US20140150431A1 - Steam power plant having a multi-stage steam turbine - Google Patents

Steam power plant having a multi-stage steam turbine Download PDF

Info

Publication number
US20140150431A1
US20140150431A1 US14/176,419 US201414176419A US2014150431A1 US 20140150431 A1 US20140150431 A1 US 20140150431A1 US 201414176419 A US201414176419 A US 201414176419A US 2014150431 A1 US2014150431 A1 US 2014150431A1
Authority
US
United States
Prior art keywords
steam
cooling medium
power plant
flow
medium supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/176,419
Inventor
Stefan Glos
Matthias Heue
Ernst-Wilhelm Pfitzinger
Norbert Pieper
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to US14/176,419 priority Critical patent/US20140150431A1/en
Assigned to SIEMENS AKTIENGESELLSCHAFT reassignment SIEMENS AKTIENGESELLSCHAFT ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PFITZINGER, ERNST-WILHELM, PIEPER, NORBERT, GLOS, STEFAN, HEUE, MATTHIAS
Publication of US20140150431A1 publication Critical patent/US20140150431A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/14Casings modified therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/26Double casings; Measures against temperature strain in casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/006Auxiliaries or details not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • F01K13/025Cooling the interior by injection during idling or stand-by
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/232Heat transfer, e.g. cooling characterized by the cooling medium

Definitions

  • the invention relates to a steam power plant comprising a multi-stage steam turbine, a boiler and a cooling medium supply.
  • the materials in the vicinity of the inflow region are subjected to extreme thermal loading.
  • the temperature and the pressure of the fresh steam is low in relation to the temperature and the pressure of the fresh steam. It is therefore not imperatively necessary to use the expensive nickel-based alloy in the exhaust steam region.
  • DD 148 367 describes a method for lowering the work capacity of the steam during a load-shedding process, wherein the solution consists in admixing water to the fresh steam via injection nozzles, thereby reducing the temperature of the steam.
  • the invention addresses this; it is the object of the invention to specify a method for operating a steam turbine and a steam power plant, with it being possible for the steam turbine to be produced in a cost-effective manner.
  • the object on which the invention is based is achieved by means of a method for operating a multi-stage steam turbine, with the steam turbine being supplied with fresh steam and, downstream of an intermediate stage, a cooling medium.
  • the invention is based on the aspect that a high-pressure turbine section can be produced from a conventional material in the exhaust steam region if the exhaust steam region is provided with suitable cooling under idle or low-load operation.
  • That region of the steam turbine which is situated downstream of said intermediate stage is thereby cooled.
  • That region of the steam turbine which is situated upstream of said intermediate stage may be formed from a nickel-based alloy, with it being possible for the material used in the exhaust steam region to be formed from a conventional material, since the temperatures in the exhaust steam region can now be reduced in a targeted fashion.
  • the cooling medium is preferably formed from a mixture of propellant steam and water.
  • the propellant steam is preferably extracted from a boiler.
  • a boiler also referred to as a steam generator, to be retrofitted in an existing steam power plant in order to provide propellant steam.
  • the propellant steam may be branched off from the fresh steam supply via a bypass line.
  • the cooling medium is supplied in idle operation or in low-load operation.
  • the cooling medium is preferably supplied in particular at the commencement of a hot start.
  • the temperature of the materials of the high-pressure turbine section is comparatively high, such that during a hot start, the fresh steam thermally loads the entire high-pressure turbine section.
  • the high-pressure turbine section is subjected to particularly high thermal loading during a hot start.
  • the cooling medium is preferably supplied during a starting process until a synchronization has taken place and/or a minimum power has been attained. This has the advantage that the high-pressure steam temperature can be kept constant by regulating the cooling medium mass flow.
  • the steam turbine is refined such that an additional cooling medium is additionally supplied downstream of a second stage.
  • the additional cooling medium is preferably branched off from the cooling medium, which is a cost-effective option for retrofitting an existing steam power plant.
  • the additional cooling medium is emitted from a duct formed in a guide blade. In this way, it is possible for additional cooling medium to flow quickly and over a large area, so to speak, into the flow duct of the turbo-machine.
  • the mixture of the additional cooling medium with the flow medium is comparatively thorough, such that an abrupt reduction in temperature takes place.
  • the object aimed at the steam power plant is achieved by means of a steam power plant, comprising a multi-stage steam turbine, a boiler and a cooling medium supply, wherein the cooling medium supply opens out into the steam turbine downstream of an intermediate stage.
  • the cooling medium supply is preferably flow-connected to the duct and to a water reservoir.
  • the cooling medium supply is flow-connected to a bypass line from a fresh steam supply line and to a water reservoir.
  • the steam turbine preferably has a second stage which is flow-connected to an additional cooling medium supply.
  • FIG. 1 shows an illustration of a steam power plant
  • FIG. 2 shows a sectional illustration of a high-pressure turbine section
  • FIG. 3 shows temperature profiles within the high-pressure turbine section.
  • FIG. 1 shows a steam power plant 1 .
  • the steam power plant 1 comprises a steam generator 2 .
  • the steam generator 2 may also be referred to as a boiler 2 .
  • the steam generator 2 comprises a collecting tank 3 in which the steam can be collected.
  • the steam power plant 1 also comprises a high-pressure turbine section 4 , a medium-pressure turbine section 5 and a low-pressure turbine section 6 .
  • the classification of high-pressure, medium-pressure and low-pressure turbine sections is not defined consistently.
  • There is a DIN standard which defines a high-pressure turbine section 4 as being one in which the steam emerging from the high-pressure turbine section 4 is heated in an intermediate superheater 7 and subsequently flows into a medium-pressure turbine section 5 .
  • the high-pressure turbine section 4 as an embodiment of a steam turbine, comprises a plurality of stages.
  • the steam is expanded further in the medium-pressure turbine section 5 , with said steam flowing into the low-pressure turbine section 6 after emerging from the medium-pressure turbine section 5 .
  • the steam flows into a condenser 11 , where it is condensed to form water.
  • the condensed water is conducted by means of a pump 12 via a further line 13 to the steam generator 2 .
  • the high-pressure turbine section 4 is operated in such a way that a cooling medium is supplied downstream of an intermediate stage 14 .
  • the steam power plant 1 has a cooling medium supply 15 which opens out into the high-pressure turbine section 4 downstream of the intermediate stage 14 .
  • the cooling medium is formed from a mixture of propellant steam and water.
  • the water is extracted from a water reservoir 16 , which water may be admixed to the propellant steam by means of a valve 17 .
  • the propellant steam is extracted from a branch line 18 which opens out in the collecting tank 3 of the steam generator 2 .
  • Fresh steam from the steam generator 2 therefore passes via the branch line 18 and a valve 19 and is mixed with the water from the water reservoir 16 at the junction 20 , and is conducted into the high-pressure turbine section 4 downstream of the intermediate stage 14 via the cooling medium supply 15 .
  • the branch line 18 and the valve 19 may be dispensed with, with the propellant steam from the line 8 being supplied, at the branch junction 21 , to the junction 20 via a bypass line 22 and a valve 23 .
  • the mass flow of the propellant steam and of the water may be adjusted by means of throttles (not illustrated in any more detail) and the valves 17 , 19 , 23 .
  • the throttles and/or the valves 17 , 19 , 23 may be coupled to a control system which regulates the throughflow rate.
  • the regulation may be carried out in such a way that, with progressive time after a minimum load is attained, the throughflow rate is successively reduced and finally completely shut off
  • the steam turbine 4 is operated in such a way that the cooling medium is supplied to the high-pressure turbine section 4 in idle operation or in low-load operation.
  • the cooling medium is supplied during a starting process until a synchronization has taken place and/or a minimum power has been attained.
  • a synchronization is to be understood to mean the synchronization with the mains frequency.
  • a minimum power is to be understood to mean a power at which the high-pressure turbine outputs a sufficient level of power and thus has low exhaust-steam temperatures.
  • FIG. 2 shows a cross-sectional view of the high-pressure turbine section 4 .
  • the high-pressure turbine section 4 comprises an outer housing 24 and an inner housing 25 .
  • a plurality of guide blades 26 are arranged on the inner housing 25 , wherein for clarity, only one guide blade has been provided with the reference numeral 26 .
  • a rotor 27 is rotatably mounted within the inner housing 25 .
  • the rotor 27 comprises a plurality of rotor blades 28 , wherein for clarity, only one rotor blade has been provided with the reference numeral 28 .
  • the high-pressure turbine section 4 has a flow inlet 29 into which is supplied the fresh steam from the steam generator 2 .
  • a flow duct 30 is formed between the rotor 27 and the inner surface of the inner housing 25 , which flow duct 30 ends in an outflow pipe 31 .
  • the high-pressure turbine section 4 is designed in such a way that a cooling medium supply 15 is arranged such that the cooling medium can be conducted into the flow duct 30 downstream of the intermediate stage 14 .
  • the region up to the intermediate stage 14 in particular the region around the flow inlet 29 , is subjected to particularly high thermal loading and should therefore be formed from a nickel-based alloy. Cooling of the flow medium in the flow duct 30 takes place as a result of the inflow of the cooling medium via the cooling medium supply 15 downstream of the intermediate stage 14 , which cooling causes the temperature to be reduced in the outflow region 32 and therefore makes it possible to use a cheaper material than the nickel-based alloy.
  • the rotor 27 may therefore be produced from two components, wherein the first component 33 may be formed from the nickel-based alloy and the second component 34 may be formed from a cheaper material.
  • the first component 33 and the second component 34 are connected to one another by means of a welded connection 35 .
  • the steam power plant 1 may be provided with additional cooling by means of the supply of an additional cooling medium 60 downstream of a second stage 61 .
  • the second stage is not illustrated in any more detail in FIG. 2 , but is situated downstream of the intermediate stage 14 as viewed in the flow direction as shown in FIG. 1 .
  • the additional cooling medium 60 is branched off from the cooling medium 15 .
  • the temperature and pressure of the second cooling medium i.e., the additional cooling medium
  • the high-pressure turbine section 4 is designed such that the guide blades 26 of the second stage have ducts.
  • Said guide blades 26 of the second stage are accordingly formed so as to be hollow to a greater or lesser extent, with it being possible for the cavity to be filled with the additional cooling medium.
  • the additional cooling medium flows out of said ducts, out of the guide blades 26 of the second stage, and mixes with the flow medium situated in the flow duct 30 . This means that, beyond said point, further cooling of the flow medium takes place downstream of the second stage, and the thermal loading is reduced beyond said point.
  • High-pressure turbine sections 4 are, in some embodiments, formed with a steam tap pipe.
  • Said steam tap pipes are used as a tap in normal load operation of the high-pressure turbine section 4 , with steam being discharged from the flow duct 30 via the steam tap pipe.
  • said steam tap pipe In idle operation or low-load operation, said steam tap pipe is, in a sense, converted into the cooling medium supply, with the cooling medium passing into the high-pressure turbine section 4 via said steam tap pipe.
  • the steam tap pipe therefore performs a dual function: firstly for discharging steam out of the flow duct 30 in load operation, and secondly for supplying cooling medium during low-load operation or idle operation.
  • the high-pressure turbine section 4 comprises the second stage, which is flow-connected to an additional cooling medium supply.
  • the additional cooling medium supply is flow-connected to the steam generator 2 and to the water reservoir 16 , which is not illustrated in any more detail in FIG. 1 .
  • FIG. 3 illustrates the temperature profile within the high-pressure turbine section 4 as a function of the number of stages N (n 1 -n 7 ).
  • the stages n 1 , n 2 , . . . n 7 represent positive integers which correspond to the number of stages. The exact number of stages is not necessary for precise understanding of the invention, for which reason the number of stages has been replaced by the indices 1 to 7.
  • the curve 36 shows the temperature profile as a function of the stages in normal operation. It can be clearly seen that the temperature drops from approximately 700° C. to approximately 420° C. downstream of the stage n 6 . This takes place as a result of thermodynamic transformations, with the fresh steam being expanded and the temperature being reduced.
  • the second curve 37 shows the profile of the temperature as a function of the stages N in idle operation or low-load operation if no measures according to the invention are implemented. It can be clearly seen that the temperature barely falls upstream of the stage n 4 and even rises again downstream of the stage n 4 . This means that the stages beyond approximately n 3 in the outflow region are subjected to thermal loading since the temperatures there are constantly higher than 600° C.
  • the third curve 38 shows the profile of the temperature T as a function of the stages N in low-load operation or idle operation if the cooling medium is supplied to the high-pressure turbine section 4 downstream of the stage n 4 , which is to be understood to be the intermediate stage 14 .
  • the fourth curve 41 shows the temperature profile T as a function of the stages N if the intermediate stage 14 is instead provided at the point n 3 and the additional cooling medium is additionally supplied at the point n 4 , downstream of the second stage. It can be very clearly seen that, downstream of the intermediate stage 14 , that is to say a short distance after the stage n 3 in the illustration of FIG. 3 , the temperature drops abruptly from approximately 640° C. to 540° C., and the temperature subsequently falls from approximately 530° C. to 490° C. downstream of the further supply of additional cooling medium.

Abstract

A steam power plant includes a multi-stage steam turbine including a rotor and a flow duct formed from a plurality of stages, a boiler, and a first cooling medium supply. The first cooling medium supply opens out into the flow duct of the steam turbine downstream of an intermediate stage. The rotor comprises a first component and a second component. The second component is arranged downstream of the first component as viewed in the flow direction. The intermediate stage is arranged downstream of the first component.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional application of the U.S. patent application Ser. No. 12/528,349 filed on Aug. 24 2009, and claims the benefit thereof. The U.S. patent application Ser. No. 12/528,349 is the U.S. National Stage of International Application No. PCT/EP2008/051834, filed Feb. 15, 2008 and claims the benefit thereof. The International Application claims the benefits of European Patent Office application No. 07003922.7 EP filed Feb. 26, 2007. All of the applications are incorporated by reference herein in their entirety.
  • FIELD OF INVENTION
  • The invention relates to a steam power plant comprising a multi-stage steam turbine, a boiler and a cooling medium supply.
  • BACKGROUND OF INVENTION
  • For thermodynamic reasons, it is necessary to increase the fresh steam temperatures in order to increase the efficiency of modern steam turbine plants. At present, steam turbines are designed and produced for fresh steam temperatures of approximately 630° C. and fresh steam pressures of approximately 300 bar. The selection of the materials for the rotor and for the housing plays a significant role. It would appear to be possible to use nickel-based alloys as high-temperature materials for planned fresh steam temperatures of 700° C. The rotor and the housing of a steam turbine suitable for 700° C. could therefore be produced from a nickel-based alloy, though this would be a very expensive solution.
  • In high-pressure turbine sections, the materials in the vicinity of the inflow region are subjected to extreme thermal loading. In the exhaust steam region of the high-pressure turbine section, the temperature and the pressure of the fresh steam is low in relation to the temperature and the pressure of the fresh steam. It is therefore not imperatively necessary to use the expensive nickel-based alloy in the exhaust steam region.
  • It is therefore conventional to produce high-pressure turbine sections from different materials. It would thus be possible, for example, for the rotor to be formed as a welded structure, with a nickel-based alloy being used in the fresh steam region and a conventional material being used in the exhaust steam region. This would lead to lower overall production costs. A high-pressure turbine section produced in this way would withstand the loadings which occur in operation. However, the steam temperatures in the exhaust steam region of the high-pressure turbine section are comparatively high during a period of idle operation or low-load operation, as a result of which the conventional material is subjected to too great a thermal loading. This problem occurs in particular during a hot start, since the fresh steam temperatures cannot be arbitrarily reduced in order to limit the thermal loading of the incoming flow.
  • DD 148 367 describes a method for lowering the work capacity of the steam during a load-shedding process, wherein the solution consists in admixing water to the fresh steam via injection nozzles, thereby reducing the temperature of the steam.
  • SUMMARY OF INVENTION
  • What would be desirable is a high-pressure turbine section which is formed from different materials and which is suitable for different load conditions, such as for example low load or high load.
  • The invention addresses this; it is the object of the invention to specify a method for operating a steam turbine and a steam power plant, with it being possible for the steam turbine to be produced in a cost-effective manner.
  • The object on which the invention is based is achieved by means of a method for operating a multi-stage steam turbine, with the steam turbine being supplied with fresh steam and, downstream of an intermediate stage, a cooling medium.
  • The invention is based on the aspect that a high-pressure turbine section can be produced from a conventional material in the exhaust steam region if the exhaust steam region is provided with suitable cooling under idle or low-load operation. This takes place according to the invention by virtue of a cooling medium being supplied downstream of the intermediate stage in the steam turbine. That region of the steam turbine which is situated downstream of said intermediate stage is thereby cooled. That region of the steam turbine which is situated upstream of said intermediate stage may be formed from a nickel-based alloy, with it being possible for the material used in the exhaust steam region to be formed from a conventional material, since the temperatures in the exhaust steam region can now be reduced in a targeted fashion.
  • Therefore, in contrast to DD 148 367, not all of the fresh steam is cooled by means of the injection of water, but rather only steam which has already cooled and expanded in the steam turbine is cooled further by the cooling medium, as a result of which an abrupt reduction in the temperature of the steam situated in the steam turbine takes place.
  • The cooling medium is preferably formed from a mixture of propellant steam and water.
  • This is a comparatively fast and expedient solution for providing a suitable cooling medium since, as a result of the high vaporization heat of the water, the enclosed steam quantity undergoes a significant temperature reduction and therefore also pressure reduction.
  • The propellant steam is preferably extracted from a boiler. In this way, it is easily possible for the boiler, also referred to as a steam generator, to be retrofitted in an existing steam power plant in order to provide propellant steam.
  • Alternatively, in a further preferred embodiment, the propellant steam may be branched off from the fresh steam supply via a bypass line. In addition to the branching directly from the boiler, this would be a further simple and cost-effective option for providing suitable propellant steam which, by means of the admixture of water, may be used as cooling medium in the steam turbine.
  • In one preferred embodiment, the cooling medium is supplied in idle operation or in low-load operation.
  • The cooling medium is preferably supplied in particular at the commencement of a hot start. During a hot start, the temperature of the materials of the high-pressure turbine section is comparatively high, such that during a hot start, the fresh steam thermally loads the entire high-pressure turbine section. In particular, since the steam turbine is operated at low load during starting and the steam in the outflow region is at a comparatively high temperature, the high-pressure turbine section is subjected to particularly high thermal loading during a hot start.
  • The cooling medium is preferably supplied during a starting process until a synchronization has taken place and/or a minimum power has been attained. This has the advantage that the high-pressure steam temperature can be kept constant by regulating the cooling medium mass flow.
  • In a further advantageous refinement, the steam turbine is refined such that an additional cooling medium is additionally supplied downstream of a second stage.
  • This has the advantage that the outflow region of the high-pressure turbine section is cooled further, as a result of which suitable conventional materials can be used in the outflow region.
  • Here, the additional cooling medium is preferably branched off from the cooling medium, which is a cost-effective option for retrofitting an existing steam power plant.
  • In one advantageous embodiment, the additional cooling medium is emitted from a duct formed in a guide blade. In this way, it is possible for additional cooling medium to flow quickly and over a large area, so to speak, into the flow duct of the turbo-machine. Here, the mixture of the additional cooling medium with the flow medium is comparatively thorough, such that an abrupt reduction in temperature takes place.
  • The object aimed at the steam power plant is achieved by means of a steam power plant, comprising a multi-stage steam turbine, a boiler and a cooling medium supply, wherein the cooling medium supply opens out into the steam turbine downstream of an intermediate stage. The advantages substantially correspond to those mentioned with regard to the method.
  • The cooling medium supply is preferably flow-connected to the duct and to a water reservoir.
  • In a further preferred embodiment, the cooling medium supply is flow-connected to a bypass line from a fresh steam supply line and to a water reservoir.
  • The steam turbine preferably has a second stage which is flow-connected to an additional cooling medium supply.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention will be explained in more detail on the basis of exemplary embodiments which are illustrated in the figures, in which:
  • FIG. 1 shows an illustration of a steam power plant,
  • FIG. 2 shows a sectional illustration of a high-pressure turbine section,
  • FIG. 3 shows temperature profiles within the high-pressure turbine section.
  • DETAILED DESCRIPTION OF INVENTION
  • FIG. 1 shows a steam power plant 1. The steam power plant 1 comprises a steam generator 2. The steam generator 2 may also be referred to as a boiler 2. The steam generator 2 comprises a collecting tank 3 in which the steam can be collected. The steam power plant 1 also comprises a high-pressure turbine section 4, a medium-pressure turbine section 5 and a low-pressure turbine section 6. Among experts, the classification of high-pressure, medium-pressure and low-pressure turbine sections is not defined consistently. There is a DIN standard which defines a high-pressure turbine section 4 as being one in which the steam emerging from the high-pressure turbine section 4 is heated in an intermediate superheater 7 and subsequently flows into a medium-pressure turbine section 5.
  • In the steam generator 2, fresh steam is generated which is supplied via a line 8 to the high-pressure turbine section 4. The high-pressure turbine section 4, as an embodiment of a steam turbine, comprises a plurality of stages. At the outflow pipe 9, steam flows to the intermediate superheater 7, is heated there and is subsequently conducted to the inflow pipe 10 of the medium-pressure turbine section 5. The steam is expanded further in the medium-pressure turbine section 5, with said steam flowing into the low-pressure turbine section 6 after emerging from the medium-pressure turbine section 5. Downstream of the low-pressure turbine section 6, the steam flows into a condenser 11, where it is condensed to form water.
  • The condensed water is conducted by means of a pump 12 via a further line 13 to the steam generator 2.
  • The high-pressure turbine section 4 is operated in such a way that a cooling medium is supplied downstream of an intermediate stage 14. For this purpose, the steam power plant 1 has a cooling medium supply 15 which opens out into the high-pressure turbine section 4 downstream of the intermediate stage 14.
  • The cooling medium is formed from a mixture of propellant steam and water. The water is extracted from a water reservoir 16, which water may be admixed to the propellant steam by means of a valve 17. The propellant steam is extracted from a branch line 18 which opens out in the collecting tank 3 of the steam generator 2. Fresh steam from the steam generator 2 therefore passes via the branch line 18 and a valve 19 and is mixed with the water from the water reservoir 16 at the junction 20, and is conducted into the high-pressure turbine section 4 downstream of the intermediate stage 14 via the cooling medium supply 15.
  • In an alternative embodiment, the branch line 18 and the valve 19 may be dispensed with, with the propellant steam from the line 8 being supplied, at the branch junction 21, to the junction 20 via a bypass line 22 and a valve 23.
  • The mass flow of the propellant steam and of the water may be adjusted by means of throttles (not illustrated in any more detail) and the valves 17, 19, 23. The throttles and/or the valves 17, 19, 23 may be coupled to a control system which regulates the throughflow rate. Here, the regulation may be carried out in such a way that, with progressive time after a minimum load is attained, the throughflow rate is successively reduced and finally completely shut off
  • Here, the steam turbine 4 is operated in such a way that the cooling medium is supplied to the high-pressure turbine section 4 in idle operation or in low-load operation.
  • The cooling medium is supplied during a starting process until a synchronization has taken place and/or a minimum power has been attained. A synchronization is to be understood to mean the synchronization with the mains frequency. A minimum power is to be understood to mean a power at which the high-pressure turbine outputs a sufficient level of power and thus has low exhaust-steam temperatures.
  • FIG. 2 shows a cross-sectional view of the high-pressure turbine section 4. The high-pressure turbine section 4 comprises an outer housing 24 and an inner housing 25. A plurality of guide blades 26 are arranged on the inner housing 25, wherein for clarity, only one guide blade has been provided with the reference numeral 26. A rotor 27 is rotatably mounted within the inner housing 25. The rotor 27 comprises a plurality of rotor blades 28, wherein for clarity, only one rotor blade has been provided with the reference numeral 28. The high-pressure turbine section 4 has a flow inlet 29 into which is supplied the fresh steam from the steam generator 2. The fresh steam which is supplied in this way is conducted through the guide blades 26 and rotor blades 28, with the fresh steam being expanded and the temperature falling. A flow duct 30 is formed between the rotor 27 and the inner surface of the inner housing 25, which flow duct 30 ends in an outflow pipe 31.
  • The high-pressure turbine section 4 is designed in such a way that a cooling medium supply 15 is arranged such that the cooling medium can be conducted into the flow duct 30 downstream of the intermediate stage 14. The region up to the intermediate stage 14, in particular the region around the flow inlet 29, is subjected to particularly high thermal loading and should therefore be formed from a nickel-based alloy. Cooling of the flow medium in the flow duct 30 takes place as a result of the inflow of the cooling medium via the cooling medium supply 15 downstream of the intermediate stage 14, which cooling causes the temperature to be reduced in the outflow region 32 and therefore makes it possible to use a cheaper material than the nickel-based alloy. The rotor 27 may therefore be produced from two components, wherein the first component 33 may be formed from the nickel-based alloy and the second component 34 may be formed from a cheaper material. The first component 33 and the second component 34 are connected to one another by means of a welded connection 35.
  • Referring to FIG. 1, the steam power plant 1 may be provided with additional cooling by means of the supply of an additional cooling medium 60 downstream of a second stage 61. The second stage is not illustrated in any more detail in FIG. 2, but is situated downstream of the intermediate stage 14 as viewed in the flow direction as shown in FIG. 1. The additional cooling medium 60 is branched off from the cooling medium 15. The temperature and pressure of the second cooling medium (i.e., the additional cooling medium) are lower than the temperature and pressure of the first cooling medium (from the supply 15).
  • Here, the high-pressure turbine section 4 is designed such that the guide blades 26 of the second stage have ducts.
  • Said guide blades 26 of the second stage are accordingly formed so as to be hollow to a greater or lesser extent, with it being possible for the cavity to be filled with the additional cooling medium. The additional cooling medium flows out of said ducts, out of the guide blades 26 of the second stage, and mixes with the flow medium situated in the flow duct 30. This means that, beyond said point, further cooling of the flow medium takes place downstream of the second stage, and the thermal loading is reduced beyond said point.
  • High-pressure turbine sections 4 are, in some embodiments, formed with a steam tap pipe. Said steam tap pipes are used as a tap in normal load operation of the high-pressure turbine section 4, with steam being discharged from the flow duct 30 via the steam tap pipe. In idle operation or low-load operation, said steam tap pipe is, in a sense, converted into the cooling medium supply, with the cooling medium passing into the high-pressure turbine section 4 via said steam tap pipe. The steam tap pipe therefore performs a dual function: firstly for discharging steam out of the flow duct 30 in load operation, and secondly for supplying cooling medium during low-load operation or idle operation.
  • The high-pressure turbine section 4 comprises the second stage, which is flow-connected to an additional cooling medium supply. The additional cooling medium supply is flow-connected to the steam generator 2 and to the water reservoir 16, which is not illustrated in any more detail in FIG. 1.
  • FIG. 3 illustrates the temperature profile within the high-pressure turbine section 4 as a function of the number of stages N (n1-n7). The stages n1, n2, . . . n7 represent positive integers which correspond to the number of stages. The exact number of stages is not necessary for precise understanding of the invention, for which reason the number of stages has been replaced by the indices 1 to 7. The curve 36 shows the temperature profile as a function of the stages in normal operation. It can be clearly seen that the temperature drops from approximately 700° C. to approximately 420° C. downstream of the stage n6. This takes place as a result of thermodynamic transformations, with the fresh steam being expanded and the temperature being reduced.
  • The second curve 37 shows the profile of the temperature as a function of the stages N in idle operation or low-load operation if no measures according to the invention are implemented. It can be clearly seen that the temperature barely falls upstream of the stage n4 and even rises again downstream of the stage n4. This means that the stages beyond approximately n3 in the outflow region are subjected to thermal loading since the temperatures there are constantly higher than 600° C. The third curve 38 shows the profile of the temperature T as a function of the stages N in low-load operation or idle operation if the cooling medium is supplied to the high-pressure turbine section 4 downstream of the stage n4, which is to be understood to be the intermediate stage 14. At the vertical dashed line, it is possible to clearly see that the temperature at that point has dropped significantly from approximately 630° C. to 470° C. This means that, beyond said point, the high-pressure turbine section 4 is subjected to a lesser thermal loading since the temperatures in said region do not exceed 500° C.
  • The fourth curve 41 shows the temperature profile T as a function of the stages N if the intermediate stage 14 is instead provided at the point n3 and the additional cooling medium is additionally supplied at the point n4, downstream of the second stage. It can be very clearly seen that, downstream of the intermediate stage 14, that is to say a short distance after the stage n3 in the illustration of FIG. 3, the temperature drops abruptly from approximately 640° C. to 540° C., and the temperature subsequently falls from approximately 530° C. to 490° C. downstream of the further supply of additional cooling medium.

Claims (12)

1. A steam power plant, comprising:
a multi-stage steam turbine including a rotor and flow duct formed from a plurality of stages;
a boiler; and
a first cooling medium supply,
wherein the first cooling medium supply opens out into the flow duct of the steam turbine downstream of an intermediate stage,
wherein the rotor comprises a first component and a second component,
wherein the second component is arranged downstream of the first component as viewed in the flow direction, and
wherein the intermediate stage is arranged downstream of the first component.
2. The steam power plant as claimed in claim 1, wherein the first cooling medium supply is flow-connected to the flow duct and to a water reservoir.
3. The steam power plant as claimed in claim 1, wherein the first cooling medium supply is flow-connected to a first bypass line from a fresh steam supply line and is flow-connected to the water reservoir.
4. The steam power plant as claimed in claim 1,
wherein the steam turbine includes a steam tap pipe which is provided as a tap under a load operation, and
wherein the steam tap pipe is provided as a first cooling medium supply in an idle operation or in a low-load operation.
5. The steam power plant as claimed in claim 1, wherein the steam turbine includes a second stage which is flow-connected to a second cooling medium supply.
6. The steam power plant as claimed in claim 5, wherein the second cooling medium supply is flow-connected to the boiler and to a water reservoir.
7. The steam power plant as claimed in claim 5, wherein the second cooling medium supply is flow-connected to a second bypass line from the fresh steam supply line and is flow-connected to a water reservoir.
8. The steam power plant as claimed in claim 1, wherein the first cooling medium supply and/or the second cooling medium supply open(s) out into a duct which is arranged in a guide blade.
9. The steam power plant as claimed in claim 1, wherein the flow duct is formed between the rotor and an inner housing.
10. The steam power plant as claimed in claim 9, wherein the first cooling medium supply opens into the flow duct through the inner housing.
11. The steam power plant as claimed in claim 1, wherein the first cooling medium supply opens out into the flow duct of the steam turbine downstream of and adjacent to the intermediate stage.
12. The steam power plant as claimed in claim 5, wherein the first cooling medium supply conducts a first cooling medium and the second cooling medium supply conducts a second cooling medium, wherein a first plurality of thermodynamic values of the first cooling medium differ from a second plurality of thermodynamic values of the second cooling medium.
US14/176,419 2007-02-26 2014-02-10 Steam power plant having a multi-stage steam turbine Abandoned US20140150431A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/176,419 US20140150431A1 (en) 2007-02-26 2014-02-10 Steam power plant having a multi-stage steam turbine

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP07003922A EP1998014A3 (en) 2007-02-26 2007-02-26 Method for operating a multi-stage steam turbine
US12/528,349 US8713941B2 (en) 2007-02-26 2008-02-15 Method for operating a multi-step steam turbine
PCT/EP2008/051834 WO2008104465A2 (en) 2007-02-26 2008-02-15 Method for operating a multi-step steam turbine
US14/176,419 US20140150431A1 (en) 2007-02-26 2014-02-10 Steam power plant having a multi-stage steam turbine

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/EP2008/051834 Division WO2008104465A2 (en) 2007-02-26 2008-02-15 Method for operating a multi-step steam turbine
US12/528,349 Division US8713941B2 (en) 2007-02-26 2008-02-15 Method for operating a multi-step steam turbine

Publications (1)

Publication Number Publication Date
US20140150431A1 true US20140150431A1 (en) 2014-06-05

Family

ID=39721643

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/528,349 Expired - Fee Related US8713941B2 (en) 2007-02-26 2008-02-15 Method for operating a multi-step steam turbine
US14/176,419 Abandoned US20140150431A1 (en) 2007-02-26 2014-02-10 Steam power plant having a multi-stage steam turbine

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/528,349 Expired - Fee Related US8713941B2 (en) 2007-02-26 2008-02-15 Method for operating a multi-step steam turbine

Country Status (5)

Country Link
US (2) US8713941B2 (en)
EP (2) EP1998014A3 (en)
JP (1) JP5066194B2 (en)
CN (1) CN101622424B (en)
WO (1) WO2008104465A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3015644A1 (en) * 2014-10-29 2016-05-04 Alstom Technology Limited Steam turbine rotor
US20210396154A1 (en) * 2018-11-13 2021-12-23 Siemens Energy Global GmbH & Co. KG Steam turbine and method for operating same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008033402A1 (en) 2008-07-16 2010-01-21 Siemens Aktiengesellschaft Steam turbine plant and method for operating a steam turbine
EP2147896A1 (en) * 2008-07-22 2010-01-27 Uhde GmbH Low energy process for the production of ammonia or methanol
JP5615150B2 (en) 2010-12-06 2014-10-29 三菱重工業株式会社 Nuclear power plant and method of operating nuclear power plant
EP2565401A1 (en) * 2011-09-05 2013-03-06 Siemens Aktiengesellschaft Method for temperature balance in a steam turbine
EP2647802A1 (en) * 2012-04-04 2013-10-09 Siemens Aktiengesellschaft Power plant and method for operating a power plant assembly
EP2657467A1 (en) * 2012-04-27 2013-10-30 Siemens Aktiengesellschaft Forced cooling for steam turbine assemblies
CN103089346B (en) * 2012-12-28 2015-02-18 东方电气集团东方汽轮机有限公司 Forced cooling system of steam turbine generator set
CN106194284B (en) * 2016-07-22 2017-07-28 东方电气集团东方汽轮机有限公司 A kind of method of the parameter adjustment of steam turbine jacket steam and operation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06185306A (en) * 1992-12-16 1994-07-05 Fuji Electric Co Ltd Blade temperature rise preventive device of steam turbine
US5490386A (en) * 1991-09-06 1996-02-13 Siemens Aktiengesellschaft Method for cooling a low pressure steam turbine operating in the ventilation mode
US5953900A (en) * 1996-09-19 1999-09-21 Siemens Westinghouse Power Corporation Closed loop steam cooled steam turbine
US20080166222A1 (en) * 2006-12-15 2008-07-10 Kabushiki Kaisha Toshiba Turbine rotor and steam turbine

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3898842A (en) * 1972-01-27 1975-08-12 Westinghouse Electric Corp Electric power plant system and method for operating a steam turbine especially of the nuclear type with electronic reheat control of a cycle steam reheater
DD148367A1 (en) * 1979-12-29 1981-05-20 Karl Speicher DEVICE FOR OVERCRANCHING A STEAM TURBINE AFTER LOAD DISTANCE
JPS58140408A (en) * 1982-02-17 1983-08-20 Hitachi Ltd Cooler for steam turbine
JPH0621521B2 (en) * 1983-06-10 1994-03-23 株式会社日立製作所 Main structure of steam turbine main steam inlet
JPH0849507A (en) * 1994-08-09 1996-02-20 Fuji Electric Co Ltd Internal cooling method for bleeder turbine
DE19506787B4 (en) * 1995-02-27 2004-05-06 Alstom Process for operating a steam turbine
DE19823251C1 (en) * 1998-05-26 1999-07-08 Siemens Ag Steam turbine low-pressure stage cooling method e.g. for power station turbines
EP1152125A1 (en) * 2000-05-05 2001-11-07 Siemens Aktiengesellschaft Method and apparatus for the cooling of the inlet part of the axis of a steam turbine
EP1473442B1 (en) * 2003-04-30 2014-04-23 Kabushiki Kaisha Toshiba Steam turbine, steam turbine plant and method of operating a steam turbine in a steam turbine plant
EP1674669A1 (en) * 2004-12-21 2006-06-28 Siemens Aktiengesellschaft Method of cooling a steam turbine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5490386A (en) * 1991-09-06 1996-02-13 Siemens Aktiengesellschaft Method for cooling a low pressure steam turbine operating in the ventilation mode
JPH06185306A (en) * 1992-12-16 1994-07-05 Fuji Electric Co Ltd Blade temperature rise preventive device of steam turbine
US5953900A (en) * 1996-09-19 1999-09-21 Siemens Westinghouse Power Corporation Closed loop steam cooled steam turbine
US20080166222A1 (en) * 2006-12-15 2008-07-10 Kabushiki Kaisha Toshiba Turbine rotor and steam turbine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Machine translation of JP H06-185306 A, accessed on 12/28/2015. *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3015644A1 (en) * 2014-10-29 2016-05-04 Alstom Technology Limited Steam turbine rotor
US20160123151A1 (en) * 2014-10-29 2016-05-05 Alstom Technology Ltd Steam turbine rotor
US10533421B2 (en) * 2014-10-29 2020-01-14 General Electric Technology Gmbh Steam turbine rotor
US11053799B2 (en) 2014-10-29 2021-07-06 General Electric Technology Gmbh Steam turbine rotor
US20210396154A1 (en) * 2018-11-13 2021-12-23 Siemens Energy Global GmbH & Co. KG Steam turbine and method for operating same
US11560812B2 (en) * 2018-11-13 2023-01-24 Siemens Energy Global GmbH & Co. KG Steam turbine and method for operating same

Also Published As

Publication number Publication date
WO2008104465A3 (en) 2009-01-29
EP2129879A2 (en) 2009-12-09
CN101622424B (en) 2013-06-19
US20110005224A1 (en) 2011-01-13
EP1998014A2 (en) 2008-12-03
CN101622424A (en) 2010-01-06
US8713941B2 (en) 2014-05-06
EP1998014A3 (en) 2008-12-31
WO2008104465A2 (en) 2008-09-04
JP5066194B2 (en) 2012-11-07
JP2010519452A (en) 2010-06-03

Similar Documents

Publication Publication Date Title
US8713941B2 (en) Method for operating a multi-step steam turbine
EP1701006B1 (en) Electric power-generating and desalination combined plant and operation method of the same
EP3011146B1 (en) Steam power plant turbine and control method for operating at low load
JP4395254B2 (en) Combined cycle gas turbine
US8387388B2 (en) Turbine blade
US8516787B2 (en) Combined-cycle power plant having a once-through cooler
US8387356B2 (en) Method of increasing power output of a combined cycle power plant during select operating periods
JP5134090B2 (en) Power plant and power plant operating method
US8925321B2 (en) Steam power plant for generating electrical energy
CA2615001C (en) Method for starting a steam turbine installation
JP4828954B2 (en) Power generation / desalination complex plant and operation method thereof
JPH10501315A (en) Method of operating a steam turbine power plant and steam turbine power plant for implementing the method
US6851265B2 (en) Steam cooling control for a combined cycle power plant
JP5038532B2 (en) Steam power plant
JP2010242673A (en) Steam turbine system and method for operating the same
JP2004504538A (en) Operating method of gas and steam combined turbine equipment and its equipment
US20160146060A1 (en) Method for operating a combined cycle power plant
EP2372111A1 (en) Low pressure turbine with two independent condensing systems
CN110925036B (en) Low-pressure cylinder flexible output cooling system under steam extraction heat supply working condition and operation method thereof
US20110030335A1 (en) Combined-cycle steam turbine and system having novel cooling flow configuration
US20180135467A1 (en) Cooling of gas turbine at varying loads
Dubrovskii et al. Retrofitting cogeneration power stations under conditions of reduction or abandonment of steam delivery for process needs
JPS6060207A (en) Steam turbine plant
AU2008202733A1 (en) Method and apparatus for cooling a steam turbine
Radin Mastering the pilot domestic binary combined-cycle plants

Legal Events

Date Code Title Description
AS Assignment

Owner name: SIEMENS AKTIENGESELLSCHAFT, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GLOS, STEFAN;HEUE, MATTHIAS;PFITZINGER, ERNST-WILHELM;AND OTHERS;SIGNING DATES FROM 20140304 TO 20140306;REEL/FRAME:032635/0450

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION