US20140234159A1 - HIGH THERMAL CONDUCTIVITY Al-Si-Fe-Zn ALLOY FOR DIE CASTING - Google Patents

HIGH THERMAL CONDUCTIVITY Al-Si-Fe-Zn ALLOY FOR DIE CASTING Download PDF

Info

Publication number
US20140234159A1
US20140234159A1 US14/350,080 US201214350080A US2014234159A1 US 20140234159 A1 US20140234159 A1 US 20140234159A1 US 201214350080 A US201214350080 A US 201214350080A US 2014234159 A1 US2014234159 A1 US 2014234159A1
Authority
US
United States
Prior art keywords
weight
thermal conductivity
alloy
die casting
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/350,080
Inventor
Ki Tae Kim
Je Sik Shin
Se Hyun Ko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea Institute of Industrial Technology KITECH
Original Assignee
Korea Institute of Industrial Technology KITECH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea Institute of Industrial Technology KITECH filed Critical Korea Institute of Industrial Technology KITECH
Assigned to KOREA INSTITUTE OF INDUSTRIAL TECHNOLOGY reassignment KOREA INSTITUTE OF INDUSTRIAL TECHNOLOGY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KIM, KI TAE, KO, SE HYUN, SHIN, JE SIK
Publication of US20140234159A1 publication Critical patent/US20140234159A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent

Definitions

  • the present invention relates to a high thermal conductivity aluminum alloy for die casting, and more particularly, to an aluminum alloy having excellent thermal conductivity as well as excellent castability.
  • Die-casting is also referred to as a metal casting process.
  • the die casting is a precision casting method in which molten metal is injected into a steel mold cavity which is precisely machined so as to be completely matched with a required casting shape, thereby obtaining a casting having the same shape as the mold cavity.
  • metals used in die casting are generally alloys of zinc, aluminum, tin, copper, magnesium, and the like, and after melted to molten metals, these alloys are injected into a mold cavity by a pressing apparatus, such as an air pressure device, a hydraulic pressure device and an oil pressure device, etc., to be quenched and then solidified.
  • a pressing apparatus such as an air pressure device, a hydraulic pressure device and an oil pressure device, etc.
  • the die castings manufactured through these processes are used in a variety of fields, and specially, employed in vehicle components, and also widely used in manufacturing of components, such as components of electronic instruments, optical instruments, vehicles, weaving machines, construction equipments and measuring instruments.
  • Al—Si based alloys and Al—Mg based alloys with excellent castability are mainly used as aluminum alloys for die casting. Since Al—Si based alloys or Al—Mg based alloys have excellent castability, but a low thermal conductivity of 90-140 W/mK, the use thereof in heat dissipation components for electric devices, electronic devices, and vehicles requiring a high thermal conductivity of 160 W/mK or more is limited.
  • the present invention is devised to solve the above-described problems of existing arts, and an object of the present invention provides an aluminum alloy for die casting, which has a higher strength than pure aluminum together with excellent castability, and a thermal conductivity of 160 W/mK or more so as to be capable of being applied to a variety of structural components requiring excellent thermal conductivity.
  • the present invention provides an aluminum alloy for die casting including 1.0 weight % to 2.0 weight % of silicon (Si), 0.5 weight % to 1.6 weight % of iron (Fe), 0.6 weight % to 1.6 weight % of zinc (Zn), with the remainder being aluminum (Al) and inevitable impurities.
  • a thermal conductivity may be 160 W/mK or more, and preferably 170 W/mK or more.
  • a difference ( ⁇ T) between the solidus temperature and the liquidus temperature in a two-phase Mushy zone is 70° C. or less.
  • a tensile strength may be 110 MPa or more, and preferably 120 MPa or more.
  • the aluminum alloy may include Fe compounds dispersed in the microstructure thereof.
  • An aluminum alloy according to the present invention may secure castability required for obtaining healthy castings in a die casting process, and also have a good mechanical strength and an excellent thermal conductivity through controlling components of silicon (Si), iron (Fe) and zinc (Zn), so that the aluminum alloy may be suitably used in manufacturing of heat dissipation components for electrical devices, electronic devices and vehicles requiring a high thermal conductivity of 160 W/mK or more.
  • FIG. 1 is a photograph of a flow length measurement device for evaluating castability of an aluminum alloy according to the present invention.
  • An aluminum alloy according to the present invention is a high thermal conductivity aluminum alloy for die casting obtained by alloying Silicon (Si), iron (Fe) and zinc (Zn), and includes 1.0 weight % to 2.0 weight % of silicon (Si), 0.5 weight % to 1.6 weight % of iron (Fe), 0.6 weight % to 1.6 weight % of zinc (Zn), with the remainder being aluminum (Al) and inevitable impurities.
  • the aluminum alloy for die casting according to the present invention may represent a thermal conductivity of 160 W/mK or more as well as excellent castability and good mechanical properties.
  • Silicon (Si) is an element which may be added in aluminum as an alloy element to improve castability and improve a tensile strength according to the effects of solid solution strengthening.
  • 1.0 weight % to 2.0 weight % of silicon is added in the aluminum alloy for die casting according to the present invention. This is because if the content of silicon is less than 0.5 weight %, the castability is lowered, so that a non-molded part partly occurs to considerably damage healthiness of products when products are molded by die casting, and if the content of silicon exceeds 0.9 weight %, a thermal conductivity is lowered, so that a thermal conductivity of 160 W/mK or more targeted by the present invention may not be obtained.
  • iron has a very low solubility of 0.052 weight % in aluminum at room temperature, and after casting, is mostly crystallized as intermetallic compounds, such as Al 3 Fe, and the like, iron is an element which may be added in aluminum to minimize the degradation of thermal conductivity of aluminum, improve the strength of aluminum, and reduce die soldering when aluminum alloy products are molded by die-casting. 0.5 weight % to 1.6 weight % of iron is added in the aluminum alloy for die casting according to the present invention.
  • Zinc (Zn) is an element which may be added in aluminum as an alloy element to improve the castability and a tensile strength according to the effects of solid solution strengthening.
  • 0.6 weight % to 1.6 weight % of zinc is added in the aluminum alloy for die casting according to the present invention. This is because if the content of magnesium is less than 0.6 weight %, the castability of the alloy is lowered, so that a non-molded part partially occurs when products are molded by die casting, and if the content of magnesium exceeds 1.6 weight %, a thermal conductivity of the alloy is lowered, so that a thermal conductivity of 160 W/mK or more targeted by the present invention may not be obtained. More preferable content of zinc (Zn) is from 0.8 weight % to 1.2 weight %.
  • the inventors of the present invention manufactured specimens of alloys having compositions shown in Table 1 below in order to manufacture a high conductivity Al—Si—Fe—Zn alloy for die casting by using a melt stirring method which is typically used in die casting.
  • raw materials of aluminum alloy were prepared so as to have compositions shown in Table 1, the raw materials were charged into an electric resistance melting furnace and melted to form molten metals in atmosphere, and then flow test specimens for evaluating castability were manufactured by using a flow length measurement device as shown in FIG. 1 and also specimens for evaluating properties used for measurement of a thermal conductivity, the liquidus temperature, and the solidus temperature, and the like were manufactured.
  • the electrical conductivity of manufactured specimens was measured by using a electrical conductivity meter at room temperature, and then the thermal conductivity was obtained by the conversion formula of [formula 1].
  • the molten alloy was injected into a mold cavity maintained at a temperature of 200° C. and having a width of 12 mm, a thickness of 5 mm and a maximum length of 780 mm as shown in FIG. 1 , and a flow length was measured through a method of measuring a solidified length, and also the size ( ⁇ T) of a two-phase Mushy zone was measured through a method of measuring a difference between the liquidus temperature and the solidus temperature by using a thermal analyzer.
  • Table 2 shows results in which the flow length, the thermal conductivity, the liquidus temperature, the solidus temperature, and the difference there between ( ) ⁇ between the liquidus temperature and the solidus temperature were evaluated.
  • all of aluminum alloys according to exemplary embodiments 1 to 5 of the present invention have a thermal conductivity of 160 W/mK or more (furthermore, 170 W/mK or more), which is a level or more required in heat dissipation devices. It may be understood that the thermal conductivities of the alloys of Example 1 having a low silicon content in a range in which the castability is not deteriorated, Example 2 having a relatively high iron (Fe) content, and Examples 4 and 5 among these alloys are very high, that is, are all 170 W/mK or more.
  • the flow length and the difference ( ⁇ T) between the liquidus temperature and the solidus temperature shown in Table 2 are primary indices capable of evaluating the castability of alloys, in which as the more the flow length, the more the fluidity of the alloy is excellent and the less the difference ⁇ T, the more the castability is excellent.
  • the difference ( ⁇ T) between the liquidus temperature and the solidus temperature in the aluminum alloys according to Examples 1 to 5 of the present invention is less than 70° C., and is lower than 74° C. that is the difference ( ⁇ T) of Comparative example 1 that is an Al—Si alloy (ADC 12) widely used as an aluminum alloy for die casting.
  • the alloys according to Examples 1 to 5 of the present invention in two indices that represent the castability, that is, the flow length and ⁇ T, have equal to or more excellent level than that of Comparative example 1 widely used as an aluminum alloy for die casting, the alloys may be treated to have the castability required in die casting.
  • Comparative example 2 is an Al—Si—Fe—Zn alloy having a silicon content of 0.56 weight %, which is lower than those of Examples of the present invention, and as a result, the flow length of 720 mm, which is lower than those of the alloys according to Examples of the present invention, and thus the castability is low.
  • Comparative example 3 is an Al—Si—Fe—Zn alloy having a silicon content of 4.5 weight %, which is remarkably higher than those of Examples of the present, and as a result, the thermal conductivity is 142 W/mK, and thus it is hard to satisfy the level required in the dissipation products.
  • Comparative example 4 is an Al—Si—Fe—Zn alloy having an iron (Fe) content of 1.83 weight %, which is higher than those of Examples of the present invention, and as a result, the flow length of 560 mm, and thus the castability is remarkably lower than those of the alloys according to Examples of the present invention.
  • Comparative example 5 is an Al—Si—Fe—Zn alloy having a zinc (Zn) content of 0.46 weight %, which is lower than those of Examples of the present invention, is added, and as a result, the flow length of 720 mm, and thus the castability is remarkably lower than those of the alloys according to Examples of the present invention.
  • Comparative example 6 is an Al—Si—Fe—Zn alloy having a zinc (Zn) content of 1.45 weight %, which is higher than those of Examples of the present invention, and as a result, the castability is a level comparable to those of Examples of the present, but the thermal conductivity is 155 W/mK, which is lower than that required in the dissipation products.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

Disclosed is high thermal conductivity Al—Si—Fe—Zn alloy for die casting which comprises 1.0 weight % to 2.0 weight % of silicon (Si), 0.5 weight % to 1.6 weight % of iron (Fe), 0.6 weight % to 1.6 weight % of zinc (Zn), with the remainder being aluminum (Al) and inevitable impurities.

Description

    TECHNICAL FIELD
  • The present invention relates to a high thermal conductivity aluminum alloy for die casting, and more particularly, to an aluminum alloy having excellent thermal conductivity as well as excellent castability.
  • BACKGROUND ART
  • Die-casting is also referred to as a metal casting process. The die casting is a precision casting method in which molten metal is injected into a steel mold cavity which is precisely machined so as to be completely matched with a required casting shape, thereby obtaining a casting having the same shape as the mold cavity.
  • Since the die castings have accurate dimensions, they have advantages, such as excellent mechanical properties, possibility of mass production as well as little or no finishing operations. Meanwhile, metals used in die casting are generally alloys of zinc, aluminum, tin, copper, magnesium, and the like, and after melted to molten metals, these alloys are injected into a mold cavity by a pressing apparatus, such as an air pressure device, a hydraulic pressure device and an oil pressure device, etc., to be quenched and then solidified.
  • The die castings manufactured through these processes are used in a variety of fields, and specially, employed in vehicle components, and also widely used in manufacturing of components, such as components of electronic instruments, optical instruments, vehicles, weaving machines, construction equipments and measuring instruments.
  • Meanwhile, Al—Si based alloys and Al—Mg based alloys with excellent castability are mainly used as aluminum alloys for die casting. Since Al—Si based alloys or Al—Mg based alloys have excellent castability, but a low thermal conductivity of 90-140 W/mK, the use thereof in heat dissipation components for electric devices, electronic devices, and vehicles requiring a high thermal conductivity of 160 W/mK or more is limited.
  • In heat dissipation devices requiring such a high thermal conductivity, while products cast with pure aluminum having a very high thermal conductivity of 220 W/mK or higher are partly used in rotors for electrical and electronic products, since pure aluminum has an excellent thermal conductivity, but a low tensile strength and low castability, its application in structural components requiring excellent mechanical properties as well as the excellent thermal conductivity is limited.
  • Therefore, for use in heat dissipation components for electric devices, electronic devices and vehicles, the development of aluminum alloys for die casting having a high thermal conductivity of 160 W/mK or more as well as excellent castability is acutely needed, but aluminum alloys having a thermal conductivity of 160 W/mK or more as well as excellent castability have not yet been developed. Therefore, Al—Si based alloys, Al—Mg based alloys, and the like with the thermal conductivity of 90-140 W/mK are currently used as aluminum alloys for die casting.
  • DISCLOSURE OF THE INVENTION Technical Problem
  • The present invention is devised to solve the above-described problems of existing arts, and an object of the present invention provides an aluminum alloy for die casting, which has a higher strength than pure aluminum together with excellent castability, and a thermal conductivity of 160 W/mK or more so as to be capable of being applied to a variety of structural components requiring excellent thermal conductivity.
  • Technical Solution
  • In order to accomplish the above-described objects, the present invention provides an aluminum alloy for die casting including 1.0 weight % to 2.0 weight % of silicon (Si), 0.5 weight % to 1.6 weight % of iron (Fe), 0.6 weight % to 1.6 weight % of zinc (Zn), with the remainder being aluminum (Al) and inevitable impurities.
  • Also, in the aluminum alloy according to the present invention, a thermal conductivity may be 160 W/mK or more, and preferably 170 W/mK or more.
  • Also, in the aluminum alloy according to the present invention, a difference (ΔT) between the solidus temperature and the liquidus temperature in a two-phase Mushy zone is 70° C. or less.
  • Also, in the aluminum alloy according to the present invention, a tensile strength may be 110 MPa or more, and preferably 120 MPa or more.
  • Also, in the aluminum alloy according to the present invention, the aluminum alloy may include Fe compounds dispersed in the microstructure thereof.
  • Advantageous Effects
  • An aluminum alloy according to the present invention, may secure castability required for obtaining healthy castings in a die casting process, and also have a good mechanical strength and an excellent thermal conductivity through controlling components of silicon (Si), iron (Fe) and zinc (Zn), so that the aluminum alloy may be suitably used in manufacturing of heat dissipation components for electrical devices, electronic devices and vehicles requiring a high thermal conductivity of 160 W/mK or more.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a photograph of a flow length measurement device for evaluating castability of an aluminum alloy according to the present invention.
  • MODE FOR CARRYING OUT THE INVENTION
  • Hereinafter, an aluminum alloy according to preferred embodiments of the present invention will be described in detail but the present invention is not limited to the following embodiments. Therefore, it will be apparent to those skilled in the art that many modifications and variations may be made without departing from the spirit thereof.
  • Also, the terms of a single form used for explaining exemplary embodiments may include plural forms unless otherwise specified.
  • An aluminum alloy according to the present invention is a high thermal conductivity aluminum alloy for die casting obtained by alloying Silicon (Si), iron (Fe) and zinc (Zn), and includes 1.0 weight % to 2.0 weight % of silicon (Si), 0.5 weight % to 1.6 weight % of iron (Fe), 0.6 weight % to 1.6 weight % of zinc (Zn), with the remainder being aluminum (Al) and inevitable impurities.
  • By complexly adding alloy elements capable of improving the castability of aluminum depending on the respective compositions, alloy elements solid-solutioned in an aluminum matrix metal to be capable of obtaining effects of solid solution strengthening, and alloy elements capable of minimizing the deterioration of thermal conductivity due to the very low solid solubility in the aluminum matrix metal, the aluminum alloy for die casting according to the present invention may represent a thermal conductivity of 160 W/mK or more as well as excellent castability and good mechanical properties.
  • The reason why the respective alloy elements are added and limited in content is as follows.
  • Silicon (Si) is an element which may be added in aluminum as an alloy element to improve castability and improve a tensile strength according to the effects of solid solution strengthening. 1.0 weight % to 2.0 weight % of silicon is added in the aluminum alloy for die casting according to the present invention. This is because if the content of silicon is less than 0.5 weight %, the castability is lowered, so that a non-molded part partly occurs to considerably damage healthiness of products when products are molded by die casting, and if the content of silicon exceeds 0.9 weight %, a thermal conductivity is lowered, so that a thermal conductivity of 160 W/mK or more targeted by the present invention may not be obtained.
  • Since iron (Fe) has a very low solubility of 0.052 weight % in aluminum at room temperature, and after casting, is mostly crystallized as intermetallic compounds, such as Al3Fe, and the like, iron is an element which may be added in aluminum to minimize the degradation of thermal conductivity of aluminum, improve the strength of aluminum, and reduce die soldering when aluminum alloy products are molded by die-casting. 0.5 weight % to 1.6 weight % of iron is added in the aluminum alloy for die casting according to the present invention. this is because if the content of iron is less than 0.5 weight %, the effects of preventing die soldering is lowered, so that soldering phenomena of products occur on a part of the mold cavity and a mechanical strength is not sufficient, and if the content of iron exceeds 1.6 weight %, a Fe-rich phase is excessively crystallized to reduce the castability of the alloy. More preferable content of iron is from 0.8 weight % to 1.2 weight %.
  • Zinc (Zn) is an element which may be added in aluminum as an alloy element to improve the castability and a tensile strength according to the effects of solid solution strengthening. 0.6 weight % to 1.6 weight % of zinc is added in the aluminum alloy for die casting according to the present invention. this is because if the content of magnesium is less than 0.6 weight %, the castability of the alloy is lowered, so that a non-molded part partially occurs when products are molded by die casting, and if the content of magnesium exceeds 1.6 weight %, a thermal conductivity of the alloy is lowered, so that a thermal conductivity of 160 W/mK or more targeted by the present invention may not be obtained. More preferable content of zinc (Zn) is from 0.8 weight % to 1.2 weight %.
  • EXAMPLES
  • A high thermal conductivity Al—Si—Fe—Zn alloy for die casting according to exemplary embodiments of the present invention will be described in detail with reference to Tables 1 and 2 below.
  • The inventors of the present invention manufactured specimens of alloys having compositions shown in Table 1 below in order to manufacture a high conductivity Al—Si—Fe—Zn alloy for die casting by using a melt stirring method which is typically used in die casting.
  • TABLE 1
    Alloy (weight %) Si Fe Zn Al
    Example 1 1.03 0.89 1.00 bal.
    2 1.21 1.08 0.97 bal.
    3 1.67 0.84 1.00 bal.
    4 1.21 0.59 1.42 bal.
    5 1.51 0.57 1.44 bal.
    comparative 1 10.20 1.17 0.92 bal.
    example 2 0.56 0.79 1.02 bal.
    3 4.5 0.8 0.60 bal.
    4 1.12 1.83 0.75 bal.
    5 1.33 1.14 0.46 bal.
    6 1.58 0.97 1.45 bal.
  • In detail, raw materials of aluminum alloy were prepared so as to have compositions shown in Table 1, the raw materials were charged into an electric resistance melting furnace and melted to form molten metals in atmosphere, and then flow test specimens for evaluating castability were manufactured by using a flow length measurement device as shown in FIG. 1 and also specimens for evaluating properties used for measurement of a thermal conductivity, the liquidus temperature, and the solidus temperature, and the like were manufactured.
  • With respect to the thermal conductivity that is one among main objects of the alloy according to the present invention, firstly, the electrical conductivity of manufactured specimens was measured by using a electrical conductivity meter at room temperature, and then the thermal conductivity was obtained by the conversion formula of [formula 1].

  • K=5.02σT×10−9+0.03   [Formula 1]
  • (where K is a thermal conductivity, σ is a electrical conductivity and T is an absolute temperature)
  • Also, in order to evaluate the castability that is essential in die cast casting, the molten alloy was injected into a mold cavity maintained at a temperature of 200° C. and having a width of 12 mm, a thickness of 5 mm and a maximum length of 780 mm as shown in FIG. 1, and a flow length was measured through a method of measuring a solidified length, and also the size (ΔT) of a two-phase Mushy zone was measured through a method of measuring a difference between the liquidus temperature and the solidus temperature by using a thermal analyzer.
  • Table 2 shows results in which the flow length, the thermal conductivity, the liquidus temperature, the solidus temperature, and the difference there between (
    Figure US20140234159A1-20140821-P00001
    )→between the liquidus temperature and the solidus temperature were evaluated.
  • TABLE 2
    flow Thermal Liquidus Solidus
    length conductivity temperature temperature
    Alloy (mm) (W/mK ) (° C.) (° C.) ΔT (° C.)
    Example 1 780 175 654 620 34
    2 780 171 652 616 36
    3 780 163 650 606 44
    4 780 182 652 602 50
    5 780 179 650 588 62
    Comparative 1 780 95 575 501 74
    example 2 720 186 656 620 36
    3 142 630 575 55
    4 560 165
    5 750 168
    6 780 155
  • As identified in Table 2 above, all of aluminum alloys according to exemplary embodiments 1 to 5 of the present invention have a thermal conductivity of 160 W/mK or more (furthermore, 170 W/mK or more), which is a level or more required in heat dissipation devices. It may be understood that the thermal conductivities of the alloys of Example 1 having a low silicon content in a range in which the castability is not deteriorated, Example 2 having a relatively high iron (Fe) content, and Examples 4 and 5 among these alloys are very high, that is, are all 170 W/mK or more.
  • Also, the flow length and the difference (ΔT) between the liquidus temperature and the solidus temperature shown in Table 2 are primary indices capable of evaluating the castability of alloys, in which as the more the flow length, the more the fluidity of the alloy is excellent and the less the difference ΔT, the more the castability is excellent.
  • As identified in Table 2 above, all of aluminum alloys according to Examples of the present invention have the flow length of 780 mm, which is a level comparable to that of an Al—Si alloy (ADC 12, Comparative example 1) widely used as an aluminum alloy for die casting.
  • Furthermore, the difference (ΔT) between the liquidus temperature and the solidus temperature in the aluminum alloys according to Examples 1 to 5 of the present invention is less than 70° C., and is lower than 74° C. that is the difference (ΔT) of Comparative example 1 that is an Al—Si alloy (ADC 12) widely used as an aluminum alloy for die casting.
  • Meanwhile, since the alloys according to Examples 1 to 5 of the present invention, in two indices that represent the castability, that is, the flow length and ΔT, have equal to or more excellent level than that of Comparative example 1 widely used as an aluminum alloy for die casting, the alloys may be treated to have the castability required in die casting.
  • Meanwhile, Comparative example 2 is an Al—Si—Fe—Zn alloy having a silicon content of 0.56 weight %, which is lower than those of Examples of the present invention, and as a result, the flow length of 720 mm, which is lower than those of the alloys according to Examples of the present invention, and thus the castability is low.
  • Furthermore, Comparative example 3 is an Al—Si—Fe—Zn alloy having a silicon content of 4.5 weight %, which is remarkably higher than those of Examples of the present, and as a result, the thermal conductivity is 142 W/mK, and thus it is hard to satisfy the level required in the dissipation products.
  • Furthermore, Comparative example 4 is an Al—Si—Fe—Zn alloy having an iron (Fe) content of 1.83 weight %, which is higher than those of Examples of the present invention, and as a result, the flow length of 560 mm, and thus the castability is remarkably lower than those of the alloys according to Examples of the present invention.
  • Furthermore, Comparative example 5 is an Al—Si—Fe—Zn alloy having a zinc (Zn) content of 0.46 weight %, which is lower than those of Examples of the present invention, is added, and as a result, the flow length of 720 mm, and thus the castability is remarkably lower than those of the alloys according to Examples of the present invention.
  • Furthermore, Comparative example 6 is an Al—Si—Fe—Zn alloy having a zinc (Zn) content of 1.45 weight %, which is higher than those of Examples of the present invention, and as a result, the castability is a level comparable to those of Examples of the present, but the thermal conductivity is 155 W/mK, which is lower than that required in the dissipation products.

Claims (6)

1. An aluminum alloy for die casting, comprising 1.0 weight % to 1.6 weight % of silicon (Si), 0.5 weight % to 1.6 weight % of iron (Fe), 0.6 weight % to 1.6 weight % of zinc (Zn), with the remainder being aluminum (Al) and inevitable impurities.
2. The aluminum alloy for die casting of claim 1, wherein the content of iron (Fe) is from 0.8 weight % to 1.2 weight %.
3. The aluminum alloy for die casting of claim 1, wherein the content of zinc (Zn) is from 0.8 weight % to 1.2 weight %.
4. The aluminum alloy for die casting of claim 1, wherein thermal conductivity of the aluminum alloy is 160 W/mK or more.
5. The aluminum alloy for die casting of claim 1, wherein thermal conductivity of the aluminum alloy is 170 W/mK or more.
6. The aluminum alloy for die casting of claim 1, wherein a difference (ΔT) between the solidus temperature and the liquidus temperature of the aluminum alloy is not more than 70° C.
US14/350,080 2011-10-10 2012-10-09 HIGH THERMAL CONDUCTIVITY Al-Si-Fe-Zn ALLOY FOR DIE CASTING Abandoned US20140234159A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2011-0103115 2011-10-10
KR1020110103115A KR101375671B1 (en) 2011-10-10 2011-10-10 Al-Si-Fe-Zn ALLOY HAVING HIGH THERMAL CONDUCTIVITY FOR DIE CASTING
PCT/KR2012/008162 WO2013055075A2 (en) 2011-10-10 2012-10-09 High heat conductivity al-si-fe-zn alloy for die casting

Publications (1)

Publication Number Publication Date
US20140234159A1 true US20140234159A1 (en) 2014-08-21

Family

ID=48082642

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/350,080 Abandoned US20140234159A1 (en) 2011-10-10 2012-10-09 HIGH THERMAL CONDUCTIVITY Al-Si-Fe-Zn ALLOY FOR DIE CASTING

Country Status (3)

Country Link
US (1) US20140234159A1 (en)
KR (1) KR101375671B1 (en)
WO (1) WO2013055075A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140234161A1 (en) * 2011-10-10 2014-08-21 Korea Institute Of Industrial Technology HIGH THERMAL CONDUCTIVITY Al-Mg-Fe-Si ALLOY FOR DIE CASTING

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018117315A1 (en) * 2016-12-20 2018-06-28 주식회사 에스제이테크 Aluminum alloy composition for high heat conductivity and high strength die casting, capable of thin wall molding, and preparation method therefor
CN109652686B (en) * 2018-12-14 2020-05-26 珠海市润星泰电器有限公司 High thermal conductivity aluminum alloy and preparation method thereof
CN114959383B (en) * 2022-04-18 2023-09-19 聊城市金之桥进出口有限公司 Al-based ternary heat-resistant motor rotor alloy and preparation method and application thereof
KR102635203B1 (en) 2023-07-06 2024-02-13 호서대학교 산학협력단 High heat dissipation metal member and high heat dissipation die casting part with the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4169728A (en) * 1978-02-09 1979-10-02 Mitsubishi Kinzoku Kabushiki Kaisha Corrosion resistant bright aluminum alloy for die-casting
US4571368A (en) * 1983-01-17 1986-02-18 Atlantic Richfield Company Aluminum and zinc sacrificial alloy
US5489347A (en) * 1992-08-05 1996-02-06 Furukawa Electric Co., Ltd. Aluminum alloy fin material for heat-exchanger
US20020006352A1 (en) * 2000-03-31 2002-01-17 Spanjers Martinus Godefridus Johannes Aluminium die-casting alloy
US6440583B1 (en) * 1999-04-28 2002-08-27 The Furukawa Electric Co., Ltd. Aluminum alloy for a welded construction and welded joint using the same
US20030082068A1 (en) * 1999-11-17 2003-05-01 Wittebrood Adrianus Jacobus Aluminium brazing alloy
US20140234161A1 (en) * 2011-10-10 2014-08-21 Korea Institute Of Industrial Technology HIGH THERMAL CONDUCTIVITY Al-Mg-Fe-Si ALLOY FOR DIE CASTING
US20150218678A1 (en) * 2012-08-21 2015-08-06 Korea Institute Of Industrial Technology Al-zn alloy for die casting having both high strength and high thermal conductivity

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5830381B2 (en) * 1976-11-01 1983-06-29 三菱マテリアル株式会社 Bright corrosion resistant Al alloy for die casting
JPH0790450A (en) * 1993-09-01 1995-04-04 Furukawa Electric Co Ltd:The Aluminum alloy fin material for brazing and manufacture of aluminum alloy-made heat exchanger
JP4557858B2 (en) * 2005-09-28 2010-10-06 株式会社デンソー Aluminum die-cast alloy for connectors excellent in caulking properties, sacrificial anode properties, and castability, and a method for producing a connector block made of the alloy
JP5545798B2 (en) * 2009-05-25 2014-07-09 株式会社Uacj Method for producing aluminum alloy fin material for heat exchanger

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4169728A (en) * 1978-02-09 1979-10-02 Mitsubishi Kinzoku Kabushiki Kaisha Corrosion resistant bright aluminum alloy for die-casting
US4571368A (en) * 1983-01-17 1986-02-18 Atlantic Richfield Company Aluminum and zinc sacrificial alloy
US5489347A (en) * 1992-08-05 1996-02-06 Furukawa Electric Co., Ltd. Aluminum alloy fin material for heat-exchanger
US6440583B1 (en) * 1999-04-28 2002-08-27 The Furukawa Electric Co., Ltd. Aluminum alloy for a welded construction and welded joint using the same
US20030082068A1 (en) * 1999-11-17 2003-05-01 Wittebrood Adrianus Jacobus Aluminium brazing alloy
US20020006352A1 (en) * 2000-03-31 2002-01-17 Spanjers Martinus Godefridus Johannes Aluminium die-casting alloy
US20140234161A1 (en) * 2011-10-10 2014-08-21 Korea Institute Of Industrial Technology HIGH THERMAL CONDUCTIVITY Al-Mg-Fe-Si ALLOY FOR DIE CASTING
US20150218678A1 (en) * 2012-08-21 2015-08-06 Korea Institute Of Industrial Technology Al-zn alloy for die casting having both high strength and high thermal conductivity

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
English translation of JP 07/090450; 4/1995; 21 pages. *
English translation of JP 2010/270387; 12/2010; 15 pages. *
English translation of JP 58/030381B; 6/1983; 6 pages. *
English translation of the Written Opinion of the International Search Authority mailed March 14, 2013 for PCT/KR2012/008162; 4 pages. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140234161A1 (en) * 2011-10-10 2014-08-21 Korea Institute Of Industrial Technology HIGH THERMAL CONDUCTIVITY Al-Mg-Fe-Si ALLOY FOR DIE CASTING
US9663847B2 (en) * 2011-10-10 2017-05-30 Korea Institute Of Industrial Technology High thermal conductivity Al—Mg—Fe—Si alloy for die casting

Also Published As

Publication number Publication date
WO2013055075A3 (en) 2013-07-04
KR101375671B1 (en) 2014-03-20
WO2013055075A2 (en) 2013-04-18
KR20130038639A (en) 2013-04-18

Similar Documents

Publication Publication Date Title
US20150218678A1 (en) Al-zn alloy for die casting having both high strength and high thermal conductivity
KR101418773B1 (en) Al-Zn-Fe-Mg ALLOY HAVING HIGH THERMAL CONDUCTIVITY FOR DIE CASTING
EP3121302B1 (en) Aluminum alloy for die casting, and die-cast aluminum alloy using same
US20210108290A1 (en) Thermally conductive aluminum alloy and application thereof
KR101133103B1 (en) High strength aluminum alloys for die casting
KR101924319B1 (en) Highly heat conductive aluminum alloy for die casting, aluminum alloy die cast product using same, and heatsink using same
US20140234159A1 (en) HIGH THERMAL CONDUCTIVITY Al-Si-Fe-Zn ALLOY FOR DIE CASTING
KR20140034557A (en) Al-cu alloy having high thermal conductivity for die casting
US9663847B2 (en) High thermal conductivity Al—Mg—Fe—Si alloy for die casting
KR101426708B1 (en) Al-Fe-Zn-Si ALLOY HAVING HIGH THERMAL CONDUCTIVITY FOR DIE CASTING
KR101469613B1 (en) Al-Zn ALLOY HAVING HIGH THERMAL CONDUCTIVITY FOR DIE CASTING
CN105525172A (en) Magnesium alloy as well as preparation method thereof and application thereof
JP4413106B2 (en) Aluminum alloy material for heat sink and manufacturing method thereof
CN112981190A (en) Aluminum alloy for die casting and method for manufacturing cast aluminum alloy using the same
JP4000339B2 (en) Zn alloy for die casting and Zn alloy die casting product
KR101274089B1 (en) High strength aluminum alloys for die casting
EP3196323A1 (en) Aluminum alloy for die casting, and aluminum alloy die-cast product using same
KR101589035B1 (en) Al-Zn-Mg-Cu BASED ALLOY HAVING HIGH THERMAL CONDUCTIVITY FOR DIE CASTING
JP5688744B2 (en) High strength and high toughness copper alloy forging
JP5522692B2 (en) High strength copper alloy forging
JP4966584B2 (en) Aluminum alloy for casting, aluminum alloy casting and die casting method using the alloy
JP2002226932A (en) Aluminum alloy for heat sink having excellent strength and thermal conductivity and production method therefor
KR101269516B1 (en) Scandium free high strength aluminum alloys for die casting
WO2013105831A1 (en) Al-zn alloy with high thermal conductivity for die casting
JP6802689B2 (en) Precipitation hardening copper alloy and its manufacturing method

Legal Events

Date Code Title Description
AS Assignment

Owner name: KOREA INSTITUTE OF INDUSTRIAL TECHNOLOGY, KOREA, R

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KIM, KI TAE;SHIN, JE SIK;KO, SE HYUN;REEL/FRAME:032612/0188

Effective date: 20140403

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION