JPS6060207A - Steam turbine plant - Google Patents

Steam turbine plant

Info

Publication number
JPS6060207A
JPS6060207A JP16741683A JP16741683A JPS6060207A JP S6060207 A JPS6060207 A JP S6060207A JP 16741683 A JP16741683 A JP 16741683A JP 16741683 A JP16741683 A JP 16741683A JP S6060207 A JPS6060207 A JP S6060207A
Authority
JP
Japan
Prior art keywords
steam
turbine
pressure
cooling
steam turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16741683A
Other languages
Japanese (ja)
Inventor
Kenji Natori
名取 顕二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP16741683A priority Critical patent/JPS6060207A/en
Publication of JPS6060207A publication Critical patent/JPS6060207A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/22Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To contrive to achieve the high efficiency and high reliability of power generation by a method wherein a high pressure cooling steam pipe for cooling of a turbine member extracting a high pressure steam is bifurcated from a main steam pipe, and the high pressure cooling steam pipe is connected to a reheating steam turbine. CONSTITUTION:A steam turbine plant is provided with a high pressure steam turbine 22 and a reheating steam turbine 25. A high pressure cooling steam pipe 40 for cooling of a turbine member extracting a high pressure steam is bifurcated from a main steam pipe 21 which supplies a main steam to the high pressure steam turbine 22, the high pressure cooling steam pipe 40 is connected to the reheating steam turbine 25. A throttle mechanism 41 which is enabled to adjust the flow rate, pressure and temperature of the high pressure steam is provided on the high pressure cooling steam pipe 40, then the high pressure steam is changed to the high pressure cooling steam. Thereby, the improvement of power generation efficiency can be contrived steadily, also the reliability of a steam turbine plant can be increased.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、高圧蒸気ターピ/と再熱蒸気タービンとを
備えた蒸気タービンプラントに係り1.特に再熱蒸気タ
ービンの高温部を冷却する冷却機構の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a steam turbine plant equipped with a high-pressure steam turbine and a reheat steam turbine. In particular, the present invention relates to improvements in cooling mechanisms for cooling the high-temperature parts of reheat steam turbines.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年の蒸気タービンシラ/トにおいては、発電効率の向
上を図るために、再熱蒸気タービンが使用されており、
この再熱蒸気タービンを使用したMM蒸気タービンプラ
ントにおいても、発電効率の効率化をより一層図るため
、主蒸気圧力や温度をますます高くする傾向にある。こ
のうち、再熱蒸気温度について考慮すると、従来は53
8℃の再熱蒸気が一般的に使用されていたものが、現在
では例えば566℃と高温化しており、将来的には再熱
蒸気温度が例えば649℃の二段再熱蒸気タービンが計
画されている。
In recent years, reheat steam turbines have been used in steam turbine generators to improve power generation efficiency.
Even in MM steam turbine plants using this reheat steam turbine, there is a tendency to increase the main steam pressure and temperature higher and higher in order to further improve power generation efficiency. Of these, considering the reheat steam temperature, conventionally 53
Reheat steam at a temperature of 8 degrees Celsius was generally used, but now the temperature has increased to, for example, 566 degrees Celsius, and in the future, two-stage reheat steam turbines with a reheat steam temperature of, for example, 649 degrees Celsius are planned. ing.

再熱蒸気が高温化するに伴い、再熱蒸気が流入される再
熱蒸気タービン初段などのタービン段落において、ター
ビンを構成する材料に強度上の問題が多く発生している
。特に、再熱蒸気タービンのタービンロータやタービン
動翼植設部および動翼テノン部などに作用する熱的応力
の発生が問題となっている。
As the temperature of reheated steam increases, many strength problems are occurring in the materials that make up the turbine in turbine stages such as the first stage of reheated steam turbines into which reheated steam flows. In particular, the generation of thermal stress that acts on the turbine rotor, turbine rotor blade mounting portion, rotor blade tenon portion, etc. of a reheat steam turbine has become a problem.

従来の再熱蒸気タービンプラントは第1図に示すように
構成され、ボイラ1で発生した主蒸気を主蒸気管2を介
して高圧蒸気タービン3に供給してタービンを駆動し、
仕事をしている。仕事をして膨張した蒸気は高圧排気蒸
気管4全通してボイラ1に案内され、ここで再熱される
。ボイラ1で再熱された再熱蒸気は再熱蒸気管5を経て
再熱蒸気タービン6に送られ、ここで再熱蒸気タービン
6を駆動し、仕事をする。
A conventional reheat steam turbine plant is configured as shown in FIG. 1, and main steam generated in a boiler 1 is supplied to a high-pressure steam turbine 3 through a main steam pipe 2 to drive the turbine.
I'm working. The steam expanded by doing work is guided to the boiler 1 through the entire high-pressure exhaust steam pipe 4, where it is reheated. The reheat steam reheated by the boiler 1 is sent to the reheat steam turbine 6 via the reheat steam pipe 5, where it drives the reheat steam turbine 6 and performs work.

高圧蒸気タービン3および再熱蒸気タービン6は共通の
タービンシャフト7を回動させ、発電機8を駆動させる
ようになっている。
The high-pressure steam turbine 3 and the reheat steam turbine 6 rotate a common turbine shaft 7 to drive a generator 8.

一方、再熱蒸気タービン6で仕事をして膨張した蒸気は
、復水器9に送られ、ここで凝縮作用を受けて復水とな
る。この復水は復水ポンプ10により復水給水管11を
通して送られ、途中に設けられた、低圧および高圧給水
加熱器12 、13により加熱作用を受け、温度上昇し
た後、ボイラ1に還流され、蒸気タービンプラントの1
つのサイクルが終了する。
On the other hand, the steam expanded by doing work in the reheat steam turbine 6 is sent to the condenser 9, where it is condensed and becomes condensed water. This condensate is sent through a condensate water supply pipe 11 by a condensate pump 10, heated by low-pressure and high-pressure feedwater heaters 12 and 13 provided along the way, and after rising in temperature, is returned to the boiler 1, Steam turbine plant 1
one cycle ends.

また、高圧排気蒸気管4より低温蒸気管15が分岐され
ており、この低温蒸気管15は絞り機構16f:経て途
中で再熱蒸気管5がら分岐された高温蒸気管17と合流
せしめられて冷却蒸気管18となり再熱蒸気タービン6
に接続され、再熱蒸気タービン6のタービン部材を冷却
している。上記高温蒸気管17にも絞り機構19が設け
られている。
Further, a low temperature steam pipe 15 is branched from the high pressure exhaust steam pipe 4, and this low temperature steam pipe 15 is cooled by passing through a throttle mechanism 16f and merging with a high temperature steam pipe 17 which is branched from the reheat steam pipe 5 in the middle. Steam pipe 18 becomes reheat steam turbine 6
The turbine member of the reheat steam turbine 6 is cooled. The high temperature steam pipe 17 is also provided with a throttle mechanism 19.

このような従来の蒸気タービンプラントにおいては、高
圧蒸気タービン3の高圧排気蒸気の一部を再熱蒸気の一
部と合流させ、混合させて冷却蒸気を形成し、この冷却
蒸気を、再熱蒸気が流入される再熱蒸気タービン初段等
のタービン段落に供給し、タービン部材を冷却している
In such conventional steam turbine plants, a portion of the high-pressure exhaust steam of the high-pressure steam turbine 3 is combined with a portion of the reheated steam and mixed to form cooling steam, and this cooling steam is combined with the reheated steam. is supplied to the turbine stages such as the first stage of the reheat steam turbine into which the steam flows, thereby cooling the turbine members.

しかしながら、冷却蒸気を作る蒸気系路が低温蒸気管1
5と高温蒸気管17と2系路あす、シかも画然気管15
 、17内を流れる蒸気の温度圧力が互いに相違する。
However, the steam line that produces the cooling steam is the low-temperature steam pipe 1.
5, high-temperature steam pipe 17, and 2nd route tomorrow, trachea 15
, 17 have different temperature and pressure.

このため、冷却蒸気を作る蒸気系路の蒸気流量、圧力の
制御が困難で、低圧側の低温蒸気管15に逆流が生じた
シすることがあった。また、冷却蒸気の圧力は再熱蒸気
の圧力より低いので、再熱蒸気タービン内で冷却蒸気圧
力より高圧部分、例えば再熱蒸気タービン初段のタービ
ン静翼前方部の冷却を全く行なうことができなかったり
、再熱蒸気タービン内に冷却蒸気を流入させる場合、冷
却蒸気流入部の槽造が非常に複雑になる等の問題があっ
た。
For this reason, it is difficult to control the steam flow rate and pressure in the steam line that produces cooling steam, and backflow may occur in the low-pressure steam pipe 15 on the low-pressure side. Furthermore, since the pressure of the cooling steam is lower than the pressure of the reheat steam, it is impossible to cool the parts of the reheat steam turbine that have a higher pressure than the cooling steam pressure, such as the front part of the turbine stationary blades in the first stage of the reheat steam turbine. In addition, when cooling steam is allowed to flow into a reheat steam turbine, there are problems such as the construction of a tank for the cooling steam inflow section being extremely complicated.

〔発明の目的〕[Purpose of the invention]

この発明は上述した点を考慮し、再熱蒸気タービンに供
給される冷却蒸気を再熱蒸気より高圧なものとすること
により、タービン部材の冷却を積極的かつ効率的に行な
い得るようにするとともに、より高温の再熱蒸気の使用
が可能になり、発電の高効率化や高信頼性を図ることが
できる件酋蒸気タービンプラントを提供することを目的
とする。
This invention takes the above-mentioned points into consideration, and by making the cooling steam supplied to the reheat steam turbine have a higher pressure than the reheat steam, it is possible to actively and efficiently cool the turbine components. It is an object of the present invention to provide a steam turbine plant that can use reheated steam at a higher temperature and achieve higher efficiency and reliability in power generation.

〔発明の概要〕[Summary of the invention]

上述した目的を達成するため、この発明に係る蒸気ター
ビンプラントは、高圧蒸気タービンと再熱蒸気タービン
とを園えたものにおいて、上記高圧蒸気タービンに主蒸
気を供給する主蒸気管から高圧蒸気を抽気するタービン
部材冷却用の尚圧冷却蒸気管を分岐させ、この高圧冷却
蒸気管を前記再熱蒸気タービンに接続するとともに上記
高圧冷却蒸気管には高圧蒸気の流蔽、圧力、温1itf
K:調節可能な絞り機構が設けられ、この絞り+84?
4により高圧蒸気を絞って高圧冷却蒸気としたものであ
る。
In order to achieve the above-mentioned object, a steam turbine plant according to the present invention includes a high-pressure steam turbine and a reheat steam turbine, and extracts high-pressure steam from a main steam pipe that supplies main steam to the high-pressure steam turbine. A high-pressure cooling steam pipe for cooling turbine components is branched, and this high-pressure cooling steam pipe is connected to the reheat steam turbine.
K: An adjustable aperture mechanism is provided, and this aperture +84?
4, the high-pressure steam is squeezed into high-pressure cooling steam.

具体的には、高圧蒸気タービン入口などの高圧蒸気ター
ビンの主蒸気管より高圧蒸気を抽気し、蒸気流量、圧力
、温度調節機構を備えた高圧冷却蒸気管を、再熱蒸気が
流入する再熱蒸気タービンのタービン段落に連通可能に
接続したものである。
Specifically, high-pressure steam is extracted from the main steam pipe of a high-pressure steam turbine such as the high-pressure steam turbine inlet, and reheated steam flows into a high-pressure cooling steam pipe equipped with a steam flow rate, pressure, and temperature control mechanism. It is communicatively connected to the turbine stage of the steam turbine.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明に係る蒸気タービンプラントの好ましい
実施例について添付図面を参照して説明する。
Hereinafter, preferred embodiments of a steam turbine plant according to the present invention will be described with reference to the accompanying drawings.

第2図はこの発明に係る蒸気タービンプラントの系統図
を示し、図中符号2oは蒸気タービンプラントのボイラ
を示し、とのボイラ肋は主蒸気管21を介して凪圧蒸気
タービンnに接続され、この高圧蒸気タービン22に主
蒸気を供給し、仕事をするようになっている。高圧蒸気
タービン22がらの高圧排気蒸気管おはボイラ加に案内
され、とのボイラ加で高圧排気が再び加熱される。ボイ
ラ加は再熱蒸気管冴を介して再熱蒸気タービン25に接
続され、ボイラ2oにて再熱された蒸気を再熱蒸気ター
ビン乙に案内している。
FIG. 2 shows a system diagram of a steam turbine plant according to the present invention, in which reference numeral 2o indicates a boiler of the steam turbine plant, and the boiler ribs of and are connected to a calm pressure steam turbine n via a main steam pipe 21. , this high pressure steam turbine 22 is supplied with main steam to perform work. The high-pressure exhaust steam pipe of the high-pressure steam turbine 22 is guided to the boiler, and the high-pressure exhaust is heated again by the boiler. The boiler 2o is connected to a reheat steam turbine 25 via a reheat steam pipe, and the steam reheated in the boiler 2o is guided to a reheat steam turbine 2o.

前記制圧蒸気タービン22および再熱蒸気タービンδは
ボイラ加から供給される主蒸気および再熱蒸気により駆
動され、共通のタービンシャフト27ようになっている
The suppression steam turbine 22 and the reheat steam turbine δ are driven by main steam and reheat steam supplied from the boiler, and have a common turbine shaft 27.

再熱蒸気タービンδで仕事をし、膨張した蒸気は復水器
刃に導かれ、ここで凝縮作用を受ける。
Work is done in the reheat steam turbine δ, and the expanded steam is guided to the condenser blades, where it undergoes condensation action.

凝縮した復水は復水ポンプ31により復水給水管32に
案内され、低圧および高圧給水加熱器33 、34で加
熱された後、ボイラ加に供給される。低圧給水加熱器3
3VCは再熱蒸気タービンδからの低圧蒸気抽気管35
が接続されており、高圧給水加熱器讃には高圧蒸気ター
ビンnからの高圧蒸気抽気管36が接続される。各蒸気
抽気管35 、36を辿るタービン抽気は復水器Iから
の復水と熱父換して凝縮され、この凝縮水は配管38を
経て復水ve330に案内される。
The condensed water is guided to a condensate water supply pipe 32 by a condensate pump 31, heated by low pressure and high pressure feed water heaters 33 and 34, and then supplied to the boiler. Low pressure water heater 3
3VC is a low pressure steam extraction pipe 35 from the reheat steam turbine δ
A high pressure steam extraction pipe 36 from a high pressure steam turbine n is connected to the high pressure feed water heater. The turbine bleed air flowing through the steam bleed pipes 35 and 36 is condensed by exchanging heat with the condensate from the condenser I, and this condensed water is guided to the condensate ve 330 via the pipe 38.

ところで、高圧蒸気タービン乙に主蒸気を供給する主蒸
気管21から高圧冷却蒸気管40が分岐されている。こ
の高圧冷却蒸気管40は、再熱蒸気が流入される再熱蒸
気タービン初段等のタービン段落に連通されるように接
続される。高圧冷却蒸気管40の途中には複数の絞り機
構4] 、 4]が直列に配設されている。第2図は、
絞り機構41を2つ設けたものを示すが、これは1つで
もよい。高圧冷却蒸気管40に設けられる絞り機構41
のうち少くとも1つの絞り機構4】は絞り比が調節可能
であり、例えば絞り弁で形成される。上記絞り機構41
により高圧冷却蒸気管40内に案内される高圧蒸気は、
蒸気流量、圧力、温度が調節されて再熱蒸気より高圧で
低温の冷却蒸気となり、この高圧冷却蒸気が再熱蒸気タ
ービンゐに送られてタービン部材を冷却している。
By the way, a high-pressure cooling steam pipe 40 is branched from the main steam pipe 21 that supplies main steam to the high-pressure steam turbine B. This high-pressure cooling steam pipe 40 is connected so as to communicate with a turbine stage such as a first stage of a reheat steam turbine into which reheat steam is introduced. A plurality of throttling mechanisms 4], 4] are arranged in series in the middle of the high-pressure cooling steam pipe 40. Figure 2 shows
Although two diaphragm mechanisms 41 are shown, only one diaphragm mechanism 41 may be provided. Throttle mechanism 41 provided in high pressure cooling steam pipe 40
At least one of the throttle mechanisms 4] has an adjustable throttle ratio and is formed, for example, by a throttle valve. The aperture mechanism 41
The high pressure steam guided into the high pressure cooling steam pipe 40 by
The steam flow rate, pressure, and temperature are adjusted to produce cooling steam with a higher pressure and lower temperature than the reheat steam, and this high-pressure cooling steam is sent to the reheat steam turbine to cool the turbine members.

次に、この発明の作用について説明する。Next, the operation of this invention will be explained.

再熱蒸気タービンプラントで使用さiするボイラ加から
の主蒸気は、抛3図に示す再熱蒸気タービン蒸気膨張線
図(i−8線図)において、A−)B→C→Dと示すよ
うに膨張して、仕事をする。このうち、Aは、高圧蒸気
タービン人口部における主蒸気の蒸気状態を示し、この
主蒸気は高圧蒸気タービン22を通る間に仕事をし、そ
のタービン出口では蒸気状態Bまで膨張する。この膨張
蒸気Bは、ボイラ加にて再熱蒸気タービン25人口部の
蒸気状態Cまで再熱され、高温の再熱蒸気となる。
The main steam from the boiler used in the reheat steam turbine plant is shown as A-)B→C→D in the reheat steam turbine steam expansion diagram (i-8 diagram) shown in Figure 3. It expands and does work. Among them, A indicates the steam state of the main steam in the high-pressure steam turbine section, and this main steam performs work while passing through the high-pressure steam turbine 22, and expands to the steam state B at the turbine outlet. This expanded steam B is reheated in the boiler to a steam state C in the reheat steam turbine 25, and becomes high-temperature reheat steam.

この再熱蒸気は、再熱蒸気タービン5を通る間に蒸気状
態Cから蒸気状態りに達するまで膨張して仕事をし、膨
張した蒸気は蒸気林態りの再熱蒸気タービン出口から復
水器刃に案内されるという蒸気膨張過程をたどるように
なっている。
While passing through the reheat steam turbine 5, this reheat steam expands and does work until it reaches the steam state from steam state C, and the expanded steam flows from the reheat steam turbine outlet in the steam forest state to the condenser. It follows the steam expansion process of being guided by the blade.

ところで、この発明においては、高圧蒸気タービン人口
部近傍において主蒸気管21から蒸気状態Aの高圧蒸気
が抽気され、この高圧蒸気は高圧冷却蒸気管40に案内
される。案内された高圧蒸気は絞り機構41..41を
通過するたびに、ジュールトムソン効果により等エンタ
ルピで蒸気温度が低下し、第3図に符号Eで示す高圧低
温の蒸気状態まで膨張して高圧冷却蒸気となる。この高
圧冷却蒸気の蒸気状態Eは、再熱蒸気の再熱蒸気タービ
ン入口の蒸気状態Cに比べ、蒸気圧力は高く、蒸気温度
は低いので、高圧冷却蒸気は、再熱蒸気タービンの初段
等のタービン部材冷却用蒸気として充分かつ有効的VC
利用できる。その際、高圧冷却蒸気は再熱蒸気より高圧
であるので、再熱蒸気タービンゐへの高圧冷却蒸気流入
構造を複雑なものとしなくても、上記高圧冷却蒸気によ
り再熱蒸気タービンのタービン部材を効率的に冷却する
ことが可能になる。
In the present invention, high-pressure steam in steam state A is extracted from the main steam pipe 21 near the high-pressure steam turbine intake section, and this high-pressure steam is guided to the high-pressure cooling steam pipe 40. The guided high pressure steam is passed through the throttling mechanism 41. .. 41, the steam temperature decreases isenthalpically due to the Joule-Thomson effect, and expands to a high-pressure, low-temperature steam state indicated by symbol E in FIG. 3, becoming high-pressure cooling steam. The steam state E of this high-pressure cooling steam has a higher steam pressure and a lower steam temperature than the steam state C of the reheat steam at the inlet of the reheat steam turbine. Sufficient and effective VC as steam for cooling turbine parts
Available. At this time, since the high-pressure cooling steam has a higher pressure than the reheat steam, the high-pressure cooling steam can cool the turbine members of the reheat steam turbine without complicating the structure for inflowing the high-pressure cooling steam into the reheat steam turbine. It becomes possible to cool efficiently.

また、高圧冷却蒸気の蒸気圧力、温朋および流量は、絞
り機構41に用いられる弁の開度やオリフィス、および
多孔板などの形状や数量、すなわち、絞り量を調整する
ことにより自由に調節できる。
Furthermore, the steam pressure, temperature, and flow rate of the high-pressure cooling steam can be freely adjusted by adjusting the opening degree of the valve used in the throttling mechanism 41, the orifice, the shape and quantity of the perforated plate, etc., that is, the throttling amount. .

さらに、高圧冷却蒸気管40は、高圧蒸気タービン入口
部の主蒸気管21から分岐されたものであり、この冷却
蒸気管40に再熱蒸気管列から分岐させた分岐管を接続
したり、合流部を設ける必要がなく、−糸路で構成され
るので、逆流する恐れもなく、冷却蒸気の流量や圧力、
温度の調節側@IをIYカ単かつ容易に行なうことがで
きる。その際、再熱蒸気プラントは定格運転状態でない
、部分負荷運転やスタートアップ時などの場合にも、冷
却蒸気の制御を従来のように2系路を有する再熱蒸気タ
ービンシャフトに比べ著しく簡単に行なうことができる
。再熱蒸気タービン25を冷却する高圧冷却蒸気は、再
熱蒸気に比べ、温度が低く、圧力が高いので再熱蒸気タ
ービンの各部分のタービン部材の冷却が容易となり、こ
のタービン部材冷却のため、冷却構造が複雑になること
もない。
Further, the high-pressure cooling steam pipe 40 is branched from the main steam pipe 21 at the inlet of the high-pressure steam turbine, and a branch pipe branched from the reheat steam pipe row can be connected to this cooling steam pipe 40, or There is no need to provide a
The temperature adjustment side @I can be performed simply and easily. In this case, even when the reheat steam plant is not in the rated operating state, such as during partial load operation or startup, the cooling steam can be controlled much more easily than the conventional reheat steam turbine shaft, which has two paths. be able to. The high-pressure cooling steam that cools the reheat steam turbine 25 has a lower temperature and a higher pressure than reheat steam, so it is easier to cool the turbine members of each part of the reheat steam turbine, and for this turbine member cooling, The cooling structure does not become complicated.

〔発明の効果〕 以上に述べたようにこの発明に係る蒸気タービンプラン
トにおいては、高圧蒸気タービンに主蒸気を供給する主
蒸気管から高圧蒸気を抽気するタービン部材冷却用の高
圧冷却蒸気管を分岐させ、この高圧冷却蒸気管を再熱蒸
気タービンに接rフcするとともに、上記高圧冷却高圧
蒸気管には高圧蒸気の流量、圧力、温亀を調節iif能
な絞り槻格が設けられ、この絞り機構により高圧蒸気を
絞って高圧冷却蒸気としたから、この高圧冷却蒸気を再
熱蒸気タービンに供給することにより、再熱蒸気が流入
される再熱蒸気タービンの初段などのタービン段落を有
効的かつ積極的に冷却することができる。再熱蒸気ター
ビンを有効的に冷却することができるため、より高温の
再熱蒸気の使用が+if能となり、発電効率の向上を確
実に図ることができる。
[Effects of the Invention] As described above, in the steam turbine plant according to the present invention, the high-pressure cooling steam pipe for cooling turbine members that extracts high-pressure steam from the main steam pipe that supplies main steam to the high-pressure steam turbine is branched. This high-pressure cooling steam pipe is connected to a reheat steam turbine, and the high-pressure cooling high-pressure steam pipe is provided with a restrictor that can adjust the flow rate, pressure, and temperature of the high-pressure steam. The throttle mechanism throttles the high-pressure steam into high-pressure cooling steam. By supplying this high-pressure cooling steam to the reheat steam turbine, the turbine stages such as the first stage of the reheat steam turbine into which the reheat steam flows can be effectively controlled. and can be actively cooled. Since the reheat steam turbine can be effectively cooled, it becomes possible to use higher temperature reheat steam, and it is possible to reliably improve power generation efficiency.

また、高圧冷却蒸気管は主蒸気管から分岐されて再熱蒸
気タービンに接続され、途中に分岐部や合流部が存在し
ないから、蒸気の逆流現象が生じることもなく、その途
中に設けられた絞り機構により、冷却蒸気の流量、圧力
および温度の調節制御も容易かつ簡単になる。したがっ
て、従来の蒸気タービンプラントよ(1発電をより効率
的に行なうことが可能となり、高効率で信頼性の高い蒸
気タービンプラントが得られる。
In addition, the high-pressure cooling steam pipe is branched from the main steam pipe and connected to the reheat steam turbine, and there are no branching or merging parts in the middle, so there is no backflow of steam. The throttling mechanism also makes it easy and simple to control the flow rate, pressure and temperature of the cooling steam. Therefore, it is possible to perform one power generation more efficiently than a conventional steam turbine plant, and a highly efficient and reliable steam turbine plant can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の蒸気タービンプラントを示す系統図、第
2図はこの発明に係る蒸気タービンプラントの一実施例
を示す系統図、第3図はこの発明の蒸気タービンシャフ
トに適用される再熱蒸気タービンの蒸気膨張線図を示す
1−s−線図である。 20・・・ボイラ、21・・・主蒸気管、22・・・、
へ圧蒸気タービン、24・・・再熱蒸気管、乙・・・再
熱蒸気タービン、27・・・タービンシャフト、U・・
・発電機、刃・・・TM 水器、31・・・復水ポンプ
、33 、34・・・給水加熱器、40・・・高圧冷却
蒸気管、41・・・絞り機構。 第1図 第2図 L
Fig. 1 is a system diagram showing a conventional steam turbine plant, Fig. 2 is a system diagram showing an embodiment of the steam turbine plant according to the present invention, and Fig. 3 is a reheating system applied to the steam turbine shaft of the present invention. FIG. 1 is a 1-s diagram showing a steam expansion diagram of a steam turbine. 20... Boiler, 21... Main steam pipe, 22...,
Pressure steam turbine, 24... Reheat steam pipe, B... Reheat steam turbine, 27... Turbine shaft, U...
- Generator, blade...TM water device, 31... Condensate pump, 33, 34... Feed water heater, 40... High pressure cooling steam pipe, 41... Throttle mechanism. Figure 1 Figure 2 L

Claims (1)

【特許請求の範囲】 1、高圧蒸気タービンと再熱蒸気タービンを備えた蒸気
タービンプラントにおいて、上記高圧蒸気タービンに主
蒸気を供給する主蒸気管から高圧蒸気を抽気するタービ
ン部材冷却用の高圧冷却蒸気管を分岐させ、この高圧冷
却蒸気管を前記再熱蒸気タービンに接続するとともに上
記高圧冷却蒸気管には高圧蒸気の流量、圧力、温ptを
調節可能な絞り機構が設けられ、この絞り機構により高
圧蒸気を絞って高圧冷却蒸気としたことを特徴とする蒸
気タービンプラント。 2、高圧冷却蒸気管には複数の絞シ機構が直列に配設さ
れ、このうち少なくとも1つの絞り機構は、絞り比を可
変調節可能にした特許請求の範囲第1項に記載の蒸気タ
ービンプラント。 3、高圧冷却蒸気管は、再熱蒸気タービンの初段などの
再熱蒸気が流入されるタービン段落に連通され、タービ
ン部材の冷却を行なう特許請求の範囲第1項に記載の蒸
気タービンプラント。
[Claims] 1. In a steam turbine plant equipped with a high-pressure steam turbine and a reheat steam turbine, high-pressure cooling for cooling turbine components by extracting high-pressure steam from a main steam pipe that supplies main steam to the high-pressure steam turbine. The steam pipe is branched, and this high-pressure cooling steam pipe is connected to the reheat steam turbine, and the high-pressure cooling steam pipe is provided with a throttle mechanism that can adjust the flow rate, pressure, and temperature pt of high-pressure steam. A steam turbine plant characterized by compressing high-pressure steam into high-pressure cooling steam. 2. The steam turbine plant according to claim 1, wherein a plurality of throttling mechanisms are arranged in series in the high-pressure cooling steam pipe, and at least one of the throttling mechanisms has a throttling ratio that can be variably adjusted. . 3. The steam turbine plant according to claim 1, wherein the high-pressure cooling steam pipe is communicated with a turbine stage such as a first stage of a reheat steam turbine into which reheat steam is introduced, and cools turbine members.
JP16741683A 1983-09-13 1983-09-13 Steam turbine plant Pending JPS6060207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16741683A JPS6060207A (en) 1983-09-13 1983-09-13 Steam turbine plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16741683A JPS6060207A (en) 1983-09-13 1983-09-13 Steam turbine plant

Publications (1)

Publication Number Publication Date
JPS6060207A true JPS6060207A (en) 1985-04-06

Family

ID=15849290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16741683A Pending JPS6060207A (en) 1983-09-13 1983-09-13 Steam turbine plant

Country Status (1)

Country Link
JP (1) JPS6060207A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003518220A (en) * 1999-12-21 2003-06-03 シーメンス アクチエンゲゼルシヤフト Operation method of steam turbine equipment and steam turbine equipment operated by this method
JP2003518223A (en) * 1999-12-21 2003-06-03 シーメンス アクチエンゲゼルシヤフト Operation method of steam turbine and turbine equipment provided with steam turbine operated by the method
JP2009030599A (en) * 2007-07-24 2009-02-12 General Electric Co <Ge> Turbine system and method for using internal leakage flow for cooling
US20140102097A1 (en) * 2012-10-16 2014-04-17 General Electric Company Operating steam turbine reheat section with overload valve
JP2019209249A (en) * 2018-06-04 2019-12-12 オルガノ株式会社 Apparatus and method of evaporative concentration apparatus for power generation facility and power generation facility

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003518220A (en) * 1999-12-21 2003-06-03 シーメンス アクチエンゲゼルシヤフト Operation method of steam turbine equipment and steam turbine equipment operated by this method
JP2003518223A (en) * 1999-12-21 2003-06-03 シーメンス アクチエンゲゼルシヤフト Operation method of steam turbine and turbine equipment provided with steam turbine operated by the method
JP2009030599A (en) * 2007-07-24 2009-02-12 General Electric Co <Ge> Turbine system and method for using internal leakage flow for cooling
US7658073B2 (en) 2007-07-24 2010-02-09 General Electric Company Turbine systems and methods for using internal leakage flow for cooling
DE102008002935B4 (en) 2007-07-24 2023-07-20 General Electric Co. Turbine systems and methods for utilizing internal leakage flow for cooling
US20140102097A1 (en) * 2012-10-16 2014-04-17 General Electric Company Operating steam turbine reheat section with overload valve
US8863522B2 (en) * 2012-10-16 2014-10-21 General Electric Company Operating steam turbine reheat section with overload valve
JP2019209249A (en) * 2018-06-04 2019-12-12 オルガノ株式会社 Apparatus and method of evaporative concentration apparatus for power generation facility and power generation facility

Similar Documents

Publication Publication Date Title
EP2535542B1 (en) Systems and methods for improving the efficiency of a combined cycle power plant
JP4337960B2 (en) Apparatus and method for supplying auxiliary steam in a combined cycle system
EP1752617A2 (en) Combined cycle power plant
EP1473442A2 (en) Steam turbine, steam turbine plant and method of operating a steam turbine in a steam turbine plant
US4576008A (en) Turbine protection system for bypass operation
US20060254280A1 (en) Combined cycle power plant using compressor air extraction
JPH07301127A (en) Gas turbine power plant, and cooling method for gas turbine power plant
JPH10169414A (en) Combined power plant with forced once-through steam generating device serving as gas turbine cooling air cooler
JP2001271612A (en) Apparatus and method for reheating gas turbine cooling steam and high-pressure steam turbine exhaust steam in combined cycle power generating apparatus
US11408339B2 (en) Steam turbine system and combined cycle plant
JP4503995B2 (en) Reheat steam turbine plant and operation method thereof
JPH10501315A (en) Method of operating a steam turbine power plant and steam turbine power plant for implementing the method
JP2010242673A (en) Steam turbine system and method for operating the same
JP2015068314A (en) Fuel gas heating facility and combined cycle power generation plant
US9404395B2 (en) Selective pressure kettle boiler for rotor air cooling applications
JPS6060207A (en) Steam turbine plant
US20220195896A1 (en) Steam turbine plant and operation method, combined cycle plant and operation method
JPS62101809A (en) Single-shaft combined plant having reheating system
EP4067738B1 (en) Steam generator
JPH08338205A (en) Combined cycle, electric power plant
JP2004245184A (en) Reheat steam turbine plant and starting method for the plant
JP3389019B2 (en) Steam cooled gas turbine
JP2001214758A (en) Gas turbine combined power generation plant facility
JP5475315B2 (en) Combined cycle power generation system
JPH11148315A (en) Combined cycle power plant