US20150072019A1 - Fgfr inhibitor for use in the treatment of hypophosphatemic disorders - Google Patents
Fgfr inhibitor for use in the treatment of hypophosphatemic disorders Download PDFInfo
- Publication number
- US20150072019A1 US20150072019A1 US14/388,978 US201314388978A US2015072019A1 US 20150072019 A1 US20150072019 A1 US 20150072019A1 US 201314388978 A US201314388978 A US 201314388978A US 2015072019 A1 US2015072019 A1 US 2015072019A1
- Authority
- US
- United States
- Prior art keywords
- piperazin
- dimethoxy
- dichloro
- urea
- phenyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000011282 treatment Methods 0.000 title claims abstract description 47
- 229940125829 fibroblast growth factor receptor inhibitor Drugs 0.000 title claims description 35
- 230000003553 hypophosphatemic effect Effects 0.000 title description 4
- QADPYRIHXKWUSV-UHFFFAOYSA-N BGJ-398 Chemical compound C1CN(CC)CCN1C(C=C1)=CC=C1NC1=CC(N(C)C(=O)NC=2C(=C(OC)C=C(OC)C=2Cl)Cl)=NC=N1 QADPYRIHXKWUSV-UHFFFAOYSA-N 0.000 claims abstract description 83
- 150000003839 salts Chemical class 0.000 claims abstract description 35
- 239000012453 solvate Substances 0.000 claims abstract description 26
- 208000005050 Familial Hypophosphatemic Rickets Diseases 0.000 claims abstract description 21
- 208000029663 Hypophosphatemia Diseases 0.000 claims abstract description 21
- 208000031878 X-linked hypophosphatemia Diseases 0.000 claims abstract description 21
- 208000035724 X-linked hypophosphatemic rickets Diseases 0.000 claims abstract description 21
- 201000003674 autosomal dominant hypophosphatemic rickets Diseases 0.000 claims abstract description 20
- 201000003672 autosomal recessive hypophosphatemic rickets Diseases 0.000 claims abstract description 20
- 239000008194 pharmaceutical composition Substances 0.000 claims abstract description 14
- 208000005072 Oncogenic osteomalacia Diseases 0.000 claims abstract description 7
- 208000028060 Albright disease Diseases 0.000 claims abstract description 5
- 208000031213 Epidermal nevus syndrome Diseases 0.000 claims abstract description 5
- 201000001853 McCune-Albright syndrome Diseases 0.000 claims abstract description 5
- 208000001061 polyostotic fibrous dysplasia Diseases 0.000 claims abstract description 5
- 210000000988 bone and bone Anatomy 0.000 claims description 43
- 229910019142 PO4 Inorganic materials 0.000 claims description 39
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 39
- 239000010452 phosphate Substances 0.000 claims description 39
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 33
- 239000011575 calcium Substances 0.000 claims description 33
- 229910052791 calcium Inorganic materials 0.000 claims description 33
- 229930003316 Vitamin D Chemical class 0.000 claims description 29
- QYSXJUFSXHHAJI-XFEUOLMDSA-N Vitamin D3 Chemical class C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C/C=C1\C[C@@H](O)CCC1=C QYSXJUFSXHHAJI-XFEUOLMDSA-N 0.000 claims description 29
- 235000019166 vitamin D Nutrition 0.000 claims description 29
- 239000011710 vitamin D Chemical class 0.000 claims description 29
- 150000003710 vitamin D derivatives Chemical class 0.000 claims description 29
- 229940046008 vitamin d Drugs 0.000 claims description 29
- 230000014509 gene expression Effects 0.000 claims description 27
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 26
- 108090000445 Parathyroid hormone Proteins 0.000 claims description 25
- 239000000199 parathyroid hormone Substances 0.000 claims description 24
- 229960001319 parathyroid hormone Drugs 0.000 claims description 23
- 150000001204 N-oxides Chemical class 0.000 claims description 20
- 230000000694 effects Effects 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 16
- 230000001054 cortical effect Effects 0.000 claims description 14
- 201000010099 disease Diseases 0.000 claims description 14
- 102000004264 Osteopontin Human genes 0.000 claims description 12
- 108010081689 Osteopontin Proteins 0.000 claims description 12
- 230000002401 inhibitory effect Effects 0.000 claims description 6
- 102100024802 Fibroblast growth factor 23 Human genes 0.000 claims description 3
- 239000002253 acid Substances 0.000 claims description 3
- 239000012458 free base Substances 0.000 claims description 3
- 238000007911 parenteral administration Methods 0.000 claims description 2
- 238000011200 topical administration Methods 0.000 claims description 2
- 101001051973 Homo sapiens Fibroblast growth factor 23 Proteins 0.000 claims 2
- 102100036893 Parathyroid hormone Human genes 0.000 claims 2
- 206010058314 Dysplasia Diseases 0.000 claims 1
- 208000007442 rickets Diseases 0.000 abstract description 6
- 208000020037 osteoglophonic dysplasia Diseases 0.000 abstract description 4
- 241000699670 Mus sp. Species 0.000 description 93
- 108090000569 Fibroblast Growth Factor-23 Proteins 0.000 description 61
- 102000004042 Fibroblast Growth Factor-23 Human genes 0.000 description 60
- 210000002966 serum Anatomy 0.000 description 36
- 108091008794 FGF receptors Proteins 0.000 description 32
- 102000052178 fibroblast growth factor receptor activity proteins Human genes 0.000 description 30
- 230000005764 inhibitory process Effects 0.000 description 24
- 102000003982 Parathyroid hormone Human genes 0.000 description 23
- 150000001875 compounds Chemical class 0.000 description 23
- GMRQFYUYWCNGIN-ZVUFCXRFSA-N 1,25-dihydroxy vitamin D3 Chemical compound C1([C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@@H](CCCC(C)(C)O)C)=CC=C1C[C@@H](O)C[C@H](O)C1=C GMRQFYUYWCNGIN-ZVUFCXRFSA-N 0.000 description 16
- 238000012762 unpaired Student’s t-test Methods 0.000 description 14
- 230000037396 body weight Effects 0.000 description 11
- 210000003734 kidney Anatomy 0.000 description 10
- 101150104085 Cyp24a1 gene Proteins 0.000 description 9
- 208000035475 disorder Diseases 0.000 description 9
- 230000012010 growth Effects 0.000 description 9
- 210000004349 growth plate Anatomy 0.000 description 9
- 230000007774 longterm Effects 0.000 description 9
- 230000011664 signaling Effects 0.000 description 9
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 8
- 101150099181 Cyp27b1 gene Proteins 0.000 description 8
- 238000011161 development Methods 0.000 description 8
- 230000018109 developmental process Effects 0.000 description 8
- 108020004999 messenger RNA Proteins 0.000 description 8
- 108090000623 proteins and genes Proteins 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- 208000013038 Hypocalcemia Diseases 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 230000033228 biological regulation Effects 0.000 description 6
- 230000000705 hypocalcaemia Effects 0.000 description 6
- 230000001771 impaired effect Effects 0.000 description 6
- 238000011529 RT qPCR Methods 0.000 description 5
- 238000011866 long-term treatment Methods 0.000 description 5
- 230000000144 pharmacologic effect Effects 0.000 description 5
- 210000002303 tibia Anatomy 0.000 description 5
- 210000000689 upper leg Anatomy 0.000 description 5
- 101100447432 Danio rerio gapdh-2 gene Proteins 0.000 description 4
- 101150112014 Gapdh gene Proteins 0.000 description 4
- 230000001594 aberrant effect Effects 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 4
- 239000008280 blood Substances 0.000 description 4
- -1 chlortheophyllonate Chemical compound 0.000 description 4
- 208000011111 hypophosphatemic rickets Diseases 0.000 description 4
- 238000001727 in vivo Methods 0.000 description 4
- 238000010603 microCT Methods 0.000 description 4
- 238000010606 normalization Methods 0.000 description 4
- 230000001575 pathological effect Effects 0.000 description 4
- 230000009038 pharmacological inhibition Effects 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- 102000018233 Fibroblast Growth Factor Human genes 0.000 description 3
- 108050007372 Fibroblast Growth Factor Proteins 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 238000003556 assay Methods 0.000 description 3
- 230000033558 biomineral tissue development Effects 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 210000002745 epiphysis Anatomy 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- 230000001404 mediated effect Effects 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- 230000008520 organization Effects 0.000 description 3
- 239000003755 preservative agent Substances 0.000 description 3
- 230000002335 preservative effect Effects 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 238000011002 quantification Methods 0.000 description 3
- 108020003175 receptors Proteins 0.000 description 3
- 102000005962 receptors Human genes 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000010186 staining Methods 0.000 description 3
- 208000024891 symptom Diseases 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- 102100027518 1,25-dihydroxyvitamin D(3) 24-hydroxylase, mitochondrial Human genes 0.000 description 2
- 108010073030 25-Hydroxyvitamin D3 1-alpha-Hydroxylase Proteins 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 238000002965 ELISA Methods 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 102000044168 Fibroblast Growth Factor Receptor Human genes 0.000 description 2
- 101000613820 Homo sapiens Osteopontin Proteins 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- 102100040557 Osteopontin Human genes 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 238000011530 RNeasy Mini Kit Methods 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 108010026102 Vitamin D3 24-Hydroxylase Proteins 0.000 description 2
- 239000012190 activator Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 230000036765 blood level Effects 0.000 description 2
- 230000004094 calcium homeostasis Effects 0.000 description 2
- 210000001612 chondrocyte Anatomy 0.000 description 2
- 239000002299 complementary DNA Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 235000005911 diet Nutrition 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 229940126864 fibroblast growth factor Drugs 0.000 description 2
- 229940088597 hormone Drugs 0.000 description 2
- 239000005556 hormone Substances 0.000 description 2
- 230000019948 ion homeostasis Effects 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- 238000010172 mouse model Methods 0.000 description 2
- 230000011164 ossification Effects 0.000 description 2
- 230000002688 persistence Effects 0.000 description 2
- 230000002085 persistent effect Effects 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000002601 radiography Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 230000001718 repressive effect Effects 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 235000019786 weight gain Nutrition 0.000 description 2
- GMRQFYUYWCNGIN-UHFFFAOYSA-N 1,25-Dihydroxy-vitamin D3' Natural products C1CCC2(C)C(C(CCCC(C)(C)O)C)CCC2C1=CC=C1CC(O)CC(O)C1=C GMRQFYUYWCNGIN-UHFFFAOYSA-N 0.000 description 1
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 1
- 208000004998 Abdominal Pain Diseases 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- 238000011740 C57BL/6 mouse Methods 0.000 description 1
- IDSSMACKJBFYFA-UHFFFAOYSA-N CCN1(O)CCN(C2=CC=C(NC3=NC=NC(N(C)C(=O)NC4=C(Cl)C(OC)=CC(OC)=C4Cl)=C3)C=C2)CC1 Chemical compound CCN1(O)CCN(C2=CC=C(NC3=NC=NC(N(C)C(=O)NC4=C(Cl)C(OC)=CC(OC)=C4Cl)=C3)C=C2)CC1 IDSSMACKJBFYFA-UHFFFAOYSA-N 0.000 description 1
- 208000004434 Calcinosis Diseases 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- RGHNJXZEOKUKBD-SQOUGZDYSA-M D-gluconate Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O RGHNJXZEOKUKBD-SQOUGZDYSA-M 0.000 description 1
- AEMOLEFTQBMNLQ-AQKNRBDQSA-N D-glucopyranuronic acid Chemical compound OC1O[C@H](C(O)=O)[C@@H](O)[C@H](O)[C@H]1O AEMOLEFTQBMNLQ-AQKNRBDQSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 206010012735 Diarrhoea Diseases 0.000 description 1
- 206010061818 Disease progression Diseases 0.000 description 1
- 206010015719 Exsanguination Diseases 0.000 description 1
- 101150021185 FGF gene Proteins 0.000 description 1
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101001136717 Homo sapiens 26S proteasome non-ATPase regulatory subunit 8 Proteins 0.000 description 1
- 101100281001 Homo sapiens FGF23 gene Proteins 0.000 description 1
- 101000703512 Homo sapiens Sphingosine-1-phosphate phosphatase 1 Proteins 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- 208000037147 Hypercalcaemia Diseases 0.000 description 1
- 208000015580 Increased body weight Diseases 0.000 description 1
- 102100034343 Integrase Human genes 0.000 description 1
- PIWKPBJCKXDKJR-UHFFFAOYSA-N Isoflurane Chemical compound FC(F)OC(Cl)C(F)(F)F PIWKPBJCKXDKJR-UHFFFAOYSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 101100061197 Mus musculus Cyp27b1 gene Proteins 0.000 description 1
- 101100281002 Mus musculus Fgf23 gene Proteins 0.000 description 1
- 101000617395 Mus musculus Probable peptidyl-tRNA hydrolase Proteins 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-L Phosphate ion(2-) Chemical compound OP([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-L 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 229920002556 Polyethylene Glycol 300 Polymers 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 238000002123 RNA extraction Methods 0.000 description 1
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 208000005770 Secondary Hyperparathyroidism Diseases 0.000 description 1
- 208000020221 Short stature Diseases 0.000 description 1
- 101150012700 Slc34a3 gene Proteins 0.000 description 1
- 102100038440 Sodium-dependent phosphate transport protein 2C Human genes 0.000 description 1
- 101710168942 Sphingosine-1-phosphate phosphatase 1 Proteins 0.000 description 1
- 101710172711 Structural protein Proteins 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 239000003070 absorption delaying agent Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229940024606 amino acid Drugs 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000033115 angiogenesis Effects 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- 229940009098 aspartate Drugs 0.000 description 1
- 238000003149 assay kit Methods 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-M benzenesulfonate Chemical compound [O-]S(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-M 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 230000018678 bone mineralization Effects 0.000 description 1
- 230000010072 bone remodeling Effects 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 230000002308 calcification Effects 0.000 description 1
- 229960002882 calcipotriol Drugs 0.000 description 1
- LWQQLNNNIPYSNX-UROSTWAQSA-N calcipotriol Chemical group C1([C@H](O)/C=C/[C@@H](C)[C@@H]2[C@]3(CCCC(/[C@@H]3CC2)=C\C=C\2C([C@@H](O)C[C@H](O)C/2)=C)C)CC1 LWQQLNNNIPYSNX-UROSTWAQSA-N 0.000 description 1
- 229960005084 calcitriol Drugs 0.000 description 1
- GMRQFYUYWCNGIN-NKMMMXOESA-N calcitriol Chemical compound C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@@H](CCCC(C)(C)O)C)=C\C=C1\C[C@@H](O)C[C@H](O)C1=C GMRQFYUYWCNGIN-NKMMMXOESA-N 0.000 description 1
- MIOPJNTWMNEORI-UHFFFAOYSA-N camphorsulfonic acid Chemical compound C1CC2(CS(O)(=O)=O)C(=O)CC1C2(C)C MIOPJNTWMNEORI-UHFFFAOYSA-N 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000003831 deregulation Effects 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 230000000378 dietary effect Effects 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-M dihydrogenphosphate Chemical compound OP(O)([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-M 0.000 description 1
- 230000005750 disease progression Effects 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- AFAXGSQYZLGZPG-UHFFFAOYSA-L ethanedisulfonate group Chemical group C(CS(=O)(=O)[O-])S(=O)(=O)[O-] AFAXGSQYZLGZPG-UHFFFAOYSA-L 0.000 description 1
- VFRSADQPWYCXDG-LEUCUCNGSA-N ethyl (2s,5s)-5-methylpyrrolidine-2-carboxylate;2,2,2-trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F.CCOC(=O)[C@@H]1CC[C@H](C)N1 VFRSADQPWYCXDG-LEUCUCNGSA-N 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010195 expression analysis Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 208000012502 familial hyperphosphatemic tumoral calcinosis/hyperphosphatemic hyperostosis syndrome Diseases 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 235000003599 food sweetener Nutrition 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 229940050411 fumarate Drugs 0.000 description 1
- 238000003633 gene expression assay Methods 0.000 description 1
- 229960001731 gluceptate Drugs 0.000 description 1
- KWMLJOLKUYYJFJ-VFUOTHLCSA-N glucoheptonic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)[C@@H](O)C(O)=O KWMLJOLKUYYJFJ-VFUOTHLCSA-N 0.000 description 1
- 229940050410 gluconate Drugs 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 229940097042 glucuronate Drugs 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- IPCSVZSSVZVIGE-UHFFFAOYSA-M hexadecanoate Chemical compound CCCCCCCCCCCCCCCC([O-])=O IPCSVZSSVZVIGE-UHFFFAOYSA-M 0.000 description 1
- 230000013632 homeostatic process Effects 0.000 description 1
- 102000051312 human SPP1 Human genes 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-M hydrogensulfate Chemical compound OS([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-M 0.000 description 1
- 230000000148 hypercalcaemia Effects 0.000 description 1
- 208000030915 hypercalcemia disease Diseases 0.000 description 1
- 201000000526 hyperphosphatemic familial tumoral calcinosis Diseases 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 229960002725 isoflurane Drugs 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 210000001804 kidney proximal tubule epithelial cell Anatomy 0.000 description 1
- 210000002414 leg Anatomy 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000013160 medical therapy Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 210000000110 microvilli Anatomy 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000004899 motility Effects 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- 229940049964 oleate Drugs 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 238000003305 oral gavage Methods 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 229940039748 oxalate Drugs 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 238000003753 real-time PCR Methods 0.000 description 1
- 231100000272 reduced body weight Toxicity 0.000 description 1
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 1
- 230000008060 renal absorption Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000009291 secondary effect Effects 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 102000035025 signaling receptors Human genes 0.000 description 1
- 108091005475 signaling receptors Proteins 0.000 description 1
- 231100001055 skeletal defect Toxicity 0.000 description 1
- 108091006284 sodium-phosphate co-transporters Proteins 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- 230000009469 supplementation Effects 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 229940095064 tartrate Drugs 0.000 description 1
- ABZLKHKQJHEPAX-UHFFFAOYSA-N tetramethylrhodamine Chemical compound C=12C=CC(N(C)C)=CC2=[O+]C2=CC(N(C)C)=CC=C2C=1C1=CC=CC=C1C([O-])=O ABZLKHKQJHEPAX-UHFFFAOYSA-N 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 230000037426 transcriptional repression Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 230000007306 turnover Effects 0.000 description 1
- 230000002485 urinary effect Effects 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/505—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
- A61K31/506—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim not condensed and containing further heterocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/59—Compounds containing 9, 10- seco- cyclopenta[a]hydrophenanthrene ring systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K33/00—Medicinal preparations containing inorganic active ingredients
- A61K33/06—Aluminium, calcium or magnesium; Compounds thereof, e.g. clay
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K33/00—Medicinal preparations containing inorganic active ingredients
- A61K33/42—Phosphorus; Compounds thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/1703—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- A61K38/1709—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/22—Hormones
- A61K38/29—Parathyroid hormone, i.e. parathormone; Parathyroid hormone-related peptides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/08—Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/08—Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
- A61P19/10—Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/02—Nutrients, e.g. vitamins, minerals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/12—Drugs for disorders of the metabolism for electrolyte homeostasis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/12—Drugs for disorders of the metabolism for electrolyte homeostasis
- A61P3/14—Drugs for disorders of the metabolism for electrolyte homeostasis for calcium homeostasis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P39/00—General protective or antinoxious agents
- A61P39/02—Antidotes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2121/00—Preparations for use in therapy
Definitions
- the present invention relates generally to 3-(2,6-Dichloro-3,5-dimethoxy-phenyl)-1- ⁇ 6-[4-(4-ethyl-piperazin-1-yl)-phenylamino]-pyrimid-4-yl ⁇ -1-methyl-urea or a pharmaceutically acceptable salt or solvate thereof or a pharmaceutical composition comprising 3-(2,6-Dichloro-3,5-dimethoxy-phenyl)-1- ⁇ 6-[4-(4-ethyl-piperazin-1-yl)-phenylamino]-pyrimid-4-yl ⁇ -1-methyl-urea or a pharmaceutically acceptable salt or solvate thereof for use in the treatment of the fibroblast growth factor receptor mediated disorders.
- FGF fibroblast growth factor
- signaling receptors are associated with multiple biological activities (proliferation, survival, apoptosis, differentiation, motility) that govern key processes (development, angiogenesis, and metabolism) for the growth and maintenance of organisms from worms to humans. 22 distinct FGFs have been identified, all sharing a conserved 120-aminoacids core domain with 15-65% sequence identity.
- FGF23 is a critical, bone-derived mediator of phosphate homeostasis, which functions in the kidney to regulate vitamin D biosynthesis and renal absorption of phosphate.
- FGF23 signaling controls expression of the vitamin D metabolizing enzymes CYP27B1 and CYP24A1, resulting in decreased biosynthesis and elevated turnover of the active vitamin D metabolite 1,25-dihydroxyvitamin D3 (1,25[OH]2D3).
- FGF23 impairs expression of the sodium-phosphate co-transporters NPT2A and NPT2C in the brush border membrane of proximal tubular cells, which mediate the re-absorption of urinary phosphate.
- Excess levels or augmented function of FGF23 result in hypophosphatemia along with impaired biosynthesis of 1,25(OH)2D3(vitamin D) and are associated with several hereditary hypophosphatemia disorders with skeletal abnormalities as a consequence of impaired bone mineralization, including X-linked hypophosphatemic rickets (XLH), autosomal dominant hypophosphatemic rickets (ADHR), and autosomal recessive hypophosphatemic rickets (ARHR).
- XLH X-linked hypophosphatemic rickets
- ADHR autosomal dominant hypophosphatemic rickets
- ARHR autosomal recessive hypophosphatemic rickets
- secretion of FGF23 by tumor cells has been identified to cause hypophosphatemia resulting in tumor-induced osteomalacia (TIO). Elevated levels of FGF23 are also commonly observed in post-renal transplantation patients leading to servere hypophosphatemia.
- FGF23 plays a role in several other hypophosphatemic syndromes such as epidermal nevus syndrome, osteoglophonic dysplasia and McCune-Albright syndrome which have been associated with increased FGF23 levels.
- XLH and other FGF23-mediated hypophosphatemia diseases such as ADHR and ARHR commonly manifest clinically in early childhood with short stature and bowing deformities of the legs.
- the present invention thus provides 3-(2,6-Dichloro-3,5-dimethoxy-phenyl)-1- ⁇ 6-[4-(4-ethyl-piperazin-1-yl)-phenylamino]-pyrimid-4-yl ⁇ -1-methyl-urea or a pharmaceutically acceptable salt, N-oxide or solvate thereof for use in the treatment of X-linked hypophosphatemic rickets (XLH), autosomal dominant hypophosphatemic rickets (ADHR), autosomal recessive hypophosphatemic rickets (ARHR), tumor-induced osteomalacia, post-renal transplant hypophosphatemia, epidermal nevus syndrome, osteoglophonic dysplasia or McCune-Albright syndrome.
- XLH X-linked hypophosphatemic rickets
- ADHR autosomal dominant hypophosphatemic rickets
- ARHR autosomal recessive hypophosphatemic rickets
- the compound, its pharmaceutically acceptable salt or solvate can be used in the treatment of X-linked hypophosphatemic rickets (XLH), autosomal dominant hypophosphatemic rickets (ADHR), autosomal recessive hypophosphatemic rickets (ARHR) or tumor-induced osteomalacia, post-renal transplant hypophosphatemia,
- XLH X-linked hypophosphatemic rickets
- ADHR autosomal dominant hypophosphatemic rickets
- ARHR autosomal recessive hypophosphatemic rickets
- tumor-induced osteomalacia post-renal transplant hypophosphatemia
- the 3-(2,6-Dichloro-3,5-dimethoxy-phenyl)-1- ⁇ 6-[4-(4-ethyl-piperazin-1-yl)-phenylamino]-pyrimid-4-yl ⁇ -1-methyl-urea or a pharmaceutically acceptable salt or solvate is administered to a patient in more than one dose.
- the treatment should preferably last at least 8 weeks, optionally with an interruption.
- the time between two consecutive doses of the compound can be more than 24 hours, optionally 48 hours.
- the compound of formula I can be further used in the treatment in combination with another FGFR inhibitor, phosphate, calcium, osteopontin (OPN), parathyroid hormone or its analogue (PTH), and/or vitamin D or vitamin D analogue, preferably in combination with phosphate, calcium and/or vitamin D or vitamin D analogue, particularly vitamin D or vitamin D analogue.
- another FGFR inhibitor phosphate, calcium, osteopontin (OPN), parathyroid hormone or its analogue (PTH), and/or vitamin D or vitamin D analogue, preferably in combination with phosphate, calcium and/or vitamin D or vitamin D analogue, particularly vitamin D or vitamin D analogue.
- the invention provides a pharmaceutical composition
- a pharmaceutical composition comprising 3-(2,6-dichloro-3,5-dimethoxy-phenyl)-1- ⁇ 6-[4-(4-ethyl-piperazin-1-yl)-phenylamino]-pyrimid-4-yl ⁇ -1-methyl-urea or a pharmaceutically acceptable salt, N-oxide or solvate thereof for use as defined above.
- Another aspect of the invention is 3-(2,6-Dichloro-3,5-dimethoxy-phenyl)-1- ⁇ 6-[4-(4-ethyl-piperazin-1-yl)-phenylamino]-pyrimid-4-yl ⁇ -1-methyl-urea or a pharmaceutically acceptable salt, N-oxide or solvate thereof for use in increasing cortical bone volume or thickness when compared to a control or cortical bone volume or thickness before the beginning of the treatment.
- Yet another aspect of the invention is 3-(2,6-Dichloro-3,5-dimethoxy-phenyl)-1- ⁇ 6-[4-(4-ethyl-piperazin-1-yl)-phenylamino]-pyrimid-4-yl ⁇ -1-methyl-urea or a pharmaceutically acceptable salt, N-oxide or solvate thereof for use in gaining body weight in a patient that shows increased activity of FGF23 compared to control.
- Further aspect of the invention is 3-(2,6-Dichloro-3,5-dimethoxy-phenyl)-1- ⁇ 6-[4-(4-ethyl-piperazin-1-yl)-phenylamino]-pyrimid-4-yl ⁇ -1-methyl-urea or a pharmaceutically acceptable salt, N-oxide or solvate thereof for use in inhibiting FGF23 expression in bone or inhibiting FGF23 activity in bone.
- FIG. 1 FGFR inhibitor treatment induces 1,25(OH)2D3 biosynthesis and alleviates hypocalcemia and hypophosphatemia in Hyp mice.
- Regulation of the renal FGF23 target genes Cyp27b1 (A) and Cyp24a1 (B) upon FGFR inhibition for 7 h in vivo is shown. Data are shown as relative levels to the wild-type vehicle control group (relative expression of 100).
- C Serum 1,25(OH)2D3 levels of wild-type and Hyp mice treated as described in A and B were determined by radio receptor assay. Calcium (E) and phosphate (F) levels at 24 h post-administration in wild-type and Hyp mice treated with a single oral dose of BGJ398 (50mg/kg) or vehicle.
- Phosphate and calcium levels were determined from serum. Data are given as average with SEM (n ⁇ 6). Data were compared by unpaired Student's t test; *p ⁇ 0.05; **p ⁇ 0.01; ***p ⁇ 0.001; n. s.: not significant.
- FIG. 2 FGFR inhibitor treatment modulates renal FGF23 target gene expression and alleviates hypocalcemia and hypophosphatemia in Dmp1-null mice.
- Regulation of the renal FGF23 target genes Cyp27b1 (A) and Cyp24a1 (B) upon FGFR inhibition in vivo Data are shown as relative levels to the wild-type vehicle control group (relative expression of 100) and are given as average with standard errors of the mean (SEM) (n ⁇ 6). Effect of pharmacological FGFR inhibition on serum calcium (C) and phosphate (D) levels in wild-type and Dmp1-null mice. Data are shown as average with SEM (n ⁇ 6). Data were compared by unpaired Student's t test; *p ⁇ 0.05; **p ⁇ 0.01; ***p ⁇ 0.001; n. s.: not significant.
- FIG. 3 shows FGFR-dependent signaling regulates FGF23 expression in bone.
- FIG. 4 shows that FGFR inhibitor treatment leads to a persistent increase of calcium and phosphate serum levels. Determination of Calcium (A) and phosphate (B) levels from serum in Wild-type or Hyp mice 48 h after administration of the compound of formula I. (C) Compound concetration in the kidney after 7 h and 24 h of treatment.
- FIG. 5 Long-term FGFR inhibition enhances body weight and tail length development and restores mineral ion homeostasis in Hyp mice.
- Wild-type or Hyp mice were treated with the FGFR inhibitor BGJ398 (50 mg/kg) or vehicle 3qw for 56 days and body weight (A) and tail length (C) development was monitored.
- Calcium (E) and phosphate (F) and levels at the end of the 8 week treatment were determined from serum 24 h after the last administration. Data are shown as average with SEM (n ⁇ 6). Data were compared by unpaired Student's t test; *p ⁇ 0.05; **p ⁇ 0.01; ***p ⁇ 0.001; n. s.: not significant.
- FIG. 6 Serum levels of FGF23, parathyroid hormone (PTH) and 1,25(OH)2D3 after long-term FGFR inhibition with BGJ398.
- Wild-type or Hyp mice were treated with the FGFR inhibitor BGJ398 (50 mg/kg) or vehicle 3qw for 56 days and FGF23 (A), PTH (B) and 1,25(OH)2D3 (C) levels were determined from serum at 24 h after the last dosing. Data are shown as average with SEM (n ⁇ 4). Data were compared by unpaired Student's t test; *p ⁇ 0.05; **p ⁇ 0.01; ***p ⁇ 0.001; n. s.: not significant.
- FIG. 7 Long-term FGFR inhibition enhances growth of long bones in Hyp mice. Radiographs of femur (A) and tibia (B) from wild-type or Hyp mice treated with the FGFR inhibitor BGJ398 (50 mg/kg) or vehicle 3qw for 56 days. Quantification of femoral (C) and tibial (D) length. Data are shown as average with SEM (n ⁇ 6). Data were compared by unpaired Student's t test; *p ⁇ 0.05; **p ⁇ 0.01; ***p ⁇ 0.001; n. s.: not significant.
- FIG. 8 Long-term FGFR inhibition improves cortex integrity in femoral bone of Hyp mice.
- A Micro-CT scans of femoral cortex (sub growth plate area) from wild-type or Hyp mice treated with the FGFR inhibitor BGJ398 (50 mg/kg) or vehicle 3qw for 56 days. Quantification of relative cortical bone volume (B) and average cortex thickness (C). Data are shown as average with SEM (n ⁇ 6). Data were compared by unpaired Student's t test; *p ⁇ 0.05; **p ⁇ 0.01; ***p ⁇ 0.001; n. s.: not significant.
- FIG. 9 shows Goldner staining of tibial sections from wild-type or Hyp mice treated with the FGFR inhibitor BGJ398 (50 mg/kg) or vehicle 3qw for 56 days
- A Mineralized tissue is indicated by white arrows, unmineralized osteoid is indicated by black arrows,
- B Osteoid surface/bone surface and osteoid width (C) determined by histomorphometry in the tibial epiphysis of wild-type or Hyp mice treated with BGJ398 (50 mg/kg) or vehicle 3qw for 56 days.
- Data are shown as average with SEM (n ⁇ 6). Data were compared by unpaired Student's t test; *p ⁇ 0.05; **p ⁇ 0.01; ***p ⁇ 0.001.
- the fibroblast growth factor 23 (FGF23) is known. It is considered a member of the fibroblast growth factor family with broad biological activities.
- the sequence of the protein and/or the coding sequence of the protein can be retrieved from publicly available databases known in the art.
- Human FGF23 is also known in the art as ADHR; HYPF; HPDR2; PHPTC.
- FGF23 is the disease-causing factor in several hypophosphatemic conditions.
- the compound can be especially useful for the treatment of X-linked hypophosphatemic rickets (XLH), autosomal dominant hypophosphatemic rickets (ADHR) or autosomal recessive hypophosphatemic rickets (ARHR), post-renal transplant hypophosphatemia, particularly X-linked hypophosphatemic rickets (XLH) and autosomal dominant hypophosphatemic rickets (ADHR) or autosomal recessive hypophosphatemic rickets (ARHR).
- XLH X-linked hypophosphatemic rickets
- ADHR autosomal dominant hypophosphatemic rickets
- ARHR autosomal recessive hypophosphatemic rickets
- the term “treat”, “treating” or “treatment” of any disease or disorder refers in one embodiment, to ameliorating the disease or disorder (i.e., slowing or arresting or reducing the development of the disease or at least one of the clinical symptoms thereof).
- “treat”, “treating” or “treatment” refers to alleviating or ameliorating at least one physical parameter including those which may not be discernible by the patient.
- “treat”, “treating” or “treatment” refers to modulating the disease or disorder, either physically, (e.g., stabilization of a discernible symptom), physiologically, (e.g., stabilization of a physical parameter), or both.
- “treat”, “treating” or “treatment” refers to preventing or delaying the onset or development or progression of the disease or disorder.
- pharmaceutically acceptable salts refers to salts that retain the biological effectiveness and properties of the compound when used according to this invention and, which typically are not biologically or otherwise undesirable.
- Pharmaceutically acceptable acid addition salts can be formed with inorganic acids and organic acids, e.g., acetate, aspartate, benzoate, besylate, bromide/hydrobromide, bicarbonate/carbonate, bisulfate/sulfate, camphorsulfonate, chloride/hydrochloride, chlortheophyllonate, citrate, ethandisulfonate, fumarate, gluceptate, gluconate, glucuronate, oleate, oxalate, palmitate, pamoate, phosphate/hydrogen phosphate/dihydrogen phosphate, propionate, stearate, succinate, subsalicylate, tartrate, tosylate, trifluoroacetate salt or the like.
- Inorganic acids from which salts can be derived include, for example, hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like.
- the pharmaceutically acceptable salt is monophosphoric acid salt (or phosphate) of the compound 3-(2,6-Dichloro-3,5-dimethoxy-phenyl)-1- ⁇ 6-[4-(4-ethyl-piperazin-1-yl)-phenylamino]-pyrimid-4-yl ⁇ -1-methyl-urea, which can optionally be in anhydrous crystalline form.
- the salt of the compound is any salt or form disclosed in WO2011/071821.
- 3-(2,6-Dichloro-3,5-dimethoxy-phenyl)-1- ⁇ 6-[4-(4-ethyl-piperazin-1-yl)-phenylamino]-pyrimid-4-yl ⁇ -1-methyl-urea is in its free base form.
- solvate refers to a molecular complex of the compound with one or more solvent molecules.
- solvent molecules are those commonly used in the pharmaceutical art, which are known to be innocuous to the compound, e.g., water, ethanol, and the like.
- N-Oxide of compound 3-(2,6-Dichloro-3,5-dimethoxy-phenyl)-1- ⁇ 6-[4-(4-ethyl-piperazin-1-yl)-phenylamino]-pyrimid-4-yl ⁇ -1-methyl-urea has the following formula II
- BGJ398 or a pharmaceutically acceptable salt, N-oxide or solvate is administered to a patient in need thereof in more than one therapeutically effective dose.
- a therapeutically effective dose refers to an amount of the BGJ398 that will elicit the biological or medical response of a subject, for example, reduction or inhibition of kinase activity, or ameliorate symptoms, alleviate conditions, slow or delay disease progression, or prevent a disease, etc.
- the subject can be any mammal, incuding human.
- the therapeutically effective dose can be about 1-250 mg of BGJ398 for a subject of about 50-70 kg, or about 1-150 mg, for example at dose of 125 mg, or about 0.5-100 mg, or about 1-50 mg, or about 1-25 mg, or about 1-10 mg of BGJ398.
- the therapeutically effective dosage of the compound, whether alone or in the pharmaceutical composition, or in a combination with other active ingredients as explained hereinafter, is dependent on the species of the subject, the body weight, age and individual condition, the disorder or disease or the severity thereof being treated.
- in another aspect of the invention is 3-(2,6-Dichloro-3,5-dimethoxy-phenyl)-1- ⁇ 6-[4-(4-ethyl-piperazin-1-yl)-phenylamino]-pyrimid-4-yl ⁇ -1-methyl-urea or a pharmaceutically acceptable Salt, N-oxide or solvate thereof for use in increasing cortical bone volume or thickness when compared to a control or cortical bone volume or thickness before the beginning of the treatment.
- the experiments that were conducted clearly show that the cortical bone volume increases from pathological values to indistinguishable with normal values when the subject is treated with BGJ398.
- cortex thickness was significantly increased.
- control refers to a value of FGF23 activity or expression in an individual, a number of subjects or population without the respective disease.
- one embodiment of the invention is 3-(2,6-Dichloro-3,5-dimethoxy-phenyl)-1- ⁇ 6-[4-(4-ethyl-piperazin-1-yl)-phenylamino]-pyrimid-4-yl ⁇ -1-methyl-urea or a pharmaceutically acceptable salt, N-oxide or solvate thereof for use in inhibiting FGF23 expression in bone or inhibiting FGF23 activity in bone.
- “Expression” refers to the nucleic acids or amino acids generated when a gene is transcribed and translated.
- transcriptional activity can be assessed by any appropriate method, including for example, detecting the quantity of mRNA transcribed from the FGF23 gene or the quantity of cDNA produced from the reverse transcription of the mRNA transcribed from the gene or the quantity of the polypeptide or protein encoded by the gene.
- any one of gene copy number, transcription, or translation can be determined using known techniques.
- an amplification method such as PCR may be useful.
- the dose can be administered intermittently in order to minimize the undesired secondary effect which may be harmful to the subject.
- Doses can be administered consecutively without interruptions, or starting first with a number of doses to achieve a steady state concentration in a patient in a need thereof and then modifying the time between the doses.
- the dosing can be adapted immediately after the first dose.
- the time between two consecutive doses of the compound can be more than 24 hours, optionally 48 hours or even a week.
- the dose is given repeatedly, optionally again with one, two, or three days between two consecutive doses, or only after a relapse.
- the compound 3-(2,6-Dichloro-3,5-dimethoxy-phenyl)-1- ⁇ 6-[4-(4-ethyl-piperazin-1-yl)-phenylamino]-pyrimid-4-yl ⁇ -1-methyl-urea can be used in the treatment in combination with another FGFR inhibitor, phosphate, calcium, osteopontin (OPN), parathyroid hormone or its analogue (PTH), and/or vitamin D or vitamin D analogue, preferably in combination with phosphate, calcium and/or vitamin D or vitamin D analogue, particularly vitamin D or vitamin D analogue.
- OPN osteopontin
- PTH parathyroid hormone or its analogue
- vitamin D or vitamin D analogue preferably in combination with phosphate, calcium and/or vitamin D or vitamin D analogue, particularly vitamin D or vitamin D analogue.
- the BGJ389 may be used in combination to advantage to bring about additive or even synergistic effects, but also to reduce the need of using higher doses of BGJ389 and consecutively to limit the risk of adverse effects.
- Phosphate can be used in any form which when taken orally or parenterally increases blood level of inorganic phosphorus (P), which may e.g. be measured in serum by ultraviolet method using for example kits from RANDOX Laboratories LTD, UK, and a clinical chemistry analyzer such as the HITACHI 717 analyzer (Roche Diagnostics).
- Calcium can also be in any form which eventually leads to, when taken, increased blood level of total calcium that may e.g.
- Osteopontin referred to as secreted phosphoprotein 1, bone sialoprotein I or early T-lymphocyte activation 1, which is known. It is considered an extracellular structural protein involved in bone remodeling.
- Human osteopontin is known in the art as SPP1.
- Parathyroid hormone (PTH) or parathormone is known. It is considered a hormone involved in the regulation of the calcium level in blood.
- PTH analogue is a molecule that at least in part retains the activity of PTH and structurally resembles the complete PTH by being only shorter or has modified or additional substituents linked to the PTH backbone structure.
- Vitamin D is a known hormone responsible for calcium homeostasis and important for healthy bone phenotype. Its analogue is a structurally similar compound in that it mimics the chemical structure of Vitamin D and elicits similar pharmacological effect.
- An example of Vitamin D analogue is calcipotriol.
- 3-(2,6-dichloro-3,5-dimethoxy-phenyl)-1- ⁇ 6-[4-(4-ethyl-piperazin-1-yl)-phenylamino]-pyrimid-4-yl ⁇ -1-methyl-urea, or a pharmaceutically acceptable salt, N-oxide or solvate thereof is formulated in a pharmaceutical composition which in turn can be used in any treatment as explained above.
- the pharmaceutical composition would normally comprise 3-(2,6-dichloro-3,5-dimethoxy-phenyl)-1- ⁇ 6-[4-(4-ethyl-piperazin-1-yl)-phenylamino]-pyrimid-4-yl ⁇ -1-methyl-urea or a pharmaceutically acceptable salt, N-oxide or solvate thereof and one or more pharmaceutically acceptable excipients.
- the amount of the compound in the pharmaceutical composition is preferably therapeutically effective.
- FGFR inhibitor phosphate, calcium, osteopontin (OPN), parathyroid hormone or its analogue (PTH), and/or vitamin D or vitamin D analogue, preferably in combination with phosphate, calcium and/or vitamin D or vitamin D analogue, particularly vitamin D or vitamin D analogue are added in the pharmaceutical composition according to the present invention.
- the pharmaceutical composition can be formulated for particular routes of administration such as oral administration, parenteral administration, and topical administration, etc.
- the pharmaceutical compositions of the present invention can be made up in a solid form (including without limitation capsules, tablets, pills, granules, powders or suppositories), or in a liquid form (including without limitation solutions, suspensions or emulsions).
- compositions can be subjected to conventional pharmaceutical operations such as compacting, tabletting, filtering, lyophilization, sterilization or the like.
- Excipient can be any conventional inert diluent, lubricating agent, buffering agent, binder, disintegration agent, sweetening agent, flavoring agent, as well as adjuvants, such as preservative, stabilizer, wetting agent, emulsifer, solvents, dispersion media, coating, surfactant, antioxidant, preservative (e.g. antibacterial agents, antifungal agents), isotonic agent, absorption delaying agent, salt, preservative, drug stabilizer, dye, and the like and combinations thereof.
- preservative e.g. antibacterial agents, antifungal agents
- FGFR inhibitor treatment induces 1,25(OH)2D3 biosynthesis and alleviates hypocalcemia and hypophosphatemia in Hyp mice.
- Wild-type C57BL/6 and Hyp (B6.Cg-PhexHyp/J) mice were obtained from The Jackson Laboratory.
- Dmp1-null mice were generated by Feng et al. (J. Dent. Res. 2003; 82:776-780.). All mice were kept in cages under standard laboratory conditions. Mice were fed on a standard rodent diet with water ad libitum.
- Kidneys were sampled, total RNA was isolated. For RNA isolation from mouse tibial and femoral bones, epiphyses were cut off and bone marrow was removed by centrifugation at 4° C. Tissue was homogenized using a Precellyis 24 bead homogenizer and RNA was extracted with TRIzol reagent. RNA was purified subsequently by chloroform extraction, isopropanol precipitation and RNeasy Mini kit. For kidney RNA, approximately 60 mg of tissue was homogenized in 1.5 ml RTL buffer (Qiagen) with a rotor-stator homogenizer and RNA was purified with the RNeasy Mini kit. Random hexamer primed cDNA was synthesized with 0.5-2 ⁇ g RNA and MultiScribe MuLV reverse transcriptase.
- Gene expression was analyzed by quantitative real-time PCR (qPCR).
- TaqMan Probe-Based Gene Expression assays were used for expression analysis of mouse Cyp27b1 (Mm01165919), Cyp24a1 (Mm00487244) and Gapdh (4352339E).
- Sequences of primers and FAM/TAMRA-labeled probes (Microsynth) for the detection of mouse Fgf23 were 5′-TTTGGATCGCTTCACTTCAG (forward), 5′-GTGATGCTTCTGCGACAAGT (reverse) and 5′-CGCCAGTGGACGCTGGAGAA (probe).
- Quantitative real-time PCR was performed in an iQ5 Real-Time PCR Detection System using a qPCR core kit for probe assay and an equivalent of 40 or 80 ng RNA of each sample. The data were normalized to Gapdh expression.
- Serum was separated from whole blood using clot activator centrifugation tubes. 100 ⁇ l of serum were used for determination of phosphate and calcium levels using the VetScan diagnostic profiling system. Serum concentrations of 1,25(OH)2D3 were determined using a radio receptor assay kit. FGF23 serum levels were analyzed by an ELISA detecting intact FGF23 (Kainos).
- FGF23 exerts its hypophosphatemic functions in part by transcriptional regulation of the 1,25(OH)2D3-metabolizing enzymes CYP27B1 and CYP24A1 in the kidney.
- Cyp27b1 and Cyp24a1 expression and 1,25(OH)2D3 serum levels in Hyp mice were not significantly different compared to wild-type mice ( FIGS. 1A , B and C), potentially owing to adaption processes and in line with previous reports.
- FIG. 1 regulation of the renal FGF23 target genes Cyp27b1 (A) and Cyp24a1 ( FIG. 1B ) upon FGFR inhibition in vivo is depicted.
- C Serum 1,25(OH)2D3 levels of wild-type and Hyp mice treated as described in A and B were determined by radio receptor assay.
- Calcium ( FIG. 1E ) and ( FIG. 1F ) phosphate levels at 24 h post-administration in wild-type and Hyp mice treated with a single oral dose of BGJ398 (50 mg/kg) or vehicle are shown. All together this shows that FGFR inhibitor treatment induces 1,25(OH)2D3 biosynthesis and alleviates hypocalcemia and hypophosphatemia in Hyp mice. The results further indicate that pharmacological inhibition of FGFR is sufficient to counteract aberrant FGF23 signaling in Hyp mice.
- FGFR inhibitor treatment modulates renal FGF23 target gene expression and alleviates hypocalcemia and hypophosphatemia in Dmp1-null mice.
- Regulation of the renal FGF23 target genes Cyp27b1 ( FIG. 2A ) and Cyp24a1 ( FIG. 2B ) upon FGFR inhibition in vivo is shown on FIG. 2 .
- Cyp27b1 and Cyp24a1 expression were also observed in Dmp1-null mice.
- SEM standard errors of the mean
- mice received a single oral dose of the FGFR inhibitor BGJ398 (50 mg/kg) or vehicle and were studied 24 h post-administration. Phosphate and calcium levels were determined from serum. As for Hyp mice, pharmacological FGFR inhibition led to increased serum calcium and phosphate levels in Dmp1-null mice ( FIGS. 2C and D, respectively). Data in FIG. 2 are shown as average with SEM (n ⁇ 6). Data were compared by unpaired Student's t test; *p ⁇ 0.05; **p ⁇ 0.01; ***p ⁇ 0.001; n. s.: not significant.
- FIG. 3 shows FGFR-dependent signaling regulates FGF23 expression in bone.
- BGJ398 FGFR inhibitor-treated Hyp mice.
- Mice received a single oral dose of the FGFR inhibitor BGJ398 (50 mg/kg) or vehicle and were studied 7 h post-administration.
- FGF23 bone mRNA ( FIG. 3A ) and serum ( FIG. 3B ) levels in wild-type and Hyp mice treated with BGJ398 were determined.
- FIG. 2A The transcriptional repression of FGF23 resulted in undetectable serum FGF23 levels in wild-type mice, while the pathological high FGF23 levels in Hyp mice were reduced by approximately 50% ( FIG. 3B ).
- mRNA expression is shown on the figure as relative levels to the wild-type vehicle control group (relative levels of 100) and are given as average with SEM (n ⁇ 7). FGF23 mRNA expression values were normalized to Gapdh mRNA copies. Data were compared by unpaired Student's t test; *p ⁇ 0.05; **p ⁇ 0.01; ***p ⁇ 0.001.
- FIG. 4 clearly shows that FGFR inhibitor treatment leads to a persistent increase of calcium and phosphate serum levels.
- wild-type or Hyp mice received a single oral dose of the FGFR inhibitor BGJ398 or vehicle and were studied 48 h after administration of the compound.
- Calcium ( FIG. 4A ) and phosphate ( FIG. 4B ) levels were determined from serum. Data are shown as average with SEM (n ⁇ 3). Data were compared by unpaired Student's t test; *p ⁇ 0.05; **p ⁇ 0.01; ***p ⁇ 0.001; n. s.: not significant.
- C BGJ398 concentrations in kidney at 7 h and 24 h post-administration. Values are given as average with SEM (n ⁇ 5).
- FIG. 5 shows body weight ( FIG. 5A ) and tail length ( FIG. 5C ) development as monitored.
- FIG. 5B and tail length gain ( FIG. 5D ) over the course of the treatment are depicted in FIG. 5 as well.
- Data are shown as average with SEM (n ⁇ 6). Data were compared by unpaired Student's t test; *p ⁇ 0.05; **p ⁇ 0.01; ***p ⁇ 0.001; n. s.: not significant.
- Hyp mice Compared to wild-type littermates, Hyp mice displayed a reduced body weight at 5 weeks of age, when the treatments were started. During the course of treatment, pharmacological FGFR inhibition in Hyp mice led to a stronger increase in body weight compared to the vehicle control group ( FIG. 5A ). Overall, the total body weight gain in BGJ398-treated Hyp mice was similar to vehicle-treated wild-type mice ( FIG. 5B ). A shorter tail is a pronounced feature of the hypophosphatemic rickets phenotype of Hyp mice, reflecting the impaired bone formation. Therefore, we monitored the tail length development during the 8 weeks of treatment and found that BGJ398-treated Hyp mice displayed a much stronger increase in tail length compared to control Hyp mice ( FIG. 5C ).
- FIG. 6 shows serum levels of FGF23, parathyroid hormone (PTH) and 1,25(OH)2D3 after long-term FGFR inhibition with BGJ398.
- Wild-type or Hyp mice were treated again with the FGFR inhibitor BGJ398 (50 mg/kg) or vehicle 3qw for 56 days and FGF23 ( FIG. 6A ), parathyroid hormone (PTH) ( FIG. 6B ) and 1,25(OH)2D3 ( FIG. 6C ) levels were determined from serum at 24 h after the last dosing.
- PTH values were determined by separating the serum from whole blood using clot activator centrifugation tubes (Sarstedt).
- FIGS. 7A and B Radiographs of femur ( FIG. 7A ) and tibia ( FIG. 7B ) from wild-type or Hyp mice treated with the FGFR inhibitor BGJ398 (50 mg/kg) or vehicle 3qw for 56 days. Quantification of femoral ( FIG. 7C ) and tibial ( FIG. 7D ) length. Data are shown as average with SEM (n ⁇ 6). Data were compared by unpaired Student's t test; *p ⁇ 0.05; **p ⁇ 0.01; ***p ⁇ 0.001; n. s.: not significant.
- FGFR inhibition improves cortex integrity in femoral bone of Hyp mice.
- ⁇ CT microcomputed tomography
- FIG. 8B Compared to wild-type mice, vehicle-treated Hyp mice displayed reduced relative bone volume in the cortical bone area ( FIG. 8B ) and a decreased average cortex thickness ( FIG. 8C ). In contrast, cortex of BGJ398-treated Hyp mice appeared intact ( FIG. 8A ), relative cortical bone volume was indistinguishable from wild-type mice ( FIG. 8B ) and cortex thickness was significantly increased compared to vehicle-treated Hyp mice ( FIG. 8C ).
- FIG. 9A left panels
- FIG. 9B right panels
- enhanced mineralization in the epiphyseal bone area adjacent to the growth plate as well as the formation of primary spongiosa in the metaphyseal sub-growth plate area, which was almost absent in vehicle-treated Hyp mice.
- histomorphometric analysis revealed an attenuation of the increased OS/BS ratio in Hyp mice in upon FGFR inhibition ( FIG. 9B ) and a strong reduction of osteoid width within the epiphyseal, metaphyseal and cortical bone compartments ( FIG. 9C ).
- our data indicate that pharmacological inhibition of FGFRs is sufficient to inhibit aberrant FGF23-signaling and to alleviate the hypophosphatemic rickets phenotype of XLH and potentially other FGF23-related hypophosphatemia diseases, such as ARHR.
- the complete normalization of phosphate and calcium levels in Hyp mice upon continuous dosing of the FGFR inhibitor BGJ398 and the re-organization of the growth plate area in rickets-resembling bone are promising, since this constitutes a prerequisite for a potential reversion of the hypophosphatemic rickets phenotype.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Chemical & Material Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Endocrinology (AREA)
- Physical Education & Sports Medicine (AREA)
- Gastroenterology & Hepatology (AREA)
- Zoology (AREA)
- Inorganic Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Immunology (AREA)
- Hematology (AREA)
- Diabetes (AREA)
- Rheumatology (AREA)
- Obesity (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Marine Sciences & Fisheries (AREA)
- Nutrition Science (AREA)
- Toxicology (AREA)
- Dermatology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/388,978 US20150072019A1 (en) | 2012-03-30 | 2013-03-29 | Fgfr inhibitor for use in the treatment of hypophosphatemic disorders |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261617889P | 2012-03-30 | 2012-03-30 | |
US14/388,978 US20150072019A1 (en) | 2012-03-30 | 2013-03-29 | Fgfr inhibitor for use in the treatment of hypophosphatemic disorders |
PCT/EP2013/056811 WO2013144339A1 (en) | 2012-03-30 | 2013-03-29 | Fgfr inhibitor for use in the treatment of hypophosphatemic disorders |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2013/056811 A-371-Of-International WO2013144339A1 (en) | 2012-03-30 | 2013-03-29 | Fgfr inhibitor for use in the treatment of hypophosphatemic disorders |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/272,633 Continuation US10028955B2 (en) | 2012-03-30 | 2016-09-22 | FGFR inhibitor for use in the treatment of hypophosphatemic disorders |
Publications (1)
Publication Number | Publication Date |
---|---|
US20150072019A1 true US20150072019A1 (en) | 2015-03-12 |
Family
ID=47998482
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/388,978 Abandoned US20150072019A1 (en) | 2012-03-30 | 2013-03-29 | Fgfr inhibitor for use in the treatment of hypophosphatemic disorders |
US15/272,633 Active US10028955B2 (en) | 2012-03-30 | 2016-09-22 | FGFR inhibitor for use in the treatment of hypophosphatemic disorders |
US16/005,966 Abandoned US20210308132A1 (en) | 2012-03-30 | 2018-06-12 | Fgfr inhibitor for use in the treatment of hypophosphatemic disorders |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/272,633 Active US10028955B2 (en) | 2012-03-30 | 2016-09-22 | FGFR inhibitor for use in the treatment of hypophosphatemic disorders |
US16/005,966 Abandoned US20210308132A1 (en) | 2012-03-30 | 2018-06-12 | Fgfr inhibitor for use in the treatment of hypophosphatemic disorders |
Country Status (11)
Country | Link |
---|---|
US (3) | US20150072019A1 (ru) |
EP (1) | EP2830626B1 (ru) |
JP (1) | JP6190871B2 (ru) |
KR (1) | KR102126092B1 (ru) |
CN (2) | CN109718239B (ru) |
AU (1) | AU2013241664B2 (ru) |
CA (1) | CA2866229C (ru) |
IN (1) | IN2014DN08969A (ru) |
MX (1) | MX354783B (ru) |
RU (1) | RU2643326C2 (ru) |
WO (1) | WO2013144339A1 (ru) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018128510A1 (ko) * | 2017-01-06 | 2018-07-12 | 주식회사 레모넥스 | 전이성 난소암, 자궁내막암 또는 유방암의 예방 또는 치료용 조성물 |
CN110402143A (zh) * | 2017-01-06 | 2019-11-01 | 雷莫内克斯生物制药有限公司 | 预防或治疗转移性卵巢癌、子宫内膜癌或乳腺癌的组合物 |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8754114B2 (en) | 2010-12-22 | 2014-06-17 | Incyte Corporation | Substituted imidazopyridazines and benzimidazoles as inhibitors of FGFR3 |
ES2704744T3 (es) | 2012-06-13 | 2019-03-19 | Incyte Holdings Corp | Compuestos tricíclicos sustituidos como inhibidores de FGFR |
WO2014026125A1 (en) | 2012-08-10 | 2014-02-13 | Incyte Corporation | Pyrazine derivatives as fgfr inhibitors |
US9266892B2 (en) | 2012-12-19 | 2016-02-23 | Incyte Holdings Corporation | Fused pyrazoles as FGFR inhibitors |
CN109776525B (zh) | 2013-04-19 | 2022-01-21 | 因赛特控股公司 | 作为fgfr抑制剂的双环杂环 |
EA028614B1 (ru) * | 2014-05-22 | 2017-12-29 | Общество С Ограниченной Ответственностью "Русские Фармацевтические Технологии" | Селективные ингибиторы, нарушающие взаимодействие рецептора фактора роста фибробластов и frs2, для профилактики и лечения рака |
US10851105B2 (en) | 2014-10-22 | 2020-12-01 | Incyte Corporation | Bicyclic heterocycles as FGFR4 inhibitors |
US9580423B2 (en) | 2015-02-20 | 2017-02-28 | Incyte Corporation | Bicyclic heterocycles as FGFR4 inhibitors |
AU2016219822B2 (en) | 2015-02-20 | 2020-07-09 | Incyte Holdings Corporation | Bicyclic heterocycles as FGFR inhibitors |
MA41551A (fr) | 2015-02-20 | 2017-12-26 | Incyte Corp | Hétérocycles bicycliques utilisés en tant qu'inhibiteurs de fgfr4 |
WO2016189472A1 (en) * | 2015-05-28 | 2016-12-01 | Novartis Ag | Fgfr inhibitor for use in the treatment of the phosphaturic mesenchymal tumor |
EP3324970A4 (en) * | 2015-07-20 | 2019-03-06 | Taipei Medical University | CHLORINE-SUBSTITUTED AZAARYL COMPOUNDS |
CA2991846A1 (en) * | 2015-07-24 | 2017-02-02 | Anne VASLIN-CHESSEX | Fgfr expression and susceptibility to an fgfr inhibitor |
WO2018189906A1 (ja) | 2017-04-14 | 2018-10-18 | 堺ディスプレイプロダクト株式会社 | 有機el表示装置の製造方法及び製造装置 |
AR111960A1 (es) | 2017-05-26 | 2019-09-04 | Incyte Corp | Formas cristalinas de un inhibidor de fgfr y procesos para su preparación |
BR112020022392A2 (pt) | 2018-05-04 | 2021-02-02 | Incyte Corporation | formas sólidas de um inibidor de fgfr e processos para preparação das mesmas |
MX2020011639A (es) | 2018-05-04 | 2021-02-15 | Incyte Corp | Sales de un inhibidor de receptores de factor de crecimiento de fibroblastos (fgfr). |
WO2020185532A1 (en) | 2019-03-08 | 2020-09-17 | Incyte Corporation | Methods of treating cancer with an fgfr inhibitor |
EP3942045A1 (en) | 2019-03-21 | 2022-01-26 | Onxeo | A dbait molecule in combination with kinase inhibitor for the treatment of cancer |
US11591329B2 (en) | 2019-07-09 | 2023-02-28 | Incyte Corporation | Bicyclic heterocycles as FGFR inhibitors |
IL291901A (en) | 2019-10-14 | 2022-06-01 | Incyte Corp | Bicyclyl heterocycles as fgr suppressors |
WO2021076728A1 (en) | 2019-10-16 | 2021-04-22 | Incyte Corporation | Bicyclic heterocycles as fgfr inhibitors |
EP4054579A1 (en) | 2019-11-08 | 2022-09-14 | Institut National de la Santé et de la Recherche Médicale (INSERM) | Methods for the treatment of cancers that have acquired resistance to kinase inhibitors |
WO2021113479A1 (en) | 2019-12-04 | 2021-06-10 | Incyte Corporation | Tricyclic heterocycles as fgfr inhibitors |
KR20220131900A (ko) | 2019-12-04 | 2022-09-29 | 인사이트 코포레이션 | Fgfr 억제제의 유도체 |
CA3176713A1 (en) * | 2019-12-09 | 2021-06-17 | Cedars-Sinai Medical Center | Use of fgfr inhibitors for treatment of idiopathic short stature |
WO2021146424A1 (en) | 2020-01-15 | 2021-07-22 | Incyte Corporation | Bicyclic heterocycles as fgfr inhibitors |
WO2021148581A1 (en) | 2020-01-22 | 2021-07-29 | Onxeo | Novel dbait molecule and its use |
CA3215903A1 (en) | 2021-04-12 | 2022-10-20 | Incyte Corporation | Combination therapy comprising an fgfr inhibitor and a nectin-4 targeting agent |
EP4352059A1 (en) | 2021-06-09 | 2024-04-17 | Incyte Corporation | Tricyclic heterocycles as fgfr inhibitors |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006000420A1 (en) * | 2004-06-24 | 2006-01-05 | Novartis Ag | Pyrimidine urea derivatives as kinase inhibitors |
US20110045511A1 (en) * | 2008-04-29 | 2011-02-24 | Diana Graus Porta | Methods of monitoring the modulation of the kinase activity of fibroblast growth factor receptor and uses of said method |
WO2011071821A1 (en) * | 2009-12-07 | 2011-06-16 | Novartis Ag | Crystalline forms of 3-(2,6-dichloro-3,5-dimethoxy-phenyl)-1-{6-[4-(4-ethyl-piperazin-1-yl)-phenylamino]-pyrimidin-4-yl}-1-methyl-urea and salts thereof. |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1269960C (zh) | 2000-12-26 | 2006-08-16 | 中外制药株式会社 | 降低血磷水平的人fgf23蛋白质突变体 |
EP1882475A1 (en) * | 2006-07-26 | 2008-01-30 | Novartis AG | Method of treating disorders mediated by the fibroblast growth factor receptor |
IN2012DN03180A (ru) * | 2009-10-30 | 2015-09-25 | Novartis Ag | |
JP2013514986A (ja) * | 2009-12-18 | 2013-05-02 | ノバルティス アーゲー | 血液癌の処置方法 |
WO2013088191A1 (en) | 2011-12-12 | 2013-06-20 | Institut National De La Sante Et De La Recherche Medicale (Inserm) | Antagonist of the fibroblast growth factor receptor 3 (fgfr3) for use in the treatment or the prevention of skeletal disorders linked with abnormal activation of fgfr3 |
-
2013
- 2013-03-29 JP JP2015502373A patent/JP6190871B2/ja active Active
- 2013-03-29 CN CN201811194059.3A patent/CN109718239B/zh active Active
- 2013-03-29 RU RU2014143517A patent/RU2643326C2/ru active
- 2013-03-29 CA CA2866229A patent/CA2866229C/en active Active
- 2013-03-29 MX MX2014011841A patent/MX354783B/es active IP Right Grant
- 2013-03-29 IN IN8969DEN2014 patent/IN2014DN08969A/en unknown
- 2013-03-29 CN CN201380015597.0A patent/CN104321058A/zh active Pending
- 2013-03-29 US US14/388,978 patent/US20150072019A1/en not_active Abandoned
- 2013-03-29 EP EP13712589.4A patent/EP2830626B1/en active Active
- 2013-03-29 AU AU2013241664A patent/AU2013241664B2/en active Active
- 2013-03-29 KR KR1020147026889A patent/KR102126092B1/ko active IP Right Grant
- 2013-03-29 WO PCT/EP2013/056811 patent/WO2013144339A1/en active Application Filing
-
2016
- 2016-09-22 US US15/272,633 patent/US10028955B2/en active Active
-
2018
- 2018-06-12 US US16/005,966 patent/US20210308132A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006000420A1 (en) * | 2004-06-24 | 2006-01-05 | Novartis Ag | Pyrimidine urea derivatives as kinase inhibitors |
US20110045511A1 (en) * | 2008-04-29 | 2011-02-24 | Diana Graus Porta | Methods of monitoring the modulation of the kinase activity of fibroblast growth factor receptor and uses of said method |
WO2011071821A1 (en) * | 2009-12-07 | 2011-06-16 | Novartis Ag | Crystalline forms of 3-(2,6-dichloro-3,5-dimethoxy-phenyl)-1-{6-[4-(4-ethyl-piperazin-1-yl)-phenylamino]-pyrimidin-4-yl}-1-methyl-urea and salts thereof. |
Non-Patent Citations (6)
Title |
---|
K. Chow et al., Engineering of Pharmaceutical Materials: an Industrial Perspective, 97 J. Pharmaceutical Sciences, 2855 (2008) * |
K. R. Morris et al., An Integrated Approach to the Selection of Optimal Salt Form for a New Drug Candidate, 105 INT'L. J. PHARM. 209 (1994) * |
P.L. Gould, Salt Selection for Basic Drugs, 33 INT. J. THERAPEUTICS 201, 217 (1986) * |
R.J. Bastin et al., Salt Selection and Optimization Procedures for Pharmaceutical New Chemical Entities, 4 ORGANIC PROCESS RES. DEV. 427 (2000) * |
S. Badaway et al., Salt Selection for Pharmaceutical Compounds, in Preformulation in SOLID DOSAGE FORM DEV. 63 (M. Adeyeye ed., 2008) * |
S. H. Neau, Pharmaceutical Salts, in WATER-INSOLUBLE DRUG FORMULATION 417, 429 (R. Liu ed., CRC Press, 2008) * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018128510A1 (ko) * | 2017-01-06 | 2018-07-12 | 주식회사 레모넥스 | 전이성 난소암, 자궁내막암 또는 유방암의 예방 또는 치료용 조성물 |
CN110402143A (zh) * | 2017-01-06 | 2019-11-01 | 雷莫内克斯生物制药有限公司 | 预防或治疗转移性卵巢癌、子宫内膜癌或乳腺癌的组合物 |
US11779582B2 (en) | 2017-01-06 | 2023-10-10 | Lemonex Inc. | Composition for preventing or treating metastatic ovarian cancer, endometrial cancer or breast cancer |
Also Published As
Publication number | Publication date |
---|---|
AU2013241664B2 (en) | 2016-05-19 |
RU2643326C2 (ru) | 2018-01-31 |
CA2866229C (en) | 2020-09-15 |
CN109718239B (zh) | 2024-09-10 |
KR102126092B1 (ko) | 2020-06-24 |
CN109718239A (zh) | 2019-05-07 |
MX354783B (es) | 2018-03-21 |
US20170007606A1 (en) | 2017-01-12 |
US20210308132A1 (en) | 2021-10-07 |
US10028955B2 (en) | 2018-07-24 |
CA2866229A1 (en) | 2013-10-03 |
EP2830626A1 (en) | 2015-02-04 |
CN104321058A (zh) | 2015-01-28 |
WO2013144339A1 (en) | 2013-10-03 |
JP2015511621A (ja) | 2015-04-20 |
IN2014DN08969A (ru) | 2015-05-22 |
MX2014011841A (es) | 2015-02-10 |
EP2830626B1 (en) | 2019-01-02 |
KR20140145133A (ko) | 2014-12-22 |
AU2013241664A1 (en) | 2014-10-02 |
RU2014143517A (ru) | 2016-05-27 |
JP6190871B2 (ja) | 2017-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10028955B2 (en) | FGFR inhibitor for use in the treatment of hypophosphatemic disorders | |
De Baaij et al. | Magnesium in man: implications for health and disease | |
Kedlaya et al. | Sclerostin inhibition reverses skeletal fragility in an Lrp5-deficient mouse model of OPPG syndrome | |
CN108135177A (zh) | 用于治疗癌症的方法 | |
Bastepe et al. | Pseudohypoparathyroidism: new insights into an old disease | |
Andrukhova et al. | Klotho lacks an FGF23‐independent role in mineral homeostasis | |
EP2428210A1 (en) | Use of serum amyloid A gene in diagnosis and treatment of glaucoma and identification of anti-glaucoma agents | |
Alexander et al. | Effects of parathyroid hormone on renal tubular calcium and phosphate handling | |
Dong et al. | The extraglycemic effect of SGLT-2is on mineral and bone metabolism and bone fracture | |
Barzon et al. | Comment—is there a role for low doses of mitotane (o, p′-DDD) as adjuvant therapy in adrenocortical carcinoma? | |
US20230190748A1 (en) | Compositions for treatment of aged diseases | |
Nie et al. | 1, 25-Dihydroxyvitamin D enhances alveolar fluid clearance by upregulating the expression of epithelial sodium channels | |
AU2012308097B2 (en) | Treatment of bone diseases | |
WO2018210449A1 (en) | Prevention and treatment of fibroblast growth factor 23 (fgf23)-associated disorders including chronic kidney disease (ckd) | |
Rabb et al. | Possible molecular basis for changes in potassium handling in acute renal failure | |
JP2009511426A (ja) | ミネラルおよび骨格代謝の調節 | |
Zimering et al. | Persistent tumor-induced osteomalacia confirmed by elevated postoperative levels of serum fibroblast growth factor-23 and 5-year follow-up of bone density changes | |
LU100168B1 (en) | Prevention of Bone and Mineral Disorders by Restoring Calcium and Phosphate Homeostasis in Patients Suffering from Chronic Kidney Disease | |
US20220062299A1 (en) | Use of glucocorticoid steroids in preventing and treating conditions of muscle wasting, aging and metabolic disorder | |
Fricke et al. | Developmental fluoxetine exposure affects adolescent and adult bone depending on the dose and period of exposure | |
野田寛 | Studies of potential applications of peptide ligands for the parathyroid hormone/parathyroid hormone-related protein type 1 receptor for therapeutic options of bone and calcium metabolic diseases | |
Tiosano | Bone and Mineral Metabolism | |
Stratakis | Carney complex and related syndromes and their genetic loci—author’s response | |
Benabbas | Role of the H+-Activated Ovarian Cancer G Protein-Coupled Receptor 1 (OGR1) in the Renal Handling of Calcium and Magnesium | |
Bogers et al. | Expression of renal distal tubule transporters TRPM6 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NOVARTIS PHARMA AG, SWITZERLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KNEISSEL, MICHAELA;GUAGNANO, VITO;GRAUS PORTA, DIANA;AND OTHERS;SIGNING DATES FROM 20131120 TO 20140430;REEL/FRAME:033841/0116 Owner name: NOVARTIS AG, SWITZERLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NOVARTIS PHARMA AG;REEL/FRAME:033841/0265 Effective date: 20140509 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |