US20150071912A1 - Prophylaxis of colorectal and gastrointestinal cancer - Google Patents
Prophylaxis of colorectal and gastrointestinal cancer Download PDFInfo
- Publication number
- US20150071912A1 US20150071912A1 US14/233,593 US201114233593A US2015071912A1 US 20150071912 A1 US20150071912 A1 US 20150071912A1 US 201114233593 A US201114233593 A US 201114233593A US 2015071912 A1 US2015071912 A1 US 2015071912A1
- Authority
- US
- United States
- Prior art keywords
- seq
- hpg
- antibody
- antibodies
- monoclonal antibody
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/26—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against hormones ; against hormone releasing or inhibiting factors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
- A61K39/39533—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
- A61K39/39558—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against tumor tissues, cells, antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/30—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
- C07K16/3046—Stomach, Intestines
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/574—Immunoassay; Biospecific binding assay; Materials therefor for cancer
- G01N33/57407—Specifically defined cancers
- G01N33/57419—Specifically defined cancers of colon
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/574—Immunoassay; Biospecific binding assay; Materials therefor for cancer
- G01N33/57484—Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
- G01N33/57488—Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites involving compounds identifable in body fluids
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/74—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving hormones or other non-cytokine intercellular protein regulatory factors such as growth factors, including receptors to hormones and growth factors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/20—Immunoglobulins specific features characterized by taxonomic origin
- C07K2317/24—Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/30—Immunoglobulins specific features characterized by aspects of specificity or valency
- C07K2317/33—Crossreactivity, e.g. for species or epitope, or lack of said crossreactivity
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/30—Immunoglobulins specific features characterized by aspects of specificity or valency
- C07K2317/34—Identification of a linear epitope shorter than 20 amino acid residues or of a conformational epitope defined by amino acid residues
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/56—Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
- C07K2317/565—Complementarity determining region [CDR]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/76—Antagonist effect on antigen, e.g. neutralization or inhibition of binding
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/90—Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
- C07K2317/92—Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/435—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
- G01N2333/575—Hormones
- G01N2333/5758—Gastrin releasing peptide
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/435—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
- G01N2333/575—Hormones
- G01N2333/595—Gastrins; Cholecystokinins [CCK]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/52—Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis
Definitions
- the present disclosure is directed to, among other things, methods of preventing colorectal and/or gastrointestinal cancer in subjects predisposed to develop adenomatous polyps by administering to the subject a composition comprising an antibody specific for progastrin.
- CRC colorectal cancer
- FAP familial adenomatous polyposis
- APC Adenomatous Polyposis Coli
- sporadic adenomatous polyposis a non-hereditary condition that underlies many instances of CRC, the APC gene is mutated in somatic cells.
- Individuals with sporadic adenomatous polyposis develop benign polyps, a subset of which may subsequently transform into malignant carcinomas.
- FAP accounts for around 1% of total CRC cases and affects one in 13,000 births. Id. Mutation of APC in FAP patients is associated with the formation of hundreds to thousands of small adenomatous polyps throughout the colon. Progression of polyps to malignancy is virtually inevitable. On average, without prophylactic treatment, individuals with FAP develop CRC by age 39. Prophylactic treatment is the standard of care and involves radical surgery, including the removal of the colon, or of both the colon and the rectum, generally before the age of 25. While prophylaxis is preferable to no treatment, surgical resection of the colon (colectomy) in young patients severely impairs quality of life.
- the present disclosure provides methods and compositions useful for preventing gastrointestinal cancer, including CRC, in animals, including humans, predisposed to developing adenomatous polyps.
- the present application sets forth treatment regimens believed to bind progastrin (“PG”), with the apparent ability to neutralize PG's biological activity, which are useful in subjects who have an increased likelihood of developing, but have not yet developed, CRC or cancer in the upper gastrointestinal tract.
- PG progastrin
- the various inventions described in the application are based in part on the applicants' discovery that anti-PG antibodies prevent the development of gastrointestinal tumors in a mouse model of FAP. While not intending to be bound by any theory of operation, binding PG and interfering with its interaction with other proteins in the body is thought to prevent adenomatous polyps from developing into malignant tumors.
- the present disclosure provides methods of preventing gastrointestinal cancer, including CRC, in subjects predisposed to developing adenomatous polyps by administering a composition comprising an anti-PG antibody.
- the methods comprise administering to a subject in need thereof an effective amount of an anti-PG antibody.
- Anti-PG antibodies, and compositions thereof can be administered according to regimens known in the art for antibody-based therapy, at an effective dosage, i.e., an amount effective to prevent or delay gastrointestinal cancer, including CRC, in a subject.
- Suitable subjects for prophylactic anti-PG treatment are those predisposed to developing adenomatous polyps, including subjects with a family history of CRC, individuals with FAP, and those in whom adenomatous polyps have previously been found and/or removed.
- suitable subjects have one or more mutations in the APC gene, leading to FAP or sporadic adenomatous polyposis.
- suitable subjects also include individuals who have previously had a colectomy and are at increased risk of developing polyps and cancer in the upper gastrointestinal tract.
- Anti-PG antibodies of the present disclosure include antibodies capable of binding PG. Any antibody capable of binding PG may be used in the methods of the present disclosure, including, but not limited to, polyclonal and monoclonal anti-PG antibodies. Preferably, the anti-PG antibody is specific to the PG of the species being treated. For example, an anti-human PG (anti-hPG) antibody is administered to a human subject. Suitable anti-PG antibodies can range in binding affinity from at least about 5000 nM to at least about 0.001 nM, or higher, or any value in between.
- Anti-PG antibodies described herein can be used in combination with, or adjunctive to, other treatments to prevent or delay gastrointestinal cancer, including CRC.
- Non-limiting examples of other treatments include surgical resection, chemotherapy, antibody therapy, radiation therapy, and treatment with a second agent as described herein.
- Anti-PG antibodies can be administered concurrently with, or at a time before or after, another treatment.
- compositions suitable for use in the methods of the present disclosure may comprise, in addition to an anti-PG antibody, a pharmaceutically acceptable carrier, excipient, and/or diluent.
- the compositions can be formulated for various routes of administration as described herein, comprising carriers, excipients, and/or diluents suitable for the chosen route.
- routes of administration as described herein, comprising carriers, excipients, and/or diluents suitable for the chosen route.
- compositions comprising anti-PG antibodies can be administered using any suitable route of administration, such as injection and other routes of administration known in the art for antibody-based clinical products.
- compositions can be packaged in unit doses for ease of use.
- the present disclosure provides methods of monitoring the efficacy of anti-PG treatment in an individual predisposed to developing adenomatous polyps.
- the methods comprise measuring a concentration, or level, of PG in a blood (serum, plasma, or whole blood) sample from the individual receiving anti-PG therapy, during or after a course of anti-PG therapy, and comparing the measured PG level to a baseline level of PG (e.g., a PG level in the individual at the start of treatment), wherein a measured PG level below that of the baseline level is indicative of treatment efficacy and a measured PG level above that of the baseline level is indicative of a lack of efficacy.
- the method further includes assessing the number and sizes of polyps in the subject by, for example, endoscopy.
- the present disclosure provides methods for selecting individuals, in whom endoscopy or anti-PG treatment is indicated.
- the methods are intended to be carried out in individuals predisposed to developing adenomatous polyps.
- the method is carried out by measuring the level of PG in a blood sample from the individual, and comparing the measured level of PG to a baseline level, where a measured PG level higher than the baseline level indicates a need for endoscopy.
- a PG level above the baseline indicates a need for anti-PG treatment.
- the baseline can be obtained from one or more samples from the individual at an earlier point in time, or can be based upon PG levels measured in a population having characteristics similar to the individual.
- FIG. 1 provides amino acid sequences of human preprogastrin (SEQ ID NO:100), where the signal peptide sequence is underlined, mature human progastrin (SEQ ID NO:20) and certain products of progastrin processing, including G34 (SEQ ID NO:102), G34-Gly (SEQ ID NO:103), G17 (SEQ ID NO:104), G17-Gly (SEQ ID NO:105) and CTFP (SEQ ID NO:106).
- G34 SEQ ID NO:102
- G34-Gly SEQ ID NO:103
- G17 SEQ ID NO:104
- G17-Gly SEQ ID NO:105
- CTFP SEQ ID NO:106
- FIG. 2 provides polynucleotide and amino acid sequences of variable light and variable heavy chains of certain exemplary murine anti-hPG monoclonal antibodies. In each case, the three CDRs are shown in bolded-underlined text. Specifically:
- FIG. 2A provides the polypeptide sequence of the V H chain of murine anti-hPG MAb3 (SEQ ID NO:12) and a polynucleotide sequence encoding it (SEQ ID NO:16);
- FIG. 2B provides the polypeptide sequence of the V L chain of murine anti-hPG MAb3 (SEQ ID NO:13) and a polynucleotide sequence encoding it (SEQ ID NO:17);
- FIG. 2C provides the polypeptide sequence of the V H chain of murine anti-hPG MAb4 (SEQ ID NO:14) and a polynucleotide sequence encoding it (SEQ ID NO:18);
- FIG. 2D provides the polypeptide sequence of the V L chain of murine anti-hPG MAb4 (SEQ ID NO:15) and a polynucleotide sequence encoding it (SEQ ID NO:19);
- FIG. 2E provides the polypeptide sequence of the V H chain of murine anti-hPG MAb8 (SEQ ID NO:59) and a polynucleotide sequence encoding it (SEQ ID NO:67);
- FIG. 2F provides the polypeptide sequence of the V L chain of murine anti-hPG MAb8 (SEQ ID NO:63) and a polynucleotide sequence encoding it (SEQ ID NO:71);
- FIG. 2G provides the polypeptide sequence of the V H chain of murine anti-hPG MAb13 (SEQ ID NO:60) and a polynucleotide sequence encoding it (SEQ ID NO:68);
- FIG. 2H provides the polypeptide sequence of the V L chain of murine anti-hPG MAb13 (SEQ ID NO:64) and a polynucleotide sequence encoding it (SEQ ID NO:72);
- FIG. 2I provides the polypeptide sequence of the V H chain of murine anti-hPG MAb16 (SEQ ID NO:61) and a polynucleotide sequence encoding it (SEQ ID NO:69);
- FIG. 2J provides the polypeptide sequence of the V L chain of murine anti-hPG MAb16 (SEQ ID NO:65) and a polynucleotide sequence encoding it (SEQ ID NO:73);
- FIG. 2K provides the polypeptide sequence of the V H chain of murine anti-hPG MAb19 (SEQ ID NO:62) and a polynucleotide sequence encoding it (SEQ ID NO:70); and
- FIG. 2L provides the polypeptide sequence of the V L chain of murine anti-hPG MAb19 (SEQ ID NO:66) and a polynucleotide sequence encoding it (SEQ ID NO:74).
- FIG. 3 provides projected polypeptide sequences for humanized variable heavy and light chains of selected anti-hPG monoclonal antibodies described herein. In each case, the three CDRs are shown in bolded-underlined text. Specifically:
- FIG. 3A provides the projected amino acid sequence of the V H chain of humanized MAb3 (SEQ ID NO:21);
- FIG. 3B provides the projected amino acid sequence of the V L chain of humanized MAb3 (SEQ ID NO:22);
- FIG. 3C provides the projected amino acid sequence of the V H chain of humanized MAb4 (SEQ ID NO:23);
- FIG. 3D provides the projected amino acid sequence of the V L chain of humanized MAb4 (SEQ ID NO:24);
- FIG. 3E provides the projected amino acid sequence of the V H chain of humanized MAb8(a) (SEQ ID NO:75);
- FIG. 3F provides the projected amino acid sequence of the V L chain of humanized MAb8(a) (SEQ ID NO:76);
- FIG. 3G provides the projected amino acid sequence of the V H chain of humanized MAb8(b) (SEQ ID NO:77);
- FIG. 3H provides the projected amino acid sequence of the V L chain of humanized MAb8(b) (SEQ ID NO:78);
- FIG. 3I provides the projected amino acid sequence of the V H chain of humanized MAb8(c) (SEQ ID NO:79);
- FIG. 3J provides the projected amino acid sequence of the V L chain of humanized MAb8(c) (SEQ ID NO:76);
- FIG. 3K provides the projected amino acid sequence of the V H chain of humanized MAb13(a) (SEQ ID NO:80);
- FIG. 3L provides the projected amino acid sequence of the V L chain of humanized MAb13(a) (SEQ ID NO:81);
- FIG. 3M provides the projected amino acid sequence of the V H chain of humanized MAb13(b) (SEQ ID NO:82);
- FIG. 3N provides the projected amino acid sequence of the V L chain of humanized MAb13(b) (SEQ ID NO:83);
- FIG. 3O provides the projected amino acid sequence of the V H chain of humanized MAb16(a) (SEQ ID NO:84);
- FIG. 3P provides the projected amino acid sequence of the V L chain of humanized MAb16(a) (SEQ ID NO:85);
- FIG. 3Q provides the projected amino acid sequence of the V H chain of humanized MAb16(b) (SEQ ID NO:86);
- FIG. 3R provides the projected amino acid sequence of the V L chain of humanized MAb16(b) (SEQ ID NO:87);
- FIG. 3S provides the projected amino acid sequence of the V H chain of humanized MAb16(c) (SEQ ID NO:88);
- FIG. 3T provides the projected amino acid sequence of the V L chain of humanized MAb16(c) (SEQ ID NO:89);
- FIG. 3U provides the projected amino acid sequence of the V H chain of humanized MAb19(a) (SEQ ID NO:90);
- FIG. 3V provides the projected amino acid sequence of the V L chain of humanized MAb19(a) (SEQ ID NO:91);
- FIG. 3W provides the projected amino acid sequence of the V H chain of humanized MAb19(b) (SEQ ID NO:92);
- FIG. 3X provides the projected amino acid sequence of the V L chain of humanized MAb19(b) (SEQ ID NO:93);
- FIG. 3Y provides the projected amino acid sequence of the V H chain of humanized MAb19(c) (SEQ ID NO:94).
- FIG. 3Z provides the projected amino acid sequence of the V L chain of humanized MAb19(c) (SEQ ID NO:95).
- Familial Adenomatous Polyposis is a rare hereditary condition associated with a germinal mutation on one allele of the APC gene. Numerous mutations of the APC gene have been mapped in subjects with FAP, many of the mutations resulting in a truncated protein. See, e.g., Rustgi, 2010, “The genetics of hereditary colon cancer,” Genes & Development 21:2525-2538; Groves et al., 2002, “Duodenal cancer in patients with familial adenomatous polyposis (FAP): results of a 10 year prospective study,” Gut 50:636-641. These mutations in APC are associated with FAP of varying severity.
- FAP is characterized by the appearance of multiple adenomas (polyps) in the intestine and colon of affected individuals, at a very young age. A subset of these polyps transform into colorectal cancer (CRC), and FAP-derived CRC cases represent approximately 1% of total CRC cases.
- CRC colorectal cancer
- individuals typically undergo genetic testing at a very early age to detect the presence of a mutation in the APC gene.
- Classical follow-up in individuals found to have such mutations begins with colonoscopy, polyp resection where polyps are found, and if polyps are too numerous to remove endoscopically, partial or complete resection of the colon (colectomy). Most individuals with FAP will have undergone colectomy by the age of 25.
- a large percentage of sporadic adenomatous polyps also harbor mutations in the APC gene. See, Rutsgi, 2010, “The genetics of hereditary colon cancer,” Genes & Development 21:2525-2538. In the absence of any family history of CRC, individuals presenting with symptoms such as rectal bleeding are typically examined by colonoscopy. Individuals found to have large numbers of polyps, or in whom polyps recur after resection, will typically also be tested genetically. If a mutation in the APC gene is found, colectomy is the recommended treatment.
- PG blood levels of PG can be elevated in individuals with FAP who have not yet developed CRC, as well as in about 20% of patients exhibiting sporadic adenomatous polyposis. While not intending to be bound by any theory of operation, PG is thought to be part of the mechanism by which polyps transition to malignant tumors. Binding of PG by anti-PG antibodies is thought to interfere with this transition, as demonstrated in the mouse model of FAP, APC ⁇ 14. Prophylactic treatment with anti-PG antibodies presents the possibility of avoiding or delaying major surgery, significantly increasing quality of life.
- the present disclosure provides methods of preventing gastrointestinal cancer, including CRC, in patients predisposed to developing adenomatous polyps.
- the methods comprise administering to such patients an amount of one or more anti-PG antibody(ies) effective to provide a therapeutic benefit.
- Anti-PG antibodies generally, and specific anti-PG antibodies useful in the methods, are described in detail in a later section.
- the “subject” or “patient” for prophylaxis is preferably a mammal such as a non-primate (e.g., cow, pig, horse, cat, dog, rat, etc.) or a primate (e.g., monkey or human).
- the anti-PG antibody administered should be specific for the species of animal being treated.
- the anti-PG antibody(ies) should specifically bind human progastrin (referred to herein as “anti-hPG antibodies,” described in more detail below).
- the subject or patient can be a human, such as an adult patient or a pediatric patient.
- Suitable subjects are individuals who are predisposed to developing adenomatous polyps and, as a result, have an increased likelihood of developing CRC or gastrointestinal cancer, including individuals with a family history of CRC, individuals in whom adenomatous polyps are or have been detected or removed, individuals with FAP, individuals who have had a colectomy to remove polyps, and individuals with mutation(s) in the APC gene.
- Anti-PG treatment can be administered in combination with, or adjunctive to, one or more other treatments to prevent or delay gastrointestinal cancer, including CRC.
- Other treatments include, without limitation, chemotherapeutic treatment, radiation, surgical resection, antibody therapy, and treatment with a second agent, as described herein.
- Combination treatment as provided herein involves the administration of at least two treatments to a patient, the first of which is anti-PG treatment with at least one anti-PG antibody, and the second of which is treatment with a therapeutic or prophylactic agent or procedure.
- Anti-PG treatment can be combined with surgical procedures, such as surgical resection.
- Anti-PG antibodies can be administered to subjects found to have, or predisposed to develop, pre-cancerous polyps, such as individuals with familial adenomatous polyposis, in combination with surgical resection of the affected portion(s) of the gastrointestinal tract.
- Anti-PG treatment can be initiated before, concurrently with, or after surgical resection.
- Anti-PG treatment can also be combined with radiation therapy.
- Radiation therapy is the use of high-energy radiation from x-rays, gamma rays, neutrons, protons, and other sources to kill cancer cells and shrink tumors. Radiation may come from a machine outside the body (external-beam radiation therapy), or it may come from radioactive material placed in the body near cancer cells (internal radiation therapy, or brachytherapy).
- Systemic radiation therapy uses a radioactive substance, such as a radiolabeled monoclonal antibody, that travels in the blood to tissues throughout the body. Radiation therapy may also be called irradiation and radiotherapy.
- Other radiation therapies include three-dimensional conformal radiation therapy (3D-CRT) and intensity modulated radiation therapy (IMRT). Other radiation therapies are also possible.
- the second agent can be a chemotherapeutic agent.
- Chemotherapy is the use of small molecule drugs that kill (cytotoxic or cytocidal) or prevent the growth (cytostatic) of cancer cells.
- Chemotherapeutic agents include, but are not limited to, toxins, also referred to as cytotoxins or cytotoxic agents, which includes any agent that is detrimental to the viability of cells, agents, and liposomes or other vesicles containing chemotherapeutic compounds.
- chemotherapeutic agents include but are not limited to 1-dehydrotestosterone, 5-fluorouracil decarbazine, 6-mercaptopurine, 6-thioguanine, actinomycin D, adriamycin, aldesleukin, alkylating agents, allopurinol sodium, altretamine, amifostine, anastrozole, anthramycin (AMC), anti-mitotic agents, cis-dichlorodiamine platinum (II) (DDP) cisplatin), diamino dichloro platinum, anthracyclines, antibiotics, antimetabolites, asparaginase, BCG live (intravesical), betamethasone sodium phosphate and betamethasone acetate, bicalutamide, bleomycin sulfate, busulfan, calcium leucouorin, calicheamicin, capecitabine, carboplatin, lomustine (CCNU), carmustine (BSNU), Chlorambuci
- Anti-PG antibodies can also be administered with a combination of chemotherapeutic agents.
- chemotherapeutic agents include 5-fluorouracil (5FU) in combination with leucovorin (folinic acid or LV); capecitabine, in combination with uracil (UFT) and leucovorin; tegafur in combination with uracil (UFT) and leucovorin; oxaliplatin in combination with 5FU, or in combination with capecitabine; irinotecan in combination with capecitabine, mitomycin C in combination with 5FU, irinotecan or capecitabine.
- Other combinations of chemotherapeutic agents disclosed herein is also possible.
- Standard dosing regimens for chemotherapeutic agents used for patients suffering from CRC may be used in the methods of the present disclosure.
- chemotherapy regimes for colorectal cancer using combinations of different chemotherapeutic agents have been standardized in clinical trials.
- Such regimes are often known by acronyms and include 5FU Mayo, 5FU Roswell Park, LVFU2, FOLFOX, FOLFOX4, FOLFOX6, bFOL, FUFOX, FOLFIRI, IFL, XELOX, CAPDX, XELIRI, CAPIRI, FOLFOXIRI. See, e.g., Chau, I. et al., 2009 , Br. J., Cancer 100:1704-19, and Field, K. et al., 2007 , World J. Gastroenterol. 13:3806-15, both of which are incorporated by reference.
- Anti-PG antibodies can also be used in combination with other antibodies, including but not limited to, monoclonal antibodies that directly or indirectly kill, slow or stop the growth of cancer cells. Such antibodies can function through a variety of distinct mechanisms. For example, certain antibodies can mark cancer cells for attack by the patient's immune system via antibody-dependent cell-mediated cytotoxicity (ADCC) or other mechanisms. It is believed that rituximab (Rituxan®), which binds the CD20 antigen found on B cells, and edrecolomab, which binds the 17-1A antigen, function this way. Other antibodies bind to and alter or inhibit the function of antigens that cancer cells require for survival and/or growth.
- ADCC antibody-dependent cell-mediated cytotoxicity
- a number of antibodies are believed to function this way, including, for example, cetuximab (Erbitux®) and panitumumab (Vectibix®), each of which binds to the EGF receptor (EGFR); and bevacizumab (Avastin®), which binds to the growth factor VEGF.
- cetuximab Erbitux®
- panitumumab Vectibix®
- bevacizumab Avastin®
- Other mechanisms are also possible, and particular antibodies may be able to work via one or more mechanisms of action.
- Yet other antibodies can be conjugated to radioactive or chemotoxic moieties and target them to cancer cells which preferentially express antigens specifically recognized by the antibodies.
- Anti-PG antibodies can also be administered in combination with non-steroidal anti-inflammatory drugs (“NSAIDs”).
- NSAIDs non-steroidal anti-inflammatory drugs
- celecoxib or 4-[5-(4-methylphenyl)-3-(trifluoromethyl)pyrazol-1-yl]benzenesulfonamide, is an NSAID that has been shown to reduce adenomatous polyps in FAP patients.
- the anti-PG antibody and a second agent can be administered simultaneously, successively, or separately.
- the anti-PG antibody and the second agent are said to be administered successively if they are administered to the patient on the same day, for example during the same patient visit. Successive administration can occur 1, 2, 3, 4, 5, 6, 7 or 8 hours apart.
- the anti-PG antibody and the second agent are said to be administered separately if they are administered to the patient on different days, for example, the anti-PG antibody and the second therapeutic agent can be administered at a 1-day, 2-day or 3-day, one-week, 2-week or monthly intervals.
- administration of the anti-PG antibody of the disclosure can precede or follow administration of the second agent.
- the anti-PG antibody and second agent can be administered concurrently for a period of time, followed by a second period of time in which the administration of anti-PG antibody and the second agent are alternated.
- Anti-PG antibodies useful in the methods of the present disclosure can be formulated in compositions.
- the compositions can comprise one or more additional agent(s), such as the second agents described above.
- the compositions will usually be supplied as part of a sterile, pharmaceutical composition that will normally include a pharmaceutically acceptable carrier. This composition can be in any suitable form (depending upon the desired method of administering it to an individual).
- Anti-PG antibodies can be administered to an individual by a variety of routes such as orally, transdermally, subcutaneously, intranasally, intravenously, intramuscularly, intraocularly, topically, intrathecally and intracerebroventricularly.
- routes such as orally, transdermally, subcutaneously, intranasally, intravenously, intramuscularly, intraocularly, topically, intrathecally and intracerebroventricularly.
- the most suitable route for administration in any given case will depend on the particular antibody, the subject, and the nature and severity of the disease and the physical condition of the subject.
- Antibodies can be formulated as an aqueous solution and administered by subcutaneous injection.
- Pharmaceutically acceptable carriers for use in the disclosure can take a wide variety of forms depending, e.g., on the condition to be treated or route of administration.
- compositions can be conveniently presented in unit dose forms containing a predetermined amount of an anti-PG antibody per dose. Such a unit can contain for example 5 mg to 5 g, for example 10 mg to 1 g, or 20 to 50 mg of anti-PG antibody per unit dose.
- Pharmaceutical compositions can comprise anti-PG antibodies capable of binding more than one PG epitope.
- pharmaceutical compositions may comprise a combination of anti-PG antibodies, each capable of binding a different PG epitope.
- compositions of the disclosure can be prepared for storage as lyophilized formulations or aqueous solutions by mixing the antibody having the desired degree of purity with optional pharmaceutically-acceptable carriers, excipients or stabilizers typically employed in the art (all of which are referred to herein as “carriers”), i.e., buffering agents, stabilizing agents, preservatives, isotonifiers, non-ionic detergents, antioxidants, and other miscellaneous additives. See, e.g., Remington's Pharmaceutical Sciences, 16th edition (Osol, ed. 1980). Such additives must be nontoxic to the recipients at the dosages and concentrations employed.
- Buffering agents help to maintain the pH in the range which approximates physiological conditions. They can be present at concentration ranging from about 2 mM to about 50 mM.
- Suitable buffering agents for use with the present disclosure include both organic and inorganic acids and salts thereof such as citrate buffers (e.g., monosodium citrate-disodium citrate mixture, citric acid-trisodium citrate mixture, citric acid-monosodium citrate mixture, etc.), succinate buffers (e.g., succinic acid-monosodium succinate mixture, succinic acid-sodium hydroxide mixture, succinic acid-disodium succinate mixture, etc.), tartrate buffers (e.g., tartaric acid-sodium tartrate mixture, tartaric acid-potassium tartrate mixture, tartaric acid-sodium hydroxide mixture, etc.), fumarate buffers (e.g., fumaric acid-monosodium fumarate mixture, fumaric acid-d
- Preservatives can be added to retard microbial growth, and can be added in amounts ranging from 0.2%-1% (w/v).
- Suitable preservatives for use with the present disclosure include phenol, benzyl alcohol, meta-cresol, methyl paraben, propyl paraben, octadecyldimethylbenzyl ammonium chloride, benzalconium halides (e.g., chloride, bromide, and iodide), hexamethonium chloride, and alkyl parabens such as methyl or propyl paraben, catechol, resorcinol, cyclohexanol, and 3-pentanol.
- Isotonicifiers sometimes known as “stabilizers” can be added to ensure isotonicity of liquid compositions of the present disclosure and include polhydric sugar alcohols, for example trihydric or higher sugar alcohols, such as glycerin, erythritol, arabitol, xylitol, sorbitol and mannitol.
- Stabilizers refer to a broad category of excipients which can range in function from a bulking agent to an additive which solubilizes the therapeutic agent or helps to prevent denaturation or adherence to the container wall.
- Typical stabilizers can be polyhydric sugar alcohols (enumerated above); amino acids such as arginine, lysine, glycine, glutamine, asparagine, histidine, alanine, ornithine, L-leucine, 2-phenylalanine, glutamic acid, threonine, etc., organic sugars or sugar alcohols, such as lactose, trehalose, stachyose, mannitol, sorbitol, xylitol, ribitol, myoinisitol, galactitol, glycerol and the like, including cyclitols such as inositol; polyethylene glycol; amino acid polymers; sulfur containing reducing agents, such as urea, glutathione, thioctic acid, sodium thioglycolate, thioglycerol, ⁇ -monothioglycerol and sodium thio sulfate; low
- Non-ionic surfactants or detergents can be added to help solubilize the therapeutic agent as well as to protect the therapeutic protein against agitation-induced aggregation, which also permits the formulation to be exposed to shear surface stressed without causing denaturation of the protein.
- Suitable non-ionic surfactants include polysorbates (20, 80, etc.), polyoxamers (184, 188, etc.), Pluronic polyols, polyoxyethylene sorbitan monoethers (TWEEN®-20, TWEEN®-80, etc.).
- Non-ionic surfactants can be present in a range of about 0.05 mg/ml to about 1.0 mg/ml, for example about 0.07 mg/ml to about 0.2 mg/ml.
- Additional miscellaneous excipients include bulking agents (e.g., starch), chelating agents (e.g., EDTA), antioxidants (e.g., ascorbic acid, methionine, vitamin E), and cosolvents.
- bulking agents e.g., starch
- chelating agents e.g., EDTA
- antioxidants e.g., ascorbic acid, methionine, vitamin E
- cosolvents e.g., ascorbic acid, methionine, vitamin E
- Anti-PG antibodies can be administered singly, as mixtures of one or more anti-PG antibodies, in mixture or combination with other agents useful in preventing CRC, or adjunctive to therapy for CRC. Examples of suitable combination and adjunctive therapies are provided above.
- kits containing the anti-PG antibodies (including antibody conjugates) of the disclosure are pharmaceutical kits containing the anti-PG antibodies (including antibody conjugates) of the disclosure.
- the pharmaceutical kit is a package comprising the anti-PG antibody composition (e.g., either in lyophilized form or as an aqueous solution) and one or more of the following:
- Each unit dose of anti-PG antibody can be packaged separately, and a kit can contain one or more unit doses (e.g., two unit doses, three unit doses, four unit doses, five unit doses, eight unit doses, ten unit doses, or more).
- the one or more unit doses are each housed in a syringe or pen.
- the anti-PG antibodies of the present disclosure are administered to the subject in an amount sufficient or effective to provide a therapeutic benefit.
- a therapeutic benefit can be inferred if one or more of the following is achieved: reduction or lack of increase in the number and/or size of polyps in a subject; absence of malignant tumors, including where a subject has or had polyps; reduction or lack of increase in plasma or serum PG level; regression from a more advanced stage of polyposis to a less advanced stage of polyposis, according to Spigelman's classification (e.g., regression from Stage IV to Stage III, from Stage III to Stage II, from Stage II to Stage I); lack of progression from Spigelman Stage IV polyposis to gastrointestinal cancer.
- Pharmaceutical compositions comprising anti-PG antibodies can be administered to individuals (e.g., human subjects) at effective dosages.
- therapeutic benefit can be correlated with one or more surrogate end points, in accordance with the knowledge of one of ordinary skill in the art.
- plasma and/or serum PG concentrations can be measured in a subject over time, with a reduction in PG levels, or a level below a threshold level, for example, below about 50 pM, 40 pM, 30 pM, 20 pM, 10 pM, or 5 pM, being indicative of therapeutic benefit.
- Polyp size and number can be measured using endoscopic techniques, such as colonoscopy, as well as other methods known to those of ordinary skill in the art.
- Free PG means PG that is available to be bound by an anti-PG antibody. Rather, reducing the concentration of free PG within or around polyps, systemically, in particular body fluids, or elsewhere, to a more limited extent may also be effective.
- Exemplary tissues and body fluids in which free PG concentration may be reduced by administration of anti-PG antibody(ies) compositions include, but are not limited to, polyp or tumor samples removed from a patient, ascites fluid, fluid from pleural effusions, cerebrospinal fluid, lymph, blood, plasma, serum and others. The concentration of PG in one or more of these tissues or body fluids can be quantified using an ELISA technique or other techniques familiar to those of ordinary skill in the art.
- the dose of an anti-PG antibody can be titrated in a patient so as to reduce the free PG concentration in a tissue or body fluid of interest at a predetermined time after administration at least about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90, or 100%, or about 5%-10%, about 10%-15%, about 15%-20%, about 20%-25%, about 25%-30%, about 30%-35%, about 35%-40%, about 40%-45%, about 45%-50%, about 50%-55%, about 55%-60%, about 60%-65%, about 65%-70%, about 70%-75%, about 75%-80%, about 80%-85%, about 85%-90%, or about 90%-95%, or a percentage reduction in free PG concentration ranging between any of the foregoing values.
- the amount of anti-PG antibody administered will depend on a variety of factors, including the number and size of adenomatous polyps found in the subject, the form, route and site of administration, the treatment regimen (e.g., whether a second therapeutic agent is used), the age and condition of the particular subject being treated, the sensitivity of the patient to anti-PG antibodies.
- the appropriate dosage can be readily determined by a person skilled in the art. Ultimately, a physician will determine appropriate dosages to be used. This dosage can be repeated as often as appropriate. If side effects develop the amount and/or frequency of the dosage can be altered or reduced, in accordance with normal clinical practice.
- the proper dosage and treatment regimen can be established by monitoring the progress of treatment using conventional techniques known to the people skilled of the art.
- Effective dosages can be estimated initially from in vitro assays.
- an initial dose for use in animals may be formulated to achieve a circulating blood or serum concentration of anti-PG antibody that is at or above the binding affinity of the antibody for progastrin as measured in vitro.
- Calculating dosages to achieve such circulating blood or serum concentrations taking into account the bioavailability of the particular antibody is well within the capabilities of skilled artisans.
- the reader is referred to Fingl & Woodbury, “General Principles” in Goodman and Gilman's The Pharmaceutical Basis of Therapeutics , Chapter 1, latest edition, Pagamonon Press, and the references cited therein.
- Initial dosages can be estimated from in vivo data, such as animal models.
- Animal models useful for testing the efficacy of compounds to delay or prevent development of gastrointestinal tumors, including CRC tumors, are well known in the art. Additionally, an animal model of FAP is described in the Examples below. Ordinarily skilled artisans can routinely adapt such information to determine dosages suitable for human administration.
- an i.v. dose may be determined for an individual subject by measuring the serum or plasma PG concentration of the individual a few times a few days to a few weeks prior to treatment and calculating an amount of anti-PG antibody that would be saturating, i.e., an amount that would be sufficient to bind all of the PG.
- an amount of anti-PG antibody that would be saturating i.e., an amount that would be sufficient to bind all of the PG.
- the amount of any specific antibody necessary to achieve saturation for a given serum or plasma concentration of PG will depend, in part, on the affinity constant of the particular antibody. Methods for calculating saturating quantities for specific anti-PG antibodies of interest are well-known.
- an amount that is greater than the calculated saturating amount may be administered, for example, at least 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9- or even 10-fold greater than the calculated saturating amount may be administered.
- the amount can be adjusted based upon pharmacokinetic and bioavailability, as is well known in the art.
- the effective dose of an anti-PG antibody of the disclosure can range from about 0.001 to about 75 mg/kg per single (e.g. bolus) administration, multiple administrations or continuous (e.g. infusion) administration, or to achieve a serum concentration of 0.01-5000 ⁇ g/ml serum concentration per single administration, multiple administrations or continuous administration, or any effective range or value therein depending on the condition being treated, the route of administration and the age, weight and condition of the subject.
- each dose can range from about 0.1 mg/kg to about 0.5 mg/kg; about 0.25 mg/kg to about 0.75 mg/kg; about 0.5 mg/kg to about 1 mg/kg; about 1 mg/kg to about 2 mg/kg; about 1.5 mg/kg to about 2.5 mg/kg; about 2 mg/kg to about 3 mg/kg; about 2.5 mg/kg to about 3.5 mg/kg; about 3 mg/kg to about 4 mg/kg; about 3.5 mg/kg to about 4.5 mg/kg; about 4 mg/kg to about 5 mg/kg; about 5 mg/kg to about 7 mg/kg; about 6 mg/kg to about 8 mg/kg; about 7 mg/kg to about 9 mg/kg; about 8 mg/kg to about 10 mg/kg; about 10 mg/kg to about 15 mg/kg; about 12.5 mg/kg to about 17.5 mg/kg; about 15 mg/kg to about 20 mg/kg; about 17.5 mg/kg to about 22.5 mg/kg; about 20 mg/kg to about 25 mg/kg; about 22.5 mg/kg; about
- Anti-PG treatment is indicated in subjects in whom pre-cancerous adenomatous polyps are detected and/or removed, and subjects diagnosed with FAP who have yet to manifest polyps. In humans with FAP, polyps generally begin to appear in the second decade. Anti-PG treatment can be initiated before or at the time polyps are detected in subjects with FAP. For subjects with sporadic adenomatous polyposis, anti-PG treatment can be initiated at the time polyps are detected. Anti-PG treatment can also be initiated in subjects who have had at least one polyp removed, and therefore are at increased risk of developing more polyps and gastrointestinal cancer, including CRC.
- a treatment regimen for administration can continue for 2 weeks to indefinitely.
- the treatment regimen provides for repeated administration, e.g., once daily, twice daily, every two days, three days, five days, one week, two weeks, or one month.
- the repeated administration can be at the same dose or at a different dose.
- the administration can be repeated once, twice, three times, four times, five times, six times, seven times, eight times, nine times, ten times, or more.
- An effective amount of anti-PG antibody can be administered as a single dose or over the course of a treatment regimen.
- the duration of anti-PG treatment for patients predisposed to develop adenomatous polyposis is preferably long, e.g., over the course of years, but may be shorter, e.g., one to several months, to a year.
- Monitoring PG levels in individuals with FAP or a history of sporadic adenomatous polyposis is useful for identifying subjects in whom follow up by colonoscopy is warranted, as well as patients in need of anti-PG treatment.
- Standard care for individuals predisposed to developing adenomatous polyps is endoscopy at an interval of 3 to 5 years. This interval between testing may mean that, in certain individuals, numerous polyps have developed or cancer has set in by the time follow up endoscopy is performed.
- a simple blood test for PG levels is readily performed at more frequent intervals and can identify those individuals who should undergo endoscopy (e.g., colonoscopy) sooner or who are candidates for anti-PG treatment.
- An individual diagnosed with FAP or in whom polyps have previously been detected can be monitored to determine PG level, or concentration, in a bodily fluid, such as whole blood, plasma, or serum, relative to an appropriate baseline. Accordingly, a PG level is measured in a sample from the individual and then compared to a baseline PG level.
- the subject is scored as not requiring further follow up.
- the subject is a candidate for further follow-up, including, for example, colonoscopy, and for anti-PG treatment.
- blood, plasma, or serum PG levels can be measured in the patient receiving anti-PG treatment at specified time points, and used as an indication of whether the treatment is effective based on whether the measured level is above or below a baseline PG level.
- This information can be used by care providers to decide whether to continue administering an anti-PG antibody or modify treatment.
- the PG level in one or more bodily fluids such as whole blood, plasma, serum, of a patient receiving anti-PG antibody treatment can be measured and then compared to a baseline level.
- a decrease in concentration over time, and/or a measured level below a threshold value at a particular point in time is indicative of efficacy.
- An increase in concentration over time and/or above-baseline PG level is indicative of lack of treatment efficacy.
- PG level is the concentration of PG in the sample, expressed in molar (M) amounts or moles/liter (mol/liter).
- the baseline level can be a single number or a range of numbers.
- the baseline can be based on one or more measurements taken from the patient or based on measurements of PG in samples from a population of individuals.
- the baseline is a PG level from the same patient, taken at one or more interval, for example, before the initiation of anti-PG treatment, during the course of treatment, or after treatment has been stopped.
- the baseline can be an average PG level in a population of individuals with characteristics similar to those of the individual undergoing monitoring. Such characteristics may include, but are not necessarily limited to sex, age, location of mutation in APC gene, stage in Spigelman classification, history of surgery, anti-PG treatment, or other treatment.
- the baseline is a specific PG level, such as about 50 pM, about 40 pM, about 30 pM, about 20 pM, about 10 pM, about 5 pM, about 2 pM, about 1 pM, or even lower. In some embodiments, the baseline is a range.
- PG levels can be measured using techniques familiar to those of ordinary skill in the art, such as, but not limited to, RIA and ELISA.
- PG levels may be measured using a sandwich ELISA with one anti-PG antibody targeting the N-terminus of progastrin and a second anti-PG antibody targeting the C-terminus of progastrin.
- Exemplary N- and C-terminal anti-PG antibodies useful for such a sandwich assay are described in a later section.
- a surface such as the wells in a 96-well plate, is prepared to which a known quantity of a first, “capture,” N-terminal or C-terminal anti-PG antibody is bound.
- a test sample is then applied to the surface followed by an incubation period.
- PG levels are then measured either directly (if, for example, the detection antibody is conjugated to a detectable label) or indirectly (through a labeled secondary antibody that binds the detection anti-PG antibody). For this assay, antibodies should be used in excess such that all PG is bound and quantified.
- a specific sandwich assay for measuring plasma and/or serum PG levels is provided in Example 1.
- PG levels can be determined at weekly, monthly, or annual intervals while a patient is received anti-PG antibodies. Other intervals are also possible.
- one or more measurements may also be taken during the course of therapy so that the effect of the antibodies on PG levels can be estimated.
- the data may show a reduction in PG levels, due to sequestration of PG by the antibodies, followed by a rise, as this effect abates, followed by a subsequent decline, if the treatment was effective.
- post-therapy measurements can be taken after it is estimated that the anti-PG antibodies have been cleared from the patient so that binding of PG by such antibodies does not affect the accuracy of the measurement of PG concentration.
- Antibodies useful in the methods disclosed herein are those that specifically bind progastrin over other products of the gastrin gene.
- the human gastrin gene is translated into a 101-amino acid polypeptide, called pre-progastrin, which contains a signal sequence (underlined) that is cleaved, giving rise to human progastrin, an 80-amino-acid polypeptide.
- Progastrin in turn, is cleaved to generate a 34-amino-acid product, corresponding in sequence to residues 38-71 of progastrin, which is then extended at its carboxy terminus with a glycine residue, generating glycine-extended G34 (“G34-Gly”).
- a by-product of this cleavage is a 6-amino-acid peptide, called the C-terminal flanking peptide, or CTFP, which corresponds in sequence to residues 75-80 of progastrin.
- G34-Gly is then further cleaved to generate a 17-residue polypeptide corresponding in sequence to residues 55-71 of progastrin and referred to as G17-Gly. Removal of the C-terminal glycines of G34-Gly and G17-Gly, followed by C-terminal amidation, yields G34 and G17, respectively, both of which are C-terminal amidated.
- an antibody is “highly specific for” hPG or “highly specifically binds” hPG if it binds to full-length progastrin but does not bind at all to CTFP, to amidated gastrin, or to glycine-extended gastrin, and is “specific for” hPG or “specifically binds” hPG if it exhibits at least about 5-fold greater binding of hPG than CTFP and the other products of the gastrin gene, as measured in standard binding assays.
- a specific ELISA assay that can be used to assess the specificity of a particular anti-hPG antibody is provided in Example 2.
- anti-hPG antibodies may be polyclonal (“anti-hPG PAbs”) or monoclonal (“anti-hPG MAbs”), although for therapeutic uses and, in some instances, diagnostic or other in vitro uses, monoclonal antibodies are preferred.
- the epitope bound by the anti-hPG antibodies is not critical.
- Useful anti-hPG antibodies may bind an N-terminal region of hPG, a C-terminal region of hPG, or a different region of hPG.
- the selection of antigen used to raise the anti-hPG antibodies may be important (see, International Application No. PCT/EP2010/006329 filed Oct. 15, 2010 and U.S. application Ser. No. 12/906,041 filed Oct. 15, 2010, the disclosures and specifically disclosed anti-hPG antibodies of which are incorporated herein by reference; hereinafter referred to as the '329 and '041 applications, respectively).
- antigenic N-terminal and C-terminal sequences within the hPG sequence have been identified that can be used to generate nonoclonal antibodies that specifically bind hPG.
- the antigenic sequence need not be limited to regions of the hPG sequence that are unique to it.
- Anti-hPG antibodies obtainable using a peptide antigen having a sequence corresponding to an N-terminal region of hPG and/or that bind an N-terminal region of hPG are referred to herein as “N-terminal anti-PG antibodies.”
- a specific exemplary antigenic region of hPG that can be used to construct an immunogen suitable for obtaining both polyclonal and monoclonal antibodies specific for hPG corresponds to residue 1 to 14 of hPG: SWKPRSQQPDAPLG (SEQ ID NO:25).
- the progastrin peptide was synthesized with a C-terminal linker of one aminohexanoic acid (Ahx) residue followed by a cysteine (Cys) residue, which was then conjugated to a either a bovine serum albumin (“BSA”) or keyhole limpet hemocyanin (“KLH”) carrier via the Cys linker residue.
- BSA bovine serum albumin
- KLH keyhole limpet hemocyanin
- Anti-hPG antibodies obtainable using a peptide antigen having a sequence corresponding to a C-terminal region of hPG, and/or that bind a C-terminal region of hPG, are referred to herein as “C-terminal anti-hPG antibodies.”
- a specific exemplary antigenic region that can be used to construct an immunogen useful for obtaining both polyclonal and monoclonal C-terminal anti-hPG antibodies corresponds to residues 55 to 80 of hPG: QGPWLEEEEEAYGWMDFGRRSAEDEN (SEQ ID NO:27).
- Exemplary immunogens including this antigen useful for obtaining C-terminal anti-hPG antibodies, as well as CDR and V H and V L sequences of C-terminal anti-hPG monoclonal antibodies obtained with these exemplary immunogens, are provided in TABLE 2B, below, and the Examples section.
- the progastrin peptide was synthesized with an N-terminal Ahx-Ahx-Cys linker, which was then conjugated to a either a keyhole limpet hemocyanin (“KLH”) or a diphtheria toxin (“DT”) carrier via the Cys linker residue.
- KLH keyhole limpet hemocyanin
- DT diphtheria toxin
- 15 amino acid peptide sequences spanning a putative epitope are generated and spotted onto a nitrocellulose membrane which is then probed with the test antibody to determine the minimal epitope sequence recognized by the antibody.
- Alanine scanning is used to determine residues within an epitope that are critical for antibody binding.
- Each residue within a putative epitope is mutated, one by one, to an alanine, and the alanine-containing peptides are then probed with the test antibody.
- epitopes comprise at least the following sequences: DAPLG (SEQ ID NO:28), PDAPLG (SEQ ID NO:29), PRSQQPD (SEQ ID NO:30), WKPRSQQPD (SEQ ID NO:31), or WKPRSQQPDAPLG (SEQ ID NO:32), as shown in TABLE 3A below.
- MAb PG peptide antigen SEQ ID # SWKPRSQQPDAPLG NO MAb2 WKPRSQQPDAPLG 32 MAb4 WKPRSQQPDAPLG 32 MAb1 PDAPLG 29 MAb3 DAPLG 28 MAb17 WKPRSQQPD 31 MAb18 WKPRSQQPD 31 MAb19 WKPRSQQPD 31 MAb20 WKPRSQQPD 31 MAb15 PRSQQPD 30 MAb16 PRSQQPD 30
- epitopes comprise at least the following sequences: FGRR (SEQ ID NO:33), MDFGR (SEQ ID NO:34), AEDEN (SEQ ID NO:35), and GWMDFGRR (SEQ ID NO:36), as shown in TABLE 3B, below.
- MAb PG peptide antigen SEQ ID # QGPWLEEEEEAYGWMDFGRRSAEDEN NO MAb14 GWMDFGRR 36 MAb11 MDFGR 34 MAb5 FGRR 33 MAb6 FGRR 33 MAb7 FGRR 33 MAb9 FGRR 33 MAb10 FGRR..E 33 MAb12 FGRR 33 MAb23 AEDEN 35
- the epitope mapping experiments reveal that anti-hPG MAb2 and MAb4 bind the same epitope; anti-hPG MAb1 and MAb3 bind approximately the same epitope; MAb17, MAb18, MAb19, and MAb20 bind approximately the same epitope; MAb15 and MAb16 bind approximately the same epitope; anti-hPG MAb5, MAb6, MAb7, MAb9, and MAb12 bind the same epitope and bind approximately the same epitope as anti-hPG MAb10; and anti-hPG MAb11 and MAb14 bind approximately the same epitope.
- N-terminal anti-PG antibodies useful in the methods and kits described herein include antibodies that bind an epitope that includes residues 10 to 14 of hPG (SEQ ID NO:28), residues 9 to 14 of hPG (SEQ ID NO:29), residues 4 to 10 of hPG (SEQ ID NO:30), residues 2 to 10 of hPG (SEQ ID NO:31), or residues 2 to 14 of hPG (SEQ ID NO:32).
- C-terminal anti-PG antibodies useful in the methods and kits described herein include antibodies that bind an epitope that includes residues 71 to 74 of hPG (SEQ ID NO:33), residues 69 to 73 of hPG (SEQ ID NO:34), residues 76 to 80 of hPG (SEQ ID NO:35), or residues 67 to 74 of hPG (SEQ ID NO:36).
- N-terminal and C-terminal anti-hPG antibodies useful in the methods and kits disclosed herein in addition to those provided in TABLES 2A & 2B can be identified in competitive binding assays with exemplary MAbs 1-23, or with other reference antibodies that bind N- or C-terminal epitopes, as will be described in more detail in a later section.
- anti-hPG MAb14 binds hPG with a K D of about 6 pM, it did not inhibit the growth of colorectal cancer cells in an in vitro assay, whereas other anti-hPG monoclonal antibodies exhibited significant inhibitory activity (see, e.g., Example 7 of the '329 application). While both non-neutralizing and neutralizing antibodies that specifically bind hPG are useful for the various diagnostic and monitoring methods described herein, anti-hPG antibodies useful for therapeutic methods should exhibit neutralizing activity.
- a “neutralizing anti-hPG antibody” is an anti-hPG antibody that yields a statistically significant reduction in the number of live LS 174T in a test sample treated with the anti-hPG antibody as compared to a control sample treated with a non-specific antibody.
- a specific assay for assessing the ability of any particular anti-hPG antibody to neutralize hPG is described in Example 3.
- anti-hPG antibodies that exhibit at least about a 50% reduction in the number of live cells in this assay are believed to be especially useful in methods of preventing gastrointestinal cancer, including CRC, although anti-hPG antibodies exhibiting lower levels of neutralizing activity, for example, a statistically significant reduction of 40%, 30%, 20%, 15%, or even 10%, in the number of live cells in this assay, are expected to provide therapeutic benefits.
- useful anti-hPG antibodies are neutralizing.
- the ability of an anti-hPG monoclonal antibody is not epitope-dependent, as both N-terminal and C-terminal anti-hPG monoclonal antibodies exhibited neutralizing activity in assays with colorectal cancer cellsbearing a mutation in the APC gene.
- the neutralizing anti-hPG antibodies are N-terminal neutralizing anti-hPG antibodies.
- the neutralizing anti-hPG antibodies are C-terminal neutralizing anti-hPG antibodies.
- the affinity of any specific anti-hPG antibody is not critical. However, for some uses, antibodies exhibiting affinities of at least about 1 ⁇ M may be preferred. For therapeutic uses, an affinity of at least about 90 nM, 80 nM, 70 nM, 60 nM, 50 nM, 40 nM, 30 nM, 20 nM, 15 nM, 10 nM, 7 nM, 6 nM, 5 nM, 4 nM, 3 nM, 2 nM, 1 nM, 0.1 nM, 0.01 nM, or even greater, may be desirable.
- the measured affinities of the anti-hPG monoclonal antibodies identified in TABLES 2A & 2B range from 10 ⁇ 6 to 10 ⁇ 12 M, as noted in TABLE 4, below:
- An anti-PG monoclonal antibody having an affinity especially suited for a particular desired application can be readily selected from amongst these, or generated or designed using the various immunogens, complementarity determining region (CDR) sequences, variable heavy (V H ) and variable light (V L ) chain sequences of anti-hPG antibodies described herein.
- CDR complementarity determining region
- V H variable heavy
- V L variable light chain sequences of anti-hPG antibodies described herein.
- the affinity of any particular anti-PG monoclonal antibody can be determined using techniques well known in the art or described herein, such as for example, ELISA, isothermal titration calorimetry (ITC), BIAcore, or fluorescent polarization assays. A specific assay is provided in Example 4.
- V H variable heavy chains
- V L variable light chains
- CDRs V H complementarity determining regions
- V H CDRs V H CDRs
- mV H and mV L murine heavy and light chain variable domains are referred to herein as mV H and mV L followed by the number of the corresponding monoclonal antibody, for example mV H .3 and mV L .3 for the variable light and variable heavy chains of anti-hPG MAb3, respectively.
- V H CDR 1 of MAb3 is denoted V H CDR 1.3
- V L CDR 1 of MAb3 is denoted V L CDR 1.3
- V H CDR 2 of MAb3 is denoted V H CDR 2.3
- V L CDR 2 of MAb3 is denoted V L CDR 2.3.
- anti-hPG monoclonal antibodies that bind approximately the same epitopes could be interchanged to yield new anti-hPG monoclonal antibodies useful in the methods and kits described herein.
- exemplary anti-hPG monoclonal antibodies MAb5 and MAb6 bind the same epitope.
- An anti-hPG monoclonal antibody can be designed that includes, in its V L chain, various combinations of the V L CDRs of these two antibodies, and/or in its V H chain various combinations of the V H CDRs of these two antibodies.
- such an antibody could include in its V L chain, CDRs 1 and 2 of MAb5 (V L CDR 1.5 and V L CDR 2.5, respectively) and CDR 3 of MAb6 (V L CDR 3.6), and in its V H chain, CDR 1 of MAb6 (V H CDR 1.6) and CDRs 2 and 3 of MAb5 (V H CDR 2.5 and V H CDR 3.5, respectively).
- Amino acid sequences of CDRs of antibodies also known as hypervariable regions
- produced by hybridomas that have been deposited can be obtained using conventional means.
- the amino acid position/boundary delineating a hypervariable region of an antibody can vary, depending on the context and the various definitions known in the art. Some positions within a variable domain may be viewed as hybrid hypervariable positions in that these positions can be deemed to be within a hypervariable region under one set of criteria while being deemed to be outside a hypervariable region under a different set of criteria. One or more of these positions can also be found in extended hypervariable regions.
- the anti-PG antibodies described herein may contain modifications in these hybrid hypervariable positions.
- variable domains of native heavy and light chains each comprise four FR regions, largely by adopting a ⁇ -sheet configuration, connected by three CDRs, which form loops connecting, and in some cases forming part of, the ⁇ -sheet structure.
- the CDRs in each chain are held together in close proximity by the FR regions in the order FR1-CDR1-FR2-CDR2-FR3-CDR3-FR4 and, with the CDRs from the other chain, contribute to the formation of the target binding site of antibodies (see Kabat et al., 1987 , Sequences of Proteins of Immunological Interest , National Institute of Health, Bethesda, Md.).
- numbering of immunoglobulin amino acid residues is done according to the immunoglobulin amino acid residue numbering system of Kabat et al., unless otherwise indicated.
- N-terminal anti-hPG antibodies useful in the methods and kits described herein include, but are not limited to, the following:
- antibodies having a V L that corresponds in sequence to the V L of MAb1, MAb2, MAb3, MAb4, MAb15, MAb16, MAb17, MAb18, MAb19 or MAb20 and a V H that corresponds in sequence to the V H of MAb1, MAb2, MAb3, MAb4, MAb15, MAb16, MAb17, MAb18, MAb19 or MAb20; and
- C-terminal anti-hPG antibodies useful in the methods and kits described herein include, but are not limited to, the following:
- antibodies having a V L that corresponds in sequence to the V L of MAb5, MAb6, MAb7, MAb8, MAb9, MAb10, MAb11, MAb12, MAb13, MAb14, MAb21, MAb22 or MAb23 and a V H that corresponds in sequence to the V H of MAb5, MAb6, MAb7, MAb8, MAb9, MAb10, MAb11, MAb12, MAb13, MAb14, MAb21, MAb22 or MAb23; and
- anti-hPG antibodies useful in the diagnostic methods can be of any origin, including, for example, mammalian (e.g., human, primate, rodent, goat or rabbit), non-mammalian, or chimeric in nature (derived from more than one species of origin).
- Antibodies suitable for therapeutic uses in animals, including humans are preferably derived from the same species intended to be treated, or have been modified or designed to be non-immunogenic or have reduced immunogenicity in the animal being treated.
- a specific class of anti-hPG antibodies useful for therapeutic uses in humans is the class of humanized antibodies, discussed in more detail, below.
- Anti-hPG antibodies useful in the methods and kits described herein can also be of, or derived from, any isotype, including, for example, IgA (e.g., IgA1 or IgA2), IgD, IgE, IgG (e.g., IgG1, IgG2, IgG3 or IgG4) or IgM.
- Anti-hPG antibodies designed for therapeutic uses are preferably of the IgG isotype.
- anti-hPG antibodies useful for therapeutic methods described herein are humanized.
- humanized antibodies comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the framework regions are those of a human immunoglobulin consensus sequence, and can be referred to as “CDR-grafted.”
- the humanized antibody can also comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin consensus sequence.
- Fc immunoglobulin constant region
- Humanized versions of antibodies having CDR sequences corresponding to the CDRs of non-human anti-hPG antibodies including by way of example and not limitation, the various N-terminal anti-hPG monoclonal antibodies provided in TABLE 2A and the various C-terminal anti-hPG monoclonal antibodies provided in TABLE 2B, can be obtained using these well-known methods. Projected sequences for humanized V L and V H chains of selected anti-hPG antibodies are provided in TABLES 2A and 2B. Specific examples of humanized antibodies include antibodies comprising:
- a heavy chain variable region comprising an amino acid sequence selected from the group consisting of SEQ ID NO:90, 92, and 94 and a light chain variable region comprising an amino acid sequence selected from the group consisting of SEQ ID NO:91, 93, and 95.
- anti-hPG antibodies having specific binding properties can be readily obtained using the various antigens and immunogens described herein and assessing their ability to compete for binding hPG with a reference antibody of interest. Any of the anti-hPG antibodies described herein can be utilized as a reference antibody in such a competition assay.
- a specific assay useful for assessing the ability of an antibody to compete for binding hPG with a biotinylated reference anti-hPG antibody of interest is provided in Example 5.
- a label detectable either directly, such as, for example, a radioisotope or fluorophore, or indirectly, such as, for example biotin (detectable via binding with fluorescently-labeled streptavidin) or an enzyme (detectable via an enzymatic reaction), to enable subsequent identification.
- a labeled reference anti-hPG antibody in fixed or increasing concentrations is incubated with a known amount of hPG, forming an hPG:labeled anti-hPG antibody complex.
- the unlabeled test antibody is then added to the complex.
- the intensity of the complexed label is measured. If the test antibody competes with the labeled reference anti-hPG antibody for hPG by binding to an overlapping epitope, the intensity of the complexed label will be decrease relative to a control experiment carried out in the absence of test antibody.
- An antibody is considered to compete for binding hPG with a reference anti-hPG antibody, and thus considered to bind approximately the same or an overlapping epitope of hPG as the reference anti-hPG antibody, if it reduces binding of the reference anti-hPG antibody to hPG in a competitive binding assay, and specifically the competitive binding assay of Example 5, by at least 50%, at a test antibody concentration in the range of 0.01-100 ⁇ g/mL (e.g., 0.01 ⁇ g/mL, 0.08 ⁇ g/mL, 0.4 ⁇ g/mL, 2 ⁇ g/mL, 10 ⁇ g/mL, 50 ⁇ g/mL or 100 ⁇ g/mL or other concentration within the stated range), although higher levels of reduction, for example, 60%, 70%, 80%, 90% or even 100%, may be desirable.
- labels are useful for detection and quantification.
- Suitable labels are well known in the art, and can be “direct” in that they are directly observable or detectable (for example, fluorophores or radioisotopes) or “indirect” in that they interact with something else that produces and observable or detectable signal (for example, an enzyme that acts on a substrate to produce a detectable signal, or a binding molecule such as biotin that binds a labeled, streptavidin molecule).
- Numerous labeling systems, as well as means for labeling antibodies with them, are known in the art, and are contemplated for use herein.
- anti-hPG antibodies useful in the methods described herein have been exemplified with full length antibodies, skilled artisans will appreciate that binding fragments, or surrogate antibodies designed or derived from full-length antibodies or binding fragments, may also be used. Suitable fragments, surrogates, etc., include, but are not limited to, Fab′, F(ab′)2, Fab, Fv, vIgG, scFv fragments and surrobodies. Unless specified otherwise, the term “antibody” as used herein is intended to include all forms of antibodies and “antibody-like” surrogate molecules, including single chain antibodies, surrobodies and binding fragments. Antibodies having structures typical of naturally occurring antibodies are referred to herein as “native antibodies.”
- Anti-PG antibodies useful in the methods described herein may be obtained using standard, well-known methods.
- DNAs encoding partial or full-length light and heavy chains are inserted into expression vectors such that the genes are operatively linked to transcriptional and translational control sequences.
- operatively linked is intended to mean that an antibody gene is ligated into a vector such that transcriptional and translational control sequences within the vector serve their intended function of regulating the transcription and translation of the antibody gene.
- the expression vector and expression control sequences are chosen to be compatible with the expression host cell used.
- the antibody light chain gene and the antibody heavy chain gene can be inserted into separate vectors or, more typically, both genes are inserted into the same expression vector.
- the antibody genes are inserted into the expression vector by standard methods (e.g., ligation of complementary restriction sites on the antibody gene fragment and vector, or blunt end ligation if no restriction sites are present).
- the expression vector Prior to insertion of the anti-PG antibody light or heavy chain sequences, the expression vector can already carry antibody constant region sequences.
- one approach to converting the anti-PG antibody V H and V L sequences to full-length antibody genes is to insert them into expression vectors already encoding heavy chain constant and light chain constant regions, respectively, such that the V H segment is operatively linked to the C H segment(s) within the vector and the V L segment is operatively linked to the C L segment within the vector.
- the recombinant expression vector can encode a signal peptide that facilitates secretion of the antibody chain from a host cell.
- the antibody chain gene can be cloned into the vector such that the signal peptide is linked in-frame to the amino terminus of the antibody chain gene.
- the signal peptide can be an immunoglobulin signal peptide or a heterologous signal peptide (i.e., a signal peptide from a non-immunoglobulin protein).
- the recombinant expression vectors of the disclosure carry regulatory sequences that control the expression of the antibody chain genes in a host cell.
- the term “regulatory sequence” is intended to include promoters, enhancers and other expression control elements (e.g., polyadenylation signals) that control the transcription or translation of the antibody chain genes.
- Such regulatory sequences are described, for example, in Goeddel, Gene Expression Technology: Methods in Enzymology 185 (Academic Press, San Diego, Calif., 1990). It will be appreciated by those skilled in the art that the design of the expression vector, including the selection of regulatory sequences may depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, etc.
- Suitable regulatory sequences for mammalian host cell expression include viral elements that direct high levels of protein expression in mammalian cells, such as promoters and/or enhancers derived from cytomegalovirus (CMV) (such as the CMV promoter/enhancer), Simian Virus 40 (SV40) (such as the SV40 promoter/enhancer), adenovirus, (e.g., the adenovirus major late promoter (AdMLP)) and polyoma.
- CMV cytomegalovirus
- SV40 Simian Virus 40
- AdMLP adenovirus major late promoter
- the recombinant expression vectors can carry additional sequences, such as sequences that regulate replication of the vector in host cells (e.g., origins of replication) and selectable marker genes.
- the selectable marker gene facilitates selection of host cells into which the vector has been introduced (see, e.g., U.S. Pat. Nos. 4,399,216, 4,634,665 and 5,179,017, all by Axel et al.).
- the selectable marker gene confers resistance to drugs, such as G418, puromycin, blasticidin, hygromycin or methotrexate, on a host cell into which the vector has been introduced.
- Suitable selectable marker genes include the dihydrofolate reductase (DHFR) gene (for use in DHFR ⁇ host cells with methotrexate selection/amplification) and the neo gene (for G418 selection).
- DHFR dihydrofolate reductase
- neo gene for G418 selection.
- the expression vector(s) encoding the heavy and light chains is transfected into a host cell by standard techniques.
- the various forms of the term “transfection” are intended to encompass a wide variety of techniques commonly used for the introduction of exogenous DNA into a prokaryotic or eukaryotic host cell, e.g., electroporation, lipofection, calcium-phosphate precipitation, DEAE-dextran transfection and the like.
- eukaryotic cells e.g., mammalian host cells
- expression of antibodies is performed in eukaryotic cells, e.g., mammalian host cells, for optimal secretion of a properly folded and immunologically active antibody.
- eukaryotic cells e.g., mammalian host cells
- Exemplary mammalian host cells for expressing the recombinant antibodies of the disclosure include Chinese Hamster Ovary (CHO cells) (including DHFR ⁇ CHO cells, described in Urlaub & Chasin, 1980, Proc. Natl. Acad. Sci. USA 77:4216-4220, used with a DHFR selectable marker, e.g., as described in Kaufman & Sharp, 1982, Mol. Biol.
- NS0 myeloma cells NS0 myeloma cells
- COS cells 293 cells and SP2/0 cells.
- the antibodies are produced by culturing the host cells for a period of time sufficient to allow for expression of the antibody in the host cells or secretion of the antibody into the culture medium in which the host cells are grown.
- Antibodies can be recovered from the culture medium using standard protein purification methods.
- Host cells can also be used to produce portions of intact antibodies, such as F ab fragments or scF v molecules. It is understood that variations on the above procedure are within the scope of the present disclosure. For example, it can be desirable to transfect a host cell with DNA encoding either the light chain or the heavy chain (but not both) of an anti-PG antibody described herein.
- Recombinant DNA technology can also be used to remove some or all of the DNA encoding either or both of the light and heavy chains that is not necessary for binding to PG.
- the molecules expressed from such truncated DNA molecules are also useful in the methods described herein.
- the host cell can be co-transfected with two expression vectors, the first vector encoding a heavy chain derived polypeptide and the second vector encoding a light chain derived polypeptide.
- the two vectors each contain a separate selectable marker.
- a single vector can be used which encodes both heavy and light chain polypeptides.
- Anti-PG antibodies can also be produced by chemical synthesis (e.g., by the methods described in Solid Phase Peptide Synthesis, 2nd ed., 1984 The Pierce Chemical Co., Rockford, Ill.). Variant antibodies can also be generated using a cell-free platform (see, e.g., Chu et al., 2001, Biochemia No. 2 (Roche Molecular Biologicals)).
- an anti-PG antibody Once an anti-PG antibody has been produced by recombinant expression or synthetic means, it can be purified by any method known in the art for purification of an immunoglobulin molecule, for example, by chromatography (e.g., ion exchange, affinity, particularly by affinity for PG after Protein A or Protein G selection, and sizing column chromatography), centrifugation, differential solubility, or by any other standard technique for the purification of proteins. Further, the anti-PG antibodies or binding fragments thereof can be fused to heterologous polypeptide sequences described herein or otherwise known in the art to facilitate purification.
- chromatography e.g., ion exchange, affinity, particularly by affinity for PG after Protein A or Protein G selection, and sizing column chromatography
- centrifugation e.g., centrifugation, differential solubility, or by any other standard technique for the purification of proteins.
- the anti-PG antibodies or binding fragments thereof can be fused to heterologous polypeptide sequences
- Plasma and/or serum levels of PG can be conveniently determined using the following assay.
- 96-well microtiter plates are coated with between 0.5 and 10 ⁇ g/mL of a C-terminal anti-hPG antibody, for example, a rabbit C-terminal anti-hPG polyclonal antibody, or a C-terminal anti-hPG antibody described herein, and then incubated overnight. Plates are then washed three times in PBS-Tween (0.05%) and blocked with 2% (w/v) nonfat dried milk in PBS-Tween (0.05%).
- a C-terminal anti-hPG antibody for example, a rabbit C-terminal anti-hPG polyclonal antibody, or a C-terminal anti-hPG antibody described herein
- test samples are prepared in an appropriate diluent (e.g., PBS-Tween 0.05%).
- an hPG reference standard lyophilized hPG diluted in PG-negative plasma or serum
- Samples are incubated on the coated plates for between 2 and 4 hours at 37° C., or alternatively between 12 and 16 hours at 21° C.
- N-terminal anti-hPG antibody for example, a polyclonal N-terminal anti-hPG antibody or an N-terminal monoclonal anti-hPG antibody as described herein, coupled to horseradish peroxidase (HRP) (see, Nakane et al., 1974, J. Histochem. Cytochem. 22(12):1084-1091) for 30 minutes at 21° C. Plates are then washed three times in PBS-Tween (0.05%) and HRP substrate is added for 15 minutes at 21° C. The reaction is stopped by added 100 ⁇ L of 0.5M sulfuric acid and an optical density measurement is taken at 405 nm. Test sample hPG levels are determined by comparison to a standard curve constructed from the measurements derived from the hPG reference standard.
- test polypeptide e.g., 25 and 50 ng recombinant human PG, and 50 and 250 ng CTFP or other gastrin-derived gene products
- PBS Phosphate-Buffered Saline
- wash solution PBS and 0.1% Tween-20
- Bovine Serum Albumin or casein hydrolysate 100 ⁇ L blocking solution
- test antibody 100 ⁇ L of the test antibody (at 0.3 to 1 ng/mL) in PBS and 0.1% Tween-20 are added to each well. Plates are then incubated for 2 hours at 22° C., after which the test antibody solution is discarded and replaced, after a wash step (3 ⁇ 100 ⁇ L wash solution, as noted above), with blocking solution containing a secondary antibody, a goat anti-mouse IgG (Fc) antibody coupled to horseradish peroxidase. After a 1-hour incubation with secondary antibody, 100 ⁇ L of substrate solution (e.g.
- substrate solution e.g.
- a specific test for assessing whether a specific anti-hPG antibody is neutralizing can be performed as follows. LS 174T cells are seeded in 6 wells of a 6-well plate, at approximately 50,000 cells per well. Cells are then treated at 12-hour intervals for 48 hours with the test anti-hPG antibody or a control antibody, at antibody concentrations of about 5 ⁇ g/mL.
- a test antibody is defined as neutralizing in the assay, if the number of cells treated with the test antibody shows a statistically significant reduction of at least 10% in the number of surviving cells compared to the number of cells treated with a control, non-specific antibody, using a two-tailed Mann-Whitney test (with differences considered as significant when p ⁇ 0.05). Total cell numbers are corrected for the number of cells at the start of the treatment period, referred to as T 0 .
- Affinity constants of anti-hPG antibodies can be measured using the Proteon Technique (BioRad), according to Nahshol et al., 2008, Analytical Biochemistry 383:52-60, hereby incorporated by reference in its entirety. Briefly, for murine anti-PG antibodies, an anti-mouse IgG antibody (50 ⁇ g/ml) is first coated on a sensor chip, making sure that the signal detected by the chip after injection of the antibody falls between 10,000 and 11,500 response units (RU). The murine anti-hPG antibody of interest (test antibody) is then injected (at a typical concentration of 30 ⁇ g/ml). If the test antibody binds sufficiently, and additional signal of at least 500 RU will be observed.
- BioRad Proteon Technique
- a time-course of binding between test antibody and hPG is then obtained by injecting varying concentrations of hPG, for example 200 nM, 100 nM, 50 nM, 25 nM, and 12.5 nM, and detecting the level of association.
- hPG concentrations of hPG
- several channels are available to test multiple antibodies in parallel in a single experiment, making it possible to assay binding of a single test antibody at different concentrations of hPG in parallel.
- One channel should be injected with a murine monoclonal antibody that is not specific to hPG as a control for non-specific binding and another channel should be injected with dilution buffer alone as a baseline for the background signal. Generally, no binding is detectable in the channel injected with non-specific murine antibody.
- Antibodies displaying a high level of association in this setting which may result in saturation of the trapped monoclonal antibody by hPG, can be tested against lower hPG concentrations (50 nM, 25 nM, 12.5 nM, 6.25 nM and 3.125 nM), allowing for a more refined measurement.
- K D Affinity constants
- Affinity constants of non-murine anti-hPG antibodies can be assessed in a similar format using an IgG specific for the species of origin of the anti-hPG test antibody.
- a specific assay for assessing whether an antibody of interest (test antibody) competes for binding hPG with a biotinylated reference anti-hPG antibody can be performed as follows. 96-well plates are coated with a capture anti-hPG antibody (polyclonal or monoclonal antibody recognizing an N- or C-terminal region of hPG that differs from the epitope recognized by the biotinylated reference anti-hPG antibody), at a concentration to be chosen within the range of 1-10 ⁇ g/ml, overnight at 4° C. (0.1 to 1 ⁇ g/well).
- a capture anti-hPG antibody polyclonal or monoclonal antibody recognizing an N- or C-terminal region of hPG that differs from the epitope recognized by the biotinylated reference anti-hPG antibody
- recombinant hPG is added at a concentration ranging between 10 pM to 1 nM (10 to 1000 pg/well) and incubated for 2 hr at 22° C. Thereafter, the biotinylated reference anti-hPG antibody (or a mixture containing the biotinylated reference anti-hPG antibody) is added, along with increasing concentrations of unlabeled test antibody, and incubated for 1 hr at 22° C.
- detection of bound labeled reference anti-hPG antibody is performed by incubating the mixture with 50 ng/ml streptavidin-HRP for 1 hr at 22° C., followed by incubation with a chemiluminescent substrate for horseradish peroxidase for 5 minutes at 22° C., and then quantifying the relative light units (RLU) in a luminometer. Assays are performed in duplicate.
- Antibodies that compete with a reference anti-hPG antibody inhibit the binding of the reference antibody to hPG.
- An antibody that binds to substantially the same epitope, or with an overlapping epitope, as the reference antibody significantly reduces (for example, by at least 50%) the amount of reference anti-hPG antibody bound, as evidenced by a reduction observed RLUs.
- a high control value is obtained from a control experiment carried out by incubating the labeled reference antibody with recombinant hPG without test antibody.
- a low control value is obtained from a control experiment carried out by incubating the labeled reference antibody with recombinant hPG in the presence of excess concentrations of the unlabeled reference antibody (the unlabeled reference antibody thus competing with the labeled antibody for binding to hPG).
- the capacity of test antibodies to compete with the reference anti-hPG antibody is then determined by incubating the labeled reference antibody with recombinant hPG in the presence of increasing concentrations of the unlabeled test antibody.
- test assay a significant reduction in the observed RLUs in the presence of a test antibody indicates that the test antibody recognizes substantially the same epitope as the reference anti-hPG antibody.
- the inhibition of binding can be expressed as an inhibition constant, or which is calculated according to the following formula:
- K i IC 50 /[1+(reference anti-hPG Ab concentration/K D reference anti-hPG Ab )]
- IC 50 is the concentration of test antibody that yields a 50% reduction in binding of the reference antibody and K D reference anti-hPG Ab is the dissociation constant of the reference anti-hPG antibody, a measure of its affinity for hPG.
- Useful test antibodies that compete with a reference anti-hPG antibody will typically have K i s ranging from 10 pM to 100 nM under assay conditions described herein.
- This example shows that elevated serum PG levels can be correlated with the presence of polyps in individual with FAP.
- Serum PG levels were quantified as described in Example 1 in samples from 6 patients with Familial Adenomatous Polyposis. Serum samples were obtained from patients with the following characteristics:
- Results indicate that PG levels are particularly elevated in individuals bearing a high number of polyps at the time of sampling. In comparison, patients who have undergone surgery display very low or undetectable levels of PG.
- This example demonstrates that more than twent-five percent of individuals with sporadic adenomatous polyposis have increased serum PG levels.
- PG levels were measured in two different sample sets: a first set of samples obtained from twenty-five individuals having multiple adenomatous polyps, similar to the number that would be found in subjects with FAP, and a second set of samples from a plasma bank, collected from 104 individuals ranging in age from 45 to 65 years. Plasma progastrin levels were quantified using an ELISA assay, as described above in Example 1.
- Anti-PG Compositions Prevent Tumor Development in a Mouse Model of FAP
- This example demonstrates the ability of anti-hPG antibodies to prevent the formation of tumors in vivo.
- APC ⁇ 14 mice spontaneously develop tumors in their intestines when the second (wild type) APC allele is lost via a “loss of heterozygocity” (LOH) mechanism, (Colnot et al., 2004, “Colorectal cancers in a new mouse model of familial adenomatous polyposis: influence of genetic and environmental modifiers,” Lab Investigation 84:1619-1630).
- LH loss of heterozygocity
- the first detectable tumors can be found around 2 months of age, and by 3.5 months, the number of tumors is generally around 15-20. These tumors have been shown to produce progastrin.
- mice Four-month-old APC ⁇ 14 mice were treated twice a week for six weeks with either a control polyclonal antibody antibody—a rabbit anti-human IgG antiserum (Jackson ImmunoResearch (reference no. 309-005-0089)—or an anti-PG polyclonal antibody, raised against (1) an N-terminal peptide and (2) a C-terminal peptide as described in Hollande et al., WO 07/135,542, by intra-peritoneal injection at a dose of 9 mg/kg.
- the mice were weighed once a week. At the end of the six-week treatment regimen, their intestines were photographed, the total number of tumors counted. There were six mice in the treatment and the control group. Genotyping identified two mice from the control group that did not carry the expected heterozygous APC mutation, and were excluded from the experiment.
- mice treated with control antibody exhibited a total of 125 tumors, with 31.25 tumors on average per mouse.
- Results indicate that the number of tumors found in four out the six animals treated with anti-progastrin antibodies falls below the average number of fifteen to twenty tumors generally found in APC ⁇ 14 mice at 3.5 months of age. See, Table 6 below. These data indicate that treatment with anti-progastrin antibodies prevents new tumors from developing in these animals.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Organic Chemistry (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- Biochemistry (AREA)
- Cell Biology (AREA)
- Microbiology (AREA)
- Analytical Chemistry (AREA)
- Food Science & Technology (AREA)
- Pathology (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Biotechnology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Oncology (AREA)
- Endocrinology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- Hospice & Palliative Care (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Epidemiology (AREA)
- Mycology (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Peptides Or Proteins (AREA)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/233,593 US20150071912A1 (en) | 2010-03-24 | 2011-03-23 | Prophylaxis of colorectal and gastrointestinal cancer |
US15/278,246 US10370444B2 (en) | 2010-03-24 | 2016-09-28 | Prophylaxis of colorectal and gastrointestinal cancer |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US31724510P | 2010-03-24 | 2010-03-24 | |
PCT/EP2011/001448 WO2011116954A2 (en) | 2010-03-24 | 2011-03-23 | Prophylaxis of colorectal and gastrointestinal cancer |
US14/233,593 US20150071912A1 (en) | 2010-03-24 | 2011-03-23 | Prophylaxis of colorectal and gastrointestinal cancer |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2011/001448 A-371-Of-International WO2011116954A2 (en) | 2010-03-24 | 2011-03-23 | Prophylaxis of colorectal and gastrointestinal cancer |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/278,246 Continuation US10370444B2 (en) | 2010-03-24 | 2016-09-28 | Prophylaxis of colorectal and gastrointestinal cancer |
Publications (1)
Publication Number | Publication Date |
---|---|
US20150071912A1 true US20150071912A1 (en) | 2015-03-12 |
Family
ID=43989855
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/233,593 Abandoned US20150071912A1 (en) | 2010-03-24 | 2011-03-23 | Prophylaxis of colorectal and gastrointestinal cancer |
US15/278,246 Expired - Fee Related US10370444B2 (en) | 2010-03-24 | 2016-09-28 | Prophylaxis of colorectal and gastrointestinal cancer |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/278,246 Expired - Fee Related US10370444B2 (en) | 2010-03-24 | 2016-09-28 | Prophylaxis of colorectal and gastrointestinal cancer |
Country Status (14)
Country | Link |
---|---|
US (2) | US20150071912A1 (zh) |
EP (1) | EP2550294B1 (zh) |
JP (1) | JP5829672B2 (zh) |
KR (1) | KR101570404B1 (zh) |
CN (1) | CN103003304B (zh) |
AU (1) | AU2011231978B2 (zh) |
BR (1) | BR112012024036B1 (zh) |
CA (1) | CA2793647C (zh) |
EA (1) | EA036967B1 (zh) |
ES (1) | ES2754774T3 (zh) |
NZ (1) | NZ602992A (zh) |
PL (1) | PL2550294T3 (zh) |
SG (1) | SG184092A1 (zh) |
WO (1) | WO2011116954A2 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120020961A1 (en) * | 2010-07-26 | 2012-01-26 | Leila Houhou | Methods and compositions for liver cancer therapy |
US20140186366A1 (en) * | 2011-06-01 | 2014-07-03 | Inserm (Institut National De La Sante Et De La Recherche Medicale) | Method for predicting the risk of developing a colonic neoplasia |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MX351635B (es) * | 2009-10-16 | 2017-10-23 | Servier Lab | Anticuerpos monoclonales frente a progastrina y sus usos. |
CN108498532B (zh) * | 2012-05-09 | 2021-07-23 | 坎泰克斯制药股份有限公司 | 骨髓抑制的治疗 |
CN114621346A (zh) * | 2013-08-21 | 2022-06-14 | 德克萨斯州大学系统董事会 | 用于靶向连接蛋白半通道的组合物和方法 |
WO2016133910A1 (en) | 2015-02-17 | 2016-08-25 | Cantex Pharmaceuticals, Inc. | Treatment of cancers and hematopoietic stem cell disorders privileged by cxcl12-cxcr4 interaction |
EA037027B1 (ru) | 2015-12-31 | 2021-01-27 | Прогастрин Э Кансер С.А Р.Л. | Применение и способ для профилактики или лечения рака желудка с использованием композиции, содержащей моноклональное прогастринсвязывающее антитело |
AU2017204683B2 (en) | 2015-12-31 | 2023-03-16 | Syncerus S.À R.L. | Compositions and methods for assessing the risk of cancer occurrence |
CA3193481A1 (en) | 2015-12-31 | 2017-07-06 | Progastrine Et Cancers S.A R.L. | Compositions and methods for detecting and treating esophageal cancer |
AU2017204682B2 (en) | 2015-12-31 | 2021-07-29 | Progastrine Et Cancers S.À R.L. | Compositions and methods for detecting and treating ovarian cancer |
US11614448B2 (en) | 2017-03-30 | 2023-03-28 | Ecs-Progastrin Sa | Compositions and methods for detecting prostate cancer |
KR102616819B1 (ko) | 2017-03-30 | 2023-12-21 | 프로가스트린 에 캔서스 에스.에이 알.엘. | 폐암을 치료하기 위한 조성물 및 방법 |
KR102461238B1 (ko) * | 2017-12-05 | 2022-11-01 | 프로가스트린 에 캔서스 에스.에이 알.엘. | 암을 치료하기 위한 항-프로가스트린 항체와 면역치료 사이의 병용 치료 |
EP3720510A1 (en) | 2017-12-08 | 2020-10-14 | Ecs-biotracker Sàrl | Radiolabeled progastrin in cancer diagnosis |
TW201940881A (zh) | 2018-01-26 | 2019-10-16 | 瑞士商Ecs前胃泌激素公司 | 在癌症診斷中結合前胃泌激素檢測與其他癌症生物標記的技術 |
EP3759492A1 (en) | 2018-02-27 | 2021-01-06 | ECS-Progastrin SA | Progastrin as a biomarker for immunotherapy |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007135542A2 (en) * | 2006-05-22 | 2007-11-29 | Inserm (Institut National De La Sante Et De La Recherche Medicale) | Progastrin inhibitors in the treatment of colon cancer |
US7854932B2 (en) * | 2006-12-19 | 2010-12-21 | The Board Of Regents Of The University Of Texas System | Immunogenic compositions comprising progastrin and uses thereof |
WO2011045080A2 (en) * | 2009-10-16 | 2011-04-21 | Biorealites S.A.S. | Monoclonal antibodies to progastrin and their uses |
WO2011083088A2 (en) * | 2010-01-08 | 2011-07-14 | Bioréalités S.A.S. | Methods for treating colorectal cancer |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5179017A (en) | 1980-02-25 | 1993-01-12 | The Trustees Of Columbia University In The City Of New York | Processes for inserting DNA into eucaryotic cells and for producing proteinaceous materials |
US4399216A (en) | 1980-02-25 | 1983-08-16 | The Trustees Of Columbia University | Processes for inserting DNA into eucaryotic cells and for producing proteinaceous materials |
US4634665A (en) | 1980-02-25 | 1987-01-06 | The Trustees Of Columbia University In The City Of New York | Processes for inserting DNA into eucaryotic cells and for producing proteinaceous materials |
US4510245A (en) | 1982-11-18 | 1985-04-09 | Chiron Corporation | Adenovirus promoter system |
US5168062A (en) | 1985-01-30 | 1992-12-01 | University Of Iowa Research Foundation | Transfer vectors and microorganisms containing human cytomegalovirus immediate-early promoter-regulatory DNA sequence |
US4968615A (en) | 1985-12-18 | 1990-11-06 | Ciba-Geigy Corporation | Deoxyribonucleic acid segment from a virus |
US5225539A (en) | 1986-03-27 | 1993-07-06 | Medical Research Council | Recombinant altered antibodies and methods of making altered antibodies |
GB8607679D0 (en) | 1986-03-27 | 1986-04-30 | Winter G P | Recombinant dna product |
US5530101A (en) | 1988-12-28 | 1996-06-25 | Protein Design Labs, Inc. | Humanized immunoglobulins |
GB8928874D0 (en) | 1989-12-21 | 1990-02-28 | Celltech Ltd | Humanised antibodies |
DE69233482T2 (de) | 1991-05-17 | 2006-01-12 | Merck & Co., Inc. | Verfahren zur Verminderung der Immunogenität der variablen Antikörperdomänen |
ES2136092T3 (es) | 1991-09-23 | 1999-11-16 | Medical Res Council | Procedimientos para la produccion de anticuerpos humanizados. |
US5639641A (en) | 1992-09-09 | 1997-06-17 | Immunogen Inc. | Resurfacing of rodent antibodies |
AUPO982097A0 (en) * | 1997-10-15 | 1997-11-06 | University Of Melbourne, The | Methods and compositions for use therein |
EP2949762B1 (en) | 2000-03-27 | 2018-05-09 | Thomas Jefferson University | Compositions for treating stomachal and oesophageal cancer cells |
CA2450898A1 (en) | 2001-07-09 | 2003-01-23 | Aphton Corporation | Treatment and prevention of cancerous and pre-cancerous conditions of the liver, lung and esophagus |
WO2004090547A2 (en) | 2003-04-04 | 2004-10-21 | Protein Design Labs, Inc. | Metastatic colorectal cancer signatures |
CA2580965C (en) * | 2004-09-22 | 2014-04-08 | Receptor Biologix, Inc. | Monoclonal antibodies to progastrin |
US20110053879A1 (en) | 2008-02-08 | 2011-03-03 | Poniard Pharmaceuticals, Inc. | Picoplatin and amrubicin to treat lung cancer |
US20090275546A1 (en) | 2008-04-10 | 2009-11-05 | Istituto Superiore Di Sanita | Diagnostic tests and personalized treatment regimes for cancer stem cells |
US20110318380A1 (en) | 2008-10-01 | 2011-12-29 | Dako Denmark A/S | MHC Multimers in Cancer Vaccines and Immune Monitoring |
WO2011104338A1 (en) * | 2010-02-26 | 2011-09-01 | Boehringer Ingelheim International Gmbh | Halogen or cyano substituted thieno [2,3-d]pyrimidines having mnk1/mnk2 inhibiting activity for pharmaceutical compositions |
-
2011
- 2011-03-23 US US14/233,593 patent/US20150071912A1/en not_active Abandoned
- 2011-03-23 EP EP11710711.0A patent/EP2550294B1/en active Active
- 2011-03-23 WO PCT/EP2011/001448 patent/WO2011116954A2/en active Application Filing
- 2011-03-23 NZ NZ602992A patent/NZ602992A/en not_active IP Right Cessation
- 2011-03-23 AU AU2011231978A patent/AU2011231978B2/en not_active Ceased
- 2011-03-23 KR KR1020127027633A patent/KR101570404B1/ko active IP Right Grant
- 2011-03-23 CN CN201180025541.4A patent/CN103003304B/zh not_active Expired - Fee Related
- 2011-03-23 JP JP2013500386A patent/JP5829672B2/ja not_active Expired - Fee Related
- 2011-03-23 SG SG2012068599A patent/SG184092A1/en unknown
- 2011-03-23 ES ES11710711T patent/ES2754774T3/es active Active
- 2011-03-23 EA EA201201324A patent/EA036967B1/ru not_active IP Right Cessation
- 2011-03-23 CA CA2793647A patent/CA2793647C/en not_active Expired - Fee Related
- 2011-03-23 BR BR112012024036-6A patent/BR112012024036B1/pt active IP Right Grant
- 2011-03-23 PL PL11710711T patent/PL2550294T3/pl unknown
-
2016
- 2016-09-28 US US15/278,246 patent/US10370444B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007135542A2 (en) * | 2006-05-22 | 2007-11-29 | Inserm (Institut National De La Sante Et De La Recherche Medicale) | Progastrin inhibitors in the treatment of colon cancer |
US7854932B2 (en) * | 2006-12-19 | 2010-12-21 | The Board Of Regents Of The University Of Texas System | Immunogenic compositions comprising progastrin and uses thereof |
WO2011045080A2 (en) * | 2009-10-16 | 2011-04-21 | Biorealites S.A.S. | Monoclonal antibodies to progastrin and their uses |
WO2011083088A2 (en) * | 2010-01-08 | 2011-07-14 | Bioréalités S.A.S. | Methods for treating colorectal cancer |
US9217032B2 (en) * | 2010-01-08 | 2015-12-22 | Les Laboratoires Servier | Methods for treating colorectal cancer |
Non-Patent Citations (10)
Title |
---|
. Kataja et al., Ann Oncol 2009; 20(sup 4): iv10-14 * |
Balmana et al. Ann Oncol 2009; 20(supp 4):iv19-20 * |
Brand et al., Anticancer Res. 2006; 26:463-70 * |
Casset et al. (2003) BBRC 307, 198-205, * |
George et al. (Circulation. 1998; 97: 900-906), * |
Nelson et al., Ann. Intern Med. 2009; 151:727-737 * |
Pascalis et al (The Journal of Immunology (2002) 169, 3076-3084) * |
Paul, Fundamental Immunology, 3rd Edition, 1993, pp. 292-295 * |
Rudikoff et al(Proc. Natl. Acad. Sci. USA 1982 Vol. 79: page 1979). * |
Strome et al., The Oncologist, 2007; 12:1084-95 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120020961A1 (en) * | 2010-07-26 | 2012-01-26 | Leila Houhou | Methods and compositions for liver cancer therapy |
US10533050B2 (en) * | 2010-07-26 | 2020-01-14 | Institut National De La Sante Et De La Recherche Medicale (Inserm) | Methods and compositions for liver cancer therapy |
US20140186366A1 (en) * | 2011-06-01 | 2014-07-03 | Inserm (Institut National De La Sante Et De La Recherche Medicale) | Method for predicting the risk of developing a colonic neoplasia |
US9410955B2 (en) * | 2011-06-01 | 2016-08-09 | Inserm (Institut National De La Sante Et De La Recherche Medicale) | Method for predicting the risk of developing a colonic neoplasia |
Also Published As
Publication number | Publication date |
---|---|
CA2793647A1 (en) | 2011-09-29 |
EP2550294A2 (en) | 2013-01-30 |
CN103003304B (zh) | 2016-03-09 |
KR20130010050A (ko) | 2013-01-24 |
JP2013527140A (ja) | 2013-06-27 |
BR112012024036B1 (pt) | 2020-03-03 |
ES2754774T3 (es) | 2020-04-20 |
EA201201324A1 (ru) | 2013-08-30 |
US10370444B2 (en) | 2019-08-06 |
WO2011116954A2 (en) | 2011-09-29 |
CN103003304A (zh) | 2013-03-27 |
US20170233469A1 (en) | 2017-08-17 |
EA036967B1 (ru) | 2021-01-20 |
JP5829672B2 (ja) | 2015-12-09 |
AU2011231978A1 (en) | 2012-10-11 |
SG184092A1 (en) | 2012-10-30 |
CA2793647C (en) | 2020-09-01 |
NZ602992A (en) | 2014-11-28 |
EP2550294B1 (en) | 2019-08-21 |
BR112012024036A2 (pt) | 2017-07-18 |
WO2011116954A8 (en) | 2013-02-21 |
PL2550294T3 (pl) | 2020-03-31 |
WO2011116954A3 (en) | 2013-04-25 |
KR101570404B1 (ko) | 2015-11-20 |
AU2011231978B2 (en) | 2014-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10370444B2 (en) | Prophylaxis of colorectal and gastrointestinal cancer | |
US11299542B2 (en) | Monoclonal antibodies to progastrin and their uses | |
US10533050B2 (en) | Methods and compositions for liver cancer therapy | |
US9487582B2 (en) | Methods for treating pancreatic cancer | |
AU2017202880B2 (en) | Monoclonal Antibodies to Progastrin and their uses |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: LES LABORATORIES SERVIER, FRANCE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BIOREALITIES;REEL/FRAME:033961/0695 Effective date: 20121203 |
|
AS | Assignment |
Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HOLLANDE, FREDERIC;REEL/FRAME:035097/0308 Effective date: 20140912 Owner name: LES LABORATORIES SERVIER, FRANCE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HOUHOU, LEILA;PETREMANN, MATHIEU;SIGNING DATES FROM 20141210 TO 20150218;REEL/FRAME:035097/0178 Owner name: INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE M Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:JOUBERT, DOMINIQUE;REEL/FRAME:035097/0240 Effective date: 20150113 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |