JPH08338205A - Combined cycle, electric power plant - Google Patents

Combined cycle, electric power plant

Info

Publication number
JPH08338205A
JPH08338205A JP14433095A JP14433095A JPH08338205A JP H08338205 A JPH08338205 A JP H08338205A JP 14433095 A JP14433095 A JP 14433095A JP 14433095 A JP14433095 A JP 14433095A JP H08338205 A JPH08338205 A JP H08338205A
Authority
JP
Japan
Prior art keywords
steam
turbine
cooling
gas
power plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14433095A
Other languages
Japanese (ja)
Inventor
Nobuo Okita
信雄 沖田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP14433095A priority Critical patent/JPH08338205A/en
Publication of JPH08338205A publication Critical patent/JPH08338205A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/103Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with afterburner in exhaust boiler
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE: To heighten the steam temperature of a steam turbine, practicing economy, by recovering a part of or the entire of exhaust heat from a gas turbine to generate cooling steam and introducing the cooling steam into a steam turbine. CONSTITUTION: A boiler 20 is prepared, which elevates through additional combustion the temperature of a part of steam generated in an exhaust heat recovery boiler 2. In addition, a pipe 14 is prepared, which introduces a part of steam generated in the exhaust heat recovery boiler 2 into a cooling part of a steam turbine 3, while a regulating valve 13 for regulating the quantity of the cooling steam is interposed in a path of the pipe 14.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はガスタービンと蒸気ター
ビンを組み合わせて構成されるコンバインドサイクル発
電プラントに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combined cycle power plant constructed by combining a gas turbine and a steam turbine.

【0002】[0002]

【従来の技術】ガスタービンと蒸気タービンを組み合わ
せ、ガスタービン排ガス中の排熱を蒸気タービンサイク
ルで熱回収して、発電に利用することによりプラント効
率の大幅な向上を図るいわゆる排熱回収式コンバインド
サイクルは一般に知られている。
2. Description of the Related Art A combination of a gas turbine and a steam turbine, in which exhaust heat in the exhaust gas of a gas turbine is recovered in a steam turbine cycle and used for power generation, a so-called exhaust heat recovery type combined combustion system is used to significantly improve plant efficiency. The cycle is generally known.

【0003】また、近年では、既設の汽力発電プラント
にガスタービンプラントを追設し、コンバインドサイク
ルを構成する、いわゆるリパワリングシステムも実用化
されており、以下の特長を有している。
In recent years, a so-called repowering system in which a gas turbine plant is added to an existing steam power plant to form a combined cycle has been put into practical use and has the following features.

【0004】第1に、既設の汽力発電プラントをコンバ
インド化することにより発電効率を向上させることがで
きる。第2に、ガスタービンを追設するため、発電所全
体としての発生電力量を増加させることができる。第3
に、既設汽力発電プラントの改造部分を少なくできるた
め、比較的短期間でリパワリングを行なうことができ
る。
First, the power generation efficiency can be improved by combining the existing steam power plant. Secondly, since the gas turbine is additionally installed, it is possible to increase the amount of electric power generated in the power plant as a whole. Third
In addition, since remodeling of the existing steam power plant can be reduced, repowering can be performed in a relatively short period of time.

【0005】ところで、近年の大幅な電力需要の伸び、
それに伴なう各電力会社の電力予備率の低下、これに対
処するために新たな発電所を早急に建設することの困難
さ等の問題があり、リパワリングシステムは、現状にお
けるこれらの問題に対処できる有効な手段の一つである
と考えられる。
By the way, in recent years, a significant increase in the demand for electric power,
As a result, there are problems such as a reduction in the power reserve ratio of each power company, and difficulty in constructing a new power plant as soon as possible to deal with this.The repowering system addresses these issues at present. It is considered to be one of the effective means that can be done.

【0006】図6はコンバイントサイクルの基本的な構
成図で排熱回収式と呼ばれるものである。ガスタービン
1の排ガスを熱回収して蒸気を発生させる排熱回収ボイ
ラ2および発生した蒸気を導入する蒸気タービン3の
他、ガスタービン1の燃料を燃焼させる燃焼器4、燃焼
器4へ空気を送風するコンプレッサ5、ガスタービン1
に直結した発電機6、排ガスを大気へ放出するスタック
7、発生した蒸気量を制御する止め弁8および調節弁
9、蒸気タービン3に直結した発電機10、蒸気タービン
3で仕事を終えた蒸気を復水に戻す復水器11、復水を高
圧水として送水する給水ポンプ12等で構成される。な
お、このプラントにおけるガスタービン1の排ガス温度
1 は約 600℃である。
FIG. 6 is a basic block diagram of a combine cycle, which is called an exhaust heat recovery system. In addition to an exhaust heat recovery boiler 2 that recovers heat from the exhaust gas of the gas turbine 1 and generates steam, a steam turbine 3 that introduces the generated steam, a combustor 4 that combusts the fuel of the gas turbine 1, and air to the combustor 4. Compressor 5 and gas turbine 1 for blowing air
, A stack 6 that discharges exhaust gas to the atmosphere, a stop valve 8 and a control valve 9 that control the amount of generated steam, a generator 10 that is directly connected to the steam turbine 3, and steam that has finished its work with the steam turbine 3. It is composed of a condenser 11 for returning the condensate to the condensate, a water supply pump 12 for sending the condensate as high pressure water, and the like. The exhaust gas temperature G 1 of the gas turbine 1 in this plant is about 600 ° C.

【0007】これに対し、リパワリングシステムは既設
の汽力発電プラントを利用するため、構成が異なる。各
種のリパワリングシステムを図7(a)(b)および図
8(a)(b)に示す。
On the other hand, the repowering system uses an existing steam power plant, and therefore has a different configuration. Various repowering systems are shown in FIGS. 7 (a) (b) and 8 (a) (b).

【0008】図7(a)は汽力発電プラントにガスター
ビンプラントを追設し、排気再燃型コンバインドサイク
ルを構成した従来のリパワリングシステムの構成図であ
る。このリパワリングシステムはボイラ20、高圧タービ
ン3a、再燃器21、中圧タービン3b、低圧タービン3
c、発電機10、復水器11、復水ポンプ12a、低圧給水加
熱器22a,22b,22c、脱気器23、給水ポンプ12b、高
圧給水加熱器24a,24b,24cを主構成機器とする従来
の汽力発電プラントに、空気圧縮機5、燃焼器4、ガス
タービン1、ガスタービン発電機6、ガスダンパー等で
構成されるガスタービンプラントを追設して構成された
ものである。
FIG. 7 (a) is a block diagram of a conventional repowering system in which a gas turbine plant is added to a steam power plant to construct an exhaust gas reburn type combined cycle. This repowering system includes a boiler 20, a high pressure turbine 3a, a reburner 21, an intermediate pressure turbine 3b and a low pressure turbine 3
c, generator 10, condenser 11, condensate pump 12a, low-pressure feed water heaters 22a, 22b, 22c, deaerator 23, feed water pump 12b, high-pressure feed water heaters 24a, 24b, 24c are the main constituent devices. A conventional steam power plant is additionally provided with a gas turbine plant including an air compressor 5, a combustor 4, a gas turbine 1, a gas turbine generator 6, a gas damper, and the like.

【0009】なお、符号25は主蒸気管、26は高温再熱
管、27はクロスオーバ管、28は復水管である。また、こ
のリパワリングシステムはガスタービン1の排気をボイ
ラ20の燃焼用空気として利用するため、空気予熱器は不
要となる。さらに、ボイラ20の高温の排ガスを有効利用
するため、また高温の排ガスをそのまま煙突から放出す
ることができないため、排ガスの温度を下げる目的で、
高圧ガスクーラ31および低圧ガスクーラ30が追設されて
いる。
Reference numeral 25 is a main steam pipe, 26 is a high temperature reheat pipe, 27 is a crossover pipe, and 28 is a condensate pipe. Further, since this repowering system uses the exhaust gas of the gas turbine 1 as the combustion air of the boiler 20, the air preheater is unnecessary. Furthermore, in order to effectively use the high-temperature exhaust gas of the boiler 20, and because the high-temperature exhaust gas cannot be discharged as it is from the chimney, for the purpose of lowering the temperature of the exhaust gas,
A high pressure gas cooler 31 and a low pressure gas cooler 30 are additionally installed.

【0010】この高圧ガスクーラ31は給水管29から分岐
した水とボイラ20の排ガスとの熱交換を行なって給水を
加熱し、昇温した給水を再び蒸気タービンサイクル系に
戻している。また、低圧ガスクーラ30は復水管28から分
岐した水とボイラ20の排ガスとの熱交換を行なって復水
を加熱し、昇温した復水を再び蒸気タービンサイクル系
に戻している。
The high-pressure gas cooler 31 heats the feed water by exchanging heat between the water branched from the feed pipe 29 and the exhaust gas of the boiler 20, and returns the heated feed water to the steam turbine cycle system again. Further, the low-pressure gas cooler 30 heats the condensate by exchanging heat between the water branched from the condensate pipe 28 and the exhaust gas of the boiler 20, and returns the heated condensate to the steam turbine cycle system again.

【0011】図7(b)はパラレルブロック型コンバイ
ンドサイクルを構成した従来のリパワリングシステムの
構成図である。このリパワリングシステムは排気再燃型
コンバインドサイクルと異なり、ガスタービン1の排気
はボイラ20の燃焼用空気として利用せずに排熱回収ボイ
ラ2で熱回収され、蒸気発生として利用される。
FIG. 7B is a block diagram of a conventional repowering system that constitutes a parallel block type combined cycle. This repowering system is different from an exhaust gas recombustion type combined cycle, and the exhaust gas of the gas turbine 1 is not used as combustion air of the boiler 20 but is recovered by the exhaust heat recovery boiler 2 and used as steam generation.

【0012】なお、排熱回収ポイラ2への給水は、給水
管29から分岐して供給され、発生した蒸気は主蒸気管25
または高温再熱管26へ戻される。このサイクルの特徴
は、蒸気タービンとガスタービンの組合せ出力比率の幅
が広いこと、さらに強制通風機33が常時運転されている
ため、蒸気タービン単独運転が容易に行なえることであ
る。なお、符号32は空気予熱器を示している。
The water supply to the exhaust heat recovery boiler 2 is branched from the water supply pipe 29 and the generated steam is supplied to the main steam pipe 25.
Alternatively, it is returned to the high temperature reheat pipe 26. The features of this cycle are that the combined output ratio of the steam turbine and the gas turbine is wide, and that the forced draft fan 33 is constantly operating, so that the steam turbine alone can be easily operated. Reference numeral 32 indicates an air preheater.

【0013】図8(a)は排熱回収コンバインドサイク
ルを構成したリパワリングシステムの構成図である。こ
のリパワリングシステムは、ボイラおよび給水加熱器を
撤去し、かわりに排熱回収ボイラ2を設置したもので、
コンバインドサイクルの基本的な構成に近い。なお、脱
気器23は給水を脱気するために残される。
FIG. 8A is a block diagram of a repowering system which constitutes an exhaust heat recovery combined cycle. In this repowering system, the boiler and the feed water heater are removed, and instead the exhaust heat recovery boiler 2 is installed.
It is close to the basic structure of the combined cycle. The deaerator 23 is left for deaerating the water supply.

【0014】このサイクルの特徴は改造範囲が比較的大
きいが、リパワリング後の性能は最も向上することにあ
る。また燃料はガスタービンで決まる。図8(b)は給
水加熱型コンバインドサイクルを構成したリパワリング
システムの構成図である。
The feature of this cycle is that the range of remodeling is relatively large, but the performance after repowering is most improved. The fuel is determined by the gas turbine. FIG. 8B is a configuration diagram of a repowering system that constitutes a feedwater heating type combined cycle.

【0015】ガスタービン1の排ガスは高圧ガスクーラ
31および低圧ガスクーラ30で直接熱回収される。このサ
イクルの特徴は改造範囲が最も小さいが、リパワリング
後の性能向上も最も小さいため、海外でも実用例は少な
い。以上の各種リパワリングの選択は、ガスタービンと
蒸気タービンの出力比率,設置スペース,改造期間,燃
料の種類等により決定される。
The exhaust gas of the gas turbine 1 is a high pressure gas cooler.
31 and the low pressure gas cooler 30 directly recover heat. The feature of this cycle is that the modification range is the smallest, but the performance improvement after repowering is also the smallest, so there are few practical examples even overseas. The selection of the above various repowering is determined by the output ratio of the gas turbine and the steam turbine, the installation space, the modification period, the type of fuel, and the like.

【0016】[0016]

【発明が解決しようとする課題】従来のコンバインドサ
イクルにおいては、次のような問題がある。第1に、排
熱回収式コンバインドサイクルにおける蒸気タービン
は、主蒸気の温度条件がせいぜい 540℃程度であり、高
温化を図ることへの関心は少ない。その背景として従来
のガスタービンの排気温度は 600℃以下であり、その排
ガスを使って発生できる蒸気の温度はそれより低くな
り、排熱回収ボイラの経済性からもあまり高温にすると
極端に伝熱面積が増加し、性能向上による利得を設備費
の増加が上回ること、さらに高温の蒸気を蒸気タービン
に導入すると、タービンの構成材料の強度が低下し、特
に回転部は遠心力に耐えられなくなること等が最大の理
由と考えられている。
The conventional combined cycle has the following problems. First, the steam turbine in the exhaust heat recovery combined cycle has a main steam temperature condition of about 540 ° C at most, and there is little interest in increasing the temperature. As the background to this, the exhaust temperature of conventional gas turbines is 600 ° C or lower, and the temperature of the steam that can be generated using that exhaust gas is lower than that, so if the temperature of the heat recovery steam generator is too high, heat transfer will be extremely high. The increase in area, the increase in equipment cost outweighs the gain due to performance improvement, and the introduction of high-temperature steam into the steam turbine reduces the strength of the turbine's constituent materials, especially the rotating parts cannot withstand centrifugal force. Etc. is considered to be the main reason.

【0017】タービンの構成材料をグレードアップする
と、設備費が大きく増加し、経済性が大きく損われてし
まう。第2に、リパワリングシステムの場合は、既設の
蒸気タービンを流用するケースが多く、従来の蒸気条件
は 566℃が最高になる。
When the constituent materials of the turbine are upgraded, the facility cost increases significantly and the economical efficiency is greatly impaired. Second, in the case of the repowering system, the existing steam turbine is often used, and the conventional steam condition is 566 ℃.

【0018】今後は蒸気条件の高温化により 600℃級又
はそれ以上の蒸気温度が出現するが、一般的に高圧ター
ビンの初段翼およびロータは、その冷却蒸気(高圧低
温)を得ることができないため、材料の強度から高温化
に限度があるか、あるいは、高温化により材料のグレー
ドアップとそれに伴う設備費の増加となり、経済的でな
い。
Although steam temperatures of 600 ° C. or higher will appear in the future due to higher steam conditions, generally, the first stage blades and rotor of a high-pressure turbine cannot obtain the cooling steam (high-pressure low-temperature). However, there is a limit to the high temperature due to the strength of the material, or due to the high temperature, the material is upgraded and the equipment cost increases accordingly, which is not economical.

【0019】本発明の目的はガスタービン排熱の一部ま
たは全部を熱回収して冷却蒸気を発生させ、蒸気タービ
ンへ導入することにより、経済性を保って蒸気タービン
の蒸気温度を高温化させるようにしたコンバインドサイ
クル発電プラントを提供することにある。
The object of the present invention is to recover a part or all of the exhaust heat of the gas turbine to generate cooling steam and introduce it to the steam turbine, thereby keeping the steam temperature of the steam turbine high while keeping the economy. To provide a combined cycle power plant.

【0020】[0020]

【課題を解決するための手段】請求項1に係る発明はガ
スタービンと蒸気タービンとを組み合わせ、ガスタービ
ンの排ガスの保有する熱の一部または全部を排熱回収ボ
イラで蒸気タービンサイクルに熱回収するコンバインド
サイクル発電プラントにおいて、蒸気タービンへの主蒸
気経路に排熱回収ボイラから独立させて主蒸気をさらに
高温化させるボイラを設けると共に、排熱回収ボイラで
発生した蒸気の一部を冷却蒸気として蒸気タービンの動
翼植込部に供給する冷却蒸気供給装置を設けたことを特
徴とする。
According to a first aspect of the present invention, a gas turbine and a steam turbine are combined, and part or all of the heat retained in the exhaust gas of the gas turbine is recovered in a steam turbine cycle by an exhaust heat recovery boiler. In a combined cycle power plant, a boiler is installed in the main steam path to the steam turbine to separate the exhaust heat recovery boiler and raise the temperature of the main steam further, and part of the steam generated in the exhaust heat recovery boiler is used as cooling steam. It is characterized in that a cooling steam supply device for supplying to a moving blade implanting portion of the steam turbine is provided.

【0021】また、請求項2に係る発明はガスタービン
と蒸気タービンとを組み合わせ、ガスタービンの排ガス
の保有する熱の一部または全部を第1の排熱回収ボイラ
で蒸気タービンサイクルに熱回収するコンバインドサイ
クル発電プラントにおいて、蒸気タービンへの主蒸気経
路に第1の排熱回収ボイラから独立させて主蒸気をさら
に高温化させる第2の排熱回収ボイラを設けると共に、
第1の排熱回収ボイラで発生した蒸気の一部を冷却蒸気
として蒸気タービンの動翼植込部に供給する冷却蒸気供
給装置を設けたことを特徴とする。
The invention according to claim 2 is a combination of a gas turbine and a steam turbine, and part or all of the heat retained in the exhaust gas of the gas turbine is recovered in the steam turbine cycle by the first exhaust heat recovery boiler. In the combined cycle power plant, a second exhaust heat recovery boiler is provided in the main steam path to the steam turbine, which is independent of the first exhaust heat recovery boiler to further raise the temperature of the main steam, and
A cooling steam supply device is provided for supplying a part of the steam generated in the first exhaust heat recovery boiler as cooling steam to the moving blade implanting portion of the steam turbine.

【0022】さらに、請求項3に係る発明はガスタービ
ンと蒸気タービンとを組み合わせ、ガスタービンの排ガ
スの保有する熱の一部または全部を排気再燃ボイラで蒸
気タービンサイクルに熱回収するコンバインドサイクル
発電プラントにおいて、ガスタービンの排ガス経路に高
温蒸気を発生させる蒸気発生器を設けると共に、この蒸
気発生器の発生蒸気を冷却蒸気として蒸気タービンの動
翼植込部に供給する冷却蒸気供給装置を設けたことを特
徴とする。
Further, the invention according to claim 3 is a combined cycle power plant in which a gas turbine and a steam turbine are combined and a part or all of the heat retained in the exhaust gas of the gas turbine is recovered in a steam turbine cycle by an exhaust reburning boiler. In the above, a steam generator that generates high-temperature steam is provided in the exhaust path of the gas turbine, and a cooling steam supply device that supplies the steam generated by this steam generator as cooling steam to the blades of the steam turbine is also provided. Is characterized by.

【0023】また、請求項4に係る発明はガスタービン
と蒸気タービンとを組み合わせ、ガスタービンの排ガス
の保有する熱の一部または全部を排熱再燃ボイラで蒸気
タービンサイクルに熱回収するコンバインドサイクル発
電プラントにおいて、排熱回収ボイラと並列に主蒸気を
高温化させるボイラを設けると共に、排熱回収ボイラで
発生した蒸気の一部を冷却蒸気として蒸気タービンの動
翼植込部に供給する冷却蒸気供給装置を設けたことを特
徴とする。さらに、請求項5に係る発明は冷却蒸気供給
装置が動翼植込部への冷却蒸気量を調節する調整弁を備
えることを特徴とする。
Further, the invention according to claim 4 is a combined cycle power generation in which a gas turbine and a steam turbine are combined, and a part or all of the heat retained in the exhaust gas of the gas turbine is recovered in a steam turbine cycle by an exhaust heat reburn boiler. In the plant, a boiler that raises the temperature of the main steam is installed in parallel with the exhaust heat recovery boiler, and part of the steam generated in the exhaust heat recovery boiler is supplied as cooling steam to the turbine blades of the steam turbine. A device is provided. Further, the invention according to claim 5 is characterized in that the cooling steam supply device comprises a regulating valve for adjusting the amount of cooling steam to the moving blade implanting portion.

【0024】[0024]

【作用】本発明のコンバインドサイクルシステムによる
と、ガスタービン排熱の一部を利用して蒸気タービン冷
却用蒸気を発生させ、蒸気タービンの高温部に導入する
ことにより材料のグレードアップなしに蒸気タービンの
蒸気条件を高温化することができ、経済的なプラント効
率の向上が可能となる。
According to the combined cycle system of the present invention, a part of exhaust heat of the gas turbine is used to generate steam for cooling the steam turbine, and the steam is introduced into the high temperature part of the steam turbine without upgrading the material. It is possible to raise the steam condition of the high temperature, and economically improve the plant efficiency.

【0025】[0025]

【実施例】図1は本発明の一実施例の系統構成図であ
る。なお、図中、図6の従来例と同一機器には同一符号
を付して、その説明は省略する。
FIG. 1 is a system configuration diagram of an embodiment of the present invention. In the figure, the same devices as those in the conventional example of FIG. 6 are designated by the same reference numerals, and the description thereof will be omitted.

【0026】同図に示すように、本実施例が従来例と相
違する点は、排熱回収ボイラ2の発生蒸気を分配し、制
御する調整弁13および蒸気タービン3の冷却部へ導入す
る配管14を設けたことと、排熱回収ボイラ2の発生蒸気
の残りをさらに助燃して高温化するためのボイラ20を設
けた点である。
As shown in the figure, the present embodiment is different from the conventional example in that the steam generated in the exhaust heat recovery boiler 2 is distributed and controlled, and a pipe is introduced to the cooling section of the steam turbine 3. 14 is provided and a boiler 20 is provided for further supporting the remaining steam generated by the exhaust heat recovery boiler 2 to raise the temperature.

【0027】次に、蒸気タービン3の冷却方法の一例を
図2を参照して説明する。図2は蒸気タービン3の高温
・高圧部(一部)を示す断面図である。ボイラ20からの
高温高圧蒸気は止め弁8、調節弁9および主蒸気管25を
通り、ノズルボックス40へ導入され、ノズル板40aで減
圧されて、高速流となる。この高速流はさらに初段動翼
41へ導入されて、ロータ44を回転させるエネルギーとし
て使われる。その後、蒸気はさらに下流のノズル42と動
翼43へ導入される。
Next, an example of a cooling method for the steam turbine 3 will be described with reference to FIG. FIG. 2 is a sectional view showing a high temperature / high pressure part (a part) of the steam turbine 3. The high-temperature high-pressure steam from the boiler 20 passes through the stop valve 8, the control valve 9 and the main steam pipe 25, is introduced into the nozzle box 40, is decompressed by the nozzle plate 40a, and becomes a high-speed flow. This high-speed flow is the first stage moving blade
It is introduced into 41 and used as energy to rotate rotor 44. After that, the steam is introduced to the nozzle 42 and the moving blade 43 further downstream.

【0028】一方、排熱回収ボイラ2から分岐された蒸
気は調節弁13で流量調整されて、配管14でタービン3の
冷却蒸気導入部45へと導入される。導入された冷却蒸気
は回転部と静止部の間を通って、初段動翼41の植込部41
aに設けられた冷却孔46へと導びかれる。
On the other hand, the flow rate of the steam branched from the exhaust heat recovery boiler 2 is adjusted by the control valve 13 and introduced into the cooling steam introducing section 45 of the turbine 3 through the pipe 14. The introduced cooling steam passes between the rotating part and the stationary part, and enters the implanting part 41 of the first-stage rotor blade 41.
It is led to the cooling hole 46 provided in a.

【0029】ここで、冷却作用を詳しく説明する。図1
のボイラ20からの蒸気S1 を 620℃、排熱回収ボイラ2
からの冷却蒸気S3 を 540℃とする。
Here, the cooling action will be described in detail. FIG.
Steam S 1 from the boiler 20 at 620 ℃, exhaust heat recovery boiler 2
The cooling steam S 3 from 540 ° C. is used.

【0030】ノズル板40aを通って減圧された蒸気S2
は 580℃程度となり、従って初段動翼41のメタル温度も
定常的には 580℃程度となる。冷却蒸気がない場合は、
植込部41aおよびロータ44の初段ディスク部は熱伝導に
より 580℃より若干近い温度となり、遠心力のかかる動
翼植込部41aとロータディスク部の接点の強度(許容応
力)はこの温度に支配される。
Steam S 2 decompressed through the nozzle plate 40a
Is about 580 ° C. Therefore, the metal temperature of the first-stage rotor blade 41 is constantly about 580 ° C. If there is no cooling steam,
The temperature of the implanting part 41a and the first-stage disk part of the rotor 44 is slightly close to 580 ° C due to heat conduction, and the strength (allowable stress) of the contact point between the rotor blade part 41a and the rotor blade part 41a to which centrifugal force is applied is governed by this temperature. To be done.

【0031】一方、冷却蒸気を冷却孔46へ導入した場
合、 540℃の冷却蒸気S3 により植込部41aは冷却さ
れ、接点の温度は 570℃以下とすることが可能となる。
すなわち、10℃以上の冷却効果が得られる。
On the other hand, when the cooling steam is introduced into the cooling hole 46, the implantation portion 41a is cooled by the cooling steam S 3 of 540 ° C., and the temperature of the contact can be kept at 570 ° C. or lower.
That is, a cooling effect of 10 ° C. or higher can be obtained.

【0032】この冷却効果により、例えば12Cr鋼の場
合には、材料の許容応力は2割以上向上することにな
り、もはや、初段動翼41とロータ44の材料のグレードア
ップは不要となる。
Due to this cooling effect, in the case of 12Cr steel, for example, the allowable stress of the material is improved by 20% or more, and it is no longer necessary to upgrade the material of the first stage moving blade 41 and the rotor 44.

【0033】また、この他、同じ冷却蒸気を主蒸気止弁
や加減弁(図示せず)へ導入しても、材料のグレードア
ップをおさえることが可能である。このように、本実施
例においては、排熱回収ボイラ2で発生した蒸気の一部
を冷却蒸気としてタービン3の冷却部へ導入して、一
方、主蒸気(望ましくは再熱蒸気も含め)もボイラ20で
助燃することにより、材料のグレードアップなしに蒸気
タービンの蒸気条件を高温化して効率向上を図ることが
可能となる。
In addition, the same cooling steam can be introduced into the main steam stop valve or the regulator valve (not shown) to suppress the material upgrade. As described above, in this embodiment, part of the steam generated in the exhaust heat recovery boiler 2 is introduced as cooling steam into the cooling section of the turbine 3, while main steam (preferably also including reheated steam) is also introduced. By supporting the combustion in the boiler 20, it becomes possible to raise the steam condition of the steam turbine to a high temperature and improve the efficiency without upgrading the material.

【0034】なお、本実施例は図2に示すように、冷却
孔46の下流に温度検出器47を設けて蒸気温度に従い調整
弁13の開度を変化させ、冷却蒸気量を変えることも可能
である。
In this embodiment, as shown in FIG. 2, a temperature detector 47 may be provided downstream of the cooling hole 46 to change the opening degree of the adjusting valve 13 according to the steam temperature to change the cooling steam amount. Is.

【0035】運転中冷却孔46の出口で検出された温度が
蒸気温度信号に変換されて制御装置48に与えられ、そこ
で設定値と比較されてそのときの偏差により調整弁13の
開度を変える制御が行なわれる。これは冷却蒸気量を適
正に保つのにより効果的であり、確実に温度が低下する
ことで材料のグレードアップの必要性はなくなる。ま
た、本実施例は冷却孔46に代えて冷却溝で構成してもよ
い。
The temperature detected at the outlet of the cooling hole 46 during operation is converted into a steam temperature signal and given to the control device 48, which is compared with a set value and the opening degree of the regulating valve 13 is changed according to the deviation at that time. Control is performed. This is more effective in maintaining a proper amount of cooling steam, and a reliable temperature reduction eliminates the need to upgrade the material. Further, in the present embodiment, the cooling holes 46 may be replaced by cooling grooves.

【0036】図3は本発明の他の実施例の構成図であ
る。本実施例が図1の実施例と相違する点は、主蒸気
(および再熱蒸気)を高温化するためのボイラ20のかわ
りに、ガスタービン1の途中段落の作動ガスG2 (例え
ば 680℃)を抽出し、ガスダンパ15と抽気ガス配管16を
通して第2の排熱回収ボイラ2bで蒸気と熱交換するよ
う構成した点である。ここで、排熱回収ボイラ2aは第
1の排熱回収ボイラと称する。
FIG. 3 is a block diagram of another embodiment of the present invention. This embodiment differs from the embodiment of FIG. 1 in that instead of the boiler 20 for raising the temperature of the main steam (and the reheated steam), the working gas G 2 (for example, 680 ° C.) in the middle paragraph of the gas turbine 1 is used. ) Is extracted, and heat is exchanged with the steam in the second exhaust heat recovery boiler 2b through the gas damper 15 and the extraction gas pipe 16. Here, the exhaust heat recovery boiler 2a is referred to as a first exhaust heat recovery boiler.

【0037】これにより、図1の実施例のようにボイラ
20を助燃する必要がなく燃料系統(図示せず)を簡素化
することができる。もう一つの効果は、ガスタービン1
の途中段落から高温ガスを抽出することにより、ガスタ
ービン排気量が減り、排気ダクトの圧力損失が減ってガ
スタービン1の効率が若干向上することである。
Thus, as in the embodiment of FIG. 1, the boiler
A fuel system (not shown) can be simplified without the need to support 20. Another effect is the gas turbine 1
By extracting the high temperature gas from the middle of the paragraph, the gas turbine exhaust volume is reduced, the pressure loss of the exhaust duct is reduced, and the efficiency of the gas turbine 1 is slightly improved.

【0038】なお、冷却方法および冷却による作用効果
は図1の実施例と同様である。図4は排気再燃型リパワ
リングシステムに本発明を適用した実施例の構成図であ
る。
The cooling method and the effects of the cooling are similar to those of the embodiment shown in FIG. FIG. 4 is a block diagram of an embodiment in which the present invention is applied to an exhaust gas reburn type repowering system.

【0039】本実施例においては、高圧ガスクーラ31か
らの給水の一部を蒸気発生器33へ導き、ガスタービン排
ガスと熱交換して冷却用蒸気を発生させ、調節弁13およ
び配管14で蒸気タービン3の冷却部へ導入するよう構成
する。
In this embodiment, a part of the feed water from the high-pressure gas cooler 31 is guided to the steam generator 33 to exchange heat with the gas turbine exhaust gas to generate cooling steam, and the control valve 13 and the pipe 14 are used for the steam turbine. It is configured to be introduced into the cooling unit of No. 3.

【0040】なお、従来の排気再熱型リパワリングで
も、ガスタービン1の排ガスをそのまま直接ボイラ20へ
導入すると、風箱が強度上もたないため、風道蒸気器ま
たは風道加熱器(図示せず)で熱交換して排ガスの温度
を下げているので、その一部を蒸気発生器33におきかえ
てもよい。
Even in the conventional exhaust reheat type repowering, if the exhaust gas of the gas turbine 1 is directly introduced into the boiler 20, the wind box is not strong enough, and therefore, the wind duct steamer or the wind duct heater (not shown). Since the temperature of the exhaust gas is lowered by exchanging heat with (1), a part of the exhaust gas may be replaced with the steam generator 33.

【0041】このように構成することにより、蒸気ター
ビン3の構成材料をグレードアップすることなしにボイ
ラ20の発生蒸気温度を高温化する事が可能になる。図5
はパラレルブロック型リパワリングシステムに本発明を
適用した実施例の系統構成図である。
With this configuration, it is possible to raise the temperature of steam generated by the boiler 20 without upgrading the constituent material of the steam turbine 3. Figure 5
FIG. 1 is a system configuration diagram of an embodiment in which the present invention is applied to a parallel block type repowering system.

【0042】本実施例においては、排熱回収ボイラ2の
発生蒸気の一部を分岐させ、調節弁13および配管14で蒸
気タービン3の冷却部へ導入するように構成する。ま
た、残りの発生蒸気はボイラ20の過熱部へ混入させて、
さらに高温化する。
In this embodiment, a part of the steam generated in the exhaust heat recovery boiler 2 is branched and introduced into the cooling section of the steam turbine 3 through the control valve 13 and the pipe 14. In addition, the remaining steam is mixed in the superheated part of the boiler 20,
Further raises the temperature.

【0043】このように構成することにより、蒸気ター
ビン3の材料をグレードアップすることなしにボイラ20
の発生蒸気および排熱回収ボイラ2の発生蒸気を高温化
することが可能になる。さらに、本実施例では大幅な設
備の追加なしに高温化を達成することができる。
With this configuration, the boiler 20 can be used without upgrading the material of the steam turbine 3.
It is possible to raise the temperature of the generated steam and the generated steam of the exhaust heat recovery boiler 2. Furthermore, in this embodiment, it is possible to achieve high temperature without adding a large amount of equipment.

【0044】[0044]

【発明の効果】以上説明したように、本発明のコンバイ
ンドサイクル発電プラントによると、ガスタービン排熱
の一部または全部を熱回収して冷却蒸気を発生、蒸気タ
ービンの冷却部へ導入することにより、蒸気タービンの
材料をグレードアップすることなしに蒸気タービンの蒸
気温度を高温化して、経済的にプラント効率を向上させ
ることが可能となる。
As described above, according to the combined cycle power plant of the present invention, a part or all of the exhaust heat of the gas turbine is recovered to generate cooling steam, which is introduced into the cooling section of the steam turbine. By increasing the steam temperature of the steam turbine without upgrading the material of the steam turbine, it is possible to economically improve the plant efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるコンバインドサイクル発電プラン
トの一実施例を示す構成図。
FIG. 1 is a configuration diagram showing an embodiment of a combined cycle power generation plant according to the present invention.

【図2】蒸気タービンの高圧高温部の冷却方法の一例を
示す断面図。
FIG. 2 is a cross-sectional view showing an example of a cooling method for a high pressure and high temperature portion of a steam turbine.

【図3】本発明の他の実施例を示す構成図。FIG. 3 is a configuration diagram showing another embodiment of the present invention.

【図4】本発明の他の実施例を示す構成図。FIG. 4 is a configuration diagram showing another embodiment of the present invention.

【図5】本発明の他の実施例を示す構成図。FIG. 5 is a configuration diagram showing another embodiment of the present invention.

【図6】従来のコンバインドサイクル発電プラントを示
す構成図。
FIG. 6 is a configuration diagram showing a conventional combined cycle power plant.

【図7】(a)(b)は従来のリパワリングシステムを
示す構成図。
7A and 7B are configuration diagrams showing a conventional repowering system.

【図8】(a)(b)は従来のリパワリングシステムを
示す構成図。
8A and 8B are configuration diagrams showing a conventional repowering system.

【符号の説明】[Explanation of symbols]

1…ガスタービン 2,2a,2b…排熱回収ボイ
ラ 3…蒸気タービン 13…調整弁 14…配管 15…ダンパ 16…抽出ガス配管 20…ボイラ 33…蒸気発生器 45…冷却蒸気導入孔 46…冷却孔 47…温度検出器 48…制御装置
1 ... Gas turbine 2, 2a, 2b ... Exhaust heat recovery boiler 3 ... Steam turbine 13 ... Regulator valve 14 ... Piping 15 ... Damper 16 ... Extraction gas piping 20 ... Boiler 33 ... Steam generator 45 ... Cooling steam introduction hole 46 ... Cooling Hole 47 ... Temperature detector 48 ... Control device

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ガスタービンと蒸気タービンとを組み合
わせ、該ガスタービンの排ガスの保有する熱の一部また
は全部を排熱回収ボイラで蒸気タービンサイクルに熱回
収するコンバインドサイクル発電プラントにおいて、前
記蒸気タービンへの主蒸気経路に該排熱回収ボイラから
独立させて主蒸気をさらに高温化させるボイラを設ける
と共に、前記排熱回収ボイラで発生した蒸気の一部を冷
却蒸気として前記蒸気タービンの動翼植込部に供給する
冷却蒸気供給装置を設けたことを特徴とするコンバイン
ドサイクル発電プラント。
1. A combined cycle power plant in which a gas turbine and a steam turbine are combined and part or all of the heat retained in the exhaust gas of the gas turbine is recovered in a steam turbine cycle by an exhaust heat recovery boiler. In addition to providing a boiler for further raising the temperature of the main steam to the main steam path to the main steam path to the main steam path, a part of the steam generated in the exhaust heat recovery boiler is used as cooling steam to plant blades of the steam turbine. A combined cycle power plant characterized in that it is provided with a cooling steam supply device for supplying to the inlet part.
【請求項2】 ガスタービンと蒸気タービンとを組み合
わせ、該ガスタービンの排ガスの保有する熱の一部また
は全部を第1の排熱回収ボイラで蒸気タービンサイクル
に熱回収するコンバインドサイクル発電プラントにおい
て、前記蒸気タービンへの主蒸気経路に該第1の排熱回
収ボイラから独立させて主蒸気をさらに高温化させる第
2の排熱回収ボイラを設けると共に、前記第1の排熱回
収ボイラで発生した蒸気の一部を冷却蒸気として前記蒸
気タービンの動翼植込部に供給する冷却蒸気供給装置を
設けたことを特徴とするコンバインドサイクル発電プラ
ント。
2. A combined cycle power plant in which a gas turbine and a steam turbine are combined and a part or all of the heat retained in the exhaust gas of the gas turbine is recovered in a steam turbine cycle by a first exhaust heat recovery boiler, A second exhaust heat recovery boiler, which is independent of the first exhaust heat recovery boiler and further raises the temperature of the main steam, is provided in the main steam path to the steam turbine, and is generated in the first exhaust heat recovery boiler. A combined cycle power plant comprising a cooling steam supply device for supplying a part of the steam as cooling steam to a moving blade implantation section of the steam turbine.
【請求項3】 ガスタービンと蒸気タービンとを組み合
わせ、該ガスタービンの排ガスの保有する熱の一部また
は全部を排気再燃ボイラで蒸気タービンサイクルに熱回
収するコンバインドサイクル発電プラントにおいて、前
記ガスタービンの排ガス経路に高温蒸気を発生させる蒸
気発生器を設けると共に、この蒸気発生器の発生蒸気を
冷却蒸気として前記蒸気タービンの動翼植込部に供給す
る冷却蒸気供給装置を設けたことを特徴とするコンバイ
ンドサイクル発電プラント。
3. A combined cycle power plant in which a gas turbine and a steam turbine are combined and a part or all of the heat retained in the exhaust gas of the gas turbine is recovered in a steam turbine cycle by an exhaust reburn boiler. A steam generator that generates high-temperature steam is provided in the exhaust gas path, and a cooling steam supply device that supplies the steam generated by the steam generator as cooling steam to the blade-implanted portion of the steam turbine is provided. Combined cycle power plant.
【請求項4】 ガスタービンと蒸気タービンとを組み合
わせ、該ガスタービンの排ガスの保有する熱の一部また
は全部を排熱再燃ボイラで蒸気タービンサイクルに熱回
収するコンバインドサイクル発電プラントにおいて、前
記排熱回収ボイラと並列に主蒸気を高温化させるボイラ
を設けると共に、前記排熱回収ボイラで発生した蒸気の
一部を冷却蒸気として前記蒸気タービンの動翼植込部に
供給する冷却蒸気供給装置を設けたことを特徴とするコ
ンバインドサイクル発電プラント。
4. A combined cycle power plant in which a gas turbine and a steam turbine are combined and a part or all of the heat retained in the exhaust gas of the gas turbine is recovered in a steam turbine cycle by an exhaust heat reburn boiler. A boiler for raising the temperature of the main steam is provided in parallel with the recovery boiler, and a cooling steam supply device for supplying a part of the steam generated by the exhaust heat recovery boiler as cooling steam to the moving blade implantation section of the steam turbine is provided. A combined cycle power plant characterized by
【請求項5】 前記冷却蒸気供給装置が該動翼植込部へ
の冷却蒸気量を調節する調整弁を備えることを特徴とす
る請求項1ないし4記載のコンバインドサイクル発電プ
ラント。
5. The combined cycle power plant according to any one of claims 1 to 4, wherein the cooling steam supply device includes an adjusting valve for adjusting the amount of cooling steam to the moving blade implanting portion.
JP14433095A 1995-06-12 1995-06-12 Combined cycle, electric power plant Pending JPH08338205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14433095A JPH08338205A (en) 1995-06-12 1995-06-12 Combined cycle, electric power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14433095A JPH08338205A (en) 1995-06-12 1995-06-12 Combined cycle, electric power plant

Publications (1)

Publication Number Publication Date
JPH08338205A true JPH08338205A (en) 1996-12-24

Family

ID=15359607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14433095A Pending JPH08338205A (en) 1995-06-12 1995-06-12 Combined cycle, electric power plant

Country Status (1)

Country Link
JP (1) JPH08338205A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999015765A1 (en) * 1997-09-22 1999-04-01 Mitsubishi Heavy Industries, Ltd. Cooling steam control method for combined cycle power generation plants
US6279308B1 (en) 1997-04-23 2001-08-28 Mitsubishi Heavy Industries, Ltd. Cooling steam control method for combined cycle power generation plants
EP1152125A1 (en) * 2000-05-05 2001-11-07 Siemens Aktiengesellschaft Method and apparatus for the cooling of the inlet part of the axis of a steam turbine
JP2003518223A (en) * 1999-12-21 2003-06-03 シーメンス アクチエンゲゼルシヤフト Operation method of steam turbine and turbine equipment provided with steam turbine operated by the method
US7003956B2 (en) 2003-04-30 2006-02-28 Kabushiki Kaisha Toshiba Steam turbine, steam turbine plant and method of operating a steam turbine in a steam turbine plant
US7056084B2 (en) 2003-05-20 2006-06-06 Kabushiki Kaisha Toshiba Steam turbine
WO2012163467A1 (en) * 2011-05-31 2012-12-06 Linde Aktiengesellschaft Method and device for producing superheated steam
CN103527273A (en) * 2013-10-21 2014-01-22 上海交通大学 Passive type organic working medium generating set

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6279308B1 (en) 1997-04-23 2001-08-28 Mitsubishi Heavy Industries, Ltd. Cooling steam control method for combined cycle power generation plants
WO1999015765A1 (en) * 1997-09-22 1999-04-01 Mitsubishi Heavy Industries, Ltd. Cooling steam control method for combined cycle power generation plants
JP2003518223A (en) * 1999-12-21 2003-06-03 シーメンス アクチエンゲゼルシヤフト Operation method of steam turbine and turbine equipment provided with steam turbine operated by the method
EP1152125A1 (en) * 2000-05-05 2001-11-07 Siemens Aktiengesellschaft Method and apparatus for the cooling of the inlet part of the axis of a steam turbine
WO2001086122A1 (en) * 2000-05-05 2001-11-15 Siemens Aktiengesellschaft Method and device for cooling the inflow area of the shaft of a steam turbine
US6824351B2 (en) 2000-05-05 2004-11-30 Siemens Aktienegesellschaft Method and device for cooling the inflow area of the shaft of a steam turbine
CN1309938C (en) * 2000-05-05 2007-04-11 西门子公司 Method and device for cooling inflow of shaft of steam turbine
US7003956B2 (en) 2003-04-30 2006-02-28 Kabushiki Kaisha Toshiba Steam turbine, steam turbine plant and method of operating a steam turbine in a steam turbine plant
US7056084B2 (en) 2003-05-20 2006-06-06 Kabushiki Kaisha Toshiba Steam turbine
WO2012163467A1 (en) * 2011-05-31 2012-12-06 Linde Aktiengesellschaft Method and device for producing superheated steam
CN103527273A (en) * 2013-10-21 2014-01-22 上海交通大学 Passive type organic working medium generating set
CN103527273B (en) * 2013-10-21 2015-07-08 上海交通大学 Passive type organic working medium generating set

Similar Documents

Publication Publication Date Title
US6109019A (en) Steam cooled gas turbine system
KR100268611B1 (en) Combined cycle power plant and supplying method of coolant therof
US6499302B1 (en) Method and apparatus for fuel gas heating in combined cycle power plants
US7107774B2 (en) Method and apparatus for combined cycle power plant operation
EP1752617A2 (en) Combined cycle power plant
JPH06264763A (en) Combined plant system
JPH08260912A (en) Combined cycle power plant
JP4503995B2 (en) Reheat steam turbine plant and operation method thereof
JPH08338205A (en) Combined cycle, electric power plant
JP2699808B2 (en) Steam-cooled gas turbine combined plant
JPH1061413A (en) Exhaust reburning type compound power plant
JPH1113488A (en) Full fired heat recovery combined plant using steam cooling type gas turbine
JPH09303113A (en) Combined cycle generating plant
JPH10131716A (en) Method and device for controlling steam cooling system of gas turbine
JP3122234B2 (en) Steam power plant repowering system
JP3068972B2 (en) Combined cycle power plant
JPS6060207A (en) Steam turbine plant
JP2001214758A (en) Gas turbine combined power generation plant facility
JPH0988518A (en) Composite power generating plant
JP5475315B2 (en) Combined cycle power generation system
JPH1113489A (en) Gas turbine cooling method for combined cycle power plant
JP2000130107A (en) Combined cycle power plant with gas turbine
JP3880746B2 (en) Waste heat recovery device and operation method thereof
JPH1193618A (en) Steam pressure control method for gas turbine steam cooling system
Tawney et al. Economic and performance evaluation of combined cycle repowering options