US20150229194A1 - Rotor with magnet pattern - Google Patents

Rotor with magnet pattern Download PDF

Info

Publication number
US20150229194A1
US20150229194A1 US14/424,071 US201314424071A US2015229194A1 US 20150229194 A1 US20150229194 A1 US 20150229194A1 US 201314424071 A US201314424071 A US 201314424071A US 2015229194 A1 US2015229194 A1 US 2015229194A1
Authority
US
United States
Prior art keywords
rotor
magnets
pairs
magnet
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/424,071
Other languages
English (en)
Inventor
Alexander Sromin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ALBUS TECHNOLOGIES Ltd
Original Assignee
ALBUS TECHNOLOGIES Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ALBUS TECHNOLOGIES Ltd filed Critical ALBUS TECHNOLOGIES Ltd
Priority to US14/424,071 priority Critical patent/US20150229194A1/en
Assigned to ALBUS TECHNOLOGIES LTD. reassignment ALBUS TECHNOLOGIES LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SROMIN, ALEXANDER
Publication of US20150229194A1 publication Critical patent/US20150229194A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2793Rotors axially facing stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2793Rotors axially facing stators
    • H02K1/2795Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2798Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets where both axial sides of the stator face a rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/02Machines with one stator and two or more rotors

Definitions

  • the present invention in some embodiments thereof, relates to a rotor for an electric machine such as an electric motor or generator, and, more particularly, but not exclusively, to patterns for magnetic elements of a planar rotor for an axial air-gap electric machine.
  • Some embodiments of the invention pertain to an electrical machine such as an electric motor or generator whose rotor is a planar unit. Designs presented below may provide improved optimization in the use of magnet material incorporated into the rotors, as compared to previously known designs. The designs may also be advantageous in that they may be more simple than some prior art designs, since some embodiments require only two types of magnetic pieces whereas some comparably efficient prior art designs require manufacture and assembly of a larger number of types of magnetic pieces, which may make those known designs more difficult and expensive to manufacture.
  • a rotor for an axial air-gap electric machine comprising alternating north and south magnetic poles, each of the poles being generated by a pair of permanent magnets.
  • axial components of the magnetization of the magnets are co-directional, and tangential components of the magnetization of the paired magnets are opposite each other.
  • the rotor comprises first and second sets of magnet pairs, magnet pairs of the first set having tangential magnetization components directed towards each other, magnets of the second set having tangential magnetization components directed away from each other, and wherein pairs of the first set alternate with pairs of the second set around the rotor.
  • the pairs of magnets are magnetized with an orientation of about 45° to the rotational axis of the rotor.
  • the pairs of magnets are magnetized with an orientation of between 30° and 60° to the rotational axis of the rotor.
  • a rotor for an axial air-gap electric machine having a rotational axis, the rotor comprising alternating north and south magnetic poles, each of the north and south poles being generated by a pair of permanent magnets, wherein axial components of the magnetization of the paired magnets are co-directional, and tangential components of the magnetization of the paired magnets are opposite.
  • the rotor comprises first and second sets of magnet pairs, magnet pairs of the first set having tangential magnetization components directed towards each other, magnet pairs of the second set having tangential magnetization components directed away from each other, and wherein pairs of the first set alternate with pairs of the second set around the rotor.
  • the pairs of magnets are magnetized with an orientation of about 45° to the rotational axis of the rotor.
  • the pairs of magnets are magnetized with an orientation of between 30° and 60° to the rotational axis of the rotor.
  • the pairs of magnets are magnetized with an orientation of between 15° and 75° to the rotational axis of the rotor.
  • additional magnet elements having a tangential magnetization component are interposed between the south and north poles.
  • the additional magnet elements are so oriented that their tangential magnetization component points away from a magnet pair generating a south pole and towards a magnet pair generating a north pole.
  • the additional magnetic elements interposed between the south and north poles alternate between a first set of additional magnetic elements having a tangential magnetic orientation in a first direction, one of clockwise and counterclockwise, and a second set of additional magnetic elements having a tangential magnetic orientation in a second direction opposite the first direction.
  • each of the additional magnetic elements is so oriented that the tangential magnetic orientation of each of the additional magnetic elements is away from a south pole and towards a north pole.
  • the rotor is shaped as a disk.
  • At least some of the pairs of magnets are butt-jointed.
  • At least some of the pairs of magnets are spaced away from adjacent pairs of magnets.
  • the rotor comprises a space between each of the pairs of magnets.
  • the magnet pairs comprise permanent magnets butt-jointed to each other.
  • At least some of the magnet pairs comprise permanent magnets which are spaced apart so that they do not touch each other.
  • all of the pairs of magnets are butt-jointed and all of the permanent magnet elements are of a same size and shape.
  • At least some of the pairs of magnets are butt-jointed and comprise permanent magnet elements of a same size and shape.
  • the rotor further comprises a soft magnetic yoke.
  • the yoke comprises ribs which separate each pair of magnets from adjacent pairs of magnets.
  • the yoke comprises ribs which separate each permanent magnet from adjacent permanent magnets.
  • the yoke comprise radial slot-like openings.
  • At least some of the magnets have a face which is supported by the yoke and which is also least partially exposed to air through one of the openings.
  • the rotor comprises a first layer, wherein alternating north and south magnetic poles are each generated by a pair of permanent magnets wherein axial components of the magnetization of said paired magnets are co-directional, and tangential components of the magnetization of said paired magnets are opposite, and the rotor further comprises a second layer adjacent to the first layer, the second layer comprising axially magnetized permanent magnets.
  • each of the axially magnetized permanent magnets of the second layer has a magnetic orientation opposite that of the axially magnetized permanent magnets which are adjacent to it on the second layer.
  • magnets of each of the pairs of magnets are but-jointed to each other and to one of the axially magnetized magnet pieces.
  • an axial air-gap electric machine comprising a rotor having a rotational axis, the rotor comprising alternating north and south magnetic poles, each of the north and south poles being generated by a pair of permanent magnets, wherein axial components of the magnetization of the paired magnets are co-directional, and tangential components of the magnetization of the paired magnets are opposite.
  • the machine comprises a rotor assembly which comprises two spaced-apart rotors, each comprising alternating north and south magnetic poles, each of said north and south poles being generated by a pair of permanent magnets, wherein axial components of the magnetization of said paired magnets are co-directional, and tangential components of the magnetization of said paired magnets are opposite, the spaced-apart rotors creating between them a flux which makes closure through adjacent pole sections of counter-directed axial magnetic flux.
  • the machine comprises a stator positioned between the rotors.
  • the machine further comprises at least one discoid rotor comprising axially magnetized permanent magnets forming a heteropolar magnetic system having a number of poles equal to the number of poles of each of the spaced-apart end rotors.
  • a rotor for an axial air-gap electric machine providing more than 90° of the amount of flux available from a Halbach system of comparable size and weight and comprising only two types of permanent magnet components.
  • the two types of permanent magnet components are of same shape and differ in their magnetic orientations.
  • a method of constructing a rotor for an axial air-gap electric machine comprising:
  • magnet pairs of the first set are so positioned and oriented that tangential components of their magnetization are directed towards each other;
  • magnet pairs of the second set are so positioned and oriented tangential components their magnetization are directed away from each other.
  • FIG. 1 presents an isometric view of a rotor with separated permanent magnet pieces magnetized through the thickness and glued on a yoke disk face, and also a cross-section of an electric machine utilizing the rotor shown in the isometric view, according to a method of prior art;
  • FIG. 2 presents a cross-section and a top view of a rotor with stacked permanent magnet pieces magnetized through the thickness and secured on a discoidal yoke, according to a method of prior art
  • FIG. 3 is an isometric view of a rotor, including a detail section which shows a classic design Halbach design, according to a method of prior art
  • FIG. 4 is an isometric view of two rotors, mechanically connected and facing each other, a Halbach design according to a method of prior art
  • FIG. 5 presents an additional view of two Halbach rotors facing each other, and further presents a cross-section of an electric machine utilizing such rotors, according to a method of prior art
  • FIG. 6 presents side and top views of a yokeless rotor with axially magnetized permanent magnet sectors and interposed soft magnetic sectors, according to a method of prior art
  • FIG. 7 presents a top view and a detailed segment of an isometric view of a yokeless rotor with alternating axially and tangentially magnetized permanent magnet sectors, according to a method of prior art
  • FIG. 8A is an exploded isometric view of a rotor with a planar yoke, according to some embodiments of the present invention.
  • FIG. 8B is an isometric view of the rotor of FIG. 8A , and comprises an insert showing a more detailed view of a portion of that rotor, according to some embodiments of the present invention
  • FIG. 9 is an isometric view with a detailed fragment of a rotor with a planar yoke wherein each pole is made from 2 butt-jointed magnet pieces each magnetized by about 45 degrees to the axis and the poles are distanced from each other, according to some embodiments of the present invention
  • FIG. 10A is an exploded isometric view of a rotor with a ribbed yoke in which each pole is made from 2 butt-jointed magnet pieces each magnetized by about 45 degrees to the axis and the poles are distanced from each other, according to some embodiments of the invention;
  • FIG. 10B is an isometric view of the rotor of FIG. 10A , and comprises an insert showing a more detailed view of a portion of that rotor, according to some embodiments of the present invention
  • FIG. 11A is an exploded isometric view of a rotor with a ribbed yoke according to some embodiments of the invention where each pole is made from 2 distanced magnet pieces each magnetized by about 45 degrees to the axis and the poles are distanced from each other, according to some embodiments of the invention;
  • FIG. 11B is an isometric view of the rotor disclosed in FIG. 11A , and comprises an insert showing a more detailed view of a portion of that rotor, according to some embodiments of the invention;
  • FIG. 12A is an exploded isometric view of a rotor without yoke wherein each pole is made from 2 butt-jointed magnet pieces each magnetized by about 45 degrees to the axis, the poles are distanced from each other and tangentially magnetized sectors are interposed between them, according to some embodiments of the invention;
  • FIG. 12B is an isometric view with a detailed fragment of the rotor disclosed in FIG. 12A , according to some embodiments of the invention.
  • FIG. 13A is an exploded isometric view of a rotor with a planar yoke in which each pole is made from two layers, a first layer as disclosed in FIG. 6A , and a second layer which comprises butt-jointed alternatingly axially magnetized magnet pieces, according to some embodiments of the invention;
  • FIG. 13B is an isometric view of the rotor disclosed in FIG. 13A , and comprises an insert showing a more detailed view of a portion of that rotor, according to some embodiments of the invention;
  • FIG. 14 is an isometric view of a rotor assembly useable in an axial field electric machine, according to some embodiments of the invention.
  • FIG. 15 is an exploded view of an axial field electric motor utilizing a rotor assembly made according to some embodiments of the invention.
  • FIG. 16A shows fragmentary isometric views of several prior art designs for which working magnetic flux was approximately calculated, the calculation/estimation results being shown in FIG. 17 ;
  • FIG. 16B shows fragmentary isometric views of several designs according to embodiments of the present invention, for which working magnetic flux was approximately calculated, the calculation/estimation results being shown in FIG. 17 ;
  • FIG. 17 is a table showing approximate calculated/estimated working magnetic flux for designs shown in FIGS. 16A and 16B .
  • FIG. 18A is an isometric view of a multi-stage modular axial-flux machine utilizing two rotors according to some embodiments of the present invention, two conventional axial flux permanent magnet rotors and three coreless stators, each positioned between a pair of rotors, according to some embodiments of the present invention;
  • FIG. 18B is a cross sectional view of the axial flux machine disclosed in FIG. 18A , according to some embodiments of the present invention.
  • FIG. 19 is an isometric view of a conventional axial flux permanent magnet rotor to be used in an axial flux machine disclosed in FIG. 18 .
  • the present invention in some embodiments thereof, relates to rotors for electric machines such as an electric motors and/or generators, and, more particularly, but not exclusively, to patterns for magnetic elements of planar rotors for axial air-gap electric machines.
  • machine and “electrical machine” are to be understood to include both electric motors and electric generators.
  • FIGS. 8-19 of the drawings For purposes of better understanding some embodiments of the present invention, as illustrated in FIGS. 8-19 of the drawings, reference is first made to the construction and operation of several known designs for rotors, as illustrated in FIGS. 1-7 .
  • FIGS. 1 and 2 show heteropolar magnet systems of axial flux rotors, according to methods of prior art.
  • FIG. 1 is adapted from US patent application 2010/0253173 A1 of Koji Miyata et al.
  • FIG. 2 is adapted from U.S. Pat. No. 7,084,548 B1 to Christopher W. Gabrys Grassman.
  • These systems which may be thought of as representative of the genre, each comprise a plurality of identical permanent magnet pieces magnetized through the thickness.
  • the magnets are alternatively secured on a yoke face (usually magnets attached by their N-face alternate with magnets attached by their S-face, alternating around the rotor) to build a heteropolar magnetization.
  • each magnet piece engenders a magnet pole, either a north pole A generating essentially outgoing axial flux F, or a south pole B generating essentially incoming axial flux G, and these poles alternate around the rotor.
  • These magnet pieces are placed annularly on the face of a soft magnetic yoke E formed as a disc.
  • Yoke E functions as a conductor of the tangential magnetic flux J between poles A and B.
  • the approach taken in systems such as those shown in FIGS. 1 and 2 enable construction based on a plurality of identical permanent magnet pieces. This fact may significantly simplify design and construction of the systems, but may be disadvantageous in that it requires a rather heavy yoke because it is designed to conduct a rather high interpole magnetic flux.
  • the heavy yoke may be physically disadvantageous in use and may be awkward in construction because of its weight and bulk, and may represent a loss of efficiency because it is a passive part used only to accomplish closure of the magnetic flux field, and does not otherwise contribute to the generation of magnetic energy.
  • FIGS. 3-5 An alternative approach, also known according to methods of prior art, is shown in FIGS. 3-5 . These designs are based on what is known as a “Halbach” array, wherein each magnet pole (either north magnet pole A and or south magnet pole B) is built from a number of sectorial permanent magnet pieces of about the same shape (eight such pieces are shown in the example in FIG. 3 ). This method enables construction of a rotor which comprises only active magnetic path components which generate magnetic energy, as no yoke may be needed. Each of the sectorial permanent magnet pieces is magnetized at an angle which differs from the magnetization angle of the adjacent piece, e.g.
  • FIG. 4 shows another Halbach implementation, wherein two mechanically connected Halbach rotors R 1 and R 2 face each other, as disclosed in US patent application 2011/024567A1 by Mark J. Blackwelder et al.
  • FIG. 4 shows each magnet pole section of each rotor as built from 7 permanent magnet sectors. With reference to one of the rotors on the figure:
  • FIG. 5 shows a detail view of a magnetic system formed by two mechanically connected Halbach rotors R 11 -R 12 which face each other. The figure also shows a cross section of an electric machine utilizing such rotors. In this configuration, north magnet poles A and south magnet poles B are each built from 5 permanent magnet sectors:
  • the Halbach-based constructions shown in FIGS. 3-5 may be advantageous in that they may produce good magnetic flux levels. However, they may be disadvantageous because each may require assembling the rotors from numerous different types of magnets, a requirement which may add to cost and complexity of the logistics and assembly processes. Using multiple types of magnet pieces may also lead to multiplication in the number of press-mould tooling and magnetization fixtures required in the manufacturing process of the magnet pieces themselves, since each type may need to be pressed under differently directed domain-orienting magnetic fields, and then may require to be magnetized by differently directed magnetizing fields.
  • FIG. 6 is adapted from U.S. Pat. No. 5,783,885 to Richard F. Post, and shows a yokeless heteropolar magnet system in which axially magnetized sectors (N and S, labeled A and B in the figure) alternate with tangentially magnetized sectors T 2 .
  • North sectors A, generating essentially axial flux F and south sectors B generating essentially axial flux G are interposed with interpole magnet sectors T 2 generating tangential fluxes K.
  • This design is relatively simple, but it does not provide a magnetic field which is completely concentrated near the working face of the disk, as the case with Halbach designs. Rather than distributing the magnetic flux above the working face (in the figure, the side where fluxes F and G are marked), as would typically be produced by a Halbach design, the design shown in FIG. 6 may provide only about 80% of flux above the working face. Applicant estimates that roughly 20% of the magnetic field will leak to the wrong side of the disk. In other words, the design shown in FIG. 6 may be much less efficient than Halbach designs.
  • FIG. 7 shows another yokeless heteropolar magnet system, according to methods of prior art.
  • FIG. 7 is adapted from U.S. Patent Application 2011/024567A1 by Mark J. Blackwelder et al.
  • FIG. 7 shows a yokeless system in which soft magnetic sectors H are interposed between north sectors A and south sectors B. Sectors A and B generate essentially axial flux. Soft magnetic sectors II provide a path for closure of those fluxes.
  • This design may also fail to provide a magnetic field which is completely concentrated near the working face of the disk. Rather, Applicant estimates that the design of FIG. 7 may leave a substantial part of the magnetic field (perhaps up to about 30%) beyond the disk and near its external non-working face. So this prior art design, while relatively simple because it may be constructed using only one type of axially magnetized simple prismatic magnet, may be relatively inefficient.
  • prior art systems similar to those shown in FIGS. 1 and 2 may suffer from low efficiency in the use of the spatial volume available for the rotor, potentially resulting in lowered electrical efficiency.
  • Prior art systems similar to those shown in FIGS. 3-5 may provide higher efficiency, but may suffer from greater complexity, and concomitant resultant disadvantages such as greater cost of construction as compared to systems such as those of FIGS. 1 and 2 .
  • Systems such as those presented in FIGS. 6 and 7 are less complex and may be easier to construct, but may not be very efficient.
  • Some embodiments described herein may provide greater efficiency in the use of space available for a planar rotor of an electric machine as compared to some electrical machine designs known to prior art. Some embodiments described herein may be simpler, easier, and/or less expensive to build as compared to space-efficient designs known to prior art.
  • an axial air-gap electric machine with a rotational axis comprises at least one discoidal rotor having alternating north and south magnetic poles.
  • each pole consists of a pair of magnets whose magnetization orientation is tilted by between 15° and 75° and/or by between 30° and 60° and/or optionally by about 45° degrees with respect to the orientation of the rotational axis.
  • the axial components of the magnetization of the component magnets are co-directional, while their tangential components are counter-directional.
  • the magnetizations of the two magnets of the pair are oriented so that their axial components (optionally of equal strength) are oriented towards the working face of the rotor and their tangential components are oriented towards each other. Pairs of this first set create the north poles of the rotor.
  • the magnetization of the two magnets of the pair are oriented so that their axial components (optionally of equal strength) are oriented away from the working face of the rotor and their tangential components are oriented away from each other. Pairs of this second set create the south poles of the rotor.
  • a pair from the first set alternates with a pair from the second set around the rotor, creating alternating north and south poles around the rotor.
  • the magnets are essentially identical in physical form while differing in magnetic orientation. In some embodiments, the magnets are butt-jointed as shown in FIG. 8A .
  • some or all of the component magnets are slightly spaced from each other, as discussed below.
  • magnets having a tangential magnetization component directed in a clockwise direction alternate with magnets having a tangential magnetization component directed in a counterclockwise direction, and both are interposed between south and north poles and alternated with each other.
  • a soft magnetic back yoke is provided.
  • the yoke is provided with ribs.
  • the yoke is provided without ribs.
  • the yoke is provided with openings, optionally radial slot-like openings, which may be useful for cooling. In some embodiments, no yoke openings are provided.
  • Embodiments of the present invention can be constructed using various types of magnetic material and using magnetic elements of varying dimensions.
  • embodiments are generally shown as having configurations which are generally symmetrical formats, for example having magnetic pieces of identical sizes and shapes positioned radially and symmetrically, and with magnetic poles uniformly spaced and of uniform size.
  • the invention may be practiced and embodiments may be constructed using magnetic and non-magnetic components which may be of same and/or of varying sizes and shapes and which may be positioned symmetrically and/or a-symmetrically, radially and/or non-radially, with uniform and/or non-uniform pole sizes and spacings and magnetic orientations, and all such variations are contemplated as embodiments of the present invention.
  • Some embodiments comprise only two types of permanent magnet pieces, and in some embodiments which comprise only two types of permanent magnet pieces those pieces optionally have a same physical shape and a different magnetic orientation.
  • the Applicant has found good efficiencies to be achieved when thickness of the magnetic elements is approximately half the length of the magnetic poles constructed by the magnetic pieces as explained below, but this consideration also is not to be considered as limiting, and constructions of various thickness and/or of relative dimensions differing from those shown in exemplary embodiments herein are also contemplated as embodiments of the invention.
  • an electric machine comprises rotors according to embodiments of the invention described herein, and further comprises one or more conventional axial flux permanent magnet rotors.
  • a planar object has at least one and optionally two surfaces which are nearly geometrically planar, over at least 80% or 90% or more of their surface area.
  • the surface is nearly planar when it is within 5% or 10% of a flat plane passing through the surface, the percentage being the arithmetic average thickness of the object.
  • the two surfaces are substantially parallel (e.g., with an angle of between 175 and 195 degrees between two planes that each approximate a surface (e.g., using an RMS approximation of mass of parts of the surface)).
  • the planar object has a thickness with is less than 30%, 20%, 10% or intermediate percentages of a maximal dimension of the object.
  • a disk shape is used which approximates (e.g., within 10%, 5% or better per dimension) a straight prism with dimensions of its base surfaces which are less (e.g., 20%, 10% or intermediate or smaller percentages) of its height.
  • a disk-shaped object is a planar object, for example, with a diameter which is less than 20%, 10% or intermediate percentages of its maximal extent in other dimensions.
  • FIG. 8A is an exploded perspective view of a rotor for an electrical machine in which at least some magnetic poles (each pole, in this exemplary figure) comprises two side-facing magnets, according to some embodiments of the present invention.
  • at least some poles are made from two butt-jointed magnets each magnetized by an angle of between 30° and 60° to the axis, and optionally about 45°.
  • magnetization angles of between 15° and 75° are contemplated.
  • the tangential magnetization components of these butt-jointed magnets are oppositely directed, while their axial magnetization components are co-directed. The result is alternating north and south poles.
  • the butt-jointed magnets are of identical shapes and/or differing magnetic orientations.
  • the magnets are radially oriented. In some embodiments pairs of magnets forming poles are also butt-jointed to each other.
  • FIG. 8A shows an exemplary rotor 1000 having a planar frame-like yoke 2100 on which 20 south poles 1110 and 20 north poles 1210 are positioned. Poles 1110 and 1210 are secured on yoke 2100 and retained thereon by a hub 2300 and optionally by a ring 2200 .
  • At least some south poles 1110 (each south pole, in this exemplary and non-limiting embodiment) consists of two essentially identical butt-jointed magnetized pieces 1111 A and 1111 B. In some embodiments the two pieces are magnetized by about 45° (in some embodiments by between 30° and 60°, in some embodiments by between 15° and 75°) relative to the axis as shown by arrows 1112 A and 1112 B respectively.
  • the tangential components of these arrows 1112 A and 1112 B of these radial butt-jointed magnet pieces are oppositely directed while their axial magnetization components are co-directed toward the yoke 2100 .
  • At least some north poles 1210 (each north pole in this exemplary and non-limiting embodiment) consists of two essentially identical butt-jointed pieces 1211 A and 1211 B magnetized by about 45 degrees (in some embodiments by between 30° and 60°, in some embodiments by between 15° and 75°) relative to the axis as shown by arrows 1212 A and 1212 B respectively.
  • the tangential components of these arrows 1212 A and 1212 B are also oppositely directed while their axial magnetization components are co-directed outward from the yoke 2100 .
  • the poles 1110 and 1210 themselves are also optionally butt-jointed to each other.
  • adjacent faces 1119 of south poles 1110 and adjacent faces 1219 of north poles 1210 are placed on radial yoke sections 2120 .
  • Inter-pole border sides are optionally placed on radial slots 2110 .
  • Twenty north and twenty south poles are shown in the Figure, but it is to be understood that that number (in this figure and in other figures herein) is exemplary and not limiting. North and south poles as shown are oriented at 180° from each other, but this characteristic also is exemplary and not limiting.
  • FIG. 8B shows a non-exploded view of the rotor of FIG. 8A and an expanded detail of a portion of that rotor, according to some embodiments of the present invention.
  • the rotor presented in FIGS. 8A and 8B may have a magnetic efficiency near that of an ideal Halbach system.
  • Some embodiments for example, provide more than 90° of the amount of flux available from a Halbach system of comparable size and weight; yet comprise only two types of permanent magnet components.
  • construction and manufacture of an embodiment such as that presented in FIGS. 8A and 8B may be more simple and less costly than corresponding Halbach systems, since (as shown above in examples from prior art) Halbach systems (for example, that shown in FIG. 7 ) comprise multiple different magnetic units and/or multiple orientations for similar magnetic units, whereas only two orientations and/or two types magnetic unit components suffice to construct an embodiment as shown in FIGS. 8A and 8B .
  • FIG. 9 is a view of a rotor according to an embodiment of the present invention.
  • Rotor 3000 differs from rotor 1000 in that rotor 3000 comprises gaps 3101 between south poles 1110 and north poles 1210 .
  • gaps 3101 are useful to provide improved ventilation through the gaps.
  • a plurality of identical gaps are shown in the figure, but it is to be understood that this configuration is exemplary and not limiting, gaps 3101 may be of non-identical sizes and may optionally be present between some poles and not present between other poles.
  • gaps 3101 may be used for construction elements.
  • gaps 3101 may be filled by an epoxy compound.
  • FIG. 10A shows an exploded view of a rotor 4000
  • FIG. 10B showing a perspective and a detail view of that rotor, according to some embodiments of the present invention.
  • Rotor 4000 differs from rotor 3000 in that rotor 4000 comprises a ribbed yoke 4100 , whereas rotor 3000 comprises a planar yoke.
  • Rotor 4000 comprises ribs 4115 placed on radial yoke sections 4120 between radial slots 4110 , and which are therefore positioned between south poles 1110 and north poles 1210 .
  • Ribs 4115 are made from soft-magnetic material, so as to conduct magnetic flux as shown by arrows 4310 of FIG.
  • ribs 4115 are constructed as integral parts of yoke 4100 .
  • two butt-jointed permanent magnets may be positioned between each pair of ribs, or between some pairs of ribs.
  • Ribs 4115 may be advantageous in that they may improve rotor rigidity. To avoid a decrease in magnetic flux caused by the gaps between successive permanent magnets thus created, in some embodiments ribs 4115 may be constructed of magnetic flux-conducting material.
  • FIG. 11A showing an exploded view of a rotor 5000 , also having a ribbed yoke
  • FIG. 11B showing a perspective view and a detail view of rotor 5000 , according to some embodiments of the present invention.
  • FIG. 11A shows rotor 5000 having a ribbed yoke 5100 on which (in the exemplary embodiment pictured) 20 south poles 1110 and 20 north poles 1210 are allocated. Some or all of poles 1110 and 1210 may each comprise two butt-jointed magnets. In some embodiments these south and north poles are secured on yoke 5100 and retained thereon by a hub 2300 , ribs 5111 , 5112 , and 5210 , and/or optionally by a ring 2200 .
  • each south pole 1110 consists of two optionally identically shaped magnets 1111 A- 1111 B magnetized by about 45° (in some embodiments between 30° and 60°, in some embodiments between 15° and 75°) relative to the axis in different tangential directions toward yoke 5100 as shown by the small arrows in the figure. Magnets 1111 A and 1111 B are separated by spaced gaps 5101 .
  • each north pole 1210 consists of two essentially identical magnets 1211 A- 1211 B magnetized by about 45° (in some embodiments between 30° and 60°, in some embodiments between 15° and 75°) relative to the axis in different tangential directions toward yoke 5100 as shown by the small arrows in the figure. Magnets 1211 A and 1211 B are also optionally separated by gaps 5101 .
  • Yoke ribs 5111 which may optionally be made of non-magnetic material, are interposed between magnet pieces 1111 A- 1111 B of south poles 1110 .
  • yoke ribs 5121 which may optionally be made from non-magnetic material, are optionally interposed between magnet pieces 1211 A- 1211 B of north poles 1210 .
  • Yoke ribs 5210 which separate north poles 1110 from south poles 1120 , are optionally made of soft magnetic material. Ribs 5210 conduct magnetic flux as shown by arrows 5310 and may optionally be made as part of yoke 5100 .
  • the ribbed structure of rotor 5000 significantly improves rotor rigidity, yet the inter-magnet gaps may not decrease the flux since they may be filled by magnetic flux-conducting material.
  • FIG. 12A presents an exploded view of a yokeless rotor 6000
  • FIG. 12B presents a perspective view and a detailed view of rotor 6000 , according to some embodiments of the present invention.
  • Exemplary rotor 6000 comprises 20 south poles 1110 , 20 north poles 1210 , interpole magnet pieces 6110 magnetized tangentially in a counter-clockwise direction and interpole magnet pieces 6120 magnetized tangentially in clockwise direction.
  • Pieces 6110 are positioned counter-clockwise of south poles 1110 and oriented in a counter-clockwise direction, while pieces 6120 are allocated clockwise of north poles 1210 and oriented in a clockwise direction.
  • all magnet pieces 1111 A, 1111 B, 1211 A, 1211 B, 6110 , 6120 are retained by a hub 2300 and ring 2200 .
  • Each south pole 1110 consists of two (optionally having a same shape and/or optionally butt-jointed) magnet pieces 1111 A and 1111 B magnetized by about 45° degrees (in some embodiments, between 30° and 60°, in some embodiments between 15° and 75°) relative to the rotational axis, so that axial components of their magnetization are directed outward from the working face, and the two magnets of the pair have tangential magnetization components oriented in different tangential directions, as shown by arrows.
  • each north pole 1210 consists of two (optionally having a same shape and/or optionally butt-jointed) magnetic pieces 1211 A and 1211 B magnetized by about 45° degrees (in some embodiments, between 30° and 60°, in some embodiments between 15° and 75°) relative to the axis, their magnetization being oriented toward the working face of the rotor and having tangential directions different one from the other, as shown by arrows.
  • Yokeless rotor 6000 may be useful in contexts where totally steel-less construction is required.
  • FIGS. 13A and 13B present a two-magnet layer rotor 7000 optionally comprising a planar frame-like yoke 2100 on which (in this non-limiting exemplary embodiment) 20 south poles 7110 and 20 north poles 7210 are provided and are optionally secured on yoke 2100 and retained thereon by a hub 2300 and optionally by a ring 2200 .
  • Each south pole 7110 consists of 2 magnet layers as shown in the figure:
  • each north pole 7210 comprises two magnet layers, a first layer like that disclosed in FIG. 8 and consisting of two optionally identically shaped optionally butt-jointed pieces 7211 A and 7211 B each magnetized by about 45° (or optionally 30°-60°, or optionally 15°-75°) to the axis outward from yoke 2100 , and a second layer which is a single magnet piece 7211 axially magnetized toward the working face and away from yoke 2100 if present.
  • FIGS. 14 and 15 shows an exemplary rotor assembly 8000 comprising two identical rotors 1000 A and 1000 B as disclosed in FIG. 8 and useable in an axial field electric machine.
  • a magnetic flux is generated in a gap 9300 between the rotors.
  • the flux comprises adjacent pole sections of counter-directed axial magnetic flux 8100 and 8200 .
  • Rotors 1000 A and 1000 B are attracted to each other by the magnetic forces and are held in a fixed physical relationship to each other through hubs 2300 A and 2300 B providing a desirable value of magnetic flux 8100 , 8200 .
  • FIG. 15 shows how an axial field electric machine 9000 may be constructed using a rotor assembly 8000 as disclosed in FIG.
  • FIG. 17 provides an approximate and non-limiting table of calculation results providing an approximate comparison between the magnetic flux estimated as being generated by some embodiments of the present invention as compared to magnetic flux estimated as being generated by some prior art configurations.
  • the table of FIG. 17 compares estimated fluxes generated according to various magnetic designs assuming similar overall dimensions and weight of the components.
  • FIGS. 16A and 16B are provided to facilitate understanding of the table of FIG. 17 by showing in summary fashion various designs for which estimated flux has been calculated.
  • FIG. 18 shows a multi-stage modular axial flux machine 9500 according to some embodiments of the present invention.
  • machine 9500 comprises two end rotors 1000 A and 1000 B according to embodiments of the present invention and two conventional axial flux permanent magnet rotors 1900 - 1 , 1900 - 2 , all rotors optionally having same numbers of axially magnetized poles.
  • Machine 9500 further comprises three coreless stators 9100 - 1 , 9100 - 2 , 9100 - 3 interposed between rotors 1000 A, 1000 B, 1900 - 1 , 1900 - 2 .
  • FIG. 19 shows a conventional axial flux permanent magnet rotor 1900 referred in FIG. 18 .
  • Rotor 1900 carries alternating north and south magnetic poles magnetized essentially in an axial direction, and optionally comprises a constructive element, e.g. hub 1920 on which said magnet poles are secured.
  • range format is merely for convenience and brevity and should not be construed as an inflexible limitation on the scope of the invention. Accordingly, the description of a range should be considered to have specifically disclosed all the possible subranges as well as individual numerical values within that range. For example, description of a range such as from 1 to 6 should be considered to have specifically disclosed subranges such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6 etc., as well as individual numbers within that range, for example, 1, 2, 3, 4, 5, and 6. This applies regardless of the breadth of the range.
  • a numerical range is indicated herein, it is meant to include any cited numeral (fractional or integral) within the indicated range.
  • the phrases “ranging/ranges between” a first indicate number and a second indicate number and “ranging/ranges from” a first indicate number “to” a second indicate number are used herein interchangeably and are meant to include the first and second indicated numbers and all the fractional and integral numerals therebetween.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Windings For Motors And Generators (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
US14/424,071 2012-08-27 2013-08-27 Rotor with magnet pattern Abandoned US20150229194A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/424,071 US20150229194A1 (en) 2012-08-27 2013-08-27 Rotor with magnet pattern

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201261693375P 2012-08-27 2012-08-27
US201361773295P 2013-03-06 2013-03-06
US14/424,071 US20150229194A1 (en) 2012-08-27 2013-08-27 Rotor with magnet pattern
PCT/IL2013/050728 WO2014033715A1 (en) 2012-08-27 2013-08-27 Rotor with magnet pattern

Publications (1)

Publication Number Publication Date
US20150229194A1 true US20150229194A1 (en) 2015-08-13

Family

ID=50182609

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/424,071 Abandoned US20150229194A1 (en) 2012-08-27 2013-08-27 Rotor with magnet pattern
US14/424,064 Active 2035-03-30 US10141805B2 (en) 2012-08-27 2013-08-27 Planar stator with efficient use of space

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/424,064 Active 2035-03-30 US10141805B2 (en) 2012-08-27 2013-08-27 Planar stator with efficient use of space

Country Status (4)

Country Link
US (2) US20150229194A1 (zh)
EP (2) EP2888806B1 (zh)
CN (2) CN104604108A (zh)
WO (2) WO2014033716A1 (zh)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170047795A1 (en) * 2015-08-11 2017-02-16 Genesis Robotics Llp Electric machine
WO2017177341A1 (en) 2016-04-13 2017-10-19 Genesis Robotics Llp Axial flux electric machine comprising a radially inner thrust bearing and a radially outer thrust bearing
US20180191215A1 (en) * 2017-01-04 2018-07-05 Kitty Hawk Corporation Method of rotor production including co-curing and magnetization in place
US10141805B2 (en) 2012-08-27 2018-11-27 Albus Technologies Ltd. Planar stator with efficient use of space
WO2018217457A1 (en) * 2017-05-26 2018-11-29 Nuclues Scientific Inc. Magnetic rotor assembly
US20190109526A1 (en) * 2016-03-30 2019-04-11 Advanced Magnet Lab, Inc. Dual-rotor synchronous electrical machines
US10418868B1 (en) * 2018-02-09 2019-09-17 Kitty Hawk Corporation Modular motor assembly
WO2019213362A1 (en) * 2018-05-03 2019-11-07 Bionaut Labs Ltd. Hybrid electromagnetic device for remote control of micro-nano scale robots, medical tools and implantable devices
US10476360B2 (en) 2016-09-13 2019-11-12 Indigo Technologies, Inc. Axial flux motor having rotatably coupled coil stator assemblies and methods of using same
US10586639B2 (en) 2017-01-04 2020-03-10 Wisk Aero Llc Array of three pole magnets
CN110892619A (zh) * 2017-03-24 2020-03-17 大卫·摩尔斯 具有内置光学编码器的轴向磁通电机
DE102019202630A1 (de) * 2019-02-27 2020-08-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Elektromotor
US11043885B2 (en) 2016-07-15 2021-06-22 Genesis Robotics And Motion Technologies Canada, Ulc Rotary actuator
US11139707B2 (en) 2015-08-11 2021-10-05 Genesis Robotics And Motion Technologies Canada, Ulc Axial gap electric machine with permanent magnets arranged between posts
US20220077725A1 (en) * 2020-09-10 2022-03-10 Ford Global Technologies, Llc Permanent magnet of multiple pieces having different easy axes
US20220239207A1 (en) * 2021-01-27 2022-07-28 Seiko Epson Corporation Rotary motor and robot
WO2022204329A1 (en) * 2021-03-23 2022-09-29 Rainer Meinke Discrete flux-directed magnet assemblies and systems formed therewith
US11799342B2 (en) 2020-02-20 2023-10-24 Kohler Co. Printed circuit board electrical machine
US11830668B2 (en) * 2022-02-28 2023-11-28 GM Global Technology Operations LLC Method of manufacturing permanent magnet of rotor for axial flux electric machine yielding permanent magnet with low loss and low cost

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9202719B2 (en) 2011-10-27 2015-12-01 The University Of British Columbia Displacement devices and methods for fabrication, use and control of same
IL233942B (en) 2014-08-04 2020-01-30 Israel Aerospace Ind Ltd Assembly of the drive system
US10756604B2 (en) * 2015-04-17 2020-08-25 Xiaoming Wang Induction servo motor with a constant-output-force or a constant-output-torque by using uniform magnetic fields
CN104852537B (zh) * 2015-05-28 2017-09-26 东南大学 一种天文望远镜用三维气隙哈尔巴赫永磁弧形电机及其控制方法
PL229549B1 (pl) * 2016-01-18 2018-07-31 Ireneusz Piskorz Generator synchroniczny, wielosegmentowy
WO2017143328A1 (en) * 2016-02-18 2017-08-24 Abb Schweiz Ag Windings for an electric machine
US10778049B2 (en) * 2016-06-07 2020-09-15 Sapphire Motors Stator assembly with stack of coated conductors
US10600542B2 (en) * 2016-12-27 2020-03-24 Chad Ashley Vandenberg Polarity-switching magnet diode
JP6775842B2 (ja) * 2017-01-30 2020-10-28 竹内 啓佐敏 コアレス電気機械装置、及び、コイルアセンブリー
DE102019216847A1 (de) * 2019-10-31 2021-05-06 Robert Bosch Gmbh Axialflussmaschine für ein elektrisches Bearbeitungsgerät sowie elektrisches Bearbeitungsgerät mit einer Axialflussmaschine
US20220186732A1 (en) * 2020-12-11 2022-06-16 Sapphire Motors Integrated pump assembly with one moving part with stacked stator
GB2617307B (en) * 2021-06-24 2024-04-24 Eta Green Power Ltd Stator for an electric machine
EP4378054A2 (en) * 2021-07-30 2024-06-05 E-Circuit Motors, Inc. Magnetic material filled printed circuit boards and printed circuit board stators
CN114301197B (zh) * 2021-08-02 2024-06-04 华为数字能源技术有限公司 一种电机定子、驱动电机和电动汽车
US20230042319A1 (en) * 2021-08-06 2023-02-09 Regal Beloit America, Inc. Electrical machine including axial flux rotor and coreless stator
CN115441681A (zh) * 2022-09-23 2022-12-06 重庆通环新能源科技有限公司 一种叠式结构的发电系统

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6348751B1 (en) * 1997-12-12 2002-02-19 New Generation Motors Corporation Electric motor with active hysteresis-based control of winding currents and/or having an efficient stator winding arrangement and/or adjustable air gap
US6703743B2 (en) * 2001-03-02 2004-03-09 Nissan Motor Co., Ltd. Motor or generator
US20050285467A1 (en) * 2004-06-29 2005-12-29 Nissan Motor Co., Ltd. Rotor of axial gap motor and method of producing same
US20060113857A1 (en) * 2003-07-22 2006-06-01 Yoshinobu Honkura Thin hybrid magnetization type ring magnet, yoke-equipped thin hybrid magnetization type ring magnet, and brush-less motor
US20070200445A1 (en) * 2004-03-31 2007-08-30 Daikin Industries Ltd Motor, Blower, Compressor, And Air Conditioner
US7586217B1 (en) * 2002-02-21 2009-09-08 Anorad Corporation High performance motor and magnet assembly therefor
US20090251021A1 (en) * 2006-06-06 2009-10-08 Hirofumi Atarashi Motor and motor control device
US20090273252A1 (en) * 2006-07-14 2009-11-05 Daikin Industries, Ltd. Magnetic field element
US20100090555A1 (en) * 2008-10-09 2010-04-15 Honda Motor Co., Ltd. Axial gap type motor
US7816822B2 (en) * 2005-04-28 2010-10-19 Denso Corporation Motor and control unit thereof
US7821168B2 (en) * 2008-02-10 2010-10-26 Empire Magnetics Inc. Axial gap dynamo electric machine with magnetic bearing
US20120091832A1 (en) * 2009-09-21 2012-04-19 Soderberg Rod F Matrix material comprising magnetic particles for use in hybrid and electric vehicles
US8278794B2 (en) * 2008-12-03 2012-10-02 Honda Motor Co., Ltd. Axial gap type motor and method of manufacturing rotor of motor
US20120262019A1 (en) * 2011-04-13 2012-10-18 Boulder Wind Power,Inc. Flux focusing arrangement for permanent magnets, methods of fabricating such arrangements, and machines including such arrangements
US20120313473A1 (en) * 2011-04-18 2012-12-13 Chen jin-tao Synchronous permanent magnet machine
US20140054998A1 (en) * 2012-08-21 2014-02-27 Samsung Electronics Co., Ltd. Rotor and electric motor including the same
US20140132102A1 (en) * 2012-11-09 2014-05-15 Industrial Technology Research Institute Axial flux halbach rotor
US8819921B2 (en) * 2010-05-19 2014-09-02 Nissan Motor Co., Ltd. Manufacturing method of a permanent magnet dispoded in a rotating electrical machine

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5526030A (en) 1978-08-14 1980-02-25 Hitachi Ltd Flat armature coil
US4318019A (en) * 1980-05-09 1982-03-02 Teasley Granvil E Alternator for wind generator
US4321496A (en) 1981-03-02 1982-03-23 General Electric Company Discoidal winding coil structure for axial gap dynamoelectric machines
JPS5875453A (ja) 1981-10-30 1983-05-07 Ouken Seikou Kk コアレスモ−タ用コイルおよびその製造方法
JPS6084949A (ja) 1983-10-15 1985-05-14 Entatsuku Kk カツプ状巻線体およびその製造方法
US4916345A (en) 1988-09-02 1990-04-10 Chrysler Motors Corporation Flat stator winding for alternator starter
US5117553A (en) * 1990-06-25 1992-06-02 General Electric Company Method of assembling rotor magnets
US5710476A (en) 1995-01-31 1998-01-20 Interscience, Inc. Armature design for an axial-gap rotary electric machine
US5783885A (en) 1995-08-07 1998-07-21 The Regents Of The University Of California Self-adjusting magnetic bearing systems
US5744896A (en) * 1996-05-21 1998-04-28 Visual Computing Systems Corp. Interlocking segmented coil array
FR2766027A1 (fr) 1997-07-08 1999-01-15 Ensmse Dispositif perfectionne d'accouplements magnetiques synchrones a entrefer cylindrique
JP2000134852A (ja) * 1998-10-28 2000-05-12 Mitsubishi Electric Corp 車両用交流発電機の固定子とその製造方法
GB2382729A (en) 2001-12-01 2003-06-04 John Charles Balson Layered coil assembly in a permanent magnet generator
US6794783B2 (en) * 2003-01-10 2004-09-21 Sunyen Co., Ltd. Flat rotary electric generator
US7084548B1 (en) 2003-07-11 2006-08-01 Gabrys Christopher W Low cost high speed electrical machine
US7701101B2 (en) * 2003-09-02 2010-04-20 Cummins Generator Technologies Limited Alternator assembly
US7453180B2 (en) 2003-11-25 2008-11-18 General Atomics Rotary disk energy storage and pulse power supply
JP4319961B2 (ja) * 2004-09-30 2009-08-26 株式会社日立製作所 回転電機及び電機巻線
US7982350B2 (en) * 2004-10-25 2011-07-19 Novatorque, Inc. Conical magnets and rotor-stator structures for electrodynamic machines
DE102006010168A1 (de) * 2005-03-07 2006-09-28 Asmo Co., Ltd., Kosai Ankerwicklung, Verfahren zur Herstellung einer Ankerwicklung und schlitzloser Motor
US7402934B1 (en) * 2005-08-18 2008-07-22 Revolution Motor Company, Inc. High performance air core motor-generator winding
KR100803570B1 (ko) 2006-06-20 2008-02-15 엘지전자 주식회사 축방향 공극형 모터
US7375449B2 (en) 2006-08-17 2008-05-20 Butterfield Paul D Optimized modular electrical machine using permanent magnets
US20080067883A1 (en) 2006-09-18 2008-03-20 Witt Peter D Generator and/or motor assembly
JP4234749B2 (ja) * 2006-10-19 2009-03-04 株式会社日立製作所 回転電機、クランク形状の連続巻きコイル、分布巻き固定子及びそれらの形成方法
JP2008245356A (ja) 2007-03-26 2008-10-09 Moriyama Denki Seisakusho:Kk アキシャルギャップ型エンジン駆動発電機
US8823238B2 (en) 2007-04-03 2014-09-02 Hybridauto Pty Ltd Winding arrangement for an electrical machine
JP5033552B2 (ja) * 2007-09-14 2012-09-26 信越化学工業株式会社 アキシャルギャップ型コアレス回転機
US8487470B2 (en) 2009-05-22 2013-07-16 Derek Grassman Vertical axis wind turbine and generator therefore
US8294316B2 (en) 2009-07-28 2012-10-23 Rolls-Royce North American Technologies, Inc. Electrical power generation apparatus for contra-rotating open-rotor aircraft propulsion system
WO2011139396A1 (en) * 2010-04-28 2011-11-10 Launchpoint Technologies, Inc. Lightweight and efficient electrical machine and method of manufacture
US8860272B2 (en) 2010-04-30 2014-10-14 Alstom Hydro France Synchronous generator, especially for wind turbines
WO2014033716A1 (en) 2012-08-27 2014-03-06 Albus Technologies Ltd. Planar stator with efficient use of space

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6348751B1 (en) * 1997-12-12 2002-02-19 New Generation Motors Corporation Electric motor with active hysteresis-based control of winding currents and/or having an efficient stator winding arrangement and/or adjustable air gap
US6703743B2 (en) * 2001-03-02 2004-03-09 Nissan Motor Co., Ltd. Motor or generator
US7586217B1 (en) * 2002-02-21 2009-09-08 Anorad Corporation High performance motor and magnet assembly therefor
US20060113857A1 (en) * 2003-07-22 2006-06-01 Yoshinobu Honkura Thin hybrid magnetization type ring magnet, yoke-equipped thin hybrid magnetization type ring magnet, and brush-less motor
US20070200445A1 (en) * 2004-03-31 2007-08-30 Daikin Industries Ltd Motor, Blower, Compressor, And Air Conditioner
US20050285467A1 (en) * 2004-06-29 2005-12-29 Nissan Motor Co., Ltd. Rotor of axial gap motor and method of producing same
US7816822B2 (en) * 2005-04-28 2010-10-19 Denso Corporation Motor and control unit thereof
US20090251021A1 (en) * 2006-06-06 2009-10-08 Hirofumi Atarashi Motor and motor control device
US20090273252A1 (en) * 2006-07-14 2009-11-05 Daikin Industries, Ltd. Magnetic field element
US7821168B2 (en) * 2008-02-10 2010-10-26 Empire Magnetics Inc. Axial gap dynamo electric machine with magnetic bearing
US20100090555A1 (en) * 2008-10-09 2010-04-15 Honda Motor Co., Ltd. Axial gap type motor
US8278794B2 (en) * 2008-12-03 2012-10-02 Honda Motor Co., Ltd. Axial gap type motor and method of manufacturing rotor of motor
US20120091832A1 (en) * 2009-09-21 2012-04-19 Soderberg Rod F Matrix material comprising magnetic particles for use in hybrid and electric vehicles
US8819921B2 (en) * 2010-05-19 2014-09-02 Nissan Motor Co., Ltd. Manufacturing method of a permanent magnet dispoded in a rotating electrical machine
US20120262019A1 (en) * 2011-04-13 2012-10-18 Boulder Wind Power,Inc. Flux focusing arrangement for permanent magnets, methods of fabricating such arrangements, and machines including such arrangements
US8397369B2 (en) * 2011-04-13 2013-03-19 Boulder Wind Power, Inc. Flux focusing arrangement for permanent magnets, methods of fabricating such arrangements, and machines including such arrangements
US8400038B2 (en) * 2011-04-13 2013-03-19 Boulder Wind Power, Inc. Flux focusing arrangement for permanent magnets, methods of fabricating such arrangements, and machines including such arrangements
US20120313473A1 (en) * 2011-04-18 2012-12-13 Chen jin-tao Synchronous permanent magnet machine
US20140054998A1 (en) * 2012-08-21 2014-02-27 Samsung Electronics Co., Ltd. Rotor and electric motor including the same
US20140132102A1 (en) * 2012-11-09 2014-05-15 Industrial Technology Research Institute Axial flux halbach rotor

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10141805B2 (en) 2012-08-27 2018-11-27 Albus Technologies Ltd. Planar stator with efficient use of space
US9742225B2 (en) 2015-08-11 2017-08-22 Genesis Robotics Llp Electric machine
US20170047795A1 (en) * 2015-08-11 2017-02-16 Genesis Robotics Llp Electric machine
US9742227B2 (en) 2015-08-11 2017-08-22 Genesis Robotics Llp Electric machine
US11043862B2 (en) 2015-08-11 2021-06-22 Genesis Robotics And Motion Technologies Canada, Ulc Electric machine
US9742226B2 (en) 2015-08-11 2017-08-22 Genesis Robotics Llp Electric machine
US9748803B2 (en) 2015-08-11 2017-08-29 Genesis Robotics LLC Electric machine
US20170187254A1 (en) * 2015-08-11 2017-06-29 Genesis Robotics Llp Electric Machine
US9755463B2 (en) 2015-08-11 2017-09-05 Genesis Robotics Llp Electric machine
US9748804B2 (en) * 2015-08-11 2017-08-29 Genesis Robotics Llp Electric machine
US10476323B2 (en) * 2015-08-11 2019-11-12 Genesis Robotics & Motion Technologies Canada, Ulc Electric machine
US10075030B2 (en) 2015-08-11 2018-09-11 Genesis Robotics & Motion Technologies Canada, Ulc Electric machine
US20170126079A1 (en) * 2015-08-11 2017-05-04 Genesis Robotics Llp Electric machine
US11139707B2 (en) 2015-08-11 2021-10-05 Genesis Robotics And Motion Technologies Canada, Ulc Axial gap electric machine with permanent magnets arranged between posts
US10892672B2 (en) * 2016-03-30 2021-01-12 Advanced Magnet Lab, Inc. Dual-rotor synchronous electrical machines
US20190109526A1 (en) * 2016-03-30 2019-04-11 Advanced Magnet Lab, Inc. Dual-rotor synchronous electrical machines
KR20190006172A (ko) * 2016-04-13 2019-01-17 제네시스 로보틱스 앤드 모션 테크놀로지스 캐나다, 유엘씨 반경방향 내측 스러스트 베어링 및 반경방향 외측 스러스트 베어링을 포함하는 축방향 플럭스 전기 기계
US11128188B2 (en) * 2016-04-13 2021-09-21 Genesis Robotics And Motion Technologies Canada, Ulc Electric machine
EP3443642A4 (en) * 2016-04-13 2019-12-25 Genesis Robotics and Motion Technologies Canada, ULC AXIAL FLOW ELECTRIC MACHINE WITH A RADIAL PRESSURE BEARING AND RADIAL PRESSURE BEARING
WO2017177341A1 (en) 2016-04-13 2017-10-19 Genesis Robotics Llp Axial flux electric machine comprising a radially inner thrust bearing and a radially outer thrust bearing
CN112234752A (zh) * 2016-04-13 2021-01-15 詹尼斯机器人移动技术加拿大公司 包括径向内推力轴承和径向外推力轴承的轴向通量电机
KR102157148B1 (ko) * 2016-04-13 2020-09-18 제네시스 로보틱스 앤드 모션 테크놀로지스 캐나다, 유엘씨 반경방향 내측 스러스트 베어링 및 반경방향 외측 스러스트 베어링을 포함하는 축방향 플럭스 전기 기계
US11043885B2 (en) 2016-07-15 2021-06-22 Genesis Robotics And Motion Technologies Canada, Ulc Rotary actuator
US11368076B2 (en) 2016-09-13 2022-06-21 Indigo Technologies, Inc. Multi-bar linkage electric drive system
US10476360B2 (en) 2016-09-13 2019-11-12 Indigo Technologies, Inc. Axial flux motor having rotatably coupled coil stator assemblies and methods of using same
US10483832B2 (en) 2016-09-13 2019-11-19 Indigo Technologies, Inc. Multi-bar linkage electric drive system
US10644578B2 (en) 2016-09-13 2020-05-05 Indigo Technologies, Inc. Guided multi-bar linkage electric drive system
US10938285B2 (en) 2016-09-13 2021-03-02 Indigo Technologies, Inc. Multi-bar linkage electric drive system
US10586639B2 (en) 2017-01-04 2020-03-10 Wisk Aero Llc Array of three pole magnets
US20180191215A1 (en) * 2017-01-04 2018-07-05 Kitty Hawk Corporation Method of rotor production including co-curing and magnetization in place
EP3566288A4 (en) * 2017-01-04 2020-10-21 Wisk Aero LLC METHOD OF MANUFACTURING A ROTOR WITH CO CURING AND MAGNETIZATION IN SITU
US11289962B2 (en) * 2017-01-04 2022-03-29 Wisk Aero Llc Method of rotor production including co-curing and magnetization in place
US11069464B2 (en) 2017-01-04 2021-07-20 Wisk Aero Llc Method and assembly for producing a magnet
EP3602754A4 (en) * 2017-03-24 2021-03-03 David Morse AXIAL FLOW MOTOR WITH INTEGRATED OPTICAL ENCODER
CN110892619A (zh) * 2017-03-24 2020-03-17 大卫·摩尔斯 具有内置光学编码器的轴向磁通电机
WO2018217457A1 (en) * 2017-05-26 2018-11-29 Nuclues Scientific Inc. Magnetic rotor assembly
US10742083B2 (en) 2017-05-26 2020-08-11 Indigo Technologies, Inc. Magnetic rotor assembly
US10998778B2 (en) * 2018-02-09 2021-05-04 Wisk Aero Llc Modular motor assembly
US10418868B1 (en) * 2018-02-09 2019-09-17 Kitty Hawk Corporation Modular motor assembly
WO2019213362A1 (en) * 2018-05-03 2019-11-07 Bionaut Labs Ltd. Hybrid electromagnetic device for remote control of micro-nano scale robots, medical tools and implantable devices
DE102019202630A1 (de) * 2019-02-27 2020-08-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Elektromotor
US11799342B2 (en) 2020-02-20 2023-10-24 Kohler Co. Printed circuit board electrical machine
US20220077725A1 (en) * 2020-09-10 2022-03-10 Ford Global Technologies, Llc Permanent magnet of multiple pieces having different easy axes
US11894719B2 (en) * 2020-09-10 2024-02-06 Ford Global Technologies, Llc Permanent magnet of multiple pieces having different easy axes
US20220239207A1 (en) * 2021-01-27 2022-07-28 Seiko Epson Corporation Rotary motor and robot
WO2022204329A1 (en) * 2021-03-23 2022-09-29 Rainer Meinke Discrete flux-directed magnet assemblies and systems formed therewith
US11830668B2 (en) * 2022-02-28 2023-11-28 GM Global Technology Operations LLC Method of manufacturing permanent magnet of rotor for axial flux electric machine yielding permanent magnet with low loss and low cost

Also Published As

Publication number Publication date
CN104718689B (zh) 2018-09-18
US20150229173A1 (en) 2015-08-13
WO2014033715A1 (en) 2014-03-06
EP2888806A1 (en) 2015-07-01
EP2888807A1 (en) 2015-07-01
EP2888807A4 (en) 2016-05-11
CN104718689A (zh) 2015-06-17
EP2888806A4 (en) 2016-05-11
US10141805B2 (en) 2018-11-27
EP2888807B1 (en) 2017-10-04
WO2014033716A8 (en) 2014-05-30
EP2888806B1 (en) 2018-10-10
CN104604108A (zh) 2015-05-06
WO2014033716A1 (en) 2014-03-06

Similar Documents

Publication Publication Date Title
US20150229194A1 (en) Rotor with magnet pattern
US10566866B2 (en) Asymmetric axial permanent magnet machines having axial rotors with irregular magnets
JP5382156B2 (ja) 回転電機
JP5677584B2 (ja) 永久磁石埋込型モータの回転子並びに圧縮機及び冷凍空調装置
US20130169097A1 (en) Low axial force permanent magnet machine
EP2782216B1 (en) Magnet-embedded rotor, method for manufacturing the same, and magnetization device
EP3080896B1 (en) Rotary electric machine rotor
US11799337B2 (en) Rotating electric machine
US10707733B2 (en) Synchronous reluctance motor assisted by permanent magnets
US9225209B2 (en) Permanent magnet rotor and electric motor incorporating the rotor
JP2013027240A (ja) 回転電機
US9812912B2 (en) Rotor for permanent magnet motor having a magnetic pole portion and a field portion
US9337709B2 (en) Axial gap type permanent magnet electric rotating apparatus and method of manufacturing the same
US9293974B2 (en) Electric motor having stator core for reducing cogging torque
US9859777B2 (en) Axial flux switching permanent magnet machine
CN112425036A (zh) 旋转电机
WO2014192683A1 (ja) 永久磁石を用いた回転電機
US11894726B2 (en) Rotating electric machine
AU2013279337B2 (en) New device
JP2015154555A (ja) モータ
JP5959616B2 (ja) 永久磁石埋込型モータの回転子並びに圧縮機及び冷凍空調装置
JP2005051929A (ja) 電動機
JP2013062989A (ja) 発電機
US10056792B2 (en) Interior permanent magnet electric machine
JP2010068548A (ja) 電動機

Legal Events

Date Code Title Description
AS Assignment

Owner name: ALBUS TECHNOLOGIES LTD., ISRAEL

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SROMIN, ALEXANDER;REEL/FRAME:035176/0491

Effective date: 20130815

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION