US20140262803A1 - Metal plating system including gas bubble removal unit - Google Patents
Metal plating system including gas bubble removal unit Download PDFInfo
- Publication number
- US20140262803A1 US20140262803A1 US13/800,201 US201313800201A US2014262803A1 US 20140262803 A1 US20140262803 A1 US 20140262803A1 US 201313800201 A US201313800201 A US 201313800201A US 2014262803 A1 US2014262803 A1 US 2014262803A1
- Authority
- US
- United States
- Prior art keywords
- wafer
- agitating device
- electroplating apparatus
- cathode
- electrolyte solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000007747 plating Methods 0.000 title description 60
- 229910052751 metal Inorganic materials 0.000 title description 24
- 239000002184 metal Substances 0.000 title description 24
- 238000009713 electroplating Methods 0.000 claims abstract description 37
- 239000008151 electrolyte solution Substances 0.000 claims abstract description 29
- 229910021645 metal ion Inorganic materials 0.000 claims abstract description 9
- 238000004891 communication Methods 0.000 claims abstract description 8
- 238000004070 electrodeposition Methods 0.000 claims abstract description 6
- 239000000243 solution Substances 0.000 claims description 41
- 238000000034 method Methods 0.000 claims description 20
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 6
- 239000007789 gas Substances 0.000 claims description 6
- 239000001257 hydrogen Substances 0.000 claims description 6
- 229910052739 hydrogen Inorganic materials 0.000 claims description 6
- 230000015572 biosynthetic process Effects 0.000 claims description 4
- 239000003792 electrolyte Substances 0.000 claims description 4
- 239000007787 solid Substances 0.000 claims description 2
- 230000002401 inhibitory effect Effects 0.000 claims 1
- 239000010949 copper Substances 0.000 description 14
- 238000010586 diagram Methods 0.000 description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 9
- 229910052802 copper Inorganic materials 0.000 description 9
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 8
- 239000000080 wetting agent Substances 0.000 description 6
- -1 chlorine ions Chemical class 0.000 description 5
- 238000001465 metallisation Methods 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000010008 shearing Methods 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- JZCCFEFSEZPSOG-UHFFFAOYSA-L copper(II) sulfate pentahydrate Chemical compound O.O.O.O.O.[Cu+2].[O-]S([O-])(=O)=O JZCCFEFSEZPSOG-UHFFFAOYSA-L 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 description 2
- 235000011152 sodium sulphate Nutrition 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229910017518 Cu Zn Inorganic materials 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910017566 Cu-Mn Inorganic materials 0.000 description 1
- 229910017752 Cu-Zn Inorganic materials 0.000 description 1
- 229910017767 Cu—Al Inorganic materials 0.000 description 1
- 229910017871 Cu—Mn Inorganic materials 0.000 description 1
- 229910017943 Cu—Zn Inorganic materials 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- CIYRLONPFMPRLH-UHFFFAOYSA-N copper tantalum Chemical compound [Cu].[Ta] CIYRLONPFMPRLH-UHFFFAOYSA-N 0.000 description 1
- TVZPLCNGKSPOJA-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Zn] TVZPLCNGKSPOJA-UHFFFAOYSA-N 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 239000006259 organic additive Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D21/00—Processes for servicing or operating cells for electrolytic coating
- C25D21/04—Removal of gases or vapours ; Gas or pressure control
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D17/00—Constructional parts, or assemblies thereof, of cells for electrolytic coating
- C25D17/001—Apparatus specially adapted for electrolytic coating of wafers, e.g. semiconductors or solar cells
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D17/00—Constructional parts, or assemblies thereof, of cells for electrolytic coating
- C25D17/008—Current shielding devices
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D21/00—Processes for servicing or operating cells for electrolytic coating
- C25D21/10—Agitating of electrolytes; Moving of racks
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/04—Electroplating with moving electrodes
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/08—Electroplating with moving electrolyte e.g. jet electroplating
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/20—Electroplating using ultrasonics, vibrations
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D7/00—Electroplating characterised by the article coated
- C25D7/12—Semiconductors
- C25D7/123—Semiconductors first coated with a seed layer or a conductive layer
Definitions
- the present disclosure relates to a metal plating system, and more specifically, to a metal plating system including gas bubble removal unit.
- Copper metallization is a key component for integrated circuits (ICs). As the industry demand for smaller sized ICs increases, plating-related defects in metal vias and interconnect lines are becoming more prominent. These plating defects ultimately affect the reliability of the ICs.
- Hollow metal describes various point defects, such as voids, porosity etc., which occur in the metal vias and connection lines of the ICs.
- One cause of hollow metal may be attributed to conventional plating tools used to perform the metallization electroplating applied to IC wafer surfaces. More specifically, conventional plating tools dispose the wafer surface in a metallization solution in a downward-facing position towards an opposing anode of the plating tool. The plating process forms various metal vias and/or metal connections on the downward-facing surface.
- gas bubbles such as air
- gas bubbles may be trapped in the trenches and via holes trapping as a result of insufficiently fast and incomplete wetting of the trenches and vias with plating solution before plating starts.
- Hydrogen and/or air bubbles may also be formed in the solution during plating. They may be trapped in the trenches and vias. The bubbles also rise toward the surface and may encounter the wafer. The trapped bubbles may not be removed when using the currently used rotating disc configured plating tool. However, the trapped bubble may adhere to the bottom or side wall of the trenches and vias.
- These bubbles may block metal ions from reaching the conduction seed layer and forming the metal conductor by properly filling the trenches and vias. Accordingly, non-plated sections beneath the bubbles may occur, which ultimately causes hollow sections in the metal lines or vias, i.e., the hollow metal.
- an electroplating apparatus includes an anode configured to electrically communicate with an electrical voltage and an electrolyte solution.
- a cathode module includes a cathode that is configured to electrically communicate with a ground potential and the electrolyte solution.
- the cathode module further includes a wafer in electrical communication with the cathode. The wafer is configured to receive metal ions from the anode in response to current flowing through the anode via electrodeposition.
- the electroplating apparatus further includes at least one agitating device interposed between the wafer and the anode.
- the agitating device is configured to apply a uniform agitation across a cathode module including a wafer surface and a shearing force to gas bubbles trapped in the trenches and vias created on a surface of the wafer facing the agitating device.
- this agitating device will help to maintain an uniform diffusion layer over the large cathode i.e., wafer, surface which eventually enables plating having a uniform metal/alloy plating thickness. Uniform plating across the wafer surface results in uniform planarization by chemical mechanical polishing (CMP).
- CMP chemical mechanical polishing
- an agitating device to remove bubbles adhered to a surface of a wafer undergoing an electroplating process comprises a frame having an upper portion facing a wafer and a lower portion opposing the upper portion.
- the upper portion has a slot formed therethrough.
- the slot is configured to stream an electrolyte solution toward and past the surface of the wafer at an increased velocity.
- FIG. 1A is a block diagram illustrating an electroplating apparatus according to an exemplary embodiment of the present disclosure
- FIG. 1B is a block diagram illustrating an IC wafer according to an embodiment of the present disclosure
- FIG. 2 is a block diagram illustrating an electroplating apparatus according to another embodiment of the present disclosure
- FIG. 4 is a block diagram illustrating an electroplating apparatus according to still another embodiment of the present disclosure.
- FIGS. 5A-B illustrate examples of an agitating device according to an embodiment of the disclosure
- FIG. 6 illustrates an example of a plating tool including a filter unit according to an embodiment of the disclosure
- FIG. 7 is a block diagram illustrating an electroplating apparatus including an ultrasonic transducer according to another embodiment of the present disclosure
- FIGS. 8A-8C illustrate a process flow of electroplating a wafer according to an embodiment of the disclosure
- FIG. 9 is a line graph illustrating an current profile corresponding to applying a voltage potential to the wafer during a plating process according to an embodiment of the disclosure.
- FIG. 10 is a flow diagram illustrating a method of electroplating a wafer according to an embodiment of the disclosure.
- the electroplating apparatus 100 includes a power supply 102 , a container 104 and a plating tool 106 .
- the plating tool 106 includes an anode 108 and a cathode module 110 , each in electrical communication with the power supply 102 .
- the anode 108 and the cathode module 110 may be formed of various shapes including, but not limited to, square and circular.
- the power supply 102 includes a positive terminal 115 and a negative terminal 116 .
- the power supply 102 may include a voltage source, a current source, or a voltage source and a current source.
- the power supply 102 is configured to output an electrical voltage, a current, or a voltage and a current.
- the power supply 102 may execute a voltage scan with a predetermined scan rate.
- the power supply 102 may also supply a constant voltage.
- the power supply 102 may generate a voltage output and then switched to a current output or vice versa.
- the voltage and current output may be a direct current (DC), a pulse or combination of different waveforms.
- the current may also have a value selected to achieve a desired current density.
- the current may be supplied according to a constant electrical potential condition, under constant electrical current condition or combination thereof (see FIG. 9 ).
- the container 104 may contain an electrolyte solution 117 capable of conducting an electrical current that induces a metallization plating process.
- the electrolyte solution 117 may comprise cupric ions and/or chlorine ions and sulfate ions that render the electrolyte solution 117 to be electrically conductive.
- the electrolyte solution 117 includes, but is not limited, to sulfuric acid (H 2 SO 4 ), copper sulfate pentahydrate, 2N hydrochloric acid, sodium sulfate, etc.
- An electrolyte solution of sulfuric acid may range from 2-50 grams/liter (g/L), copper sulfate pentahydrate may range from 20-300 g/L and organic additives used as accelerator, levelers, suppressors and wetting agents.
- a solution of 2N hydrochloric acid may range from 0-5 milliliters/liters (ml/L), and a solution of sodium sulfate may range from 80-200 g/L. It can be appreciated that other solutions of acids, bases or salts may be used as the electrolyte solution 117 .
- the electrolyte solution 117 may comprise either H 2 SO 4 or chloride (Cl), and metal ions.
- the electrolyte metal ions comprises, for example, copper (Cu).
- the solution comprises an acid copper plating solution including (1) a dissolved copper salt (e.g., as copper sulfate), (2) an acidic electrolyte (e.g., as sulfuric acid) in an amount sufficient to impart conductivity to the bath and (3) additives (e.g., surfactants, brighteners, levelers and suppressants).
- the bath may also contain a wetting agent to increase wettability of the wafer.
- wetting agents may be used including, but not limited to, anionic agents, cationic agents, amphoteric wetting agents that ionize when mixed with water, and non-ionic wetting agents.
- metal ions from the anode 108 are transferred to the downward-facing surface of the wafer 113 via an electrodeposition process.
- copper vias and/or copper connection lines may be formed on the downward-facing surface of the wafer 113 and in the etched trenches and vias which are metalized with a very thin conducting seed layer, as discussed in greater detail below with respect to FIG. 1B .
- the seed layer may be formed from tantalum nitride, tantalum copper (Cu) or Cu alloys seed like Cu alloyed with easily oxidized metal e.g.
- copper is referenced as an example when describing the various embodiments, the plating process described herein may be utilized with other metals including, but not limited to, gold (Au), silver (Ag), nickel (Ni), iron (Fe), palladium (Pd), and alloys plating thereof.
- the plating tool 106 is in electrical communication with the power supply 102 and is in fluid communication with the electrolyte solution 117 .
- the anode 108 may be connected to an inner surface of the container 104 and immersed in the electrolyte solution 117 .
- An electrically conductive wire 118 has one end connected to the anode 108 and an opposing end connected to the positive terminal 115 of the power supply 102 .
- the anode 108 may be formed of any metal configured to transfer metal ions to the downward-facing surface of the wafer 113 via electrodeposition.
- the anode 108 is formed of copper (Cu).
- the cathode module 110 includes a cathode 111 coupled to a supporting plate 112 .
- Various means may be used to connect the cathode 111 to the supporting plate 112 including, but not limited to, mechanical pins, fasteners, and a non-soluble conductive adhesive.
- the cathode 111 may be connected to the supporting plate 112 using a universal joint 400 .
- the universal joint 400 allows the cathode module 110 to move in a plurality of directions with respect to the axis (A). For example, the cathode module 110 may rotate about the axis, while still capable of tilting left, right or moving up and down.
- the supporting plate 112 may be configured to rotate about an axis (A) extending perpendicular to cathode module 110 . Hence, the cathode 111 may be rotated when the plate 112 rotates.
- the cathode module 110 further includes an interconnect (IC) wafer 113 connected in electrical communication to the cathode 111 .
- a conductive alloy seed layer 114 may be formed on the IC wafer. Accordingly, the IC wafer 113 may rotate along with the supporting plate 112 and the cathode 111 .
- the supporting plate 112 may be selectively rotated.
- the cathode module 110 including the wafer 113 , may be formed in various shapes including, but not limited to square, circular and other.
- the IC wafer 300 may be formed from a semiconductor material, such as silicon.
- the IC wafer 300 includes a base layer 302 and a dielectric layer 304 .
- the base layer 302 and dielectric layer 304 may be insulated from one another by an insulating layer 306 interposed therebetween.
- One or more trenches 308 and/or vias 309 may be formed in the dielectric layer 304 .
- the vias 309 may extend through the insulating layer 306 and into the base layer 302 .
- the trenches 308 and/or vias 309 may be lined with a liner 310 .
- the liner 310 may be formed from tantalum (Ta) or tantalum nitride (TaN).
- a copper (Cu) seed layer 312 may be formed on top of the liner 310 . Accordingly, one or more air and/or hydrogen bubbles 314 may become trapped against the lower surface of the wafer 300 , in a trench 308 , and/or inside a via 309 .
- the cathode 111 is in electrical communication with the negative terminal 116 of the power supply 102 via a second electrically conductive wire 119 .
- An electrochemical circuit may be achieved when the anode 108 and the cathode 111 are introduced to the electrolyte solution 117 as described above. Accordingly, the electrical current output from the power supply 102 travels through the electrolyte solution 117 and to the anode 108 , which induces an electrochemical metallization plating process such that metal ions from the anode 108 are transferred to the downward-facing surface of the wafer 113 via electrodeposition. As a result, metal vias and/or metal connection lines are formed on the downward-facing surface the wafer 113 .
- the plating tool 106 further includes at least one agitating device 120 configured to prevent air, hydrogen and/or other gas bubbles from becoming trapped inside the trenches and vias located beneath the cathode module 110 and adhering to the downward-facing surface of the wafer 113 .
- the agitating device 120 may include a static agitating device that remains fixed or a dynamic agitating device that moves. When the wafer 113 is static, the dynamic agitating device will remove one or more bubbles from the wafer 113 . When the wafer 113 is dynamic, a static agitation device will also maintain a constant well defined diffusion layer across the plating surface of the wafer 113 .
- the agitating device 120 is fixated within the solution 117 and is disposed a predetermined distance below the wafer 113 .
- the distance between the agitating device 120 and the wafer 113 may range from about 1 millimeter (mm) to about 5 mm.
- the agitating device 120 may include a slot 122 .
- the slot 122 is configured to flow one or more streams of solution 117 therethrough and toward the downward-facing surface of the wafer 113 .
- the streamed solution 117 dislodges and directs bubbles away from the cathode module 110 .
- the flowed solution exerts a force on bubbles adhered to the downward-facing surface the wafer 113 .
- the force causes the bubbles to loosen from the downward-facing surface and escape from beneath the cathode module 110 .
- the wafer 113 may be plated without the formation of hollow metal since the bubbles 314 are removed from the downward-facing surface.
- the plating system 106 may further include a pump configured to force the electrolyte solution through the slot 122 . Accordingly, the stream generated by the pump may have an increased velocity that weakens the adhering force of the bubbles against the down-facing surface of the wafer 113 .
- the pump may be located outside of the container 104 , and may include a tube system (not shown) that conveys solution to the slot 122 .
- the pump may assist in flowing the stream of solution through the slot 122 , it is appreciated that the pump is not required.
- the rotation of the cathode module 110 may generate a shearing force that induces a partial vacuum between the wafer 113 and the agitating device 120 such that solution and gas bubbles are drawn from the vias and trenches.
- the electroplating apparatus 100 may further include a filter unit 123 that is disposed between the anode 108 and the cathode module 110 , and that extends between opposing inner walls of the container 104 .
- the filter unit 123 may include a sac filter or a membrane, and is configured to separate a solution inside the container into a plating solution including additives and a virgin made solution (VMS) excluding the additives.
- the anode 108 may be disposed in the VMS, while the cathode module 110 is disposed in the plating solution 117 .
- the additives may include brightener, suppressor, leveler, surfactant, wetting agent.
- a plating tool 106 ′ is illustrated according to another embodiment.
- the plating tool 106 ′ operates similar to the plating tool 106 described above.
- the cathode module 110 is not rotated and remains stationary.
- the agitating device 120 is disposed a short distance beneath a center region of the wafer 113 .
- the agitating device 120 is configured to reciprocate at a predetermined frequency in a lateral direction with respect to the surface of the wafer 113 .
- the agitating device 120 may reciprocate at substantially the center of the cathode module 110 .
- the agitating device 120 may reciprocate and move all the way past, i.e., beyond, the edge of the wafer 113 .
- the agitating device 120 may be reciprocated at frequency ranging from about 0.01 Hertz (Hz) to about 5 Hz, and more specifically 0.5 Hz-1.0 Hz.
- the agitating device 120 excludes a slot such that the portion near the wafer 113 is uniformly solid. The motion of the agitating device 120 induces waves in the solution 117 , which exerts a force on bubbles trapped against the downward-facing surface of the wafer 113 .
- the bubbles may be removed from the vias and trenches and forced away from beneath the wafer 113 such that they may continue rising toward the upper surface of the solution 117 .
- the agitating device 120 is coupled to an electrical motor (not shown) that is configured to reciprocate the agitating device 120 back and forth as described above.
- a plating tool 106 ′′ may include a plurality of agitating devices 120 A- 120 C, as illustrated in FIG. 3 .
- Each agitating device 120 A- 120 C may be spaced apart from one another by a predetermined distance and may reciprocate back and forth similar to the agitating device 120 described with respect to FIG. 2 .
- the reciprocal motion of the plurality of agitating devices 120 A- 120 C generates a greater shear force onto bubbles trapped beneath the wafer 113 and in the trenches and vias compared to the force generated by the single agitating device 120 illustrated in FIG. 2 .
- the increased shear force therefore, further weakens the adhesion force of bubbles against the wafer 113 , and may further prevent hollow metal from forming during the plating process.
- a plating tool 106 ′′′ is illustrated according yet another embodiment.
- the plating tool 106 ′′′ operates similar to the plating tool 106 ′ described above with respect to FIG. 2 .
- the agitating device 120 is configured to move dynamically from one end of the wafer 113 to an opposing end.
- the agitating device 120 may also move all the past, i.e., beyond, the edge of the wafer 113 . More specifically, the agitating device 120 is shown in phantom traveling beneath from a first end of the wafer 113 to an opposite end.
- the agitating device 120 can exert a shearing force across the entire downward-facing surface of the wafer 113 , thereby increasing the possibility that bubbles trapped along the entire downward-facing surface can be pulled out and forced away from the wafer 113 .
- the agitating device 120 is coupled to an electrical motor (not shown) that is configured to sweep the agitating device 120 between opposing ends of the wafer 113 .
- FIG. 5A illustrates an agitating device 500 according to a first embodiment.
- the agitating device 500 includes opposing first and second ends 510 .
- a slotted portion 502 is connected deliberately between the first and second ends 510
- the agitating device 500 may be formed from various electrically insulated materials including, but not limited to, plastic or metal coated with plastic/polymer such as, for example, TeflonTM.
- the upper and lower sections of paddle 504 , 506 may each have a triangular cross-section where the outer edges of the section extend toward the slotted portion 502 . The triangular cross-section permits minimal resistance against the solution.
- an agitating device 500 ′ is illustrated, which is similar to the agitating device 500 described above with respect to FIG. 5A .
- the agitating device 500 ′ of FIG. 5B includes one or more slots formed in the agitating device 500 ′.
- a slot 508 is formed through the upper section of the paddle 504 .
- the slot 508 permits surrounding solution 117 to stream therethrough at an increased velocity and toward the downward-facing surface of the wafer 113 .
- the streamed fluid exerts a force on bubbles adhered to the downward-facing surface and in the trenches and vias.
- the wafer 113 may be plated without the formation of hollow metal since the bubbles are removed from the downward-facing surface.
- additional slots may be formed in the agitating device 120 .
- the slot 508 is shaped such that a slot opening increases as the slot 508 extends toward the middle of the upper section 504 .
- the slot 508 may be formed to have a diamond-shape such that the slot-opening gradually increases as the slot 508 extends toward the center. Bubbles which adhere to the downward-facing surface of the wafer 113 congregate most at the center of the wafer. Forming a slot 508 having a slot opening that increases at the center of the upper section 504 permits the agitating device 500 ′ to be positioned such that maximum velocity of the stream flowing through the slot 508 is focused at the center of the downward-facing wafer 113 where the highest concentration of bubbles typically exist.
- the slot 508 may have a shape other than the described above.
- the slot 508 is shaped in such a fashion so that a substantially uniform shear force is generated between the solution and the wafer when the wafer is rotated throughout the entire 360° circle.
- the slot may 508 be shaped in such a way that the plating solution velocity is highest near the center of the wafer.
- the slot 508 may also be formed such that a force may be delivered therethrough to dislodge any bubbles on the downward facing surface.
- a plating tool 106 is provided with a buffle unit 600 which is configured to provide more uniform current distribution between the anode 108 and the cathode module 110 of the plating tool 106 .
- a resistance drop in a seed layer between an edge and a center of the wafer is compensated, e.g., reduced.
- the buffle unit 600 is interposed between the anode 108 and the lower section 506 of the agitating device 120 .
- the buffle unit 600 may be formed from any electrically insulated material including, but not limited to, plastic.
- the buffle unit 600 includes a plurality of holes that are sized to assure a higher current in the center of the wafer to compensate for the drop of current in the very thin seed layers between the edge and center of the cathode module 110 .
- a plating tool 106 ′′′′ is illustrated according to yet another embodiment.
- the plating tool 106 ′′′′ operates similar to the plating tool 106 ′ described above with respect to FIG. 2 .
- the cathode module 110 further includes one or more ultrasonic transducers 700 coupled thereto.
- the ultrasonic transducer 700 may convert electricity into sound waves/pulses at a predetermined frequency and intensity. As the wafer 113 is immersed in the solution 117 , ultrasonic transducer 700 may generate the sound waves, which vibrate the wafer 113 .
- the vibrations weaken the adhesion force of the bubbles attached to the downward facing surface of the wafer 113 , thereby dislodging bubbles such that they may be separated and removed from the wafer 113 .
- the ultrasonic transducer 700 may be combined with the reciprocating agitating device 120 and/or the high velocity solution steamed through the slot 508 to assist in further weakening the adhesion force of the bubbles.
- a process flow illustrates a process of electroplating a wafer 113 according to an embodiment of the disclosure.
- a cathode module 110 is coupled to an axis (A) via a universal joint ( 400 ).
- the cathode module 110 includes a wafer 113 , which rotates when the cathode module 110 rotates about the axis (A).
- the cathode module 110 may be rotated at a predetermined speed, for example 90 rotations per minute (RPM).
- the cathode module 110 may be tilted while continuing to rotate about the axis (A) via a universal joint 400 .
- the cathode module 110 may be moved toward a plating solution 117 .
- a constant biased potential may be applied to the wafer 113 .
- one or more ultrasonic transducers 700 can be mechanically attached at the back of the wafer by a lever 800 , which may be initiated to output pulses at a predetermined frequency that vibrate the cathode module 110 .
- the wafer 113 may be vibrated at a predetermined frequency prior to being immersed in the plating solution 117 .
- the cathode module 110 may be introduced into the plating solution 117 while tilted, vibrating and biased at the predetermined electrical potential. After the wafer 113 is immersed in the plating solution 117 , the cathode module 110 may be leveled and the ultrasonic transducers 700 may be switched off Accordingly, the cathode module 110 may continue to rotate such that the wafer 113 is rotated while being electroplated, as discussed in detail above.
- the wafer 113 may be electroplated according to an electrical current profile.
- An example of a current profile is illustrated in FIG. 9 . More specifically, FIG. 9 shows an initial increase of current due to the potentiostatic entry of a wafer into a plating solution, such as a copper bath. The potentiostatic entry of the wafer assists to protect the seed layer from corrosion by the plating solution.
- a short pulse (for example 0.01-0.5 seconds) is used to achieve optimum nucleation and liner seed repairing.
- the high current density is used for plating overburden followed by a low current density step to fill trenches and vias. Accordingly, the majority of trapped air bubbles will be removed when the wafer is still in the tilted position.
- FIG. 10 a flow diagram illustrates a method of electroplating a wafer according to an embodiment of the disclosure.
- the wafer is rotated at a predetermined speed, such as 90 RPMs.
- the wafer is tilted at a predetermined angle.
- the wafer may be tilted at an angle ranging from 0.5-5 degrees with respect to the plating solution.
- a constant potential may be applied to the wafer.
- the wafer may be biased with a constant potential that is less than the hydrogen evolution over-potential.
- the wafer may be vibrated at a predetermined frequency and intensity.
- one or more ultrasonic transducers may generate ultrasonic waves that vibrate the wafer.
- the wafer is introduced into the plating solution while the wafer is tilted, rotated, electrically biased, and vibrating. Accordingly, a potentiostatic entry, referred to as a “hot entry,” is achieved.
- the wafer may be leveled with respect to the plating solution when a predetermined amount of the wafer is immersed in the plating solution.
- the wafer continues to rotate while being electroplated until the method ends. Accordingly, the surface of the wafer may be uniformly plated, while preventing the formation of hollow metal.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Electroplating Methods And Accessories (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
Description
- The present disclosure relates to a metal plating system, and more specifically, to a metal plating system including gas bubble removal unit.
- Copper metallization is a key component for integrated circuits (ICs). As the industry demand for smaller sized ICs increases, plating-related defects in metal vias and interconnect lines are becoming more prominent. These plating defects ultimately affect the reliability of the ICs.
- One such plating defect that has increased over the years is referred to as “hollow metal.” Hollow metal describes various point defects, such as voids, porosity etc., which occur in the metal vias and connection lines of the ICs. One cause of hollow metal may be attributed to conventional plating tools used to perform the metallization electroplating applied to IC wafer surfaces. More specifically, conventional plating tools dispose the wafer surface in a metallization solution in a downward-facing position towards an opposing anode of the plating tool. The plating process forms various metal vias and/or metal connections on the downward-facing surface. While the wafer is immersed, gas bubbles, such as air, may be trapped in the trenches and via holes trapping as a result of insufficiently fast and incomplete wetting of the trenches and vias with plating solution before plating starts. Hydrogen and/or air bubbles may also be formed in the solution during plating. They may be trapped in the trenches and vias. The bubbles also rise toward the surface and may encounter the wafer. The trapped bubbles may not be removed when using the currently used rotating disc configured plating tool. However, the trapped bubble may adhere to the bottom or side wall of the trenches and vias. These bubbles may block metal ions from reaching the conduction seed layer and forming the metal conductor by properly filling the trenches and vias. Accordingly, non-plated sections beneath the bubbles may occur, which ultimately causes hollow sections in the metal lines or vias, i.e., the hollow metal.
- According to an embodiment, an electroplating apparatus includes an anode configured to electrically communicate with an electrical voltage and an electrolyte solution. A cathode module includes a cathode that is configured to electrically communicate with a ground potential and the electrolyte solution. The cathode module further includes a wafer in electrical communication with the cathode. The wafer is configured to receive metal ions from the anode in response to current flowing through the anode via electrodeposition. The electroplating apparatus further includes at least one agitating device interposed between the wafer and the anode. The agitating device is configured to apply a uniform agitation across a cathode module including a wafer surface and a shearing force to gas bubbles trapped in the trenches and vias created on a surface of the wafer facing the agitating device. In addition this agitating device will help to maintain an uniform diffusion layer over the large cathode i.e., wafer, surface which eventually enables plating having a uniform metal/alloy plating thickness. Uniform plating across the wafer surface results in uniform planarization by chemical mechanical polishing (CMP).
- According to another embodiment, an agitating device to remove bubbles adhered to a surface of a wafer undergoing an electroplating process comprises a frame having an upper portion facing a wafer and a lower portion opposing the upper portion. The upper portion has a slot formed therethrough. The slot is configured to stream an electrolyte solution toward and past the surface of the wafer at an increased velocity.
- Additional features are realized through the techniques of the various embodiments described herein. For a better understanding of the features, refer to the description and to the drawings.
- The subject matter which is regarded as the invention is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. Various forgoing and other inventive features are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
-
FIG. 1A is a block diagram illustrating an electroplating apparatus according to an exemplary embodiment of the present disclosure; -
FIG. 1B is a block diagram illustrating an IC wafer according to an embodiment of the present disclosure; -
FIG. 2 is a block diagram illustrating an electroplating apparatus according to another embodiment of the present disclosure; -
FIG. 3 is a block diagram illustrating an electroplating apparatus according to yet another embodiment of the present disclosure; -
FIG. 4 is a block diagram illustrating an electroplating apparatus according to still another embodiment of the present disclosure; -
FIGS. 5A-B illustrate examples of an agitating device according to an embodiment of the disclosure; -
FIG. 6 illustrates an example of a plating tool including a filter unit according to an embodiment of the disclosure; -
FIG. 7 is a block diagram illustrating an electroplating apparatus including an ultrasonic transducer according to another embodiment of the present disclosure; -
FIGS. 8A-8C illustrate a process flow of electroplating a wafer according to an embodiment of the disclosure; -
FIG. 9 is a line graph illustrating an current profile corresponding to applying a voltage potential to the wafer during a plating process according to an embodiment of the disclosure; and -
FIG. 10 is a flow diagram illustrating a method of electroplating a wafer according to an embodiment of the disclosure. - Referring now to
FIG. 1A , anelectroplating apparatus 100 according to an exemplary embodiment of the present disclosure is illustrated. Theelectroplating apparatus 100 includes apower supply 102, acontainer 104 and aplating tool 106. Theplating tool 106 includes ananode 108 and acathode module 110, each in electrical communication with thepower supply 102. Theanode 108 and thecathode module 110 may be formed of various shapes including, but not limited to, square and circular. - The
power supply 102 includes apositive terminal 115 and anegative terminal 116. Thepower supply 102 may include a voltage source, a current source, or a voltage source and a current source. Thepower supply 102 is configured to output an electrical voltage, a current, or a voltage and a current. Thepower supply 102 may execute a voltage scan with a predetermined scan rate. Thepower supply 102 may also supply a constant voltage. In addition, thepower supply 102 may generate a voltage output and then switched to a current output or vice versa. The voltage and current output may be a direct current (DC), a pulse or combination of different waveforms. The current may also have a value selected to achieve a desired current density. - The current may be supplied according to a constant electrical potential condition, under constant electrical current condition or combination thereof (see
FIG. 9 ). - The
container 104 may contain anelectrolyte solution 117 capable of conducting an electrical current that induces a metallization plating process. Theelectrolyte solution 117 may comprise cupric ions and/or chlorine ions and sulfate ions that render theelectrolyte solution 117 to be electrically conductive. According to at least one exemplary embodiment, theelectrolyte solution 117 includes, but is not limited, to sulfuric acid (H2SO4), copper sulfate pentahydrate, 2N hydrochloric acid, sodium sulfate, etc. An electrolyte solution of sulfuric acid may range from 2-50 grams/liter (g/L), copper sulfate pentahydrate may range from 20-300 g/L and organic additives used as accelerator, levelers, suppressors and wetting agents. A solution of 2N hydrochloric acid may range from 0-5 milliliters/liters (ml/L), and a solution of sodium sulfate may range from 80-200 g/L. It can be appreciated that other solutions of acids, bases or salts may be used as theelectrolyte solution 117. In addition, theelectrolyte solution 117 may comprise either H2SO4 or chloride (Cl), and metal ions. The electrolyte metal ions comprises, for example, copper (Cu). In another embodiment, the solution comprises an acid copper plating solution including (1) a dissolved copper salt (e.g., as copper sulfate), (2) an acidic electrolyte (e.g., as sulfuric acid) in an amount sufficient to impart conductivity to the bath and (3) additives (e.g., surfactants, brighteners, levelers and suppressants). The bath may also contain a wetting agent to increase wettability of the wafer. Various wetting agents may be used including, but not limited to, anionic agents, cationic agents, amphoteric wetting agents that ionize when mixed with water, and non-ionic wetting agents. - In response to current flowing through the
anode 108, metal ions from theanode 108 are transferred to the downward-facing surface of thewafer 113 via an electrodeposition process. As a result, copper vias and/or copper connection lines may be formed on the downward-facing surface of thewafer 113 and in the etched trenches and vias which are metalized with a very thin conducting seed layer, as discussed in greater detail below with respect toFIG. 1B . A seed layer formed on a top of the surface of the cathode and inside the vias and trenches. The seed layer may be formed from tantalum nitride, tantalum copper (Cu) or Cu alloys seed like Cu alloyed with easily oxidized metal e.g. Cu—Mn, Cu—Al, Cu—Zn, Cu—Ga and similar alloy or other suitable conducting seed layer. Although copper is referenced as an example when describing the various embodiments, the plating process described herein may be utilized with other metals including, but not limited to, gold (Au), silver (Ag), nickel (Ni), iron (Fe), palladium (Pd), and alloys plating thereof. - The
plating tool 106 is in electrical communication with thepower supply 102 and is in fluid communication with theelectrolyte solution 117. In at least one embodiment illustrated inFIG. 1A , theanode 108 may be connected to an inner surface of thecontainer 104 and immersed in theelectrolyte solution 117. An electricallyconductive wire 118 has one end connected to theanode 108 and an opposing end connected to thepositive terminal 115 of thepower supply 102. Theanode 108 may be formed of any metal configured to transfer metal ions to the downward-facing surface of thewafer 113 via electrodeposition. In at least one exemplary embodiment, theanode 108 is formed of copper (Cu). - The
cathode module 110 includes acathode 111 coupled to a supportingplate 112. Various means may be used to connect thecathode 111 to the supportingplate 112 including, but not limited to, mechanical pins, fasteners, and a non-soluble conductive adhesive. Further, thecathode 111 may be connected to the supportingplate 112 using auniversal joint 400. Theuniversal joint 400 allows thecathode module 110 to move in a plurality of directions with respect to the axis (A). For example, thecathode module 110 may rotate about the axis, while still capable of tilting left, right or moving up and down. - The supporting
plate 112 may be configured to rotate about an axis (A) extending perpendicular tocathode module 110. Hence, thecathode 111 may be rotated when theplate 112 rotates. Thecathode module 110 further includes an interconnect (IC)wafer 113 connected in electrical communication to thecathode 111. A conductivealloy seed layer 114 may be formed on the IC wafer. Accordingly, theIC wafer 113 may rotate along with the supportingplate 112 and thecathode 111. In at least one embodiment, the supportingplate 112 may be selectively rotated. Thecathode module 110, including thewafer 113, may be formed in various shapes including, but not limited to square, circular and other. - Referring now to
FIG. 1B , anIC wafer 300 is illustrated according to an embodiment. TheIC wafer 300 may be formed from a semiconductor material, such as silicon. TheIC wafer 300 includes abase layer 302 and adielectric layer 304. Thebase layer 302 anddielectric layer 304 may be insulated from one another by an insulatinglayer 306 interposed therebetween. One ormore trenches 308 and/orvias 309 may be formed in thedielectric layer 304. In at least one embodiment, thevias 309 may extend through the insulatinglayer 306 and into thebase layer 302. Thetrenches 308 and/orvias 309 may be lined with aliner 310. Theliner 310 may be formed from tantalum (Ta) or tantalum nitride (TaN). A copper (Cu)seed layer 312 may be formed on top of theliner 310. Accordingly, one or more air and/or hydrogen bubbles 314 may become trapped against the lower surface of thewafer 300, in atrench 308, and/or inside a via 309. - Referring again to
FIG. 1A , thecathode 111 is in electrical communication with thenegative terminal 116 of thepower supply 102 via a second electricallyconductive wire 119. An electrochemical circuit may be achieved when theanode 108 and thecathode 111 are introduced to theelectrolyte solution 117 as described above. Accordingly, the electrical current output from thepower supply 102 travels through theelectrolyte solution 117 and to theanode 108, which induces an electrochemical metallization plating process such that metal ions from theanode 108 are transferred to the downward-facing surface of thewafer 113 via electrodeposition. As a result, metal vias and/or metal connection lines are formed on the downward-facing surface thewafer 113. - The
plating tool 106 further includes at least one agitatingdevice 120 configured to prevent air, hydrogen and/or other gas bubbles from becoming trapped inside the trenches and vias located beneath thecathode module 110 and adhering to the downward-facing surface of thewafer 113. The agitatingdevice 120 may include a static agitating device that remains fixed or a dynamic agitating device that moves. When thewafer 113 is static, the dynamic agitating device will remove one or more bubbles from thewafer 113. When thewafer 113 is dynamic, a static agitation device will also maintain a constant well defined diffusion layer across the plating surface of thewafer 113. - Referring to at least one embodiment illustrated in
FIG. 1A , for example, the agitatingdevice 120 is fixated within thesolution 117 and is disposed a predetermined distance below thewafer 113. The distance between the agitatingdevice 120 and thewafer 113 may range from about 1 millimeter (mm) to about 5 mm. In at least one embodiment, the agitatingdevice 120 may include aslot 122. Theslot 122 is configured to flow one or more streams ofsolution 117 therethrough and toward the downward-facing surface of thewafer 113. The streamedsolution 117 dislodges and directs bubbles away from thecathode module 110. Further, the flowed solution exerts a force on bubbles adhered to the downward-facing surface thewafer 113. The force causes the bubbles to loosen from the downward-facing surface and escape from beneath thecathode module 110. Accordingly, thewafer 113 may be plated without the formation of hollow metal since thebubbles 314 are removed from the downward-facing surface. - The
plating system 106 may further include a pump configured to force the electrolyte solution through theslot 122. Accordingly, the stream generated by the pump may have an increased velocity that weakens the adhering force of the bubbles against the down-facing surface of thewafer 113. However, it is appreciated that the pump may be located outside of thecontainer 104, and may include a tube system (not shown) that conveys solution to theslot 122. Although the pump may assist in flowing the stream of solution through theslot 122, it is appreciated that the pump is not required. For example, the rotation of thecathode module 110 may generate a shearing force that induces a partial vacuum between thewafer 113 and the agitatingdevice 120 such that solution and gas bubbles are drawn from the vias and trenches. - The
electroplating apparatus 100 may further include afilter unit 123 that is disposed between theanode 108 and thecathode module 110, and that extends between opposing inner walls of thecontainer 104. Thefilter unit 123 may include a sac filter or a membrane, and is configured to separate a solution inside the container into a plating solution including additives and a virgin made solution (VMS) excluding the additives. Theanode 108 may be disposed in the VMS, while thecathode module 110 is disposed in theplating solution 117. The additives may include brightener, suppressor, leveler, surfactant, wetting agent. - Referring to
FIG. 2 , aplating tool 106′ is illustrated according to another embodiment. Theplating tool 106′ operates similar to theplating tool 106 described above. In this embodiment, however, thecathode module 110 is not rotated and remains stationary. Further, the agitatingdevice 120 is disposed a short distance beneath a center region of thewafer 113. The agitatingdevice 120 is configured to reciprocate at a predetermined frequency in a lateral direction with respect to the surface of thewafer 113. In at least one embodiment, the agitatingdevice 120 may reciprocate at substantially the center of thecathode module 110. According to another the embodiment, the agitatingdevice 120 may reciprocate and move all the way past, i.e., beyond, the edge of thewafer 113. The agitatingdevice 120 may be reciprocated at frequency ranging from about 0.01 Hertz (Hz) to about 5 Hz, and more specifically 0.5 Hz-1.0 Hz. In the embodiment ofFIG. 2 , the agitatingdevice 120 excludes a slot such that the portion near thewafer 113 is uniformly solid. The motion of the agitatingdevice 120 induces waves in thesolution 117, which exerts a force on bubbles trapped against the downward-facing surface of thewafer 113. As a result, the bubbles may be removed from the vias and trenches and forced away from beneath thewafer 113 such that they may continue rising toward the upper surface of thesolution 117. In at least one embodiment, the agitatingdevice 120 is coupled to an electrical motor (not shown) that is configured to reciprocate the agitatingdevice 120 back and forth as described above. - In another embodiment, a
plating tool 106″ may include a plurality of agitatingdevices 120A-120C, as illustrated inFIG. 3 . Each agitatingdevice 120A-120C may be spaced apart from one another by a predetermined distance and may reciprocate back and forth similar to the agitatingdevice 120 described with respect toFIG. 2 . However, the reciprocal motion of the plurality of agitatingdevices 120A-120C generates a greater shear force onto bubbles trapped beneath thewafer 113 and in the trenches and vias compared to the force generated by the single agitatingdevice 120 illustrated inFIG. 2 . The increased shear force, therefore, further weakens the adhesion force of bubbles against thewafer 113, and may further prevent hollow metal from forming during the plating process. - Referring to
FIG. 4 , aplating tool 106′″ is illustrated according yet another embodiment. Theplating tool 106′″ operates similar to theplating tool 106′ described above with respect toFIG. 2 . In this embodiment, however, the agitatingdevice 120 is configured to move dynamically from one end of thewafer 113 to an opposing end. The agitatingdevice 120 may also move all the past, i.e., beyond, the edge of thewafer 113. More specifically, the agitatingdevice 120 is shown in phantom traveling beneath from a first end of thewafer 113 to an opposite end. As a result, the agitatingdevice 120 can exert a shearing force across the entire downward-facing surface of thewafer 113, thereby increasing the possibility that bubbles trapped along the entire downward-facing surface can be pulled out and forced away from thewafer 113. In at least one embodiment, the agitatingdevice 120 is coupled to an electrical motor (not shown) that is configured to sweep the agitatingdevice 120 between opposing ends of thewafer 113. - Turning now to
FIGS. 5A-5B , various agitating devices to prevent adherence of air and/or hydrogen bubbles to a wafer, e.g., inside one or more trenches and/or vias, during a plating process are illustrated.FIG. 5A illustrates an agitatingdevice 500 according to a first embodiment. The agitatingdevice 500 includes opposing first and second ends 510. A slottedportion 502 is connected deliberately between the first and second ends 510 The agitatingdevice 500 may be formed from various electrically insulated materials including, but not limited to, plastic or metal coated with plastic/polymer such as, for example, Teflon™. The upper and lower sections of 504, 506 may each have a triangular cross-section where the outer edges of the section extend toward the slottedpaddle portion 502. The triangular cross-section permits minimal resistance against the solution. - Referring to
FIG. 5B , an agitatingdevice 500′ is illustrated, which is similar to the agitatingdevice 500 described above with respect toFIG. 5A . The agitatingdevice 500′ ofFIG. 5B , however, includes one or more slots formed in the agitatingdevice 500′. According to the embodiment illustrated inFIG. 5B , aslot 508 is formed through the upper section of thepaddle 504. When utilized with theplating tool 106, theslot 508permits surrounding solution 117 to stream therethrough at an increased velocity and toward the downward-facing surface of thewafer 113. As discussed above, the streamed fluid exerts a force on bubbles adhered to the downward-facing surface and in the trenches and vias. The force from the stream causes the bubbles to dislodge and to break away from the downward-facing surface and escape from beneath thewafer 113. Accordingly, thewafer 113 may be plated without the formation of hollow metal since the bubbles are removed from the downward-facing surface. Although not illustrated, additional slots may be formed in the agitatingdevice 120. - In at least one embodiment, the
slot 508 is shaped such that a slot opening increases as theslot 508 extends toward the middle of theupper section 504. Theslot 508, for example, may be formed to have a diamond-shape such that the slot-opening gradually increases as theslot 508 extends toward the center. Bubbles which adhere to the downward-facing surface of thewafer 113 congregate most at the center of the wafer. Forming aslot 508 having a slot opening that increases at the center of theupper section 504 permits the agitatingdevice 500′ to be positioned such that maximum velocity of the stream flowing through theslot 508 is focused at the center of the downward-facingwafer 113 where the highest concentration of bubbles typically exist. It is appreciated that theslot 508 may have a shape other than the described above. Theslot 508 is shaped in such a fashion so that a substantially uniform shear force is generated between the solution and the wafer when the wafer is rotated throughout the entire 360° circle. For example, the slot may 508 be shaped in such a way that the plating solution velocity is highest near the center of the wafer. Theslot 508 may also be formed such that a force may be delivered therethrough to dislodge any bubbles on the downward facing surface. - Referring now to
FIG. 6 , aplating tool 106 is provided with abuffle unit 600 which is configured to provide more uniform current distribution between theanode 108 and thecathode module 110 of theplating tool 106. As a result of the increase in uniform current distribution, a resistance drop in a seed layer between an edge and a center of the wafer is compensated, e.g., reduced. More specifically, thebuffle unit 600 is interposed between theanode 108 and thelower section 506 of the agitatingdevice 120. Thebuffle unit 600 may be formed from any electrically insulated material including, but not limited to, plastic. Thebuffle unit 600 includes a plurality of holes that are sized to assure a higher current in the center of the wafer to compensate for the drop of current in the very thin seed layers between the edge and center of thecathode module 110. - Turning to
FIG. 7 , aplating tool 106″″ is illustrated according to yet another embodiment. Theplating tool 106″″ operates similar to theplating tool 106′ described above with respect toFIG. 2 . However, thecathode module 110 further includes one or moreultrasonic transducers 700 coupled thereto. Theultrasonic transducer 700 may convert electricity into sound waves/pulses at a predetermined frequency and intensity. As thewafer 113 is immersed in thesolution 117,ultrasonic transducer 700 may generate the sound waves, which vibrate thewafer 113. The vibrations weaken the adhesion force of the bubbles attached to the downward facing surface of thewafer 113, thereby dislodging bubbles such that they may be separated and removed from thewafer 113. Theultrasonic transducer 700 may be combined with the reciprocating agitatingdevice 120 and/or the high velocity solution steamed through theslot 508 to assist in further weakening the adhesion force of the bubbles. - Referring now to
FIGS. 8A-8C , a process flow illustrates a process of electroplating awafer 113 according to an embodiment of the disclosure. As illustrated inFIG. 8A , acathode module 110 is coupled to an axis (A) via a universal joint (400). Thecathode module 110 includes awafer 113, which rotates when thecathode module 110 rotates about the axis (A). Thecathode module 110 may be rotated at a predetermined speed, for example 90 rotations per minute (RPM). - Turning to
FIG. 8B , thecathode module 110 may be tilted while continuing to rotate about the axis (A) via auniversal joint 400. As thecathode module 110 is titled, thecathode module 110 may be moved toward aplating solution 117. Prior to contacting thecathode module 110 with theplating solution 117, a constant biased potential may be applied to thewafer 113. In addition, one or moreultrasonic transducers 700 can be mechanically attached at the back of the wafer by alever 800, which may be initiated to output pulses at a predetermined frequency that vibrate thecathode module 110. Accordingly, thewafer 113 may be vibrated at a predetermined frequency prior to being immersed in theplating solution 117. - Referring to
FIG. 8C , thecathode module 110 may be introduced into theplating solution 117 while tilted, vibrating and biased at the predetermined electrical potential. After thewafer 113 is immersed in theplating solution 117, thecathode module 110 may be leveled and theultrasonic transducers 700 may be switched off Accordingly, thecathode module 110 may continue to rotate such that thewafer 113 is rotated while being electroplated, as discussed in detail above. - The
wafer 113 may be electroplated according to an electrical current profile. An example of a current profile is illustrated inFIG. 9 . More specifically,FIG. 9 shows an initial increase of current due to the potentiostatic entry of a wafer into a plating solution, such as a copper bath. The potentiostatic entry of the wafer assists to protect the seed layer from corrosion by the plating solution. At the end of potentiostatic entry, a short pulse (for example 0.01-0.5 seconds) is used to achieve optimum nucleation and liner seed repairing. The high current density is used for plating overburden followed by a low current density step to fill trenches and vias. Accordingly, the majority of trapped air bubbles will be removed when the wafer is still in the tilted position. - Turning now to
FIG. 10 , a flow diagram illustrates a method of electroplating a wafer according to an embodiment of the disclosure. Atoperation 1000, the wafer is rotated at a predetermined speed, such as 90 RPMs. Atoperation 1002, the wafer is tilted at a predetermined angle. For example, the wafer may be tilted at an angle ranging from 0.5-5 degrees with respect to the plating solution. Atoperation 1004, a constant potential may be applied to the wafer. For example, the wafer may be biased with a constant potential that is less than the hydrogen evolution over-potential. At,operation 1006, the wafer may be vibrated at a predetermined frequency and intensity. For example, one or more ultrasonic transducers may generate ultrasonic waves that vibrate the wafer. Atoperation 1008, the wafer is introduced into the plating solution while the wafer is tilted, rotated, electrically biased, and vibrating. Accordingly, a potentiostatic entry, referred to as a “hot entry,” is achieved. Atoperation 1010, the wafer may be leveled with respect to the plating solution when a predetermined amount of the wafer is immersed in the plating solution. Atoperation 1012, the wafer continues to rotate while being electroplated until the method ends. Accordingly, the surface of the wafer may be uniformly plated, while preventing the formation of hollow metal. - The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, element components, and/or groups thereof.
- The flow diagrams depicted herein are just one example. There may be many variations to this diagram or the operations described therein without departing from the scope of the claims. For instance, the operations may be performed in a differing order or steps may be added, deleted or modified. All of these variations are considered a part of the scope of the claimed features.
- While various embodiments have been described, it will be understood that those skilled in the art, both now and in the future, may make modifications to the embodiments which fall within the scope of the following claims. These claims should be construed to maintain the proper protection for the invention.
Claims (20)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/800,201 US20140262803A1 (en) | 2013-03-13 | 2013-03-13 | Metal plating system including gas bubble removal unit |
| US14/928,088 US20160047058A1 (en) | 2013-03-13 | 2015-10-30 | Metal plating system including gas bubble removal unit |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/800,201 US20140262803A1 (en) | 2013-03-13 | 2013-03-13 | Metal plating system including gas bubble removal unit |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/928,088 Division US20160047058A1 (en) | 2013-03-13 | 2015-10-30 | Metal plating system including gas bubble removal unit |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20140262803A1 true US20140262803A1 (en) | 2014-09-18 |
Family
ID=51522618
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/800,201 Abandoned US20140262803A1 (en) | 2013-03-13 | 2013-03-13 | Metal plating system including gas bubble removal unit |
| US14/928,088 Abandoned US20160047058A1 (en) | 2013-03-13 | 2015-10-30 | Metal plating system including gas bubble removal unit |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/928,088 Abandoned US20160047058A1 (en) | 2013-03-13 | 2015-10-30 | Metal plating system including gas bubble removal unit |
Country Status (1)
| Country | Link |
|---|---|
| US (2) | US20140262803A1 (en) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20160340792A1 (en) * | 2012-09-17 | 2016-11-24 | National Institute Of Standards And Technology | Process for making an iridium layer |
| JP2018127649A (en) * | 2017-02-06 | 2018-08-16 | 株式会社荏原製作所 | Paddle, plating apparatus provided with the paddle, and plating method |
| TWI658170B (en) * | 2015-02-17 | 2019-05-01 | Acm Research (Shanghai) Inc. | Device and method for uniform metallization on substrate |
| CN110552048A (en) * | 2019-09-30 | 2019-12-10 | 上海华力集成电路制造有限公司 | Electroplating cavity and ECP (electron cyclotron resonance) equipment comprising same |
| US11322400B2 (en) * | 2019-06-21 | 2022-05-03 | Infineon Technologies Ag | Roughening of a metallization layer on a semiconductor wafer |
| US11579344B2 (en) | 2012-09-17 | 2023-02-14 | Government Of The United States Of America, As Represented By The Secretary Of Commerce | Metallic grating |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11959186B2 (en) | 2020-11-26 | 2024-04-16 | Changxin Memory Technologies, Inc. | Electroplating method and electroplating apparatus |
| CN114540929B (en) * | 2020-11-26 | 2023-09-08 | 长鑫存储技术有限公司 | Electroplating method and electroplating device |
| US20250019858A1 (en) | 2023-07-10 | 2025-01-16 | Rockwell Collins, Inc. | Rotating plating fixture |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5653860A (en) * | 1996-05-02 | 1997-08-05 | Mitsubishi Semiconductor America, Inc. | System for ultrasonic removal of air bubbles from the surface of an electroplated article |
| US6106687A (en) * | 1998-04-28 | 2000-08-22 | International Business Machines Corporation | Process and diffusion baffle to modulate the cross sectional distribution of flow rate and deposition rate |
| US6140234A (en) * | 1998-01-20 | 2000-10-31 | International Business Machines Corporation | Method to selectively fill recesses with conductive metal |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6379511B1 (en) * | 1999-09-23 | 2002-04-30 | International Business Machines Corporation | Paddle design for plating bath |
| WO2002047139A2 (en) * | 2000-12-04 | 2002-06-13 | Ebara Corporation | Methode of forming a copper film on a substrate |
-
2013
- 2013-03-13 US US13/800,201 patent/US20140262803A1/en not_active Abandoned
-
2015
- 2015-10-30 US US14/928,088 patent/US20160047058A1/en not_active Abandoned
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5653860A (en) * | 1996-05-02 | 1997-08-05 | Mitsubishi Semiconductor America, Inc. | System for ultrasonic removal of air bubbles from the surface of an electroplated article |
| US6140234A (en) * | 1998-01-20 | 2000-10-31 | International Business Machines Corporation | Method to selectively fill recesses with conductive metal |
| US6106687A (en) * | 1998-04-28 | 2000-08-22 | International Business Machines Corporation | Process and diffusion baffle to modulate the cross sectional distribution of flow rate and deposition rate |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20160340792A1 (en) * | 2012-09-17 | 2016-11-24 | National Institute Of Standards And Technology | Process for making an iridium layer |
| US11579344B2 (en) | 2012-09-17 | 2023-02-14 | Government Of The United States Of America, As Represented By The Secretary Of Commerce | Metallic grating |
| US11733439B2 (en) | 2012-09-17 | 2023-08-22 | Government Of The United States Of America. As Represented By The Secretary Of Commerce | Process for making a metallic grating |
| TWI658170B (en) * | 2015-02-17 | 2019-05-01 | Acm Research (Shanghai) Inc. | Device and method for uniform metallization on substrate |
| JP2018127649A (en) * | 2017-02-06 | 2018-08-16 | 株式会社荏原製作所 | Paddle, plating apparatus provided with the paddle, and plating method |
| US11322400B2 (en) * | 2019-06-21 | 2022-05-03 | Infineon Technologies Ag | Roughening of a metallization layer on a semiconductor wafer |
| CN110552048A (en) * | 2019-09-30 | 2019-12-10 | 上海华力集成电路制造有限公司 | Electroplating cavity and ECP (electron cyclotron resonance) equipment comprising same |
Also Published As
| Publication number | Publication date |
|---|---|
| US20160047058A1 (en) | 2016-02-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20160047058A1 (en) | Metal plating system including gas bubble removal unit | |
| US10092933B2 (en) | Methods and apparatuses for cleaning electroplating substrate holders | |
| JP5981534B2 (en) | Substrate plating jig and plating apparatus using the same | |
| KR101783786B1 (en) | Methods and apparatus for uniformly metallization on substrates | |
| US20020074230A1 (en) | Plating method and apparatus that creates a differential between additive disposed on a top surface and a cavity surface of a workpiece using an external influence | |
| US20050001325A1 (en) | Selective capping of copper wiring | |
| JP2002121699A (en) | Electroplating method using combination of vibrating flow and impulsive plating current of plating bath | |
| JP2005133160A (en) | Substrate processing apparatus and method | |
| US20020020628A1 (en) | Plating method and apparatus that creates a differential between additive disposed on a top surface and a cavity surface of a workpiece using an indirect external influence | |
| JP2003124214A (en) | Wiring forming method and apparatus | |
| US20070170066A1 (en) | Method for planarization during plating | |
| TW201139754A (en) | Method of processing substrate and substrate processor | |
| JP2014029028A (en) | Plating method | |
| US20100200417A1 (en) | Method and Apparatus for Electrodeposition in Metal Acoustic Resonators | |
| US20060081477A1 (en) | Method and apparatus for establishing additive differential on surfaces for preferential plating | |
| JP2010255028A (en) | Plating method and plating apparatus | |
| JP2002337025A (en) | Polishing liquid and polishing method | |
| US20040118699A1 (en) | Homogeneous copper-palladium alloy plating for enhancement of electro-migration resistance in interconnects | |
| TWI532083B (en) | Method and apparatus for deep hole uniform metal interconnection on semiconductor cymbal | |
| JP2013168679A (en) | Conductive material structure formation method | |
| JP2003129273A (en) | Electroplating method | |
| TW520407B (en) | Plating method and apparatus that creates a differential between additive disposed on a top surface and a cavity surface of a workpiece using an external influence | |
| CN103114319B (en) | The method and apparatus of deep hole homogeneous metal interconnection on semi-conductor silicon chip | |
| JP6372329B2 (en) | Manufacturing method of semiconductor device | |
| TW202446999A (en) | Semiconductor electrochemical plating tool |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: INTERNATIONAL BUSINESS MACHINES CORPORATION, NEW Y Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:AHMED, SHAFAAT;CHUDZIK, MICHAEL P.;ROMANKIW, LUBOMYR T;SIGNING DATES FROM 20130225 TO 20130307;REEL/FRAME:030041/0377 |
|
| AS | Assignment |
Owner name: GLOBALFOUNDRIES U.S. 2 LLC, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INTERNATIONAL BUSINESS MACHINES CORPORATION;REEL/FRAME:036550/0001 Effective date: 20150629 |
|
| AS | Assignment |
Owner name: GLOBALFOUNDRIES INC., CAYMAN ISLANDS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GLOBALFOUNDRIES U.S. 2 LLC;GLOBALFOUNDRIES U.S. INC.;REEL/FRAME:036779/0001 Effective date: 20150910 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
| AS | Assignment |
Owner name: GLOBALFOUNDRIES U.S. INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:056987/0001 Effective date: 20201117 |