used in combination with one or more further ingredients pharmaceutically active against cancer.
  • the one or more further ingredients pharmaceutically active against cancer is a known anticancer agent and/or an immune-stimulatory molecule as defined above.
  • the cancer is selected from the group consisting of brain cancers including glioma, cancers of the nervous system, melanoma, lung cancer, lip and oral cavity cancer, hepatic carcinoma, leukemia, Hodgkin lymphoma, Non-Hodgkin lymphoma, bladder cancer, cervix uteri cancer, corpus uteri cancer, testis cancer, thyroid cancer, kidney cancer, gallbladder cancer, multiple myeloma, nasopharynx cancer, larynx cancer, pharynx cancer, oesophagus cancer, gastrointestinal tumors including stomach and colorectal cancer, pancreatic cancer, prostate cancer, ovarian cancer and breast cancer, preferably from the group consisting of melanoma, prostate cancer, breast cancer, brain cancers including glioma, colorectal cancer, stomach cancer, oesophagus cancer and
  • the tumor or tumors formed by the cancer have higher human GDF-15 levels prior to administration compared to a control sample of the same patient obtained from a non-cancerous part of the tissue which is the tissue of origin of the cancer, preferably 1.2-fold higher levels, more preferably 1.5-fold higher levels, still more preferably 2-fold higher levels and most preferably 5-fold higher levels.
  • the treatment methods according to the invention are expected to be particularly effective at inhibiting cancer growth.
  • the method comprises inhibiting cancer growth.
  • cancer growth is stopped.
  • the cancer shrinks.
  • the method comprises the induction of killing of cancer cells by NK cells and CD8+ T cells in the human patient. Due to their capability of preventing GDF-15 mediated down-regulation of the known immune surveillance regulator NKG2D, the antibodies or antigen-binding portions thereof according to the invention are expected to restore immune surveillance and induce the killing of cancer cells by NK cells and CD8+ T cells, in addition to effects of the antibodies or antigen-binding portions thereof that are independent of the immune system.
  • kits comprising the pharmaceutical compositions as defined above.
  • kits are kits for use in the methods according to the invention as defined above.
  • the present invention also provides a diagnostic kit comprising any of the antibodies or antigen-binding portions thereof according to the invention.
  • the diagnostic kit may be used to detect whether the tumor or tumors of a cancer patient formed by the cancer have higher human GDF-15 levels compared to a control sample of the same patient obtained from a non-cancerous part of the tissue which is the tissue of origin of the cancer.
  • the diagnostic kit may be used to detect whether a human cancer patient has elevated GDF-15 levels in blood serum.
  • amino acid sequences referred to in the present application are as follows (in an N-terminal to C-terminal order; represented in the one-letter amino acid code):
  • SEQ ID No: 1 (Region of the Heavy Chain Variable Domain comprising an FR1, a CDR1, an FR2, a CDR2 and an FR3 region from the Polypeptide Sequence of monoclonal anti-human GDF-15 mAb-B1-23): QVKLQQSGPGILQSSQTLSLTCSFSGFSLSTSGMGVSWIRQPSGKGLEWLAHIYWDDDKRY NPTLKSRLTISKDPSRNQVFLKITSVDTADTATYYC SEQ ID No: 2 (Region of the Light Chain Variable Domain comprising an FR1, a CDR1, an FR2, a CDR2 and an FR3 region from the Polypeptide Sequence of monoclonal anti-human GDF-15 mAb-B1-23): DIVLTQSPKFMSTSVGDRVSVTCKASQNVGTNVAWFLQKPGQSPKALIYSASYRYSGVPDR FTGSGSGTDFTLTISNVQSEDLAEYFC SEQ ID No: 3 (
  • nucleic acid sequences referred to in the present application are as follows (in a 5′ to 3′ order; represented in accordance with the standard nucleic acid code):
  • SEQ ID No: 21 (DNA nucleotide sequence encoding the amino acid sequence defined in SEQ ID No: 1): CAAGTGAAGCTGCAGCAGTCAGGCCCTGGGATATTGCAGTCCTCCCAGACCCTCAGTCTGA CTTGTTCTTTCTCTGGGTTTTCACTGAGTACTTCTGGTATGGGTGTGAGCTGGATTCGTCA GCCTTCAGGAAAGGGTCTGGAGTGGCTGGCACACATTTACTGGGATGATGACAAGCGCTAT AACCCAACCCTGAAGAGCCGGCTCACAATCTCCAAGGATCCCTCCAGAAACCAGGTATTCC TCAAGATCACCAGTGTGGACACTGCAGATACTGCCACATACTACTGT SEQ ID No: 22 (DNA nucleotide sequence encoding the amino acid sequence defined in SEQ ID No: 2): GACATTGTGCTCACCCAGTCTCCAAAATTCATGTCCACATCAGTAGGAGACAGGGTCAGCG TCACCTGCAAGGCCAGTCAGAATGTGGGTACTAATGTGGCCTGGTTT
  • the antibody B1-23 was generated in a GDF-15 knock out mouse.
  • Recombinant human GDF-15 (SEQ ID No: 8) was used as the immunogen.
  • the hybridoma cell line B1-23 producing mAb-B1-23 was deposited with the Deutsche Sammlung für Mikroorganismen und Zellkulturen GmbH (DMSZ) under the accession No. DSM ACC3142, in accordance with the Budapest Treaty.
  • Kd dissociation constant
  • Binding of the monoclonal anti-human-GDF-15 antibody anti-human GDF-15 mAb-B1-23 according to the invention was measured by employing surface plasmon resonance measurements using a Biorad ProteOn XPR36 system and Biorad GLC sensor chips:
  • recombinant mature human GDF-15 protein was immobilized on flow cells 1 and 2. On one flow cell recombinant GDF-15 derived from Baculvirus-transfected insect cells (HighFive insect cells) and on the other recombinant protein derived from expression in E. coli was used.
  • the non-reacted coupling groups were then quenched by perfusion with 1M ethanolamine pH 8.5 and the biosensor was equilibrated by perfusing the chip with running buffer (10M HEPES, 150 mM NaCl, 3.4 mM EDTA, 0.005% Tween-20, pH 7.4, referred to as HBS150).
  • running buffer 10M HEPES, 150 mM NaCl, 3.4 mM EDTA, 0.005% Tween-20, pH 7.4, referred to as HBS150.
  • HBS150 running buffer
  • two flow cells were used, one empty with no protein coupled and one coupled with an non-physiological protein partner (human Interleukin-5), which was immobilized using the same coupling chemistry and the same coupling density.
  • anti-human GDF-15 mAb-B1-23 was dissolved in HBS150 and used in six different concentrations as analyte (concentration: 0.4, 0.8, 3, 12, 49 und 98 nM).
  • concentration: 0.4, 0.8, 3, 12, 49 und 98 nM concentration: 0.4, 0.8, 3, 12, 49 und 98 nM.
  • the analyte was perfused over the biosensor using the one-shot kinetics setup to avoid intermittent regeneration, all measurements were performed at 25° C. and using a flow rate of 100 ⁇ l min ⁇ 1 .
  • For processing the bulk face effect and unspecific binding to the sensor matrix was removed by subtracting the SPR data of the empty flow cell (flow cell 3) from all other SPR data.
  • the resulting sensogram was analyzed using the software ProteOn Manager version 3.0. For analysis of the binding kinetics a 1:1 Langmuir-type interaction was assumed.
  • the anti-human GDF-15 mAb-B1-23 shows no binding to human interleukin-5 and thus confirms the specificity of the interaction data and the anti-human GDF-15 mAb-B ⁇ 1-23.
  • the amino acid sequence of recombinant human GDF-15 (as expressed in Baculovirus-transfected insect cells) is:
  • the dissociation constant (Kd) of 790 pM was determined.
  • NKG2D Natural Killer Group 2D
  • NK cells and CD8+ T cells are known to play an important role in the immune surveillance against tumors.
  • Transformed as well as viral infected cells express ligands, which bind to the NKG2D receptor, thereby activating the cytotoxic effector functions of the described immune cells. In that way transformed cells can be detected and eliminated by the immune system.
  • the expression level of NKG2D on the cell surface of lymphocytes was downregulated ( FIG. 1 ).
  • the immune cells were stained with the following FACS-antibodies: anti CD3, anti CD56, anti-NKG2D.
  • FACS-antibodies anti CD3, anti CD56, anti-NKG2D.
  • the experiment focused on NK cells and their NKG2D surface expression.
  • the low NKG2D level on immune cells led to an impaired tumor/target cell lysis.
  • the GDF-15 mediated downregulation of NKG2D was prevented by mAb B1-23.
  • human GDF-15 downregulates expression of NKG2D on the cell surface of lymphocytes and thereby downregulates immune surveillance against tumors.
  • the antibodies of the present invention are capable of preventing GDF-15 mediated downregulation of NKG2D and should be capable of restoring immune surveillance and inducing the killing of cancer cells by NK cells and CD8+ T cells.
  • AKT is a molecule, which is part of the PI3K-pathway and contributes to the activation and proliferation of cells.
  • SK-OV-3 cells were treated with 10 ng/ml recombinant GDF-15 for 10 min at 37° C., 5% CO2. 5 minutes preincubation of 2 ⁇ g mAb-B1-23 with 10 ng/ml GDF-15 at 37° C. blocked the GDF-15 mediated AKT-phosphorylation ( FIG. 2 ). This showed the neutralizing effect of mAb-B1-23.
  • tumor growth is studied in a SK-Mel28 human melanoma cell model in immunodeficient NMRI mice. 7.5 ⁇ 10 6 melanoma cells are implanted subcutaneously into each mouse. On day 23 after inoculation (i.e. during the exponential growth phase of the malignoma), the mAb B1-23 antibody is administered for the first time. After injection of mAb B1-23 (30 mg/kg body weight i.p.), no further tumor growth is observed in the mAb B1-23-treated mice for one week, whereas the tumors in the negative control samples continue growing.
  • This Example demonstrates that the mAb B1-23 antibody of the present invention inhibits cancer growth in mice bearing tumors derived from human cells.
  • the anti-human GDF-15 antibodies of the present invention should also inhibit cancer growth in a human patient. Inhibition of cancer growth should be particularly effective if the patient has elevated GDF-15 levels in blood serum before administration, or if the tumor or tumors formed by the cancer have higher human GDF-15 levels compared to a control sample of the same patient obtained from a non-cancerous part of the tissue which is the tissue of origin of the cancer.
  • the present Example uses immunodeficient mice. It is therefore concluded that the antibodies of the present invention are capable of inhibiting cancer growth in a manner that is independent of an intact immune system.
  • the anti-human GDF-15 antibodies of the present invention are capable of preventing GDF-15 mediated downregulation of NKG2D and should be capable of inducing the killing of cancer cells by NK cells and CD8+ T cells. It is therefore expected that cancer growth inhibition by anti-human GDF-15 antibodies is stronger in patients than in the immunodeficient mice, since the patients do not have the immune deficiencies of the mice used in the present Example.
  • Balb/c nu/nu nude mice were used in a xenograft setting with the melanoma cell line UACC-257. The mice were treated either with the antibody B1-23 or with PBS. Each treatment cohort contained 10 Balb/c nu/nu nude mice.
  • the UACC-257 melanoma cells Prior to injection, the UACC-257 melanoma cells were grown in complete medium, excluding any contamination. The cells were harvested when 70-80% confluence was reached in the cell culture flask. Cells were then washed with PBS and counted. 1 ⁇ 10 7 viable cells were suspended in PBS.
  • the first injection/treatment was administered in 6 week old Balb/c nu/nu nude mice.
  • the inoculation area of the mice was cleaned with ethanol.
  • the UACC 257 cells were mixed and drawn into a syringe without a needle, in order to avoid negative pressure on the tumor cells.
  • the cell suspension containing 1 ⁇ 10 7 cells in PBS was injected subcutaneously (s.c.) into the lower flank of the mice.
  • the intraperitoneal (i.p.) injection of either B1-23 (25 mg/kg body weight) or the same volume of PBS started immediately after the tumor cell inoculation (defined as day 1) and was administered twice a week.
  • the tumors were grown for 48 days.
  • the tumor diameters were measured with a caliper and the tumor volume in mm3 was calculated by the formula:
  • the tumor size of the animal cohort treated with B1-23 was significantly decreased, compared to the PBS control group.
  • mAb B1-23 Recognizes a Conformational or a Discontinuous Epitope of Human GDF-15
  • GDF-15 (SEQ ID No: 10) GSGSGSG MPGQELRTVNGSQMLLVLLVLSWLPHGGALSLAEASRASFPGPSELHSEDSRFR ELRKRYEDLLTRLRANQSWEDSNTDLVPAPAVRILTPEVRLGSGGHLHLRISRAALPEGLP EASRLHRALFRLSPTASRSWDVTRPLRRQLSLARPQAPALHLRLSPPPSQSDQLLAESSSA RPQLELHLRPQAARGRRRARARNGDHCPLGPGRCCRLHTVRASLEDLGWADWVLSPREVQV TMCIGACPSQFRAANMHAQIKTSLHRLKPDTVPAPCCVPASYNPMVLIQKTDTGVSLQTYD DLLAKDCHCI GSGSGSG (322 amino acids with linker)
  • the protein sequence was translated into 13mer peptides with a shift of one amino acid.
  • the C- and N-termini were elongated by a neutral GSGS linker to avoid truncated peptides (bold letters).
  • Standard buffer PBS, pH 7.4+0.05% Tween 20
  • Blocking buffer Rockland blocking buffer MB-070
  • Incubation buffer Standard buffer with 10% Rockland blocking buffer MB-070
  • Primary sample Monoclonal mouse antibody GDF-15 (1 ⁇ g/ ⁇ l): Staining in incubation buffer for 16 h at 4° C.
  • the peptide array with 10, 12 and 15mer B7H3-derived linear peptides was incubated with secondary goat anti-mouse IgG (H+L) IRDye680 antibody only at a dilution of 1:5000 for 1 h at room temperature to analyze background interactions of the secondary antibody.
  • the PEPperCHIP® was washed 2 ⁇ 1 min with standard buffer, rinsed with dist. water and dried in a stream of air.
  • the peptide microarray was incubated overnight at 4° C. with monoclonal mouse antibody GDF-15 at a dilution of 1:100. Repeated washing in standard buffer (2 ⁇ 1 min) was followed by incubation for 30 min with the secondary antibody at a dilution of 1:5000 at room temperature. After 2 ⁇ 10 sec. washing in standard buffer and short rinsing with dist. water, the PEPperCHIP® was dried in a stream of air. Read-out was done with Odyssey Imaging System at a resolution of 21 ⁇ m and green/red intensities of 7/7 before and after staining of control peptides by anti-HA and anti-FLAG(M2) antibodies.
  • the epitope of recombinant human GDF-15 which binds to the antibody B1-23 was identified by means of the epitope excision method and epitope extraction method (Suckau et al. Proc Natl Acad Sci USA. 1990 December; 87(24): 9848-9852.; R. Stefanescu et al., Eur. J. Mass Spectrom. 13, 69-75 (2007)).
  • the antibody B1-23 was added to NHS-activated 6-aminohexanoic acid coupled sepharose.
  • the sepharose-coupled antibody B1-23 was then loaded into a 0.8 ml microcolumn and washed with blocking and washing buffers.
  • Recombinant human GDF-15 was digested with trypsin for 2h at 37° C. (in solution), resulting in different peptides, according to the trypsin cleavage sites in the protein. After complete digestion, the peptides were loaded on the affinity column containing the immobilized antibody B1-23. Unbound as well as potentially bound peptides of GDF-15 were used for mass spectrometry analysis. An identification of peptides by means of mass spectrometry was not possible. This was a further indicator that the binding region of GDF-15 in the immune complex B1-23 comprises a discontinuous or conformational epitope.
  • the digested peptides should bind its interaction partner, unless there was a trypsin cleavage site in the epitope peptide.
  • a discontinuous or conformational epitope could be confirmed by the epitope excision method described in the following part.
  • the immobilized antibody B1-23 on the affinity column was then incubated with recombinant GDF-15 for 2h.
  • the formed immune complex on the affinity column was then incubated with trypsin for 2h at 37° C.
  • the cleavage resulted in different peptides derived from the recombinant GDF-15.
  • the immobilized antibody itself is proteolytically stable.
  • the resulting peptides of the digested GDF-15 protein, which were shielded by the antibody and thus protected from proteolytic cleavage, were eluted under acidic conditions (TFA, pH2), collected and identified by mass spectrometry.
  • the part of human GDF-15, which binds the antibody B1-23, comprises a discontinuous or conformational epitope.
  • Mass spectrometry identified 2 peptides in the GDF-15 protein, which are responsible for the formation of the immune complex. These peptides are restricted to the positions 40-55 (EVQVTMCIGACPSQFR) and 94-114 (TDTGVSLQTYDDLLAKDCHCI) in the GDF-15 amino acid sequence. Thus, these two peptides comprise an epitope of the GDF-15 protein that binds to the antibody B1-23.
  • the antibodies, antigen-binding portions thereof, pharmaceutical compositions and kits according to the present invention may be industrially manufactured and sold as products for the claimed methods and uses (e.g. for treating cancer), in accordance with known standards for the manufacture of pharmaceutical products. Accordingly, the present invention is industrially applicable.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Oncology (AREA)
  • Hematology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
US14/431,281 2012-09-26 2013-09-26 Monoclonal antibodies to growth and differentiation factor 15 (gdf-15) Abandoned US20150239968A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/918,841 US10781251B2 (en) 2012-09-26 2018-03-12 Monoclonal antibodies to growth and differentiation factor 15 (GDF-15)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP12186185 2012-09-26
EP12186185.0 2012-09-26
PCT/EP2013/070127 WO2014049087A1 (en) 2012-09-26 2013-09-26 Monoclonal antibodies to growth and differentiation factor 15 (gdf-15)

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/070127 A-371-Of-International WO2014049087A1 (en) 2012-09-26 2013-09-26 Monoclonal antibodies to growth and differentiation factor 15 (gdf-15)

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/918,841 Continuation US10781251B2 (en) 2012-09-26 2018-03-12 Monoclonal antibodies to growth and differentiation factor 15 (GDF-15)

Publications (1)

Publication Number Publication Date
US20150239968A1 true US20150239968A1 (en) 2015-08-27

Family

ID=46888333

Family Applications (3)

Application Number Title Priority Date Filing Date
US14/431,281 Abandoned US20150239968A1 (en) 2012-09-26 2013-09-26 Monoclonal antibodies to growth and differentiation factor 15 (gdf-15)
US15/918,841 Active 2033-12-13 US10781251B2 (en) 2012-09-26 2018-03-12 Monoclonal antibodies to growth and differentiation factor 15 (GDF-15)
US16/990,929 Active 2034-09-07 US11891436B2 (en) 2012-09-26 2020-08-11 Monoclonal antibodies to growth and differentiation factor 15 (GDF-15)

Family Applications After (2)

Application Number Title Priority Date Filing Date
US15/918,841 Active 2033-12-13 US10781251B2 (en) 2012-09-26 2018-03-12 Monoclonal antibodies to growth and differentiation factor 15 (GDF-15)
US16/990,929 Active 2034-09-07 US11891436B2 (en) 2012-09-26 2020-08-11 Monoclonal antibodies to growth and differentiation factor 15 (GDF-15)

Country Status (23)

Country Link
US (3) US20150239968A1 (zh)
EP (2) EP2900263B1 (zh)
JP (4) JP2015532271A (zh)
KR (1) KR101838786B1 (zh)
CN (1) CN104853775B (zh)
AU (2) AU2013322628B2 (zh)
CA (1) CA2886207C (zh)
CY (1) CY1121832T1 (zh)
DK (1) DK2900263T3 (zh)
ES (1) ES2742287T3 (zh)
HK (1) HK1210950A1 (zh)
HR (1) HRP20191326T1 (zh)
HU (1) HUE044363T2 (zh)
IL (2) IL237828B (zh)
LT (1) LT2900263T (zh)
NZ (1) NZ706189A (zh)
PL (1) PL2900263T3 (zh)
PT (1) PT2900263T (zh)
RS (1) RS59045B1 (zh)
SG (1) SG11201502279YA (zh)
SI (1) SI2900263T1 (zh)
TR (1) TR201910744T4 (zh)
WO (1) WO2014049087A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10604565B2 (en) 2014-03-26 2020-03-31 Julius-Maximilians-Universität Würzburg Monoclonal antibodies to growth and differentiation factor 15 (GDF-15), and uses thereof for treating cancer cachexia and cancer
CN112698042A (zh) * 2020-12-17 2021-04-23 北京赛诺浦生物技术有限公司 检测人生长分化因子-15的荧光免疫层析试纸条及其制备方法和应用
US11027014B2 (en) * 2014-08-01 2021-06-08 The Brigham And Women's Hospital, Inc. Methods using GDF-15 antibodies for treatment of pulmonary arterial hypertension
CN113252905A (zh) * 2021-05-12 2021-08-13 北京赛诺浦生物技术有限公司 人生长分化因子-15磁微粒化学发光检测试剂盒及其应用
CN113702647A (zh) * 2021-08-31 2021-11-26 普十生物科技(北京)有限公司 人生长分化因子15即时检测试剂盒、其制备方法及其应用
US11604194B2 (en) * 2016-02-29 2023-03-14 Public University Corporation Yokohama City University Method for detecting castration-resistant prostate cancer and detection reagent
US11891436B2 (en) 2012-09-26 2024-02-06 Julius-Maximilians-Universität Würzburg Monoclonal antibodies to growth and differentiation factor 15 (GDF-15)
US11951156B2 (en) 2013-11-21 2024-04-09 The Brigham And Women's Hospital, Inc. Methods for treating pulmonary hypertension with a ligand binding domain of a TGF-beta type II receptor

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2524552B (en) * 2014-03-26 2017-07-12 Julius-Maximilians-Universitãt Wurzburg Monoclonal antibodies to growth and differentiation factor 15 (GDF-15), and use thereof for treating cancer
GB2524553C (en) * 2014-03-26 2017-07-19 Julius-Maximilians-Universitãt Würzburg Monoclonal antibodies to growth and differentiation factor 15 (GDF-15), and uses thereof for treating cancer cachexia
JP6768527B2 (ja) 2014-06-20 2020-10-14 アベオ ファーマシューティカルズ, インコーポレイテッド Gdf15調節剤を用いた慢性腎臓病及びその他の腎機能不全の治療
PL3355919T3 (pl) 2015-10-02 2023-03-20 Julius-Maximilians-Universität Würzburg Terapia skojarzona z użyciem inhibitorów ludzkiego czynnika wzrostu i różnicowania 15 (gdf-15) oraz blokerów punktów kontrolnych układu odpornościowego
CA3000290C (en) * 2015-10-02 2023-02-21 Julius-Maximilians-Universitat Wurzburg Gdf-15 as a diagnostic marker to predict the clinical outcome of a treatment with immune checkpoint blockers
GB201517528D0 (en) 2015-10-02 2015-11-18 Julius Maximillians Universitãt Würzburg GDF-15 as a diagnosis marker for melanoma
ITUB20154769A1 (it) * 2015-11-04 2017-05-04 Centro Di Riferimento Oncologico Cro Irccs Aviano Anticorpo monoclonale anti-BARF1
WO2017152105A1 (en) * 2016-03-04 2017-09-08 Ngm Biopharmaceuticals, Inc. Compositions and methods for modulating body weight
BR112018068898A2 (pt) 2016-03-31 2019-01-22 Ngm Biopharmaceuticals Inc anticorpo ou fragmento e seus usos, animal transgênico, hibridoma, vetor, composição farmacêutica e seu uso, método para modular uma doença, método para tratar perda de peso, método para modular atividade
EP3448887A1 (en) * 2016-04-27 2019-03-06 Novartis AG Antibodies against growth differentiation factor 15 and uses thereof
CN107782900A (zh) * 2016-08-31 2018-03-09 朱海燕 人生长分化因子‑15的检测试纸组件
KR102010652B1 (ko) * 2017-08-21 2019-08-13 서울대학교병원 간질환 예측 또는 진단용 조성물 및 이를 이용한 간질환 예측 또는 진단 방법
WO2021111636A1 (ja) * 2019-12-06 2021-06-10 大塚製薬株式会社 抗gdf15抗体
IL307382A (en) 2021-03-31 2023-11-01 Cambridge Entpr Ltd Therapeutic inhibitors of GDF15 signaling
EP4384545A1 (en) 2021-08-10 2024-06-19 BYOMass Inc. Anti-gdf15 antibodies, compositions and uses thereof
WO2023122213A1 (en) 2021-12-22 2023-06-29 Byomass Inc. Targeting gdf15-gfral pathway cross-reference to related applications
WO2023217068A1 (zh) * 2022-05-09 2023-11-16 舒泰神(北京)生物制药股份有限公司 特异性识别gdf15的抗体及其应用

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5595756A (en) * 1993-12-22 1997-01-21 Inex Pharmaceuticals Corporation Liposomal compositions for enhanced retention of bioactive agents
US6455677B1 (en) 1998-04-30 2002-09-24 Boehringer Ingelheim International Gmbh FAPα-specific antibody with improved producibility
US6465181B2 (en) 1999-03-25 2002-10-15 Abbott Laboratories Reagents and methods useful for detecting diseases of the prostate
CA2372119A1 (en) 1999-05-17 2000-11-23 Biopharm Gesellschaft Zur Biotechnologischen Entwicklung Und Zum Vertrie B Von Pharmaka Mbh Neuroprotective properties of gdf-15, a novel member of the tgf-.beta. superfamily
WO2002020759A2 (en) * 2000-09-08 2002-03-14 The Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Services A non-steroidal anti-inflammatory drug activated gene with anti-tumorigenic properties
MXPA06007856A (es) 2004-01-07 2007-03-23 Chiron Corp Anticuerpo monoclonal especifico de factor de estimulacion de colonias de macrofagos (m-csf) y usos del mismo.
PT2929891T (pt) 2004-04-13 2020-04-08 St Vincents Hospital Sydney Ltd Método para modulação do apetite
WO2009021293A1 (en) 2007-08-16 2009-02-19 St Vincent's Hospital Sydney Limited Agents and methods for modulating macrophage inhibitory cytokine (mic-1) activity
WO2009046495A1 (en) 2007-10-09 2009-04-16 St Vincent's Hospital Sydney Limited A method of treating cachexia with the removal or inactivation of macrophage inhibitory cytokine-1
BRPI0919531A2 (pt) 2008-09-29 2015-12-08 Roche Glycart Ag anticorpos contra il17 humana e usos dos mesmos
WO2011050407A1 (en) * 2009-10-28 2011-05-05 St Vincent's Hospital Sydney Limited Methods of diagnosing and prognosing colonic polyps
US9212221B2 (en) 2010-03-03 2015-12-15 Detroit R & D, Inc. Form-specific antibodies for NAG-1 (MIC-1, GDF-15), H6D and other TGF-β subfamily and heart disease and cancer diagnoses
CN101852804B (zh) * 2010-03-29 2013-06-12 中国医学科学院病原生物学研究所 Gdf15蛋白的抗体的新用途
JP6013915B2 (ja) * 2010-11-17 2016-10-25 中外製薬株式会社 血液凝固第viii因子の機能を代替する機能を有する多重特異性抗原結合分子
US8790651B2 (en) * 2011-07-21 2014-07-29 Zoetis Llc Interleukin-31 monoclonal antibody
CN102321173B (zh) 2011-08-12 2013-04-03 中国医学科学院肿瘤研究所 人源化巨噬细胞抑制因子1单克隆抗体及其应用
EP2565262A1 (en) 2011-08-31 2013-03-06 VTU Holding GmbH Protein expression
CA2862745A1 (en) 2012-01-26 2013-08-01 Amgen Inc. Growth differentiation factor 15 (gdf-15) polypeptides
PT2900263T (pt) * 2012-09-26 2019-07-29 Univ Wuerzburg J Maximilians Anticorpos monoclonais contra o factor de crescimento e diferenciaçao 15 (gdf-15)
CA2896076C (en) 2012-12-21 2022-12-06 Aveo Pharmaceuticals, Inc. Anti-gdf15 antibodies
CA3000290C (en) * 2015-10-02 2023-02-21 Julius-Maximilians-Universitat Wurzburg Gdf-15 as a diagnostic marker to predict the clinical outcome of a treatment with immune checkpoint blockers
PL3355919T3 (pl) * 2015-10-02 2023-03-20 Julius-Maximilians-Universität Würzburg Terapia skojarzona z użyciem inhibitorów ludzkiego czynnika wzrostu i różnicowania 15 (gdf-15) oraz blokerów punktów kontrolnych układu odpornościowego
US11566066B2 (en) 2018-08-20 2023-01-31 Pfizer Inc. Anti-GDF15 antibodies, compositions and methods of use

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
Casset et al. (Biochem Biophys Res Comm. 2003; 307:198-205) *
Chen et al. (J Mol Biol. 1999; 293:865-881) *
Dermer (Bio/Technology, 1994, 12:320) *
Freshney (Culture of Animal Cells, A Manual of Basic Technique, Alan R. Liss, Inc., 1983, New York, p4) *
Gura (Science, v278, 1997, pp. 1041-1042) *
Holm et al. (Mol Immunol. 2007; 44(6):1075-1084) *
MacCallum et al. (J Mol Biol. 1996; 262:732-745) *
Paul, Fundamental Immunology, (textbook), 1993, Raven Press, New York, pp. 292-295 *
Vajdos et al. (J Mol Biol. 2002; 320(2):415-428) *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11891436B2 (en) 2012-09-26 2024-02-06 Julius-Maximilians-Universität Würzburg Monoclonal antibodies to growth and differentiation factor 15 (GDF-15)
US11951156B2 (en) 2013-11-21 2024-04-09 The Brigham And Women's Hospital, Inc. Methods for treating pulmonary hypertension with a ligand binding domain of a TGF-beta type II receptor
US10604565B2 (en) 2014-03-26 2020-03-31 Julius-Maximilians-Universität Würzburg Monoclonal antibodies to growth and differentiation factor 15 (GDF-15), and uses thereof for treating cancer cachexia and cancer
US11634482B2 (en) 2014-03-26 2023-04-25 Julius-Maxmilians-Universitat Wurzburg Monoclonal antibodies to growth and differentiation factor 15 (GDF-15), and uses thereof for treating cancer cachexia and cancer
US11760795B2 (en) 2014-03-26 2023-09-19 Julius-Maximilians-Universität Würzburg Monoclonal antibodies to growth and differentiation factor 15 (GDF-15), and uses thereof for treating cancer cachexia and cancer
US11027014B2 (en) * 2014-08-01 2021-06-08 The Brigham And Women's Hospital, Inc. Methods using GDF-15 antibodies for treatment of pulmonary arterial hypertension
US11604194B2 (en) * 2016-02-29 2023-03-14 Public University Corporation Yokohama City University Method for detecting castration-resistant prostate cancer and detection reagent
CN112698042A (zh) * 2020-12-17 2021-04-23 北京赛诺浦生物技术有限公司 检测人生长分化因子-15的荧光免疫层析试纸条及其制备方法和应用
CN113252905A (zh) * 2021-05-12 2021-08-13 北京赛诺浦生物技术有限公司 人生长分化因子-15磁微粒化学发光检测试剂盒及其应用
CN113702647A (zh) * 2021-08-31 2021-11-26 普十生物科技(北京)有限公司 人生长分化因子15即时检测试剂盒、其制备方法及其应用

Also Published As

Publication number Publication date
AU2013322628B2 (en) 2017-03-02
HK1210950A1 (zh) 2016-05-13
KR20150082229A (ko) 2015-07-15
BR112015006829A2 (pt) 2017-11-21
LT2900263T (lt) 2019-10-10
WO2014049087A1 (en) 2014-04-03
IL237828B (en) 2020-10-29
HUE044363T2 (hu) 2019-10-28
ES2742287T3 (es) 2020-02-13
SI2900263T1 (sl) 2019-09-30
IL277392A (en) 2020-11-30
US10781251B2 (en) 2020-09-22
CA2886207A1 (en) 2014-04-03
EP2900263A1 (en) 2015-08-05
IL237828A0 (en) 2015-05-31
CA2886207C (en) 2021-01-05
HRP20191326T1 (hr) 2019-11-01
PT2900263T (pt) 2019-07-29
AU2013322628A1 (en) 2015-04-09
JP2022017219A (ja) 2022-01-25
PL2900263T3 (pl) 2019-10-31
JP7270522B2 (ja) 2023-05-10
RS59045B1 (sr) 2019-08-30
DK2900263T3 (da) 2019-07-29
JP2020043855A (ja) 2020-03-26
US20210054060A1 (en) 2021-02-25
NZ706189A (en) 2016-09-30
EP2900263B1 (en) 2019-06-05
US11891436B2 (en) 2024-02-06
EP3590537A1 (en) 2020-01-08
JP6670275B2 (ja) 2020-03-18
SG11201502279YA (en) 2015-04-29
AU2017203523B2 (en) 2019-02-07
JP2015532271A (ja) 2015-11-09
CN104853775B (zh) 2023-10-20
CN104853775A (zh) 2015-08-19
CY1121832T1 (el) 2020-07-31
TR201910744T4 (tr) 2019-08-21
KR101838786B1 (ko) 2018-03-15
AU2017203523A1 (en) 2017-06-15
JP2018019690A (ja) 2018-02-08
US20180305447A1 (en) 2018-10-25

Similar Documents

Publication Publication Date Title
US11891436B2 (en) Monoclonal antibodies to growth and differentiation factor 15 (GDF-15)
US20230382987A1 (en) Monoclonal antibodies to growth and differentiation factor 15 (gdf-15), and usesthereof for treating cancer cachexia and cancer
GB2524552A (en) Monoclonal antibodies to growth and differentiation factor 15 (GDF-15), and use thereof for treating cancer
BR112015006829B1 (pt) Anticorpo monoclonal ou porção de ligação ao antígeno do mesmo capaz de se ligar a gdf-15 humano, seu uso, composição farmacêutica, e kit

Legal Events

Date Code Title Description
AS Assignment

Owner name: JULIUS-MAXIMILIANS-UNIVERSITAET, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WISCHHUSEN, JOERG;JUNKER, MARKUS;MUELLER, THOMAS;AND OTHERS;SIGNING DATES FROM 20150626 TO 20150727;REEL/FRAME:036488/0990

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION