US20150005350A1 - Administration of ethyl 3-[(2--1-methyl-1h-benzimidazol-5-carbonyl)pyridin-2-ylamino]propionate - Google Patents

Administration of ethyl 3-[(2--1-methyl-1h-benzimidazol-5-carbonyl)pyridin-2-ylamino]propionate Download PDF

Info

Publication number
US20150005350A1
US20150005350A1 US14/489,892 US201414489892A US2015005350A1 US 20150005350 A1 US20150005350 A1 US 20150005350A1 US 201414489892 A US201414489892 A US 201414489892A US 2015005350 A1 US2015005350 A1 US 2015005350A1
Authority
US
United States
Prior art keywords
methyl
active substance
acid
weight
amino
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/489,892
Inventor
Ulrich Brauns
Norbert Hauel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boehringer Ingelheim International GmbH
Original Assignee
Boehringer Ingelheim International GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10209985A external-priority patent/DE10209985A1/en
Priority claimed from DE2002145624 external-priority patent/DE10245624A1/en
Application filed by Boehringer Ingelheim International GmbH filed Critical Boehringer Ingelheim International GmbH
Priority to US14/489,892 priority Critical patent/US20150005350A1/en
Publication of US20150005350A1 publication Critical patent/US20150005350A1/en
Priority to US15/946,096 priority patent/US20180221359A1/en
Priority to US16/380,161 priority patent/US20190231766A1/en
Priority to US16/694,091 priority patent/US20200085807A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/4439Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. omeprazole
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links

Definitions

  • the invention relates to administration forms for oral applications of prodrugs and in particular prodrugs of the active substance ethyl 3-[(2- ⁇ [4-(hexyloxycarbonylamino-imino-methyl)-phenylamino]-methyl ⁇ -1-methyl-1H-benzimidazole-5-carbonyl)-pyridin-2-yl-amino]-propionate and the pharmacologically acceptable salts thereof.
  • the invention relates to an administration form for the oral application of the active substance ethyl 3-[(2- ⁇ [4-(hexyloxycarbonylamino-imino-methyl)-phenylamino]-methyl ⁇ -1-methyl-1H-benzimidazole-5-carbonyl)-pyridin-2-yl-amino]-propionate and the pharmacologically acceptable salts thereof.
  • This active substance having the chemical formula
  • the compound of formula I is only converted into the active compound, namely the compound of formula II, after entering the body.
  • the main indication for the compound of chemical formula I is the post-operative prevention of deep-vein thrombosis.
  • FIG. 1 shows a schematic structure of the pharmaceutical composition.
  • FIG. 2 shows the bioavailability of BIBR 1048.
  • the aim of the invention is to provide an improved formulation for oral use of the compound of formula I (which is also referred to hereinafter as the “active substance”).
  • acids for the purposes of this invention are for example tartaric acid, fumaric acid, succinic acid, citric acid, malic acid, glutamic acid and aspartic acid including the hydrates and acid salts thereof.
  • Particularly suitable for the purposes of this invention are tartaric acid, fumaric acid, succinic acid and citric acid.
  • a preferred embodiment of the invention is a multiparticulate preparation in which the individual particles are constructed as in FIG. 1 .
  • FIG. 1 shows the diagrammatic structure of the pharmaceutical composition by means of a section through a pellet suitable for the preparation of the pharmaceutical composition according to the invention.
  • the roughly bead-shaped/spherical core region of this pellet contains/consists of the pharmaceutically acceptable organic acid.
  • the so-called insulating layer which separates the acid core from the layer containing the active substance.
  • the insulating layer is in turn surrounded by the equally spherically shaped layer of active substance which may in turn be enclosed in a coating which increases the abrasion resistance and shelf life of the pellets.
  • One advantage of the formulation thus constructed is the spatial separation of the organic acid and active substance by the insulating layer.
  • a further advantage of the construction of the pellets as described above is the fact that the organic acid does not go into solution until after the preparation has been taken and then produces an acid microclimate in which the active substance can dissolve.
  • the core material used is a pharmaceutically acceptable organic acid with a water solubility of >1 g/250 ml at 20° C., such as e.g. tartaric acid, fumaric acid, succinic acid, citric acid, malic acid, glutamic acid and aspartic acid including the hydrates and acid salts thereof, to which a small amount of 1 to 10% by weight, preferably 3 to 6% by weight of a suitable binder is optionally added.
  • a binder may be necessary, for example, if the starting acids are produced by a pan build-up process. If the method used is extrusion or spheronisation, other technological adjuvants such as microcrystalline cellulose will be needed instead of binders.
  • the pharmaceutically acceptable organic acids used are preferably tartaric acid, fumaric acid, succinic acid or citric acid; tartaric acid is particularly preferred.
  • binder it is possible to use gum arabic or a partially or totally synthetic polymer selected from among the hydroxypropylcelluloses, hydroxypropylmethylcelluloses, methylcelluloses, hydroxyethylcelluloses, carboxymethylcelluloses, polyvinylpyrrolidone, the copolymers of N-vinylpyrrolidone and vinyl acetate, or combinations of these polymers; gum arabic is preferred.
  • the spherical core material preferably has an average diameter of 0.4-1.5 mm.
  • the content of the pharmaceutically acceptable organic acid is usually between 30 and 100% in the core material, corresponding to an amount of between 20 and 90%, preferably between 20 and 80% in the finished pellet (i.e. in the pharmaceutical composition).
  • water-soluble, pharmaceutically acceptable polymer examples include for example gum arabic or a partially or totally synthetic polymer selected from among the hydroxypropylcelluloses, hydroxypropylmethylcelluloses, methylcelluloses, hydroxyethylcelluloses, carboxymethylcelluloses, polyvinylpyrrolidone, the copolymers of N-vinylpyrrolidone and vinyl acetate, or combinations of these polymers. Gum arabic or a hydroxypropylmethylcellulose is preferably used.
  • the coating with the water-soluble, pharmaceutically acceptable polymer may be carried out with the addition of suitable plasticisers, separating agents and pigments, such as for example triethylcitrate, tributylcitrate, triacetin, polyethyleneglycols (plasticisers), talc, silicic acid (separating agents), titanium dioxide or iron oxide pigments (pigments).
  • suitable plasticisers such as for example triethylcitrate, tributylcitrate, triacetin, polyethyleneglycols (plasticisers), talc, silicic acid (separating agents), titanium dioxide or iron oxide pigments (pigments).
  • the active substance layer contains the active substance ethyl 3-[(2- ⁇ [4-(hexyloxycarbonylamino-imino-methyl)-phenylamino]-methyl ⁇ -1-methyl-1H-benzimidazole-5-carbonyl)-pyridin-2-yl-amino]-propionate (BIBR 1048) or one of the pharmaceutically acceptable salts thereof as well as binders and optionally separating agents.
  • a preferred salt of the active substance is the mesylate (methanesulphonate) of the compound of formula I.
  • Suitable binders include for example hydroxypropylcellulose, hydroxypropylmethylcellulose, methylcellulose, hydroxyethylcellulose, carboxymethylcellulose, polyvinylpyrrolidone, copolymers of N-vinylpyrrolidone and vinyl acetate or combinations of these polymers. Preferably, hydroxypropylcellulose or copolymers of N-vinylpyrrolidone and vinyl acetate are used.
  • separating agents such as e.g. talc or silicic acid serves to prevent the particles from aggregating during the process.
  • the active substance content is 5 to 60%, preferably 10 to 50% of the pharmaceutical composition.
  • the optional outermost layer which serves to reduce any increased abrasion during packing into capsules and/or to increase the shelf life, consists of pharmaceutically conventional film-forming agents, plasticisers and optionally pigments.
  • Suitable film-forming agents include for example hydroxypropylcellulose, hydroxypropylmethylcellulose, methylcellulose, polymers and copolymers of acrylic and methacrylic acid and the esters thereof, or combinations of these polymers.
  • Suitable plasticisers include inter alia triethylcitrate, tributylcitrate, triacetin or polyethyleneglycols.
  • the pigments used may be e.g. titanium dioxide or iron oxide pigments.
  • the outer coating consists of hydroxypropylmethylcellulose and/or methylcellulose, optionally with the addition of polyethyleneglycols as plasticisers.
  • the pellets may be prepared by the method described hereinafter:
  • the acid-containing core material consists either of crystals of the particular organic acid used or, more advantageously, of roughly spherical particles of the desired size containing a large amount of organic acid, which can be produced by methods known and established in pharmaceutical technology.
  • the core material may be produced, in particular, by pan methods, on pelleting plates or by extrusion/spheronisation. Then the core material thus obtained may be divided into fractions of the desired diameter by screening.
  • Suitable core material has an average diameter of 0.4 to 1.5 mm, preferably 0.6 to 0.8 mm.
  • the insulating layer is applied to this acid-containing core material.
  • This can be done by conventional methods, e.g. by applying an aqueous dispersion of the water-soluble, pharmaceutically acceptable polymer, optionally with the addition of plasticisers, separating agents and/or pigments, in a fluidised bed, in coating pans or in conventional film coating apparatus. If necessary the product can then be screened again.
  • Suitable binders in the dispersion may be for example hydroxypropylcellulose, hydroxypropylmethylcellulose, methylcellulose, hydroxyethylcellulose, carboxymethylcellulose, polyvinylpyrrolidone, copolymers of N-vinylpyrrolidone and vinyl acetate or combinations of these polymers.
  • Suitable separating agents include e.g. talc or silicic acid; preferably, talc is used.
  • the dispersants may be for example ethanol, 2-propanol, acetone or mixtures of these solvents with one another or with water, preferably 2-propanol.
  • the application of active substance to the core material may be carried out by established methods known in pharmaceutical technology, e.g. in coating pans, conventional film coating apparatus or by the fluidised bed method. Then a further screening process may be carried out.
  • the system may finally be coated with a coating of a pharmaceutically conventional film forming agent, plasticiser and optionally pigment. This may be done by conventional methods as mentioned earlier in the description of the application of the insulating layer.
  • the process described above produces pellets containing active substance, which can then be packed into hard capsules, for example. To do this, a number of these units corresponding to the required dosage are packed into hard capsules in a standard capsule filling machine.
  • Suitable hard capsules include, for example, hard gelatine capsules or hard capsules of hydroxypropylmethylcellulose (HPMC); HPMC capsules are preferred.
  • the active substance content of the pharmaceutical composition is 5 to 60%, preferably 10 to 50%; the content of the pharmaceutically acceptable organic acid is usually between 20 and 90%, preferably between 20 and 80%.
  • the pharmaceutical compositions according to Examples 1 and 2 were tested for their bioavailability by comparison with a conventional tablet.
  • the formulation prepared according to Example 1 containing 50 mg of active substance base per capsule was clinically tested for its bioavailability on a total of 15 volunteers.
  • the degree of absorption was determined by measuring the quantity of active metabolite of formula II excreted in the urine.
  • the relative bioavailability after pre-treatment with pantoprazole was 94% on average compared with administration without any pre-treatment.
  • the relative bioavailability was thus improved by about a factor of 5 by using the formulation according to the invention.
  • the formulation prepared according to Example 2 containing 50 mg of active substance base per capsule was also clinically tested for its bioavailability on a total of 15 volunteers.
  • the volunteers were given the composition by mouth on an empty stomach without any pre-treatment.
  • the same volunteers were pre-treated, prior to the oral administration of the composition, with 40 mg of pantoprazole b.i.d. for three days by mouth to increase the gastric pH; the treatment with pantoprazole was continued during the administration of the formulation according to the invention.
  • the degree of absorption was determined by measuring the quantity of the active metabolite of formula II excreted in the urine.
  • the relative bioavailability after pre-treatment with pantoprazole was 76% on average compared with administration without any pre-treatment.
  • the relative bioavailability of the active substance compared with conventional formulations was thus improved by about a factor of 4 by using the formulation according to the invention.
  • the bioavailability of the two formulations according to the invention compared with the tablet described above with and without the simultaneous administration of pantoprazole is graphically illustrated in FIG. 2 .
  • the clinical trials show another advantage of the preparation according to the invention containing the compound of formula I, which is that it ensures adequate bioavailability of the active substance, better than that of a conventional pharmaceutical preparation and largely independent of the gastric pH, it reduces fluctuations in the bioavailability of the active substance and it prevents malabsorption.
  • Another advantageous property of the pharmaceutical composition according to the invention is the fact that it is suitable for all patients, i.e. including those in whom the gastric pH is increased by normal physiological variability, by disease or by co-medication with drugs which raise the gastric pH.
  • the dosage for oral use is expediently 25 to 300 mg of the active substance base (per capsule), preferably 50 to 200 mg, most preferably 75 to 150 mg of the active substance base, in each case once or twice a day.
  • the preferred ratio of acid to active substance is about 0.9:1 to about 4:1, most preferably between about 1:1 and 3:1.
  • at least one equivalent of acid is used per mol of the compound of formula I.
  • the upper limit of about 4:1 (acid to active substance) is generally determined by the maximum acceptable size of the preparation in the desired dosages (number of pellets per capsule).
  • gum arabic 1 part by weight tartaric acid 20 parts by weight
  • tartaric acid crystals with an average particle size of 0.4 to 0.6 mm are placed in a suitable coating apparatus fitted with an air inlet and exhaust, and the pan is set in rotation. At an air inlet temperature of 60°-80° C. the tartaric acid crystals are sprayed at intervals with the solution of tartaric acid and gum arabic and sprinkled with a total of 6.7 parts by weight of powdered tartaric acid, so that roughly spherical particles are formed.
  • the spherical tartaric acid core material is then dried in the rotating pan at an air inlet temperature of 60°-80° C.
  • the core material is fractionated using a tumbler screening machine with perforated plates with a nominal mesh size of 0.6 and 0.8 mm.
  • the product fraction between 0.6 and 0.8 mm is used in the rest of the process.
  • a fluidised bed processing apparatus 23 parts by weight of core material containing tartaric acid are sprayed at an air inlet temperature of 35°-40° C. with the dispersion of gum arabic and talc by the under-bed spraying process.
  • the insulated core material containing tartaric acid is then dried in the circulating air drier at 40° C. for 8 hours.
  • the dried insulated core material containing tartaric acid is screened through a screen with a nominal mesh size of 1.0 mm.
  • the fraction of material with a particle size of ⁇ 1 mm is further processed.
  • insulated core material containing tartaric acid 91 parts by weight hydroxypropylcellulose 5 parts by weight talc 4 parts by weight active substance (mesylate of BIBR 1048) 25 parts by weight
  • Hydroxypropylcellulose is dissolved in 168 parts by weight of 2-propanol with stirring and then the active substance and talc are dispersed in this solution with stirring.
  • a fluidised bed processing apparatus 91 parts by weight of insulated core material containing tartaric acid are sprayed at an air inlet temperature of 20°-30° C. with the dispersion containing the active substance by the under-bed spraying process.
  • pellets containing the active substance are then dried in the circulating air drier at 35° C. for 8 hours.
  • pellets containing the active substance are screened through a screen with a nominal mesh size of 1.25 mm.
  • the fraction of material with a particle size of ⁇ 1.25 mm is further processed.
  • a quantity of active substance pellets containing in each case 50 or 100 mg of active substance base is packed into size 1 or size 0 elongated hard gelatine capsules or HPMC capsules by means of a capsule filling machine.
  • gum arabic 1 part by weight tartaric acid 20 parts by weight
  • tartaric acid crystals with an average particle size of 0.4 to 0.6 mm are placed in a suitable coating apparatus fitted with an air inlet and exhaust, and the pan is set in rotation. At an air inlet temperature of 60°-80° C. the tartaric acid crystals are sprayed at intervals with the solution of tartaric acid and gum arabic and sprinkled with a total of 6.7 parts by weight of powdered tartaric acid, so that roughly spherical particles are formed.
  • the spherical tartaric acid core material is then dried in the rotating pan at an air inlet temperature of 60°-80° C.
  • the core material is fractionated using a tumbler screening machine with perforated plates with a nominal mesh size of 0.6 and 0.8 mm.
  • the product fraction between 0.6 and 0.8 mm is used in the rest of the process.
  • a fluidised bed processing apparatus 23 parts by weight of core material containing tartaric acid are sprayed at an air inlet temperature of 35°-40° C. with the dispersion of gum arabic and talc by the under-bed spraying process.
  • the insulated core material containing tartaric acid is then dried in the circulating air drier at 40° C. for 8 hours.
  • the dried insulated core material containing tartaric acid is screened through a screen with a nominal mesh size of 1.0 mm.
  • the fraction of material with a particle size of ⁇ 1 mm is further processed.
  • insulated core material containing tartaric acid 57 parts by weight hydroxypropylcellulose 10 parts by weight talc 8 parts by weight active substance (mesylate of BIBR 1048) 50 parts by weight
  • Hydroxypropylcellulose is dissolved in 335 parts by weight of 2-propanol with stirring and then the active substance and talc are dispersed in this solution with stirring.
  • a fluidised bed processing apparatus 91 parts by weight of insulated core material containing tartaric acid are sprayed at an air inlet temperature of 20°-30° C. with the dispersion containing the active substance by the under-bed spraying process.
  • pellets containing the active substance are then dried in the circulating air drier at 35° C. for 8 hours.
  • pellets containing the active substance are screened through a screen with a nominal mesh size of 1.25 mm.
  • the fraction of material with a particle size of ⁇ 1.25 mm is further processed.
  • a quantity of active substance pellets containing in each case 50 or 150 mg of active substance base is packed into size 2 or size 0 hard gelatine capsules or HPMC capsules by means of a capsule filling machine.

Abstract

The invention relates to a new administration form for the oral application of the active substance ethyl 3-[(2-{[4-(hexyloxycarbonylamino-imino-methyl)-phenylamino]-methyl}-1-methyl-1H-benzimidazole-5-carbonyl)-pyridin-2-yl-amino]-propionate and the pharmacologically acceptable salts thereof.

Description

    RELATED APPLICATIONS
  • Benefit of U.S. Provisional Application Ser. No. 60/421,896, filed on Oct. 29, 2002 and U.S. Provisional Application Ser. No. 60/409,762, filed on Sep. 11, 2002 is hereby claimed, and said applications are herein incorporated by reference.
  • FIELD OF INVENTION
  • The invention relates to administration forms for oral applications of prodrugs and in particular prodrugs of the active substance ethyl 3-[(2-{[4-(hexyloxycarbonylamino-imino-methyl)-phenylamino]-methyl}-1-methyl-1H-benzimidazole-5-carbonyl)-pyridin-2-yl-amino]-propionate and the pharmacologically acceptable salts thereof.
  • BACKGROUND OF THE INVENTION
  • The invention relates to an administration form for the oral application of the active substance ethyl 3-[(2-{[4-(hexyloxycarbonylamino-imino-methyl)-phenylamino]-methyl}-1-methyl-1H-benzimidazole-5-carbonyl)-pyridin-2-yl-amino]-propionate and the pharmacologically acceptable salts thereof. This active substance having the chemical formula
  • Figure US20150005350A1-20150101-C00001
  • is already known from WO 98/37075, which discloses compounds with a thrombin-inhibiting effect and the effect of prolonging the thrombin time, under the name 1-methyl-2-[N-[4-(N-n-hexyloxycarbonylamidino)phenyl]-amino-methyl]-benzimidazole-5-yl-carboxylic acid-N-(2-pyridyl)-N-(2-ethoxycarbonylethyl)-amides. The compound of formula I is a double prodrug of the compound
  • Figure US20150005350A1-20150101-C00002
  • i.e. the compound of formula I is only converted into the active compound, namely the compound of formula II, after entering the body. The main indication for the compound of chemical formula I is the post-operative prevention of deep-vein thrombosis.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 shows a schematic structure of the pharmaceutical composition.
  • FIG. 2 shows the bioavailability of BIBR 1048.
  • DESCRIPTION OF THE INVENTION
  • The aim of the invention is to provide an improved formulation for oral use of the compound of formula I (which is also referred to hereinafter as the “active substance”).
  • Surprisingly it has now been found that the use of pharmaceutically acceptable organic acids with a water solubility of >1 g/250 ml at 20° C., preferably >1 g/160 ml at 25° C., in solid oral preparations leads to a significantly improved formulation of ethyl 3-[(2-{[4-(hexyloxycarbonylamino-imino-methyl)-phenylamino]-methyl}-1-methyl-1H-benzimidazole-5-carbonyl)-pyridin-2-yl-amino]-propionate as well as the pharmaceutically acceptable salts thereof.
  • Pharmaceutically suitable acids for the purposes of this invention are for example tartaric acid, fumaric acid, succinic acid, citric acid, malic acid, glutamic acid and aspartic acid including the hydrates and acid salts thereof. Particularly suitable for the purposes of this invention are tartaric acid, fumaric acid, succinic acid and citric acid.
  • A preferred embodiment of the invention is a multiparticulate preparation in which the individual particles are constructed as in FIG. 1.
  • FIG. 1 shows the diagrammatic structure of the pharmaceutical composition by means of a section through a pellet suitable for the preparation of the pharmaceutical composition according to the invention. The roughly bead-shaped/spherical core region of this pellet contains/consists of the pharmaceutically acceptable organic acid. Then follows a layer, the so-called insulating layer, which separates the acid core from the layer containing the active substance. The insulating layer is in turn surrounded by the equally spherically shaped layer of active substance which may in turn be enclosed in a coating which increases the abrasion resistance and shelf life of the pellets.
  • One advantage of the formulation thus constructed is the spatial separation of the organic acid and active substance by the insulating layer. A further advantage of the construction of the pellets as described above is the fact that the organic acid does not go into solution until after the preparation has been taken and then produces an acid microclimate in which the active substance can dissolve.
  • The core material used is a pharmaceutically acceptable organic acid with a water solubility of >1 g/250 ml at 20° C., such as e.g. tartaric acid, fumaric acid, succinic acid, citric acid, malic acid, glutamic acid and aspartic acid including the hydrates and acid salts thereof, to which a small amount of 1 to 10% by weight, preferably 3 to 6% by weight of a suitable binder is optionally added. The use of a binder may be necessary, for example, if the starting acids are produced by a pan build-up process. If the method used is extrusion or spheronisation, other technological adjuvants such as microcrystalline cellulose will be needed instead of binders. It is also possible to use pure (100%) acid as the starting material if it can be obtained in a sufficiently narrow range of particle sizes. The pharmaceutically acceptable organic acids used are preferably tartaric acid, fumaric acid, succinic acid or citric acid; tartaric acid is particularly preferred. As binder, it is possible to use gum arabic or a partially or totally synthetic polymer selected from among the hydroxypropylcelluloses, hydroxypropylmethylcelluloses, methylcelluloses, hydroxyethylcelluloses, carboxymethylcelluloses, polyvinylpyrrolidone, the copolymers of N-vinylpyrrolidone and vinyl acetate, or combinations of these polymers; gum arabic is preferred. The spherical core material preferably has an average diameter of 0.4-1.5 mm. The content of the pharmaceutically acceptable organic acid is usually between 30 and 100% in the core material, corresponding to an amount of between 20 and 90%, preferably between 20 and 80% in the finished pellet (i.e. in the pharmaceutical composition).
  • To increase the durability of the finished product it is advantageous to coat the core material before the application of the active substance with an insulating layer based on a water-soluble, pharmaceutically acceptable polymer. Examples of such water-soluble polymers include for example gum arabic or a partially or totally synthetic polymer selected from among the hydroxypropylcelluloses, hydroxypropylmethylcelluloses, methylcelluloses, hydroxyethylcelluloses, carboxymethylcelluloses, polyvinylpyrrolidone, the copolymers of N-vinylpyrrolidone and vinyl acetate, or combinations of these polymers. Gum arabic or a hydroxypropylmethylcellulose is preferably used. If desired, the coating with the water-soluble, pharmaceutically acceptable polymer may be carried out with the addition of suitable plasticisers, separating agents and pigments, such as for example triethylcitrate, tributylcitrate, triacetin, polyethyleneglycols (plasticisers), talc, silicic acid (separating agents), titanium dioxide or iron oxide pigments (pigments).
  • The active substance layer contains the active substance ethyl 3-[(2-{[4-(hexyloxycarbonylamino-imino-methyl)-phenylamino]-methyl}-1-methyl-1H-benzimidazole-5-carbonyl)-pyridin-2-yl-amino]-propionate (BIBR 1048) or one of the pharmaceutically acceptable salts thereof as well as binders and optionally separating agents. A preferred salt of the active substance is the mesylate (methanesulphonate) of the compound of formula I. Suitable binders include for example hydroxypropylcellulose, hydroxypropylmethylcellulose, methylcellulose, hydroxyethylcellulose, carboxymethylcellulose, polyvinylpyrrolidone, copolymers of N-vinylpyrrolidone and vinyl acetate or combinations of these polymers. Preferably, hydroxypropylcellulose or copolymers of N-vinylpyrrolidone and vinyl acetate are used. The addition of separating agents such as e.g. talc or silicic acid serves to prevent the particles from aggregating during the process. The active substance content is 5 to 60%, preferably 10 to 50% of the pharmaceutical composition.
  • The optional outermost layer, which serves to reduce any increased abrasion during packing into capsules and/or to increase the shelf life, consists of pharmaceutically conventional film-forming agents, plasticisers and optionally pigments. Suitable film-forming agents include for example hydroxypropylcellulose, hydroxypropylmethylcellulose, methylcellulose, polymers and copolymers of acrylic and methacrylic acid and the esters thereof, or combinations of these polymers. Suitable plasticisers include inter alia triethylcitrate, tributylcitrate, triacetin or polyethyleneglycols. The pigments used may be e.g. titanium dioxide or iron oxide pigments. Preferably, the outer coating consists of hydroxypropylmethylcellulose and/or methylcellulose, optionally with the addition of polyethyleneglycols as plasticisers.
  • The pellets may be prepared by the method described hereinafter:
  • The acid-containing core material consists either of crystals of the particular organic acid used or, more advantageously, of roughly spherical particles of the desired size containing a large amount of organic acid, which can be produced by methods known and established in pharmaceutical technology. The core material may be produced, in particular, by pan methods, on pelleting plates or by extrusion/spheronisation. Then the core material thus obtained may be divided into fractions of the desired diameter by screening. Suitable core material has an average diameter of 0.4 to 1.5 mm, preferably 0.6 to 0.8 mm.
  • First, the insulating layer is applied to this acid-containing core material. This can be done by conventional methods, e.g. by applying an aqueous dispersion of the water-soluble, pharmaceutically acceptable polymer, optionally with the addition of plasticisers, separating agents and/or pigments, in a fluidised bed, in coating pans or in conventional film coating apparatus. If necessary the product can then be screened again.
  • Then the active substance is applied from a dispersion containing binder and optionally separating agent. The volatile dispersant is removed during or after the process by drying. Suitable binders in the dispersion may be for example hydroxypropylcellulose, hydroxypropylmethylcellulose, methylcellulose, hydroxyethylcellulose, carboxymethylcellulose, polyvinylpyrrolidone, copolymers of N-vinylpyrrolidone and vinyl acetate or combinations of these polymers. Preferably, hydroxypropylcellulose or copolymers of N-vinylpyrrolidone and vinyl acetate are used. Suitable separating agents include e.g. talc or silicic acid; preferably, talc is used. The dispersants may be for example ethanol, 2-propanol, acetone or mixtures of these solvents with one another or with water, preferably 2-propanol. The application of active substance to the core material may be carried out by established methods known in pharmaceutical technology, e.g. in coating pans, conventional film coating apparatus or by the fluidised bed method. Then a further screening process may be carried out.
  • To reduce any increased abrasion during transfer into capsules or to increase the shelf life the system may finally be coated with a coating of a pharmaceutically conventional film forming agent, plasticiser and optionally pigment. This may be done by conventional methods as mentioned earlier in the description of the application of the insulating layer.
  • When core material with an average diameter of 0.4-1.5 mm is used, the process described above produces pellets containing active substance, which can then be packed into hard capsules, for example. To do this, a number of these units corresponding to the required dosage are packed into hard capsules in a standard capsule filling machine. Suitable hard capsules include, for example, hard gelatine capsules or hard capsules of hydroxypropylmethylcellulose (HPMC); HPMC capsules are preferred. The active substance content of the pharmaceutical composition is 5 to 60%, preferably 10 to 50%; the content of the pharmaceutically acceptable organic acid is usually between 20 and 90%, preferably between 20 and 80%.
  • Unless otherwise stated, percentages specified are always percent by weight. All the data on the active substance content relate to the active substance base of formula I (not to a specific salt) unless otherwise stated.
  • Clinical Trials
  • In preliminary tests on test subjects with conventional tablets containing the compound of formula I it had been established that highly variable plasma levels occurred, with individual cases of malabsorption. The variability of the plasma level patterns is significantly lower after the administration of the compound of formula I as an orally administered solution; there were no cases of malabsorption under these circumstances.
  • Tests have shown that the compound of formula I dissolves relatively well in water at low pH levels, whereas at pH levels above 5 in accordance with the definition of the European Pharmacopoeia it is virtually insoluble. Therefore the volunteers in one branch of the clinical trials were given pantoprazole, which serves to produce an elevated gastric pH.
  • For example, the pharmaceutical compositions according to Examples 1 and 2 were tested for their bioavailability by comparison with a conventional tablet. To do this, the formulation prepared according to Example 1 containing 50 mg of active substance base per capsule was clinically tested for its bioavailability on a total of 15 volunteers. In one branch of the treatment, the volunteers were given the composition by mouth (=orally) on an empty stomach without any pre-treatment. In another branch of the treatment the same volunteers were pre-treated, prior to the oral administration of the composition, with 40 mg of pantoprazole b.i.d. (=twice a day) for three days by mouth to increase the gastric pH; the treatment with pantoprazole was continued during the administration of the formulation according to the invention.
  • The degree of absorption was determined by measuring the quantity of active metabolite of formula II excreted in the urine.
  • The relative bioavailability after pre-treatment with pantoprazole was 94% on average compared with administration without any pre-treatment.
  • Under comparable conditions of administration, the relative bioavailability (based on the area under the plasma concentration/time curve) of a tablet containing 50 mg of active substance, developed and produced according to the prior art and containing no water-soluble organic acid, after corresponding pre-treatment with pantoprazole, is 18%. Table I shows the precise composition of the tablet used:
  • TABLE I
    Ingredient mg/tablet
    Core
    mesylate of the compound of form. I 57.7
    lactose monohydrate 58.0
    microcrystalline cellulose 48.3
    crospovidone 3.4
    magnesium stearate 2.6
    Film coating
    polyethyleneglycol 6000 0.56
    titanium dioxide 0.80
    talc 0.64
    hydroxypropylmethylcellulose 1.92
    iron oxide yellow 0.08
    Total 174.0
  • The relative bioavailability was thus improved by about a factor of 5 by using the formulation according to the invention.
  • The formulation prepared according to Example 2 containing 50 mg of active substance base per capsule was also clinically tested for its bioavailability on a total of 15 volunteers. In one branch of the treatment, the volunteers were given the composition by mouth on an empty stomach without any pre-treatment. In another branch of the treatment the same volunteers were pre-treated, prior to the oral administration of the composition, with 40 mg of pantoprazole b.i.d. for three days by mouth to increase the gastric pH; the treatment with pantoprazole was continued during the administration of the formulation according to the invention.
  • The degree of absorption was determined by measuring the quantity of the active metabolite of formula II excreted in the urine.
  • The relative bioavailability after pre-treatment with pantoprazole was 76% on average compared with administration without any pre-treatment.
  • Under comparable conditions of administration, the relative bioavailability (based on the area under the plasma concentration/time curve) of a tablet containing 50 mg of active substance, developed and produced according to the prior art and containing no water-soluble organic acid, after corresponding pre-treatment with pantoprazole, is 18%. Table II shows the precise composition of the tablet used:
  • TABLE II
    Ingredient mg/tablet
    Core
    mesylate of the compound of form. I 57.7
    lactose monohydrate 58.0
    microcrystalline cellulose 48.3
    crospovidone 3.4
    magnesium stearate 2.6
    Film coating
    polyethyleneglycol 6000 0.56
    titanium dioxide 0.80
    talc 0.64
    hydroxypropylmethylcellulose 1.92
    iron oxide yellow 0.08
    Total 174.0
  • The relative bioavailability of the active substance compared with conventional formulations was thus improved by about a factor of 4 by using the formulation according to the invention. The bioavailability of the two formulations according to the invention compared with the tablet described above with and without the simultaneous administration of pantoprazole is graphically illustrated in FIG. 2.
  • The clinical trials show another advantage of the preparation according to the invention containing the compound of formula I, which is that it ensures adequate bioavailability of the active substance, better than that of a conventional pharmaceutical preparation and largely independent of the gastric pH, it reduces fluctuations in the bioavailability of the active substance and it prevents malabsorption. Another advantageous property of the pharmaceutical composition according to the invention is the fact that it is suitable for all patients, i.e. including those in whom the gastric pH is increased by normal physiological variability, by disease or by co-medication with drugs which raise the gastric pH.
  • The dosage for oral use is expediently 25 to 300 mg of the active substance base (per capsule), preferably 50 to 200 mg, most preferably 75 to 150 mg of the active substance base, in each case once or twice a day.
  • The preferred ratio of acid to active substance is about 0.9:1 to about 4:1, most preferably between about 1:1 and 3:1. Preferably, at least one equivalent of acid is used per mol of the compound of formula I. The upper limit of about 4:1 (acid to active substance) is generally determined by the maximum acceptable size of the preparation in the desired dosages (number of pellets per capsule).
  • The Examples that follow are intended to illustrate the invention:
  • EXAMPLE 1
  • percentage composition
    insulat- active per per
    core ing substance capsule capsule
    material layer layer total [mg] [mg]
    tartaric acid 61.3 61.3 176.7 353.4
    gum arabic 3.1 2.8 5.9 17.0 34.0
    talc 5.6 3.2 8.8 25.4 50.7
    hydroxy- 4.0 4.0 11.5 23.1
    propylcellulose
    active substance 20.0 20.0 57.7* 115.3**
    (mesylate of the
    compound
    of formula I)
    total 100.0 288.3 576.5
    *) corresponds to 50 mg of the compound of formula 1 (active substance base)
    **) corresponds to 100 mg of the compound of formula 1 (active substance base)
  • a) Production of core material containing tartaric acid
  • Composition:
  • gum arabic  1 part by weight
    tartaric acid
    20 parts by weight
  • 1 part by weight of gum arabic is dissolved In 4 parts by weight of purified water at 50° C. with stirring. Then 5 parts by weight of tartaric acid are dissolved in this solution with stirring.
  • 8.3 parts by weight of tartaric acid crystals with an average particle size of 0.4 to 0.6 mm are placed in a suitable coating apparatus fitted with an air inlet and exhaust, and the pan is set in rotation. At an air inlet temperature of 60°-80° C. the tartaric acid crystals are sprayed at intervals with the solution of tartaric acid and gum arabic and sprinkled with a total of 6.7 parts by weight of powdered tartaric acid, so that roughly spherical particles are formed.
  • The spherical tartaric acid core material is then dried in the rotating pan at an air inlet temperature of 60°-80° C.
  • The core material is fractionated using a tumbler screening machine with perforated plates with a nominal mesh size of 0.6 and 0.8 mm. The product fraction between 0.6 and 0.8 mm is used in the rest of the process.
  • b) Insulation of the core material containing tartaric acid
  • Composition:
  • core material containing tartaric acid 23 parts by weight
    gum arabic
     1 part by weight
    talc
     2 parts by weight
  • 1 part by weight of gum arabic is dissolved in a mixture of 6.7 parts by weight of 96% ethanol and 13.5 parts by weight of purified water with stirring. Then 2 parts by weight of talc are dispersed in the solution with stirring.
  • In a fluidised bed processing apparatus, 23 parts by weight of core material containing tartaric acid are sprayed at an air inlet temperature of 35°-40° C. with the dispersion of gum arabic and talc by the under-bed spraying process.
  • The insulated core material containing tartaric acid is then dried in the circulating air drier at 40° C. for 8 hours.
  • To remove any lumps the dried insulated core material containing tartaric acid is screened through a screen with a nominal mesh size of 1.0 mm. The fraction of material with a particle size of <1 mm is further processed.
  • c) Production of the active substance layer
  • Composition:
  • insulated core material containing tartaric acid 91 parts by weight
    hydroxypropylcellulose  5 parts by weight
    talc  4 parts by weight
    active substance (mesylate of BIBR 1048) 25 parts by weight
  • Hydroxypropylcellulose is dissolved in 168 parts by weight of 2-propanol with stirring and then the active substance and talc are dispersed in this solution with stirring.
  • In a fluidised bed processing apparatus, 91 parts by weight of insulated core material containing tartaric acid are sprayed at an air inlet temperature of 20°-30° C. with the dispersion containing the active substance by the under-bed spraying process.
  • The pellets containing the active substance are then dried in the circulating air drier at 35° C. for 8 hours.
  • To remove any lumps the pellets containing the active substance are screened through a screen with a nominal mesh size of 1.25 mm. The fraction of material with a particle size of <1.25 mm is further processed.
  • d) Packing into capsules
  • A quantity of active substance pellets containing in each case 50 or 100 mg of active substance base is packed into size 1 or size 0 elongated hard gelatine capsules or HPMC capsules by means of a capsule filling machine.
  • EXAMPLE 2
  • percentage composition
    insulat- active per per
    core ing substance capsule capsule
    material layer layer total [mg] [mg]
    tartaric acid 38.5 38.5 55.5 166.5
    gum arabic 1.9 1.7 3.6 5.2 15.6
    talc 3.5 6.4 9.9 14.3 42.8
    hydroxy- 8.0 8.0 11.5 34.6
    propylcellulose
    active substance 40.0 40.0 57.7* 173.0**
    (mesylate of the
    compound
    of formula I)
    total 100.0 144.2 432.5
    *) corresponds to 50 mg of the compound of formula 1 (active substance base)
    **) corresponds to 150 mg of the compound of formula 1 (active substance base)
  • a) Production of core material containing tartaric acid
  • Composition:
  • gum arabic  1 part by weight
    tartaric acid
    20 parts by weight
  • 1 part by weight of gum arabic is dissolved in 4 parts by weight of purified water at 50° C. with stirring. Then 5 parts by weight of tartaric acid are dissolved in this solution with stirring.
  • 8.3 parts by weight of tartaric acid crystals with an average particle size of 0.4 to 0.6 mm are placed in a suitable coating apparatus fitted with an air inlet and exhaust, and the pan is set in rotation. At an air inlet temperature of 60°-80° C. the tartaric acid crystals are sprayed at intervals with the solution of tartaric acid and gum arabic and sprinkled with a total of 6.7 parts by weight of powdered tartaric acid, so that roughly spherical particles are formed.
  • The spherical tartaric acid core material is then dried in the rotating pan at an air inlet temperature of 60°-80° C.
  • The core material is fractionated using a tumbler screening machine with perforated plates with a nominal mesh size of 0.6 and 0.8 mm. The product fraction between 0.6 and 0.8 mm is used in the rest of the process.
  • b) Insulation of the core material containing tartaric acid
  • Composition:
  • core material containing tartaric acid 23 parts by weight
    gum arabic
     1 part by weight
    talc
     2 parts by weight
  • 1 part by weight of gum arabic is dissolved in a mixture of 6.7 parts by weight of 96% ethanol and 13.5 parts by weight of purified water with stirring. Then 2 parts by weight of talc are dispersed in the solution with stirring.
  • In a fluidised bed processing apparatus, 23 parts by weight of core material containing tartaric acid are sprayed at an air inlet temperature of 35°-40° C. with the dispersion of gum arabic and talc by the under-bed spraying process.
  • The insulated core material containing tartaric acid is then dried in the circulating air drier at 40° C. for 8 hours.
  • To remove any lumps the dried insulated core material containing tartaric acid is screened through a screen with a nominal mesh size of 1.0 mm. The fraction of material with a particle size of <1 mm is further processed.
  • c) Production of the active substance layer
  • Composition:
  • insulated core material containing tartaric acid 57 parts by weight
    hydroxypropylcellulose 10 parts by weight
    talc  8 parts by weight
    active substance (mesylate of BIBR 1048) 50 parts by weight
  • Hydroxypropylcellulose is dissolved in 335 parts by weight of 2-propanol with stirring and then the active substance and talc are dispersed in this solution with stirring.
  • In a fluidised bed processing apparatus, 91 parts by weight of insulated core material containing tartaric acid are sprayed at an air inlet temperature of 20°-30° C. with the dispersion containing the active substance by the under-bed spraying process.
  • The pellets containing the active substance are then dried in the circulating air drier at 35° C. for 8 hours.
  • To remove any lumps the pellets containing the active substance are screened through a screen with a nominal mesh size of 1.25 mm. The fraction of material with a particle size of <1.25 mm is further processed.
  • d) Packing into capsules
  • A quantity of active substance pellets containing in each case 50 or 150 mg of active substance base is packed into size 2 or size 0 hard gelatine capsules or HPMC capsules by means of a capsule filling machine.
  • EXAMPLE 3
  • Preparation of ethyl 3-[(2-{[4-(hexyloxycarbonylamino-imino-methyl)-phenylamino]-methyl}-1-methyl-1H-benzimidazole-5-carbonyl)-pyridin-2-yl-amino]-propionate methanesulphonate
  • Figure US20150005350A1-20150101-C00003
  • A solution of 5.0 mmol of methanesulphonic acid in 25 ml ethyl acetate was added dropwise, with stirring, to a solution of 3139 mg (5.0 mmol) of ethyl 3-[(2-{[4-(hexyloxycarbonylamino-imino-methyl)-phenylamino]-methyl}-1-methyl-1H-benzimidazole-5-carbonyl)-pyridin-2-yl-amino]-propionate base (prepared as described in WO 98/37075) in 250 ml ethyl acetate, at ambient temperature. After a few minutes the product began to crystallise out. It was stirred for another hour at ambient temperature and then for one more hour while cooling with ice, the precipitate was suction filtered, washed with about 50 ml of ethyl acetate and 50 ml of diethyl ether and dried at 50° C. in a circulating air drier.
  • Yield: 94% of theory melting point: 178-179° C. C34H41N7O5×CH4SO3 (723.86)
  • Elemental analysis:
    C H N S
    calc.: 58.07% 6.27% 13.55% 4.43%
    found: 58.11% 6.30% 13.50% 4.48%

Claims (4)

1-16. (canceled)
17. A method to inhibit thrombin in a patient in need thereof comprising administering a methanesulphonate salt of ethyl 3-[(2-{[4-(hexyloxycarbonyl-amino-imino-methyl)-phenylamino]-methyl}-1-methyl-1H-benzimidazol-5-carbonyl)-pyridin-2-yl-amino]-propionate to the patient such that the patient receives an oral dose from 50 mg to 200 mg of ethyl 3-[(2-{[4-(hexyloxycarbonyl-amino-imino-methyl)-phenylamino]-methyl}-1-methyl-1H-benzimidazol-5-carbonyl)-pyridin-2-yl-amino]-propionate once or twice a day.
18. A method to inhibit thrombin in a patient in need thereof comprising administering a methanesulphonate salt of ethyl 3-[(2-{[4-(hexyloxycarbonyl-amino-imino-methyl)-phenylamino]-methyl}-1-methyl-1H-benzimidazol-5-carbonyl)-pyridin-2-yl-amino]-propionate to the patient such that the patient receives an oral dose from 75 mg to 150 mg of ethyl 3-[(2-{[4-(hexyloxycarbonyl-amino-imino-methyl)-phenylamino]-methyl}-1-methyl-1H-benzimidazol-5-carbonyl)-pyridin-2-yl-amino]-propionate once or twice a day.
19. A method to inhibit thrombin in a patient in need thereof comprising administering a methanesulphonate salt of ethyl 3-[(2-{[4-(hexyloxycarbonyl-amino-imino-methyl)-phenylamino]-methyl}-1-methyl-1H-benzimidazol-5-carbonyl)-pyridin-2-yl-amino]-propionate to the patient such that the patient receives an oral dose of 150 mg of ethyl 3-[(2-{[4-(hexyloxycarbonyl-amino-imino-methyl)-phenylamino]-methyl}-1-methyl-1H-benzimidazol-5-carbonyl)-pyridin-2-yl-amino]-propionate once or twice a day.
US14/489,892 2002-03-07 2014-09-18 Administration of ethyl 3-[(2--1-methyl-1h-benzimidazol-5-carbonyl)pyridin-2-ylamino]propionate Abandoned US20150005350A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/489,892 US20150005350A1 (en) 2002-03-07 2014-09-18 Administration of ethyl 3-[(2--1-methyl-1h-benzimidazol-5-carbonyl)pyridin-2-ylamino]propionate
US15/946,096 US20180221359A1 (en) 2002-03-07 2018-04-05 Administration of ethyl 3-[(2-{[4-(hexyloxycarbonyl-aminoiminomethyl)phenyl-amino]methyl}-1-methyl-1h-benzimidazol-5-carbonyl)pyridin-2-ylamino]propionate
US16/380,161 US20190231766A1 (en) 2002-03-07 2019-04-10 Administration of ethyl 3-[(2-{[4-(hexyloxycarbonyl-aminoiminomethyl)phenyl-amino]methyl}-1-methyl-1h-benzimidazol-5-carbonyl)pyridin-2-ylamino]propionate
US16/694,091 US20200085807A1 (en) 2002-03-07 2019-11-25 Administration of ethyl 3-[(2-{[4-(hexyloxycarbonyl-aminoiminomethyl)phenyl-amino]methyl}-1-methyl-1h-benzimidazol-5-carbonyl)pyridin-2-ylamino]propionate

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
DE10209985.5 2002-03-07
DE10209985A DE10209985A1 (en) 2002-03-07 2002-03-07 Oral pharmaceutical composition comprises the thrombin inhibitor ethyl 3-(2-(4-(hexyloxycarbonylamidino)phenylaminomethyl)-1-methyl-1H-benzimidazole-5-carbonyl)-2-pyridylamino)propionate and an organic acid
US40976202P 2002-09-11 2002-09-11
DE2002145624 DE10245624A1 (en) 2002-09-30 2002-09-30 Oral pharmaceutical composition comprises the thrombin inhibitor ethyl 3-(2-(4-(hexyloxycarbonylamidino)phenylaminomethyl)-1-methyl-1H-benzimidazole-5-carbonyl)-2-pyridylamino)propionate and an organic acid
DE10245624.0 2002-09-30
US42189602P 2002-10-29 2002-10-29
US10/383,198 US20030181488A1 (en) 2002-03-07 2003-03-06 Administration form for the oral application of 3-[(2-{[4-(hexyloxycarbonylamino-imino-methyl)-phenylamino]-methyl}-1-methyl-1H-benzimidazol-5-carbonyl)-pyridin-2-yl-amino]-propionic acid ethyl ester and the salts thereof
US14/489,892 US20150005350A1 (en) 2002-03-07 2014-09-18 Administration of ethyl 3-[(2--1-methyl-1h-benzimidazol-5-carbonyl)pyridin-2-ylamino]propionate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/383,198 Continuation US20030181488A1 (en) 2002-03-07 2003-03-06 Administration form for the oral application of 3-[(2-{[4-(hexyloxycarbonylamino-imino-methyl)-phenylamino]-methyl}-1-methyl-1H-benzimidazol-5-carbonyl)-pyridin-2-yl-amino]-propionic acid ethyl ester and the salts thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/946,096 Continuation US20180221359A1 (en) 2002-03-07 2018-04-05 Administration of ethyl 3-[(2-{[4-(hexyloxycarbonyl-aminoiminomethyl)phenyl-amino]methyl}-1-methyl-1h-benzimidazol-5-carbonyl)pyridin-2-ylamino]propionate

Publications (1)

Publication Number Publication Date
US20150005350A1 true US20150005350A1 (en) 2015-01-01

Family

ID=28046818

Family Applications (4)

Application Number Title Priority Date Filing Date
US10/383,198 Abandoned US20030181488A1 (en) 2002-03-07 2003-03-06 Administration form for the oral application of 3-[(2-{[4-(hexyloxycarbonylamino-imino-methyl)-phenylamino]-methyl}-1-methyl-1H-benzimidazol-5-carbonyl)-pyridin-2-yl-amino]-propionic acid ethyl ester and the salts thereof
US11/381,890 Expired - Lifetime US9925174B2 (en) 2002-03-07 2006-05-05 Administration form for the oral application of 3-[(2-{[4-(hexyloxycarbonyl-amino-imino-methyl)-phenylamino]-methyl}-1-methyl-1 H-benzimidazol acid ethyl ester and the salts thereof
US14/489,892 Abandoned US20150005350A1 (en) 2002-03-07 2014-09-18 Administration of ethyl 3-[(2--1-methyl-1h-benzimidazol-5-carbonyl)pyridin-2-ylamino]propionate
US15/946,096 Abandoned US20180221359A1 (en) 2002-03-07 2018-04-05 Administration of ethyl 3-[(2-{[4-(hexyloxycarbonyl-aminoiminomethyl)phenyl-amino]methyl}-1-methyl-1h-benzimidazol-5-carbonyl)pyridin-2-ylamino]propionate

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US10/383,198 Abandoned US20030181488A1 (en) 2002-03-07 2003-03-06 Administration form for the oral application of 3-[(2-{[4-(hexyloxycarbonylamino-imino-methyl)-phenylamino]-methyl}-1-methyl-1H-benzimidazol-5-carbonyl)-pyridin-2-yl-amino]-propionic acid ethyl ester and the salts thereof
US11/381,890 Expired - Lifetime US9925174B2 (en) 2002-03-07 2006-05-05 Administration form for the oral application of 3-[(2-{[4-(hexyloxycarbonyl-amino-imino-methyl)-phenylamino]-methyl}-1-methyl-1 H-benzimidazol acid ethyl ester and the salts thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/946,096 Abandoned US20180221359A1 (en) 2002-03-07 2018-04-05 Administration of ethyl 3-[(2-{[4-(hexyloxycarbonyl-aminoiminomethyl)phenyl-amino]methyl}-1-methyl-1h-benzimidazol-5-carbonyl)pyridin-2-ylamino]propionate

Country Status (1)

Country Link
US (4) US20030181488A1 (en)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030181488A1 (en) * 2002-03-07 2003-09-25 Boehringer Ingelheim Pharma Gmbh & Co. Kg Administration form for the oral application of 3-[(2-{[4-(hexyloxycarbonylamino-imino-methyl)-phenylamino]-methyl}-1-methyl-1H-benzimidazol-5-carbonyl)-pyridin-2-yl-amino]-propionic acid ethyl ester and the salts thereof
DE10337697A1 (en) * 2003-08-16 2005-03-24 Boehringer Ingelheim Pharma Gmbh & Co. Kg Tablet containing 3 - [(2 - {[4- (hexyloxycarbonylamino-iminomethyl) -phenyl-amino] -methyl} -1-methyl-1H-benzimidazole-5-carbonyl) -pyridin-2-yl-amino] - propionic acid ethyl ester or its salts
DE10339862A1 (en) * 2003-08-29 2005-03-24 Boehringer Ingelheim Pharma Gmbh & Co. Kg New crystalline forms of ethyl 3-(N-(2-(4-(hexyloxycarbonylamidino)phenylaminomethyl)-1-methyl-1H-benzimidazole-5-carbonyl)-N-(2-pyridyl)amino)propionate methanesulfonate used for post-operative prophylaxis of deep vein thrombosis
EP1757310A1 (en) * 2004-05-24 2007-02-28 Qualicaps Co., Ltd. Surface-modified and solubility-improved hard capsule
DE102004062864A1 (en) * 2004-12-21 2006-06-22 Boehringer Ingelheim Pharma Gmbh & Co. Kg foil container
DE102005020002A1 (en) * 2005-04-27 2006-11-02 Boehringer Ingelheim Pharma Gmbh & Co. Kg New hexyloxycarbonylamino-imino-methyl-phenylamino-methyl-benzimidazole-pyridine-propionic acid-ethyl ester salts such as hydrochloride useful for the prophylaxis of vein thrombosis and stroke
US7803817B2 (en) 2005-05-11 2010-09-28 Vecta, Ltd. Composition and methods for inhibiting gastric acid secretion
US7981908B2 (en) 2005-05-11 2011-07-19 Vecta, Ltd. Compositions and methods for inhibiting gastric acid secretion
EP2043632A2 (en) * 2006-07-17 2009-04-08 Boehringer Ingelheim International GmbH New indications for direct thrombin inhibitors
ES2511792T3 (en) * 2006-07-25 2014-10-23 Vecta Ltd. Compositions and methods for the inhibition of gastric acid secretion using derivatives of small dicarboxylic acids in combination with IBP
WO2009118321A1 (en) 2008-03-28 2009-10-01 Boehringer Ingelheim International Gmbh Method for manufacturing acid pellets
BRPI0907598A2 (en) * 2008-03-28 2015-07-21 Boehringer Ingelheim Int Process for preparing orally administered dabigatran formulations
AU2009272796A1 (en) * 2008-07-14 2010-01-21 Boehringer Ingelheim International Gmbh Method for manufacturing medicinal compounds containing dabigatran
WO2010020600A1 (en) * 2008-08-19 2010-02-25 Boehringer Ingelheim International Gmbh Use of dabigatranetexilate for treating patients with pulmonary hypertension
CN102209544A (en) 2008-11-11 2011-10-05 贝林格尔.英格海姆国际有限公司 Method for treating or preventing thrombosis using dabigatran etexilate or a salt thereof with improved safety profile over conventional warfarin therapy
US20130052262A1 (en) * 2010-03-01 2013-02-28 Sandra Brueck Dabigatran etexilate-containing oral pharmaceutical composition
PT2588090T (en) 2010-07-01 2017-06-26 Krka Tovarna Zdravil D D Novo Mesto Pharmaceutical oral dosage forms comprising dabigatran etexilate and its pharmaceutically acceptable salts
US20120301541A1 (en) * 2011-05-24 2012-11-29 Haronsky Elina Compressed core for pharmaceutical composition
JP2015504903A (en) * 2012-01-24 2015-02-16 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング New dabigatran formulation for oral administration
LT2817000T (en) * 2012-02-21 2021-11-10 Towa Pharmaceutical Europe, S.L. Oral pharmaceutical compositions of dabigatran etexilate
US20130345262A1 (en) 2012-06-25 2013-12-26 Boehringer Ingelheim International Gmbh Method for prevention of stroke
WO2014020546A2 (en) 2012-07-31 2014-02-06 Ranbaxy Laboratories Limited Crystalline forms of dabigatran etexilate and process for their preparation
EP2740471B1 (en) * 2012-12-07 2015-05-27 Hexal AG Oral pharmaceutical composition comprising dabigatran etexilate
WO2014178017A1 (en) 2013-04-30 2014-11-06 Ranbaxy Laboratories Limited Dabigatran etexilate impurity, process of its preparation, and its use as a reference standard
EP2933002A1 (en) * 2014-04-11 2015-10-21 Sanovel Ilac Sanayi ve Ticaret A.S. Pharmaceutical combinations of dabigatran and proton pump inhibitors
US20170165247A1 (en) 2014-07-18 2017-06-15 Olon S.P.A. Crystalline compounds of dabigatran etexilate
US10675276B2 (en) * 2014-11-03 2020-06-09 Hangzhou Solipharma Co., Ltd. Dosing preparation of dabigatran etexilate or a salt thereof and a preparation method thereof
CN105640909B (en) * 2014-11-14 2019-09-20 正大天晴药业集团股份有限公司 A kind of Pharmaceutical composition containing dabigatran etcxilate
CN105797162B (en) * 2014-12-31 2022-10-25 昆明积大制药股份有限公司 Surface modification method for pharmaceutic adjuvant
WO2016107605A1 (en) 2014-12-31 2016-07-07 昆明积大制药股份有限公司 Pharmaceutical composition and preparation method therefor
MX2017015579A (en) 2015-06-04 2018-03-27 Pfizer Solid dosage forms of palbociclib.
SG10201913986YA (en) 2015-10-16 2020-03-30 Abbvie Inc PROCESSES FOR THE PREPARATION OF (3S,4R)-3-ETHYL-4-(3H-IMIDAZO[1,2-a]PYRROLO[2,3-e]-PYRAZIN-8-YL)-N-(2,2,2-TRIFLUOROETHYL)PYRROLIDINE-1-CARBOXAMIDE AND SOLID STATE FORMS THEREOF
US11773106B2 (en) 2015-10-16 2023-10-03 Abbvie Inc. Processes for the preparation of (3S,4R)-3-ethyl-4-(3H-imidazo[1,2-a]pyrrolo[2,3-e]-pyrazin-8-yl)-N-(2,2,2-trifluoroethyl)pyrrolidine-1-carboxamide and solid state forms thereof
US10550126B2 (en) 2015-10-16 2020-02-04 Abbvie Inc. Processes for the preparation of (3S,4R)-3-ethyl-4-(3H-imidazo[1,2-A]pyrrolo[2,3-e]-pyrazin-8-yl)-N-(2,2,2-trifluoroethyl)pyrrolidine-1-carboxamide and solid state forms thereof
US11365198B2 (en) 2015-10-16 2022-06-21 Abbvie Inc. Processes for the preparation of (3S,4R)-3-ethyl-4-(3H-imidazo[1,2-a]pyrrolo[2,3-e]-pyrazin-8-yl)-N-(2,2,2-trifluoroethyl)pyrrolidine-1-carboxamide and solid state forms thereof
US11512092B2 (en) 2015-10-16 2022-11-29 Abbvie Inc. Processes for the preparation of (3S,4R)-3-ethyl-4-(3H-imidazo[1,2-a]pyrrolo[2,3-e]-pyrazin-8-yl)-n-(2,2,2-trifluoroethyl)pyrrolidine-1-carboxamide and solid state forms thereof
US11524964B2 (en) 2015-10-16 2022-12-13 Abbvie Inc. Processes for the preparation of (3S,4R)-3-ethyl-4-(3H-imidazo[1,2-a]pyrrolo[2,3-e]-pyrazin-8-yl)-n-(2,2,2-trifluoroethyl)pyrrolidine-1-carboxamide and solid state forms thereof
US10449195B2 (en) 2016-03-29 2019-10-22 Shenzhen Pharmacin Co., Ltd. Pharmaceutical formulation of palbociclib and a preparation method thereof
US11564922B2 (en) 2017-03-09 2023-01-31 Abbvie Inc. Methods of treating crohn's disease and ulcerative colitis
WO2018165581A1 (en) 2017-03-09 2018-09-13 Abbvie Inc. Methods of treating crohn's disease and ulcerative colitis
KR20210086682A (en) 2018-10-29 2021-07-08 화하이 유에스 인코퍼레이티드 Novel dipeptide compounds and uses thereof
CN114306245A (en) 2020-09-29 2022-04-12 深圳市药欣生物科技有限公司 Pharmaceutical composition of amorphous solid dispersion and preparation method thereof
WO2022254354A1 (en) * 2021-06-04 2022-12-08 Zim Laboratories Limited Novel pharmaceutical compositions comprising dabigatran etexilate or salt thereof
US11446286B1 (en) * 2022-02-28 2022-09-20 King Faisal University Treatment of fungal infections using dabigatran etexilate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998037075A1 (en) * 1997-02-18 1998-08-27 Boehringer Ingelheim Pharma Kg Disubstituted bicyclic heterocycles, their production and use as medicaments

Family Cites Families (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6087380A (en) * 1949-11-24 2000-07-11 Boehringer Ingelheim Pharma Kg Disubstituted bicyclic heterocycles, the preparations and the use thereof as pharmaceutical compositions
FR2184460B1 (en) * 1972-05-17 1975-06-20 Fabre Sa Pierre
US4003909A (en) 1974-07-22 1977-01-18 E. R. Squibb & Sons, Inc. [(1,2,4-Oxadiazol-3-yl)phenyl]carbamic or thiocarbamic acid esters
US3968111A (en) * 1974-12-06 1976-07-06 Eli Lilly And Company 8,8-Disubstituted-6-methylergolines and related compounds
US4427468A (en) * 1976-01-16 1984-01-24 Her Majesty The Queen In Right Of Canada Curable propellant binding systems with bonding agent combination
DD146547A5 (en) 1978-07-15 1981-02-18 Boehringer Sohn Ingelheim MEDICINAL RETARDANT SHAPE WITH UNFORGETTABLE POROESEN DIFFUSION SHELLS
FR2470599A1 (en) * 1979-12-07 1981-06-12 Panoz Donald IMPROVEMENTS IN PROCESSES FOR THE PREPARATION OF GALENIC SHAPES WITH DELAYED ACTION AND PROGRAMMED RELEASE AND GALENIC FORMS OF MEDICAMENTS THUS OBTAINED
DE3000979A1 (en) 1980-01-12 1981-07-23 Dr. Karl Thomae Gmbh, 7950 Biberach NEW DIPYRIDAMOL RETARD FORMS AND METHOD FOR THEIR PRODUCTION
DE3124090A1 (en) * 1981-06-19 1983-01-05 Dr. Karl Thomae Gmbh, 7950 Biberach NEW ORAL DIPYRIDAMOL FORMS
DE3126703A1 (en) * 1981-07-07 1983-01-27 Dr. Karl Thomae Gmbh, 7950 Biberach BROMHEXIN RETARD FORM AND METHOD FOR THEIR PRODUCTION
JPS58134033A (en) 1982-02-02 1983-08-10 Fujisawa Pharmaceut Co Ltd Drug composition
EP0088191A3 (en) 1982-03-08 1986-02-19 Imperial Chemical Industries Plc Polyester fibrefill blend
DK151608C (en) * 1982-08-13 1988-06-20 Benzon As Alfred PROCEDURE FOR PREPARING A PHARMACEUTICAL PERORAL POLYDEPOT PREPARATION WITH CONTROLLED RELEASE
DE3237575A1 (en) 1982-10-09 1984-04-12 Dr. Karl Thomae Gmbh, 7950 Biberach NEW ORAL MOPIDAMOL SHAPES
US4728660A (en) * 1984-06-11 1988-03-01 University Of Miami Method of treating diseases arising from platelet hyperactivation
US4675405A (en) * 1984-09-21 1987-06-23 American Home Products Corporation Quinoline compounds as antiallergic and antithrombotic agents
GB2189698A (en) 1986-04-30 1987-11-04 Haessle Ab Coated omeprazole tablets
DE3627423A1 (en) * 1986-08-13 1988-02-18 Thomae Gmbh Dr K MEDICINAL PRODUCTS CONTAINING DIPYRIDAMOL OR MOPIDAMOL AND O-ACETYLSALICYL ACID OR THEIR PHYSIOLOGICALLY COMPATIBLE SALTS, METHOD FOR THE PRODUCTION THEREOF AND THEIR USE FOR COMBATING THROMBUS FORMATION
US4999226A (en) 1988-06-01 1991-03-12 Merrell Dow Pharmaceuticals Inc. Pharmaceutical compositions for piperidinoalkanol-ibuprofen combination
IE66933B1 (en) * 1990-01-15 1996-02-07 Elan Corp Plc Controlled absorption naproxen formulation for once-daily administration
JPH03112928U (en) 1990-03-05 1991-11-19
US5286736A (en) * 1990-11-22 1994-02-15 Dr. Karl Thomae Gmbh Pyridyl compounds and pharmaceutical compositions containing these compounds
DK0585355T3 (en) * 1991-05-20 1995-06-06 Tanabe Seiyaku Co Multilayer controlled release preparation
KR100221695B1 (en) * 1991-08-12 1999-09-15 그린 마틴, 브라이언 쥐 테슬리 Pharmaceutical spheroid formulation
DE4129603A1 (en) * 1991-09-06 1993-03-11 Thomae Gmbh Dr K CONDENSED 5-LOW HETEROCYCLES, METHOD FOR THE PRODUCTION THEREOF, AND MEDICAMENTS CONTAINING THESE COMPOUNDS
US5416099A (en) * 1991-10-29 1995-05-16 Merck & Co., Inc. Fibrinogen receptor antagonists
ZA928276B (en) 1991-10-31 1993-05-06 Daiichi Seiyaku Co Aromatic amidine derivates and salts thereof.
ZA929008B (en) * 1991-12-13 1993-05-21 Bristol Myers Squibb Co Piperazinyl- and piperidinyl-cyclohexanols.
DE4216364A1 (en) * 1991-12-14 1993-11-25 Thomae Gmbh Dr K Pyridyl derivs. with antithrombotic properties
NZ253999A (en) 1992-08-05 1996-07-26 Faulding F H & Co Ltd Pelletised substained release medicament
US5914132A (en) * 1993-02-26 1999-06-22 The Procter & Gamble Company Pharmaceutical dosage form with multiple enteric polymer coatings for colonic delivery
JPH06340619A (en) 1993-05-03 1994-12-13 Bristol Myers Squibb Co Guanidyl- or amidinyl-substituted methylamino heterocyclic thrombin inhibitor
CA2134192A1 (en) 1993-11-12 1995-05-13 Michael L. Denney 5, 6-bicyclic glycoprotein iib/iiia antagonists
US5395626A (en) 1994-03-23 1995-03-07 Ortho Pharmaceutical Corporation Multilayered controlled release pharmaceutical dosage form
SE9402422D0 (en) 1994-07-08 1994-07-08 Astra Ab New beads for controlled release and a pharmaceutical preparation containing the same
SG80553A1 (en) * 1995-07-20 2001-05-22 Tanabe Seiyaku Co Pharmaceutical preparation in form of coated capsule releasable at lower part of digestive tract
US6039975A (en) * 1995-10-17 2000-03-21 Hoffman-La Roche Inc. Colon targeted delivery system
DE19539361A1 (en) * 1995-10-23 1997-04-24 Basf Ag Process for the preparation of multilayer, solid pharmaceutical forms for oral or rectal administration
US5705190A (en) 1995-12-19 1998-01-06 Abbott Laboratories Controlled release formulation for poorly soluble basic drugs
FR2745500B1 (en) 1996-03-04 1998-04-03 Synthelabo SUSTAINED RELEASE PHARMACEUTICAL FORMULATIONS CONTAINING MIZOLASTINE
US5912014A (en) * 1996-03-15 1999-06-15 Unigene Laboratories, Inc. Oral salmon calcitonin pharmaceutical products
FR2752162B1 (en) 1996-08-07 1998-11-06 Jouveinal Lab TRIMEBUTINE FILM MALEATE TABLET
EP0957908A4 (en) 1996-12-13 2003-03-12 Merck & Co Inc Fibrinogen receptor antagonists
US6414008B1 (en) * 1997-04-29 2002-07-02 Boehringer Ingelheim Pharma Kg Disubstituted bicyclic heterocycles, the preparation thereof, and their use as pharmaceutical compositions
WO1998056787A1 (en) 1997-06-10 1998-12-17 Synthon B.V. 4-Phenylpiperidine compounds
DE19752843C2 (en) 1997-11-28 2003-01-09 Byk Gulden Lomberg Chem Fab Pharmaceutical preparation in tablet or pellet form for pantoprazole and omeprazole
US6248770B1 (en) * 1998-07-09 2001-06-19 Boehringer Ingelheim Pharma Kg Benzimidazoles having antithrombotic activity
CA2525555A1 (en) * 1998-07-28 2000-02-10 Takeda Pharmaceutical Company Limited Rapidly disintegrable solid preparation
SE9802973D0 (en) 1998-09-03 1998-09-03 Astra Ab Immediate release tablet
FR2793791B1 (en) 1999-05-19 2002-01-25 Univ Paris 7 Denis Diderot NOVEL INHIBITOR COMPOUNDS SPECIFIC TO A2 PHOSPHOLIPASES
GB9924797D0 (en) * 1999-10-20 1999-12-22 West Pharm Serv Drug Res Ltd Compound
US6620439B1 (en) * 2000-10-03 2003-09-16 Atul M. Mehta Chrono delivery formulations and method of use thereof
MXPA03009130A (en) 2000-10-20 2004-02-26 Biocryst Pharm Inc Biaryl compounds as serine protease inhibitors.
WO2002062778A2 (en) 2001-02-02 2002-08-15 Boehringer Ingelheim Pharma Gmbh & Co. Kg Anti-thrombotic compounds, production and use thereof as medicaments
US7316819B2 (en) * 2001-03-08 2008-01-08 Unigene Laboratories, Inc. Oral peptide pharmaceutical dosage form and method of production
DE10133786A1 (en) 2001-07-16 2003-02-06 Boehringer Ingelheim Pharma Use of thrombin inhibitors for the treatment of arthritis
DE10149674A1 (en) * 2001-10-09 2003-04-24 Apogepha Arzneimittel Gmbh Orally administered composition for sustained release of propiverine, useful for treatment of hypertonic bladder disorders, especially by once-daily administration
US20030181488A1 (en) 2002-03-07 2003-09-25 Boehringer Ingelheim Pharma Gmbh & Co. Kg Administration form for the oral application of 3-[(2-{[4-(hexyloxycarbonylamino-imino-methyl)-phenylamino]-methyl}-1-methyl-1H-benzimidazol-5-carbonyl)-pyridin-2-yl-amino]-propionic acid ethyl ester and the salts thereof
SG146435A1 (en) 2002-03-07 2008-10-30 Boehringer Ingelheim Pharma Form of presentation for 3-[(2-{[4-(hexyloxycarbonylamino-imino-methyl)- phenylamino]-methyl}-1-methyl-1h-benzimidazol-5-carbonyl)-pyridin-2-yl- amino] propionic acid ethyl ester to be administered orally
DE10209982A1 (en) 2002-03-07 2003-09-25 Boehringer Ingelheim Pharma Dosage form to be administered orally for poorly soluble basic active ingredients
DE10245624A1 (en) 2002-09-30 2004-04-08 Boehringer Ingelheim Pharma Gmbh & Co. Kg Oral pharmaceutical composition comprises the thrombin inhibitor ethyl 3-(2-(4-(hexyloxycarbonylamidino)phenylaminomethyl)-1-methyl-1H-benzimidazole-5-carbonyl)-2-pyridylamino)propionate and an organic acid
DE10235639A1 (en) * 2002-08-02 2004-02-19 Boehringer Ingelheim Pharma Gmbh & Co. Kg New prodrugs of benzimidazole-5-carboxamide derivative thrombin inhibitor, useful for treating or preventing thrombotic diseases, are well tolerated on subcutaneous injection
KR100653334B1 (en) 2003-03-07 2006-12-04 주식회사 엘지생명과학 New process for preparing 4-aminomethyl-3-alkoxyiminopyrrolidine methanesulphonate
BRPI0409796A (en) 2003-04-24 2006-05-30 Boehringer Ingelheim Int use of dipyridamole or mopidamole for treatment and prevention of thromboembolic disorders and disorders caused by excessive thrombin formation and / or elevated expression of thrombin receptors
DE10337697A1 (en) 2003-08-16 2005-03-24 Boehringer Ingelheim Pharma Gmbh & Co. Kg Tablet containing 3 - [(2 - {[4- (hexyloxycarbonylamino-iminomethyl) -phenyl-amino] -methyl} -1-methyl-1H-benzimidazole-5-carbonyl) -pyridin-2-yl-amino] - propionic acid ethyl ester or its salts
DE10339862A1 (en) * 2003-08-29 2005-03-24 Boehringer Ingelheim Pharma Gmbh & Co. Kg New crystalline forms of ethyl 3-(N-(2-(4-(hexyloxycarbonylamidino)phenylaminomethyl)-1-methyl-1H-benzimidazole-5-carbonyl)-N-(2-pyridyl)amino)propionate methanesulfonate used for post-operative prophylaxis of deep vein thrombosis
US20050107438A1 (en) 2003-09-03 2005-05-19 Boehringer Ingelheim International Gmbh Pharmaceutical composition comprising 3-[(2-{[4-(Hexyloxycarbonylaminoiminomethyl) phenylamino]-methyl}-1-methyl-1H-benzimidazol-5-carbonyl)-pyridin-2-yl-amino]-propionic acid ethyl ester or a salt therefore
ME02184B (en) 2003-12-25 2016-02-20 Eisai R&D Man Co Ltd Crystal of salt of 4 - (3-chlor0-4- (cyclopropylaminocarbonyl)amino-phenoxy)-7-methoxy-6-quinounecarboxamide or of solvate thereof and processes for producing these
EP1574516A1 (en) 2004-03-05 2005-09-14 Sanofi-Aventis Antithrombotic compound
EP1609784A1 (en) 2004-06-25 2005-12-28 Boehringer Ingelheim Pharma GmbH & Co.KG Process for the preparation of 4-(benzimidazolylmethylamino)-benzamidines
US7148067B2 (en) * 2004-08-31 2006-12-12 The Board Of Trustees Of The University Of Illinois Thromboplastin reagents
WO2006070878A1 (en) 2004-12-28 2006-07-06 Astellas Pharma Inc. Carboxylic acid derivative or salt thereof
US20060222640A1 (en) 2005-03-29 2006-10-05 Boehringer Ingelheim International Gmbh New pharmaceutical compositions for treatment of thrombosis
DE102005020002A1 (en) 2005-04-27 2006-11-02 Boehringer Ingelheim Pharma Gmbh & Co. Kg New hexyloxycarbonylamino-imino-methyl-phenylamino-methyl-benzimidazole-pyridine-propionic acid-ethyl ester salts such as hydrochloride useful for the prophylaxis of vein thrombosis and stroke
DE102005025728A1 (en) 2005-06-04 2006-12-07 Boehringer Ingelheim Pharma Gmbh & Co. Kg Polymorphs of 3 - [(2 - {[4- (hexyloxycarbonylamino-imino-methyl) -phenyl-amino] -methyl} -1-methyl-1H-benzimidazole-5-carbonyl) -pyridin-2-yl-amino] -propionic acid ethyl ester
DE102005061623A1 (en) 2005-12-21 2007-06-28 Boehringer Ingelheim Pharma Gmbh & Co. Kg Improved process for the preparation of 4- (benzimidazolylmethylamino) -benzamidines and their salts
DE102005061624A1 (en) 2005-12-21 2007-06-28 Boehringer Ingelheim Pharma Gmbh & Co. Kg Improved process for the preparation of salts of 4- (benzimidazolylmethylamino) -benzamidines
US8399678B2 (en) * 2009-11-18 2013-03-19 Boehringer Ingelheim International Gmbh Process for the manufacture of dabigatran etexilate
HUP1000069A2 (en) 2010-02-02 2012-05-02 Egis Gyogyszergyar Nyilvanosan M Kod Ruszvunytarsasag New salts for the preparation of pharmaceutical composition
US20130052262A1 (en) * 2010-03-01 2013-02-28 Sandra Brueck Dabigatran etexilate-containing oral pharmaceutical composition
JP2015504903A (en) 2012-01-24 2015-02-16 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング New dabigatran formulation for oral administration
CN103304539A (en) 2012-03-07 2013-09-18 天津药物研究院 Dabigatran etexilate malate, and preparation method and application thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998037075A1 (en) * 1997-02-18 1998-08-27 Boehringer Ingelheim Pharma Kg Disubstituted bicyclic heterocycles, their production and use as medicaments

Also Published As

Publication number Publication date
US9925174B2 (en) 2018-03-27
US20060183779A1 (en) 2006-08-17
US20030181488A1 (en) 2003-09-25
US20180221359A1 (en) 2018-08-09

Similar Documents

Publication Publication Date Title
US20200085807A1 (en) Administration of ethyl 3-[(2-{[4-(hexyloxycarbonyl-aminoiminomethyl)phenyl-amino]methyl}-1-methyl-1h-benzimidazol-5-carbonyl)pyridin-2-ylamino]propionate
US20180221359A1 (en) Administration of ethyl 3-[(2-{[4-(hexyloxycarbonyl-aminoiminomethyl)phenyl-amino]methyl}-1-methyl-1h-benzimidazol-5-carbonyl)pyridin-2-ylamino]propionate
US20050095293A1 (en) Administration form for the oral application of poorly soluble drugs
JP4977462B2 (en) 3-[(2-{[4- (Hexyloxycarbonylamino-imino-methyl) -phenylamino] -methyl} -1-methyl-1H-benzimidazol-5-carbonyl) -pyridin-2-yl-amino] -Tablets containing propionic acid ethyl ester or salt thereof
US20110301201A1 (en) Dabigatran for percutaneous interventional cardiac catheterisation
US7163696B2 (en) Pharmaceutical formulations
AU2002350750B2 (en) Compressed oral pharmaceutical dosage form, with an enteric coating, which contains an acid-labile benzimidazole compound
US11000481B2 (en) Composite preparation of mosapride and rabeprazole
EP1594479A1 (en) Stable oral benzimidazole compositions and processes for their preparation
UA81760C2 (en) Normal;heading 1;heading 2;ADMINISTRATION FORM FOR THE ORAL APPLICATION OF 3-[(2-{[4-(HEXYLOXYCARBONYLAMINO-IMINO-METHYL)-PHENYLAMINO]-METHYL}-1-METHYL-1H-BENZIMIDAZOL-5-CARBONYL)-PYRIDIN-2-YL-AMINO] PROPIONIC ACID ETHYL ESTER AND THE SALTS THEREOF
WO2008047320A2 (en) Multiple unit tablet compositions of benzimidazole compounds
US20210106563A1 (en) Pharmaceutical composition comprising eluxadoline, process of preparation and use thereof

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION