US20150004018A1 - Fan module - Google Patents

Fan module Download PDF

Info

Publication number
US20150004018A1
US20150004018A1 US14/369,743 US201214369743A US2015004018A1 US 20150004018 A1 US20150004018 A1 US 20150004018A1 US 201214369743 A US201214369743 A US 201214369743A US 2015004018 A1 US2015004018 A1 US 2015004018A1
Authority
US
United States
Prior art keywords
cooling air
electric motor
fan
fan module
fan wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/369,743
Other languages
English (en)
Inventor
Thanh-Nhan Le
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Assigned to ROBERT BOSCH GMBH reassignment ROBERT BOSCH GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Le, Thanh-Nhan
Publication of US20150004018A1 publication Critical patent/US20150004018A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/5806Cooling the drive system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • H02K9/06Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium with fans or impellers driven by the machine shaft
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/28Cooling of commutators, slip-rings or brushes e.g. by ventilating

Definitions

  • the invention relates to a fan module.
  • the invention relates to a fan module having a cooling air ducting for an electric motor of the fan module.
  • a fan module comprises a fan wheel and a coaxial electric motor for the purpose of driving the fan wheel.
  • the fan wheel comprises an axial inlet side and a radial outlet side.
  • the fan module is designed for the purpose of being installed in a ventilation system in order to convey air from the inlet side to the outlet side.
  • the fan module can be installed in the region of a ventilation system of a motor vehicle.
  • the ventilation system can be used to ventilate an interior of a motor vehicle.
  • the fan module can be designed for the purpose of dissipating a high electrical power. Furthermore, a temperature of air that is conveyed by means of the fan module can extend over a large temperature range. In the above example of the interior lighting system of the motor vehicle, conveyed air can have temperatures between approx. ⁇ 30 and approx +50 degrees Celsius.
  • a cooling air ducting can be provided that leads from the outlet side of the fan module to the electric motor. In order to ensure a sufficient flow of cooling air past the electric motor, the cooling air is to be suitably guided past the electric motor. The efficiency of the cooling of the electric motor is to be high while simultaneously maintaining a low acoustic load by means of air that flows through the cooling air ducting.
  • the object of the present invention is to provide a fan module that fulfills these requirements.
  • a fan module in accordance with the invention comprises a fan wheel having an axial inlet side and a radial outlet side, an electric motor for the purpose of driving the fan wheel in a coaxial manner and a cooling air ducting that leads from the outlet side to the electric motor. After passing the electric motor, the cooling air ducting leads onwards to the fan wheel, wherein the fan wheel comprises a cut-out in a region near to the axis for the purpose of allowing cooling air to pass through to the inlet side.
  • a drop in pressure between the outlet side and the inlet side of the fan module is advantageously used in order to convey the cooling air past the electric motor.
  • the air that is flowing past the electric motor can absorb thermal energy and cool the electric motor.
  • the heated cooling air is blended with the air that is flowing at the inlet side into the fan wheel and is conveyed together with said air in the direction of the outlet side.
  • the flow of the cooling air is preferably considerably less than an entire flow of air through the fan wheel so that air that is tapped from the outlet side is only insignificantly warmed by means of the electric motor.
  • the electric motor is preferably a commutated direct current motor having brushes and the cooling air ducting extends from the outlet side to the brushes and from there in the axial direction to the fan wheel.
  • the brushes can be considered to be amongst the most thermally loaded elements of the electric motor.
  • the brushes can be cooled with the still relatively cold air from the outlet side in the manner described above, prior to the air flowing onwards axially past the electric motor and where necessary absorbing further thermal energy. As a consequence, an admissible operating temperature of the brushes can also be maintained in the case of dissipation of a high electrical power.
  • a diverting element is provided in the region of the brushes for the purpose of diverting the cooling air into the axial direction of the fan wheel.
  • the cooling air can thus already flow past the brushes in the axial direction so that the cooling air within the cooling air ducting is not diverted and/or swirled any more than is necessary.
  • the cooling air ducting extends axially through the electric motor.
  • the cooling air can be supplied through a region between a stator and a rotor of the electric motor.
  • a particularly efficient cooling of the electric motor can be achieved in its interior.
  • the cooling air can also be supplied externally axially past the electric motor.
  • the brushes are spaced from one another and the cooling air ducting comprises a diverting element for the purpose of guiding a part flow of cooling air to each of the brushes.
  • the individual brushes can be individually cooled in a purposeful manner and as a result it is possible to avoid a thermal overloading of each individual brush. Since a failure of the electric motor is likely in the case of damage to one of the brushes, reliability and where necessary service life of the electric motor can be increased in this manner.
  • the cooling air ducting preferably extends between the outlet side and the electric motor along a plane that includes the axis of rotation of the electric motor.
  • cooling air can flow in this region in sections in a direction that extends in an inclined manner with respect to the axis of rotation as a result of which noises in particular whistling and howling sounds can be avoided and/or suppressed.
  • a base plate having a cut-out for the purpose of allowing cooling air to flow axially through from the outlet side into the cooling air ducting can be provided in a plane of rotation between the electric motor and the fan wheel.
  • Air that is exiting at the outlet side is predominantly accelerated in the tangential and radial direction.
  • air that is entering from the outlet side into the cooling air ducting moves predominantly in the axial direction.
  • a relatively constant cooling air flow from the outlet side can be drawn off, which can suffice in order to cool the electric motor even under unfavorable circumstances such as in the case of high air temperature and dissipation of a high electrical power.
  • a vane is provided on a border of the cut-out and said vane extends in an axial direction.
  • the flow characteristics through a cooling air ducting can be defined by means of the cross section of the cooling air ducting, in particular in the region of the cut-out, and a corresponding dimensioning of the vane in such a manner that the flow rate of cooling air past the electric motor suffices for the cooling process without leading to an acoustic load.
  • the fan wheel comprises a multiplicity of axial cut-outs for the purpose of allowing cooling air to pass through to the inlet side. It is preferred that the axial cut-outs are distributed in relation to an axis of rotation in such a manner that an imbalance of the fan wheel is avoided.
  • the fan wheel comprises a dome-like base plate that is facing the electric motor in an axial manner.
  • the base plate In a radial region near to the axis, the base plate accordingly extends as far as possible in the opposite direction to that of the axially entering air. Since the fan wheel radially accelerates the incoming air, the incoming air in the region of axis of the dome is relatively slow so that a noise load can be low by means of the air currents of the cooling air and the incoming air that counter one another.
  • FIG. 1 illustrates a longitudinal sectional view of a fan module
  • FIG. 2 illustrates flows of cooling and conveying air through the fan module in FIG. 1 ;
  • FIG. 3 illustrates a cross sectional view of the fan module in FIG. 1 ;
  • FIG. 4 illustrates a plan view of a part of the fan module in FIG. 1 ;
  • FIG. 5 illustrates a plan view of a further part of the fan module in FIG. 1 .
  • FIG. 1 illustrates a longitudinal sectional view of a fan module 100 .
  • the fan module 100 comprises a fan wheel 105 and an electric motor 110 that are mutually connected in an axial manner such that the electric motor 110 can rotate the fan wheel 105 about an axis of rotation 115 .
  • the fan wheel 105 comprises several fan blades that extend in an axial direction and are arranged on a periphery around the axis of rotation 115 .
  • the fan blades 120 are held together at the top by means of a circumferential outer edge 125 and terminate at the bottom at a dome-like curved base plate 130 .
  • Several cut-outs 135 are integrated near to the axis of rotation 115 into the curved base plate 130 of the fan wheel 105 .
  • the electric motor 110 comprises a stator (field magnet) 140 and a rotor (lamella) 145 .
  • the rotor 145 is mounted in the stator 140 in such a manner as to be able to rotate about the axis of rotation 115 and is connected to the fan wheel 105 in such a torqued manner.
  • the stator 140 can be arranged radially outside or radially inside the rotor 145 .
  • the stator 140 lies outside and the rotor 145 lies inside.
  • Two brushes 150 are attached to the stator 140 and lie opposite one another preferably in relation to the axis of rotation 115 .
  • the brushes 150 render possible an electrical current flow between the stator 140 and the rotor 145 , wherein different coils of the rotor 145 are connected to the connectors of the brushes 150 in dependence upon a relative angle of rotation.
  • the fan module 100 further comprises a module housing 155 and a housing cover 160 .
  • the module housing 155 is fastened to the stator 140 of the electric motor 110 and is designed for the purpose of fastening the fan module 100 to a ventilation system.
  • the module housing 155 comprises a base plate 165 that lies in a plane of rotation about the axis of rotation 115 .
  • a cut-out 170 is provided through the base plate 165 in a region radially outside a contour of the fan wheel 105 , wherein a diverting element 175 protrudes axially upwards on a border of the cut-out 170 .
  • the cut-out 170 represents the beginning of a cooling air ducting 180 that is initially formed by means of the module housing 155 and the housing cover 160 and leads from the cut-out 170 to an axially lower end of the electric motor 110 . From there, the cooling air ducting 180 extends past the brushes 150 of the electric motor 110 and axially upwards through the electric motor 110 to the fan wheel 105 where the cooling air ducting 180 terminates at the cut-outs 135 .
  • air enters axially from above at an inlet side 185 of the fan wheel 105 and is accelerated radially outwards to an outlet side 190 .
  • a part of the air that is accelerated enters from the outlet side 190 through the cut-out 170 axially into the cooling air ducting 180 and then, after the circulation, exits axially through the cut-outs 135 of the fan wheel 105 .
  • the exiting cooling air blends there with the incoming air and can be conveyed afresh through the fan wheel 105 .
  • FIG. 2 illustrates flows of cool and conveying air through the fan module 100 in FIG. 1 .
  • FIGS. 2 a and 2 b illustrate longitudinal sectional views through the fan module 100 , wherein the section that is illustrated in FIG. 2 b is rotated 180° and the section that is illustrated in FIG. 2 a is rotated 90° about the axis of rotation 115 in relation to the direction of the sectional view of the illustration in FIG. 1 .
  • the cooling air ducting 180 terminates at the cut-out 135 in the base plate 130 of the fan wheel 105 .
  • the cooling air exits upwards in a region near to the axis of rotation 115 and flows essentially in the opposite direction to the air that enters from above at the inlet side 185 .
  • FIG. 3 illustrates a plan view of the module housing 155 of the fan module 100 in FIG. 1 .
  • the viewing direction is downward from above in relation to the illustration in FIG. 1 .
  • the cut-out 170 through the base plate 130 of the module housing 155 is clearly evident.
  • the fan wheel 105 (not illustrated) rotates anticlockwise in the illustrated exemplary embodiment so that the diverting element 175 closes off the cut-out 170 in the movement direction of the air towards the rear.
  • the diverting element 175 is designed for the purpose of diverting a part of the air, which is flowing past said diverting element, axially downwards into the cooling air ducting 180 .
  • a first aperture 305 through the base plate 165 is provided in the region of the axis of rotation 115 .
  • the aperture 305 is subsequently filled by means of an axial end of the electric motor 110 .
  • a second aperture 310 is optionally provided through the base plate 165 and said second aperture is designed for the purpose of receiving an electronic control circuit for the purpose of controlling the electric motor 110 .
  • the electronic control circuit can be cooled in this manner by means of the air that flows past said electronic control unit.
  • FIG. 4 illustrates the housing cover 160 of the fan module 100 in FIG. 1 .
  • the housing cover 160 is illustrated in the correct position with respect to the illustration in FIG. 3 , however without the module housing 155 . It is evident how the housing cover 160 closes the cooling air ducting 180 on the section between the cut-out 170 and the lower axial end of the electric motor 110 in FIG. 1 .
  • the cooling air ducting 180 extends radially from left to right in the direction of the axis of rotation 115 .
  • a diverting element 410 is embodied on the housing cover 160 in the path of the cooling air and said diverting element divides the flow of cooling air into two flows that are preferably of equal magnitude. As the two currents flow onwards they are subsequently diverted in an inclined manner downwards and/or upwards, in that they are guided in inclined sections of the cooling air ducting 180 , are bordered by the housing cover 160 .
  • axially diverting elements 405 are embodied on the housing cover in regions that lie axially above the brushes 150 after mounting the housing cover 160 on the fan module 100 . It is preferred that the axial diverting elements 405 comprise in each case a pre-defined curvature along which the respective flow is guided in order to effect a low-loss deflection of approx. 90°.
  • FIG. 5 illustrates a cross sectional view of the fan module 100 in FIG. 1 .
  • the illustration is in part transparent so that the elements can be seen in different axial positions along the axis of rotation 115 .
  • the fan module 100 is arranged in an air duct 505 having a spiral shaped border.
  • the air duct 505 is used for the purpose of collecting the air that is being accelerated radially by the fan wheel 105 in order to release the air through a tangential exhaust duct 510 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Motor Or Generator Frames (AREA)
US14/369,743 2011-12-29 2012-11-21 Fan module Abandoned US20150004018A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102011090066.7 2011-12-29
DE102011090066A DE102011090066A1 (de) 2011-12-29 2011-12-29 Lüftermodul
PCT/EP2012/073167 WO2013097985A2 (de) 2011-12-29 2012-11-21 Lüftermodul

Publications (1)

Publication Number Publication Date
US20150004018A1 true US20150004018A1 (en) 2015-01-01

Family

ID=47501083

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/369,743 Abandoned US20150004018A1 (en) 2011-12-29 2012-11-21 Fan module

Country Status (7)

Country Link
US (1) US20150004018A1 (ja)
EP (1) EP2798726B1 (ja)
JP (2) JP6253593B2 (ja)
CN (1) CN103999337B (ja)
DE (1) DE102011090066A1 (ja)
HU (1) HUE049793T2 (ja)
WO (1) WO2013097985A2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150118054A1 (en) * 2013-10-31 2015-04-30 MAHLE BEHR GmbH & Co., KG Radial blower
EP3073619A1 (en) * 2015-03-23 2016-09-28 Regal Beloit America, Inc. An electrical machine housing and methods of assembling the same
US20170302670A1 (en) * 2016-04-14 2017-10-19 Beijing Xiaomi Mobile Software Co., Ltd. Method, device, and system for executing network service
EP3489520A1 (en) * 2017-11-27 2019-05-29 Shinano Kenshi Co., Ltd. Blower device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101939695B1 (ko) * 2016-08-17 2019-01-17 효성전기주식회사 방열이 용이한 dc모터 구조
KR101908559B1 (ko) * 2016-08-17 2018-10-16 효성전기주식회사 블로워모터의 냉각구조
KR101848084B1 (ko) * 2016-08-17 2018-04-11 효성전기주식회사 블로워모터의 엔드커버 조립체
FR3069586B1 (fr) * 2017-07-26 2021-01-01 Valeo Systemes Thermiques Pulseur d'air pour vehicule automobile
FR3095162B1 (fr) * 2019-04-19 2021-04-30 Valeo Systemes Thermiques Groupe moto-ventilateur d’un pulseur d’air d’un véhicule automobile
CN110448221A (zh) * 2019-09-03 2019-11-15 小狗电器互联网科技(北京)股份有限公司 一种吸尘器电机集风罩及吸尘器
CN113417873B (zh) * 2021-07-26 2022-06-17 浙江欧盾风机有限公司 一种降噪轴流风机
FR3139034A1 (fr) * 2022-08-29 2024-03-01 Valeo Systemes Thermiques Support moteur et groupe moto-ventilateur d’une installation de chauffage, ventilation et/ou climatisation d’un véhicule notamment automobile correspondant

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3274410A (en) * 1962-12-21 1966-09-20 Electrolux Ab Cooling arrangement for motorfan unit
US4866320A (en) * 1987-08-26 1989-09-12 Aurora Konrad G. Schulz Gmbh & Co. Fan assembly
US5743721A (en) * 1996-04-30 1998-04-28 Itt Automotive Electrical Systems, Inc. Blower assembly having integral air flow cooling duct
US6034451A (en) * 1997-07-31 2000-03-07 Valeo Climatisation Centrifugal fan with improved air cooling for its motor, especially for a motor vehicle
US6528919B2 (en) * 2000-06-12 2003-03-04 Asmo Co., Ltd. Brushless motor having water draining portion
US6604906B2 (en) * 2000-08-04 2003-08-12 Calsonic Kansei Corporation Centrifugal multiblade blower
US7011506B2 (en) * 2002-05-10 2006-03-14 Halla Climate Control Corporation Blower unit for air conditioner
US7067946B2 (en) * 2003-06-27 2006-06-27 Asmo Co., Ltd. Motor assembly for vehicle air conditioner
US7118355B2 (en) * 2005-02-04 2006-10-10 Delphi Technologies, Inc. Electric motor driven blower assembly with integral motor cooling duct
US7453696B2 (en) * 2005-03-14 2008-11-18 Ebm-Papst Landshut Gmbh Cooling device for a radial fan driven by an electric motor with IC
US7554239B2 (en) * 2005-11-14 2009-06-30 Asmo Co., Ltd. Dynamo-electric machine and vehicular air blower having the same
US7699587B2 (en) * 2006-02-01 2010-04-20 Robert Bosch Gmbh Cooling channel for automotive HVAC blower assembly
US7780405B2 (en) * 2005-12-28 2010-08-24 Denso Corporation Blower system having a cooling passage
US8251677B2 (en) * 2006-11-09 2012-08-28 Robert Bosch Gmbh Blower apparatus
US8267674B2 (en) * 2010-02-04 2012-09-18 Robert Bosch Gmbh Centrifugal blower assembly

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4120616A (en) * 1975-10-06 1978-10-17 Breuer Electric Manufacturing Company Vacuum cleaner-blower assembly with sound absorbing arrangement
JPS57148554A (en) * 1981-03-06 1982-09-13 Hitachi Ltd Cooler for blower driving motor
JPS5956962U (ja) * 1982-10-06 1984-04-13 カルソニックカンセイ株式会社 自動車用冷却フアンの駆動モ−タ
JPS61185255U (ja) * 1985-05-07 1986-11-19
JPS6214961U (ja) * 1985-07-10 1987-01-29
JP4077983B2 (ja) * 1999-06-25 2008-04-23 カルソニックカンセイ株式会社 送風機用のブラシレスモータ
JP2003088036A (ja) * 2001-09-17 2003-03-20 Asmo Co Ltd モータ装置
JP3971349B2 (ja) * 2003-06-27 2007-09-05 アスモ株式会社 車両空調用モータの防水構造
US20110116928A1 (en) * 2009-11-16 2011-05-19 Robert Bosch Gmbh Open-hub centrifugal blower assembly

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3274410A (en) * 1962-12-21 1966-09-20 Electrolux Ab Cooling arrangement for motorfan unit
US4866320A (en) * 1987-08-26 1989-09-12 Aurora Konrad G. Schulz Gmbh & Co. Fan assembly
US5743721A (en) * 1996-04-30 1998-04-28 Itt Automotive Electrical Systems, Inc. Blower assembly having integral air flow cooling duct
US6034451A (en) * 1997-07-31 2000-03-07 Valeo Climatisation Centrifugal fan with improved air cooling for its motor, especially for a motor vehicle
US6528919B2 (en) * 2000-06-12 2003-03-04 Asmo Co., Ltd. Brushless motor having water draining portion
US6604906B2 (en) * 2000-08-04 2003-08-12 Calsonic Kansei Corporation Centrifugal multiblade blower
US7011506B2 (en) * 2002-05-10 2006-03-14 Halla Climate Control Corporation Blower unit for air conditioner
US20060192449A1 (en) * 2003-06-27 2006-08-31 Takeo Noda Motor assembly for vehicle air conditioner
US7067946B2 (en) * 2003-06-27 2006-06-27 Asmo Co., Ltd. Motor assembly for vehicle air conditioner
US7118355B2 (en) * 2005-02-04 2006-10-10 Delphi Technologies, Inc. Electric motor driven blower assembly with integral motor cooling duct
US7453696B2 (en) * 2005-03-14 2008-11-18 Ebm-Papst Landshut Gmbh Cooling device for a radial fan driven by an electric motor with IC
US7554239B2 (en) * 2005-11-14 2009-06-30 Asmo Co., Ltd. Dynamo-electric machine and vehicular air blower having the same
US7780405B2 (en) * 2005-12-28 2010-08-24 Denso Corporation Blower system having a cooling passage
US7699587B2 (en) * 2006-02-01 2010-04-20 Robert Bosch Gmbh Cooling channel for automotive HVAC blower assembly
US8251677B2 (en) * 2006-11-09 2012-08-28 Robert Bosch Gmbh Blower apparatus
US8267674B2 (en) * 2010-02-04 2012-09-18 Robert Bosch Gmbh Centrifugal blower assembly

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150118054A1 (en) * 2013-10-31 2015-04-30 MAHLE BEHR GmbH & Co., KG Radial blower
EP3073619A1 (en) * 2015-03-23 2016-09-28 Regal Beloit America, Inc. An electrical machine housing and methods of assembling the same
US9912207B2 (en) 2015-03-23 2018-03-06 Regal Beloit America, Inc. Electrical machine housing and methods of assembling the same
US20170302670A1 (en) * 2016-04-14 2017-10-19 Beijing Xiaomi Mobile Software Co., Ltd. Method, device, and system for executing network service
EP3489520A1 (en) * 2017-11-27 2019-05-29 Shinano Kenshi Co., Ltd. Blower device
US10746180B2 (en) 2017-11-27 2020-08-18 Shinano Kenshi Co., Ltd. Blower device

Also Published As

Publication number Publication date
JP6253593B2 (ja) 2017-12-27
EP2798726A2 (de) 2014-11-05
JP2016174529A (ja) 2016-09-29
HUE049793T2 (hu) 2020-10-28
EP2798726B1 (de) 2020-04-29
CN103999337B (zh) 2016-10-26
DE102011090066A1 (de) 2013-07-04
JP2015506659A (ja) 2015-03-02
CN103999337A (zh) 2014-08-20
WO2013097985A2 (de) 2013-07-04
WO2013097985A3 (de) 2013-09-06

Similar Documents

Publication Publication Date Title
US20150004018A1 (en) Fan module
US9531239B2 (en) Active cooling of a motor having an integrated cooling channel
JP5072506B2 (ja) ファンモータ
US8459966B2 (en) Ram air fan motor cooling
US9768667B2 (en) Electric motor with outer radiator and two separate cooling circuits
US8172524B2 (en) Fan including specific stationary vane arrangement
JP6931774B2 (ja) 温度調和システム、車両
CN105024491A (zh) 具有叶轮的集成式电机
JP6504754B2 (ja) 電動送風機およびそれを用いた電気掃除機
JP6678302B2 (ja) 温度調和ユニット、温度調和システム、車両
CN101728895A (zh) 可设置在电动机上的仪器
CN104564821B (zh) 冲压空气风机外壳
CN105048715A (zh) 具有叶轮的集成式电机
WO2017047046A1 (ja) 温度調和ユニット、温度調和システム、車両
US20030086242A1 (en) Motor-fan unit particularly for a heating and/or air conditioning apparatus for a motor vehicle
KR20180127423A (ko) 로터 냉각을 이용한 전기 충전 장치
US10186936B2 (en) Electric machine with a baffle
KR102400801B1 (ko) 전동 과급기
KR102476558B1 (ko) 팬 모터 및 이를 포함하는 차량
WO2008128797A3 (de) Lüftungseinheit zur fremdbelüftung eines elektromotors
CN101965459A (zh) 电风扇
RU2463697C2 (ru) Вентилятор
EP3638908B1 (en) Flush-mounted fan system
CN109695584A (zh) 鼓风机组件以及组装该鼓风机组件的方法
CN109424558B (zh) 燃气热水器和用于燃气热水器的风机组件

Legal Events

Date Code Title Description
AS Assignment

Owner name: ROBERT BOSCH GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LE, THANH-NHAN;REEL/FRAME:033254/0412

Effective date: 20140226

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION