US20150068700A1 - Casting Wheel - Google Patents
Casting Wheel Download PDFInfo
- Publication number
- US20150068700A1 US20150068700A1 US14/391,649 US201314391649A US2015068700A1 US 20150068700 A1 US20150068700 A1 US 20150068700A1 US 201314391649 A US201314391649 A US 201314391649A US 2015068700 A1 US2015068700 A1 US 2015068700A1
- Authority
- US
- United States
- Prior art keywords
- casting wheel
- casting
- recited
- profiling
- wheel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000005266 casting Methods 0.000 title claims abstract description 99
- 239000012809 cooling fluid Substances 0.000 claims abstract description 21
- 229910052751 metal Inorganic materials 0.000 claims abstract description 10
- 239000002184 metal Substances 0.000 claims abstract description 10
- 230000002093 peripheral effect Effects 0.000 claims abstract description 8
- 238000004519 manufacturing process Methods 0.000 claims abstract description 7
- 229910001092 metal group alloy Inorganic materials 0.000 claims abstract description 6
- 150000002739 metals Chemical class 0.000 claims abstract description 4
- 238000000576 coating method Methods 0.000 claims description 14
- 239000011248 coating agent Substances 0.000 claims description 13
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- 230000008021 deposition Effects 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims 2
- 239000002103 nanocoating Substances 0.000 description 10
- 239000007788 liquid Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 230000017525 heat dissipation Effects 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 2
- 230000000181 anti-adherent effect Effects 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 150000003377 silicon compounds Chemical class 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 150000003609 titanium compounds Chemical class 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000002308 calcification Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000005382 thermal cycling Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/06—Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
- B22D11/0637—Accessories therefor
- B22D11/0648—Casting surfaces
- B22D11/0651—Casting wheels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/005—Continuous casting of metals, i.e. casting in indefinite lengths of wire
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/06—Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/06—Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
- B22D11/0611—Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a single casting wheel, e.g. for casting amorphous metal strips or wires
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/06—Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
- B22D11/0637—Accessories therefor
- B22D11/068—Accessories therefor for cooling the cast product during its passage through the mould surfaces
- B22D11/0682—Accessories therefor for cooling the cast product during its passage through the mould surfaces by cooling the casting wheel
Definitions
- the present invention generally relates to a casting wheel for manufacturing strands of metal or metal alloys.
- a casting wheel has a peripheral casting channel that is outwardly bounded by a circulating band over a partial periphery of the casting wheel.
- the band is made of steel.
- the casting channel is cooled by the spraying on of a cooling fluid, in particular water.
- Such casting wheels are used in wire manufacturing, for example, in the casting of liquid non-ferrous metal, such as copper or aluminum, respectively copper alloys or aluminum alloys, into strands. Wires are then fabricated from the strands in subsequent forming processes.
- the casting wheel rotates about the central axis of rotation thereof; the endlessly circulating steel band covering the casting channel over an area that corresponds to approximately three quarters of the peripheral length thereof.
- a U-shaped channel which is open to the top at both ends, is formed by the casting channel and the band.
- Liquid non-ferrous metal is poured into the one end.
- the non-ferrous metal introduced into the casting channel solidifies at the outer surface during a one half to three-quarter rotation of the casting wheel, to then leave the casting channel at the other end as a strand.
- Today's casting wheels are typically designed to have a mold bottom thickness, i.e., a region underneath the casting channel of approximately 40 mm. Effectively, however, only a mold bottom thickness of 20 mm is required, so that cracks that have formed in the casting channel can be removed by repeated machining, i.e., by lathing. Depending on the machining operation, lathing is typically carried out to a thickness of approximately 2 to 5 mm.
- a casting wheel for manufacturing strands of metals or metal alloys comprising a peripheral casting channel ( 2 ) that is bounded over a partial length by a circulating band ( 11 ); below the casting channel ( 2 ), a mold bottom ( 3 ) being provided for being cooled with a cooling fluid, wherein the inner side ( 7 ) of the mold bottom ( 3 ) facing away from the casting channel ( 2 ) is provided with a profiling ( 6 ) that has a profile height of 0.5 to 6 mm.
- FIG. 1 schematically shows a cross section through a casting wheel 1 of which only one casting channel is shown due to the axially symmetric configuration.
- the casting wheel according to the present invention for manufacturing strands of metals or metal alloys includes a peripheral casting channel that is bounded over a partial length by a circulating band. Below the casting channel, a mold bottom is provided for being cooled with a cooling fluid. The inner side of the mold bottom facing away from the casting channel is provided in accordance with the present invention with a profiling that has a profile height of only 0.5 to 6 mm; in particular, the profile height is within a range of from 0.5 to 3 mm. The profiling preferably has a profile height of 2 mm at a maximum.
- such a low profile height makes it possible to significantly improve the cooling of the casting wheel since the surface, that the cooling fluid comes in contact with, is considerably enlarged.
- the profiling is so low, due to the limited height thereof, that the casting wheel may be lathed several times, making it possible for either the mold bottom thickness to be reduced, which, in turn, leads to an improved heat dissipation; or, on the other hand, given a constant thickness of the mold bottom, more remachining is possible without an overly deep profiling preventing the remachining.
- the profiling is advantageously designed to provide a largest possible surface area. Therefore, the profiling may not only extend in the area of the inner side of the casting wheel, but also at the outer sides of the lateral faces between which the casting channel is located. This altogether increases the size of the profiled surface.
- the radial end faces of the mold bottom may also be provided with such a profiling.
- the profiling be formed from a plurality of grooves. Since easy machining is possible, these grooves should extend peripherally in the circumferential direction of the casting wheel. The production may be accomplished by recessing the grooves.
- the profiling itself should be maximized with regard to the surface area thereof.
- a serrated or undulated profile is preferably used. If the profiling is too delicate, the individual grooves may become obstructed, decreasing the size of the surface area that comes in contact with the cooling fluid. For that reason, the grooves should preferably have an opening angle of 15° through 90°. In particular, the opening angle is 45° to 60°. On the one hand, such grooves should be more readily produced than grooves having mutually parallel extending side walls. On the other hand, in the case of the mentioned opening angles, capillary forces hardly occur, so that the cooling fluid is not drawn into the grooves to remain therein, rather is constantly exchanged. The heat is dissipated more effectively.
- the mold bottom regions and/or the lateral faces of the casting wheel acted upon by cooling fluid may be provided with a coating that protects the casting wheel from cooling fluid deposition.
- the coating may be an antiadhesive coating.
- the coating contains silicon compounds, aluminum compounds or titanium compounds. These are preferably what are generally referred to as nano coatings, respectively lotus-effect coatings having layer thicknesses of between 4 ⁇ m and 10 ⁇ m. Nano coatings are understood to be structures whose molecules are within the scale of less than 100 nanometers.
- a nano coating is preferably applied by spraying or by lacquering/coating.
- a dipping process may also be used for the lacquering.
- the liquid nano coating is converted to a solid nano coating in a curing process.
- the cured nano coating has a smooth and closed surface.
- the requirement for a smooth surface is also that the roughness of the surface of the casting wheel in the areas in question be reduced. A roughness of between 2 ⁇ m and 5 ⁇ m is adjusted. Following irradiation or polishing of the surface, the surface is degreased. The liquid nano coating is subsequently applied. Any cavities in the surface are sealed, preventing any more deposits from settling.
- the nano coating is then able to substantially improve the surface properties of the casting wheel, the thermal conductivity being negligibly influenced.
- the fundamental advantage of the coating is that contamination or calcification contained in the cooling fluid does not settle on the coated surfaces, rather is rinsed away from the surface by the flow of cooling fluid. A self-cleaning effect of the surface is utilized.
- FIG. 1 schematically shows a cross section through a casting wheel 1 of which only one casting channel is shown due to the axially symmetric configuration. Therefore, the illustrated cut-away portion of casting wheel 1 shows a casting channel 2 that is used for receiving liquid metals or metal alloys.
- Casting channel 2 is covered by a band 11 over a partial peripheral area of casting wheel 1 , until the molten metal received therein is at least externally solidified and, therefore, emerges as a solid strand from the casting wheel.
- the area underneath casting channel 2 is referred to as mold bottom 3 .
- Mold bottom 3 has two radially outwardly extending lateral faces 4 , 5 between which casting channel 2 is located that, in cross section, essentially has a trapezoidal configuration.
- the contouring of casting channel 2 is purely exemplary.
- Profiling 6 is shown in an enlarged view in the lower portion of the illustration.
- Profiling 6 has a profile height within a range of from 0.5 mm to 6 mm, preferably within a range of from 0.5 mm to 3 mm. In this exemplary embodiment, the profile height is 1 mm.
- Profile width B is 2 mm.
- Profiling 6 is configured as a serrated profile because a plurality of identically configured grooves are disposed side-by-side.
- Grooves 8 each have an opening angle W of 90°. Angle W is preferably within a range of from 15° to 90°, in particular within a range of from 45° to 60°.
- Inner side 7 of mold bottom 3 is acted upon by a cooling fluid in a manner not shown in greater detail.
- the cooling fluid is sprayed onto inner side 7 .
- the surface area in the region of inner side 7 is enlarged, so that heat flow Q from the casting strand into the cooling fluid is influenced by the proportionality to surface A of profiling 6 .
- profilings 6 a, 6 b are configured at outer sides 9 , 10 of lateral faces 4 , 5 .
- Profilings 6 a, 6 b are configured there exactly as at inner side 7 of mold bottom 3 . In this area as well, a significantly greater heat flow may be realized, which is attributable to the enlargement of the particular surface areas.
- the inventive configuration of the surface areas of casting wheel 1 has the decisive advantage of allowing the casting wheel to be remachined under conditions of increasing wear, without profiling 6 , 6 a, 6 b disrupting this process. Relative to the dimensions of casting wheel 1 , profiling 6 , 6 a, 6 b is so small, but nevertheless so effective that it exclusively improves the method of functioning of the casting wheel, without standing in the way of any potential remachining.
- casting wheel 1 is provided in the area of profilings 6 , 6 a, 6 b with a coating that prevents cooling fluid deposits from settling. It is a question, in particular, of an antiadhesive coating.
- the coating may be what is generally referred to as a nano coating that contains silicon compounds, aluminum compounds or titanium compounds.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102012007312.7 | 2012-04-13 | ||
DE102012007312A DE102012007312A1 (de) | 2012-04-13 | 2012-04-13 | Gießrad |
PCT/DE2013/000095 WO2013152746A1 (de) | 2012-04-13 | 2013-02-22 | Giessrad |
Publications (1)
Publication Number | Publication Date |
---|---|
US20150068700A1 true US20150068700A1 (en) | 2015-03-12 |
Family
ID=48082797
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/391,649 Abandoned US20150068700A1 (en) | 2012-04-13 | 2013-02-22 | Casting Wheel |
Country Status (7)
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2712683C1 (ru) * | 2019-10-10 | 2020-01-30 | Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" | Кристаллизатор для непрерывного литья заготовки |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105364036A (zh) * | 2015-12-15 | 2016-03-02 | 德阳九鼎智远知识产权运营有限公司 | 结晶轮 |
CN105382225A (zh) * | 2015-12-15 | 2016-03-09 | 德阳九鼎智远知识产权运营有限公司 | 结晶轮装配结构 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3279000A (en) * | 1963-12-30 | 1966-10-18 | Southwire Co | Apparatus for continuous casting of metal |
US3536126A (en) * | 1968-10-23 | 1970-10-27 | Southwire Co | Casting machine with lightweight casting wheel |
US4211271A (en) * | 1977-12-14 | 1980-07-08 | Southwire Company | Continuous casting mold geometry improvement |
US4287934A (en) * | 1977-12-14 | 1981-09-08 | Southwire Company | Continuous casting mold |
US4957155A (en) * | 1988-08-04 | 1990-09-18 | Zdenek Trnka | Cooling system for continuous casting machines |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE542505A (enrdf_load_stackoverflow) * | 1954-11-02 | |||
US3311955A (en) * | 1965-01-06 | 1967-04-04 | Southwire Co | Disposable mold member for casting machine |
FR1590702A (enrdf_load_stackoverflow) * | 1968-09-25 | 1970-04-20 | ||
FR2112091B2 (enrdf_load_stackoverflow) * | 1970-10-23 | 1973-11-23 | Spidem Ste Nle | |
FR2412370A1 (fr) * | 1977-12-22 | 1979-07-20 | Pechiney Aluminium | Anneau pour roue de machine de coulee |
FR2505690A1 (fr) * | 1981-05-15 | 1982-11-19 | Ugine Aciers | Procede et dispositif de coulee continue sur roue a gorge |
DE3623937A1 (de) * | 1986-07-16 | 1988-01-21 | Didier Werke Ag | Feuerfeste kanalverbindung zum ueberfuehren von stahlschmelze in giessrad-stranggiessmaschinen |
NO20020492A (no) * | 2002-01-30 | 2003-05-05 | Heggset Eng As | Støpehjul for kontinuerlig støping av metall |
DE102008017432A1 (de) * | 2008-04-03 | 2009-10-08 | Kme Germany Ag & Co. Kg | Gießform |
-
2012
- 2012-04-13 DE DE102012007312A patent/DE102012007312A1/de not_active Withdrawn
-
2013
- 2013-02-22 ES ES13715119.7T patent/ES2636462T3/es active Active
- 2013-02-22 US US14/391,649 patent/US20150068700A1/en not_active Abandoned
- 2013-02-22 WO PCT/DE2013/000095 patent/WO2013152746A1/de active Application Filing
- 2013-02-22 IN IN2428KON2014 patent/IN2014KN02428A/en unknown
- 2013-02-22 CN CN201380003767.3A patent/CN103917312A/zh active Pending
- 2013-02-22 EP EP13715119.7A patent/EP2836319B1/de not_active Not-in-force
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3279000A (en) * | 1963-12-30 | 1966-10-18 | Southwire Co | Apparatus for continuous casting of metal |
US3536126A (en) * | 1968-10-23 | 1970-10-27 | Southwire Co | Casting machine with lightweight casting wheel |
US4211271A (en) * | 1977-12-14 | 1980-07-08 | Southwire Company | Continuous casting mold geometry improvement |
US4287934A (en) * | 1977-12-14 | 1981-09-08 | Southwire Company | Continuous casting mold |
US4957155A (en) * | 1988-08-04 | 1990-09-18 | Zdenek Trnka | Cooling system for continuous casting machines |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2712683C1 (ru) * | 2019-10-10 | 2020-01-30 | Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" | Кристаллизатор для непрерывного литья заготовки |
WO2021071395A1 (ru) * | 2019-10-10 | 2021-04-15 | Общество С Ограниченной Ответственностью "Объединенная Компания Русал Инженерно -Технологический Центр" | Кристаллизатор для непрерывного литья заготовки |
US12343788B2 (en) | 2019-10-10 | 2025-07-01 | Obshchestvo S Ogranichennoy Otvetstvennost'Yu “Obedinennaya Kompaniya Rusal Inzhenerno-Tekhnologicheskiy Tsentr” | Continuous casting mould |
Also Published As
Publication number | Publication date |
---|---|
EP2836319A1 (de) | 2015-02-18 |
CN103917312A (zh) | 2014-07-09 |
ES2636462T3 (es) | 2017-10-05 |
EP2836319B1 (de) | 2017-07-05 |
IN2014KN02428A (enrdf_load_stackoverflow) | 2015-05-01 |
DE102012007312A1 (de) | 2013-10-17 |
WO2013152746A1 (de) | 2013-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8037860B2 (en) | Cylinder liner and engine | |
US20150068700A1 (en) | Casting Wheel | |
BRPI0612791B1 (pt) | Camisa de cilindro e método para fabricá-la | |
US5318091A (en) | Die coating | |
US20170107933A1 (en) | Cylinder liner | |
CN109210520B (zh) | 用于在散热器上放置光源的装置和方法 | |
KR20160030990A (ko) | 접합 레이어가 있는 실린더 라이너 | |
US11149812B2 (en) | Brake drum and method for producing such a brake drum | |
US20160215839A1 (en) | Method for producing a brake disk and brake disk | |
JP2003053622A (ja) | 高効率冷却用ダクトを備えたツール | |
JP2010285985A (ja) | シリンダ・ブロックおよびシリンダ・ブロックを製造するための方法 | |
US20100239429A1 (en) | Wear protection coating | |
JP5591352B2 (ja) | 熱間工具を製造する方法 | |
CN102527996B (zh) | 用于制造曲轴箱的方法以及曲轴箱 | |
CN107460377A (zh) | 一种铝合金气缸套及其制备方法 | |
CN206035657U (zh) | 带有铸造的气缸曲轴箱的内燃机 | |
CN104373245A (zh) | 具有用于接收活塞的开孔的工件 | |
KR102413478B1 (ko) | 열기관용 피스톤, 그러한 피스톤을 포함하는 열기관 및 방법 | |
CA3074308A1 (en) | Formed material manufacturing method and surface treated metal plate used in same | |
KR101152678B1 (ko) | 연속 주조 몰드의 제조 방법과 대응하는 연속 주조 몰드 | |
US10968860B2 (en) | Cylinder liner having varied thermal conductivity | |
CN110894813A (zh) | 气缸套及其制造方法和使用气缸套的气缸体的制造方法 | |
CN111556925B (zh) | 阶状选择性区域气缸粗糙化(ptwa) | |
JP2016205215A (ja) | シリンダブロックの製造方法 | |
JP2017057825A (ja) | シリンダボア面の表面処理方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: KME GERMANY GMBH & CO. KG, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DRATNER, CHRISTOF;BOEERT, FRANK;REEL/FRAME:034119/0791 Effective date: 20141021 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |