JP2019209249A - Apparatus and method of evaporative concentration apparatus for power generation facility and power generation facility - Google Patents

Apparatus and method of evaporative concentration apparatus for power generation facility and power generation facility Download PDF

Info

Publication number
JP2019209249A
JP2019209249A JP2018106894A JP2018106894A JP2019209249A JP 2019209249 A JP2019209249 A JP 2019209249A JP 2018106894 A JP2018106894 A JP 2018106894A JP 2018106894 A JP2018106894 A JP 2018106894A JP 2019209249 A JP2019209249 A JP 2019209249A
Authority
JP
Japan
Prior art keywords
water
treated
carrier gas
power generation
evaporative concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018106894A
Other languages
Japanese (ja)
Other versions
JP7079151B2 (en
Inventor
理 中森
Osamu Nakamori
理 中森
大橋 伸一
Shinichi Ohashi
伸一 大橋
昭吾 梅本
Shogo Umemoto
昭吾 梅本
金井修
Osamu Kanai
修 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2018106894A priority Critical patent/JP7079151B2/en
Publication of JP2019209249A publication Critical patent/JP2019209249A/en
Application granted granted Critical
Publication of JP7079151B2 publication Critical patent/JP7079151B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Drying Of Gases (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

To provide an evaporative concentration apparatus being installed in a power generation facility such as a thermal power plant and the like and effectively utilizing thermal energy generated in the power generation facility.SOLUTION: An evaporative concentration apparatus performing the evaporative concentration treatment of water to be treated containing a mixed component includes: a humidification tower bringing a carrier gas into gas-liquid contact with the water to be treated and discharging the humidified carrier gas; a dehumidification tower forming a dehumidified carrier gas by bringing the humidified carrier gas into gas-liquid contact with cooling water and condensing at least a part of a moisture content and discharging the dehumidified carrier gas; a first circulation path circulating the water to be treated to the humidification tower; and a heating means heating the water to be treated. The heating means heats the water to be treated using hot water discharged from a feed water heater in a power generation facility as a heat source.SELECTED DRAWING: Figure 2

Description

本発明は、火力発電所などの発電設備において排水処理に用いられる蒸発濃縮装置及び方法と、そのような蒸発濃縮装置を備える発電設備とに関する。   The present invention relates to an evaporative concentration apparatus and method used for wastewater treatment in a power generation facility such as a thermal power plant, and a power generation facility including such an evaporative concentration device.

火力発電所などの発電設備では、酸、アルカリ、金属塩などの各種の成分が混入した排水が発生する。最近では、水質汚染の防止や水資源の有効利用の観点から、液体廃棄物の量をゼロとするZLD(Zero Liquid Discharge)規制が適用されることが多くなってきている。そのため、各種の成分が混入した排水である被処理水から混入成分が濃縮された濃縮水を生成する蒸発濃縮技術が必要とされるようになってきた。被処理水に対して蒸発濃縮処理を行ったのち、例えば濃縮水からは混入成分が分離される。蒸発濃縮処理により混入成分を含まない処理水も発生するが、処理水は再利用することができる。蒸発濃縮装置としては、多段効用缶式や多段蒸留式、機械的圧縮式などが知られているが、これらはエネルギーを多く消費し、ランニングコストが高くなるという課題を有する。熱交換器による熱の回収は不可能ではないが、回収できる熱の量には限りがある。   In power generation facilities such as thermal power plants, wastewater containing various components such as acids, alkalis and metal salts is generated. Recently, ZLD (Zero Liquid Discharge) regulations that reduce the amount of liquid waste to zero have been increasingly applied from the viewpoint of preventing water pollution and effective use of water resources. Therefore, an evaporative concentration technique for generating concentrated water in which the mixed components are concentrated from the water to be treated which is wastewater mixed with various components has been required. After evaporating and concentrating the water to be treated, for example, mixed components are separated from the concentrated water. The evaporative concentration process also generates treated water that does not contain mixed components, but the treated water can be reused. As the evaporative concentration apparatus, a multi-stage effect can type, a multi-stage distillation type, a mechanical compression type, and the like are known. However, these have a problem that a lot of energy is consumed and a running cost becomes high. Although heat recovery by a heat exchanger is not impossible, the amount of heat that can be recovered is limited.

特表2015−527930号公報Special table 2015-527930 gazette 特表2016−530096号公報JP-T-2006-530096 米国特許第9120033号明細書US Patent No. 9120033 米国特許出願公開第2015/0129410号明細書US Patent Application Publication No. 2015/0129410

蒸発濃縮装置の運転には多大のエネルギーが必要とされるが、火力発電所などの発電設備では、非常に効率よく蒸気タービンを駆動したのちに大量の熱水が発生している。またこの熱水のエネルギーは、有効利用されることなく廃棄されている場合もある。   A large amount of energy is required for the operation of the evaporative concentrator, but in a power generation facility such as a thermal power plant, a large amount of hot water is generated after the steam turbine is driven very efficiently. Moreover, the energy of this hot water may be discarded without being used effectively.

本発明の目的は、発電設備で発生する熱エネルギーを有効利用して動作することができる蒸発濃縮装置及び方法と、そのような蒸発濃縮装置を有する発電設備とを提供することにある。   An object of the present invention is to provide an evaporative concentration apparatus and method capable of operating by effectively using thermal energy generated in the power generation facility, and a power generation facility having such an evaporative concentration apparatus.

水の沸点に近いかそれよりも低い温度の熱源を利用して水を蒸発させることができる技術として、キャリアガス式蒸発装置がある。本発明者らは、キャリアガス式蒸発装置に着目して本発明を完成させた。キャリアガス式蒸発装置とは、加湿塔において比較的温度の高い条件で被処理水とキャリアガスとを気液接触させて被処理水中の水分を水蒸気としてキャリアガスに移行させてキャリアガスを加湿し、次に、水蒸気を含むキャリアガスを除湿塔において冷却し、キャリアガス中の水蒸気を凝縮させるものである。被処理水中の水分が除湿塔における凝縮水に移行するので、被処理水としては減容が達成されたことになる。このようなキャリア式ガス蒸発装置の詳細な構成は、例えば、特許文献1あるいは特許文献2に記載されている。気液接触により気体を加湿する際に気液接触の効率を高めるものとして、特許文献3は、バブリングカラムを多段に設けることを開示している。また気液接触により気体を冷却し気体中の水分を凝縮させる際に気液接触の効率を高めるものとして、特許文献4は、バブリングカラムを多段に設けることを開示している。   As a technique that can evaporate water using a heat source having a temperature close to or lower than the boiling point of water, there is a carrier gas type evaporator. The inventors of the present invention have completed the present invention by paying attention to a carrier gas evaporator. The carrier gas evaporator is a humidifying tower that humidifies the carrier gas by bringing the water to be treated and the carrier gas into gas-liquid contact under relatively high temperature conditions and transferring the water in the water to be treated as water vapor to the carrier gas. Next, the carrier gas containing water vapor is cooled in a dehumidifying tower to condense the water vapor in the carrier gas. Since the water in the water to be treated is transferred to the condensed water in the dehumidifying tower, volume reduction has been achieved as the water to be treated. The detailed configuration of such a carrier type gas evaporation apparatus is described in Patent Document 1 or Patent Document 2, for example. Patent Document 3 discloses that bubbling columns are provided in multiple stages as a means for improving the efficiency of gas-liquid contact when humidifying gas by gas-liquid contact. Further, Patent Document 4 discloses that bubbling columns are provided in multiple stages as one that increases the efficiency of gas-liquid contact when the gas is cooled by gas-liquid contact to condense moisture in the gas.

したがって本発明の蒸発濃縮装置は、発電設備に設けられ、混入成分を含む被処理水に対して蒸発濃縮処理を行なう蒸発濃縮装置であって、キャリアガスと被処理水が供給されてキャリアガスと被処理水とを気液接触させ、キャリアガスを加湿して排出する加湿塔と、加湿されたキャリアガスと冷却水とを気液接触させて加湿されたキャリアガスを冷却し、水分の少なくとも一部を凝縮させることにより、除湿されたキャリアガスを生成して排出する除湿塔と、加湿塔に対して被処理水を循環させる第1の循環経路と、被処理水を加温する加温手段と、を有し、加温手段は、発電設備の給水加熱器から排出される熱水を熱源として被処理水を加温する。   Therefore, the evaporative concentration apparatus of the present invention is an evaporative concentration apparatus that is provided in a power generation facility and performs evaporative concentration treatment on water to be treated containing mixed components, and is supplied with carrier gas and water to be treated. A humidifying tower that brings the water to be treated into gas-liquid contact and humidifies and discharges the carrier gas; and the humidified carrier gas and cooling water are brought into gas-liquid contact to cool the humidified carrier gas, thereby cooling at least one of the moisture. A dehumidifying tower that generates and discharges a dehumidified carrier gas by condensing the part, a first circulation path that circulates the water to be treated with respect to the humidifying tower, and a heating means that heats the water to be treated The heating means warms the water to be treated using hot water discharged from the feed water heater of the power generation facility as a heat source.

本発明の発電設備は、本発明の蒸発濃縮装置を備える。   The power generation facility of the present invention includes the evaporative concentration apparatus of the present invention.

本発明の蒸発濃縮方法は、発電設備において混入成分を含む被処理水に対して蒸発濃縮処理を行なう蒸発濃縮方法であって、キャリアガスと被処理水が供給されてキャリアガスと被処理水とを気液接触させ、キャリアガスを加湿して排出する加湿塔と、加湿されたキャリアガスと冷却水とを気液接触させて加湿されたキャリアガスを冷却し、水分の少なくとも一部を凝縮させることにより、除湿されたキャリアガスを生成して排出する除湿塔と、加湿塔に対して被処理水を循環させる第1の循環経路と、を有するキャリアガス式蒸発装置を使用し、発電設備の給水加熱器から排出される熱水を熱源としてキャリアガス式蒸発装置において被処理水を加温する。   The evaporative concentration method of the present invention is an evaporative concentration method for performing evaporative concentration treatment on water to be treated containing mixed components in a power generation facility, wherein the carrier gas and water to be treated are supplied to the carrier gas and water to be treated. Gas-liquid contact, humidifying and exhausting the carrier gas, and the humidified carrier gas and cooling water are brought into gas-liquid contact to cool the humidified carrier gas and condense at least part of the moisture. By using a carrier gas evaporator having a dehumidifying tower that generates and discharges a dehumidified carrier gas and a first circulation path that circulates water to be treated with respect to the humidifying tower, Water to be treated is heated in a carrier gas evaporator using hot water discharged from the feed water heater as a heat source.

本発明によれば、発電設備で発生する熱エネルギーを有効利用して蒸発濃縮装置を動作させることができる。   ADVANTAGE OF THE INVENTION According to this invention, the evaporative concentration apparatus can be operated using the thermal energy which generate | occur | produces in power generation equipment effectively.

一般的な発電設備の構成を示す図である。It is a figure which shows the structure of general power generation equipment. 本発明に基づく、蒸発濃縮装置を備える発電設備を示す図である。It is a figure which shows the power generation equipment provided with the evaporative concentration apparatus based on this invention.

本発明の実施の形態について、図面を参照して説明する。本発明に基づく発電設備を説明するために、最初に、一般的な発電設備について、図1を用いて説明する。   Embodiments of the present invention will be described with reference to the drawings. In order to describe the power generation facility according to the present invention, first, a general power generation facility will be described with reference to FIG.

図1に示す発電設備は、蒸気タービンによって発電機11を駆動する一般的な火力発電所として構成されている。ボイラー12で発生した高圧蒸気が高圧タービン13に導かれ、高圧タービン13から排出される蒸気は再びボイラー12に導かれて再熱され、その後、中圧タービン14に導かれる。中圧タービン14から排出される蒸気は低圧タービン15に導かれる。高圧タービン13、中圧タービン14及び低圧タービン15は発電機11から延びる回転軸16に接続しており、これらのタービン13〜15が蒸気によって駆動されることにより、発電機11が駆動される。   The power generation facility shown in FIG. 1 is configured as a general thermal power plant that drives a generator 11 by a steam turbine. The high-pressure steam generated in the boiler 12 is guided to the high-pressure turbine 13, and the steam discharged from the high-pressure turbine 13 is again guided to the boiler 12 and reheated, and then guided to the intermediate-pressure turbine 14. Steam discharged from the intermediate pressure turbine 14 is guided to the low pressure turbine 15. The high-pressure turbine 13, the intermediate-pressure turbine 14, and the low-pressure turbine 15 are connected to a rotating shaft 16 that extends from the generator 11, and the generator 11 is driven by driving these turbines 13 to 15 with steam.

低圧タービン15から排出される蒸気は復水器17において冷却凝縮し、凝縮水は復水脱塩装置18において脱塩処理がなされる。復水器17では、冷却水として、例えば海水が使用される。脱塩処理された水は、低圧給水加熱器19で加熱され、脱気器20で脱気処理がなされ、その後、高圧給水加熱器21においてさらに加熱され、ボイラー12に送られる。このようにボイラー12からタービン13〜15、復水器17、低圧給水加熱器19、脱気器20及び高圧給水加熱器21を経てボイラー12に戻るボイラー循環水の経路が構成されている。低圧給水加熱器19及び高圧給水加熱器21は、発電設備全体の熱効率を向上するために設けられており、冷却前の蒸気によって熱回収を行なう。例えば低圧給水加熱器19の熱源としては、低圧タービン15において抽気されて配管22を介して送られた蒸気が使用される。低圧給水加熱器19の熱源として使用された蒸気は、熱水としてドレインタンク23に貯えられた後、配管24を介して復水器17、あるいは、低圧給水加熱器19の入口に戻される。復水脱塩装置18の出口と低圧給水加熱器19の入口を結ぶ配管を配管27として、復水器17か低圧給水加熱器19の入口かどちらに熱水を戻すかを選択するために、配管24と復水器17の間に弁25が設けられ、配管24と配管27の間に弁26が設けられている。   Steam discharged from the low-pressure turbine 15 is cooled and condensed in the condenser 17, and the condensed water is subjected to a desalting process in the condensate demineralizer 18. In the condenser 17, for example, seawater is used as cooling water. The demineralized water is heated by the low-pressure feed water heater 19, deaerated by the deaerator 20, then further heated by the high-pressure feed water heater 21, and sent to the boiler 12. Thus, the boiler circulating water path returning from the boiler 12 to the boiler 12 through the turbines 13 to 15, the condenser 17, the low pressure feed water heater 19, the deaerator 20 and the high pressure feed water heater 21 is configured. The low-pressure feed water heater 19 and the high-pressure feed water heater 21 are provided to improve the thermal efficiency of the entire power generation facility, and perform heat recovery using steam before cooling. For example, as the heat source of the low-pressure feed water heater 19, steam extracted from the low-pressure turbine 15 and sent via the pipe 22 is used. The steam used as the heat source of the low-pressure feed water heater 19 is stored as hot water in the drain tank 23 and then returned to the condenser 17 or the inlet of the low-pressure feed water heater 19 through the pipe 24. In order to select whether the hot water is returned to the condenser 17 or the inlet of the low-pressure feed water heater 19, the pipe connecting the outlet of the condensate demineralizer 18 and the inlet of the low-pressure feed heater 19 is used as the pipe 27. A valve 25 is provided between the pipe 24 and the condenser 17, and a valve 26 is provided between the pipe 24 and the pipe 27.

図2は、本発明に基づく発電設備を示している。図2に示す発電設備は、図1に示す発電設備に対し、発電設備で発生した熱を利用して蒸発濃縮処理を実行する蒸発濃縮装置を設置したものである。蒸発濃縮装置は、混入成分を有する被処理水、例えば、発電設備を含むプラント内で発生した各種の排水を対象として蒸発濃縮処理を行い、被処理水中の混入成分を濃縮した濃縮水を生成するとともに、混入成分が除去された水を処理水として排出するものである。本実施形態では、図1に示す発電設備において、ドレインタンク23から配管24を介して復水器17あるいは配管27に戻される熱水の熱エネルギーを回収し、その熱によって蒸発濃縮装置に蒸発濃縮処理を行なわせている。   FIG. 2 shows a power generation facility according to the present invention. The power generation facility shown in FIG. 2 is a power generation facility shown in FIG. 1 in which an evaporation concentrating device that performs an evaporation concentration process using heat generated in the power generation facility is installed. The evaporative concentration apparatus performs evaporative concentration treatment on water to be treated having mixed components, for example, various wastewater generated in a plant including a power generation facility, and generates concentrated water obtained by concentrating mixed components in the water to be treated. At the same time, the water from which the mixed components have been removed is discharged as treated water. In the present embodiment, in the power generation facility shown in FIG. 1, the thermal energy of hot water returned from the drain tank 23 via the pipe 24 to the condenser 17 or the pipe 27 is recovered and evaporated to the evaporation concentrator by the heat. Processing is performed.

蒸発濃縮装置は、発電設備に接続して配管24を流れる熱水から熱エネルギーを回収する接続部30と、接続部30で回収した熱を熱源の少なくとも一部とするキャリアガス式蒸発装置からなる本体部50と、とから構成されている。まず、本体部50について説明する。   The evaporative concentrator comprises a connection part 30 that is connected to the power generation facility and recovers thermal energy from hot water flowing through the pipe 24, and a carrier gas evaporator that uses heat recovered at the connection part 30 as at least a part of the heat source. And a main body 50. First, the main body 50 will be described.

本体部50は、大別すると、加湿塔60と、除湿塔70と、加湿塔60の側で循環する被処理水と除湿塔70の側で循環する冷却水との間で熱交換を行う熱交換器80と、を備えている。加湿塔60は、キャリアガスが供給されてキャリアガスを被処理水とを気液接触させ、キャリアガスを加湿するものである。キャリアガスとしては、例えば空気や窒素などが用いられる。加湿されたキャリアガスは、加湿塔60の上部に接続した配管91を介して加湿塔60から排出される。加湿塔60には、キャリアガスに対して被処理水を噴霧する噴霧器66が設けられている。加湿塔60の内部には、気液接触を促進するための充填物を設置してもよい。また加湿塔60の内部は、特許文献3に開示されているような、バブリングカラムを必要に応じて多段に設けたような構造であっても構わない。加湿塔60の下部には被処理水を一時的に貯える貯水部61が形成され、さらに、被処理水を排出する配管62が接続している。配管62は、熱交換器80の二次側の入口に接続する。熱交換器80の二次側の出口には、被処理水を加湿塔60に循環させるための循環配管63が接続する。循環配管63には後述する熱交換器65が設けられ、循環配管63の先端は上述した噴霧器66に接続している。配管62、熱交換器80の二次側及び循環配管63によって、被処理水を加温しつつ加湿塔60に対して被処理水を循環させる第1の循環経路が構成され、熱交換器65が第1の循環経路に設けられている。ここでは、第1の循環経路に熱交換器65が設けられるものとしているが、被処理水を加温できるのであれば、熱交換器65は第1の循環経路とは別に設けられてもよい。さらに配管62には、後述する濃縮水として被処理水を排出する配管64も接続している。配管64は、加湿塔60の貯水部61から被処理水を直接排出するように接続されていてもよい。そして配管62において、配管64への分岐点よりも下流側の位置に、被処理水を第1の循環経路に供給するための配管67が接続している。被処理水とキャリアガスとの気液接触が実現できるのであれば、被処理水を加湿塔20に直接供給する構成としてもよい。   The main body 50 is roughly divided into heat that exchanges heat between the humidifying tower 60, the dehumidifying tower 70, the water to be circulated on the humidifying tower 60 side, and the cooling water circulated on the dehumidifying tower 70 side. And an exchanger 80. The humidification tower 60 is supplied with a carrier gas, brings the carrier gas into liquid-liquid contact with the water to be treated, and humidifies the carrier gas. For example, air or nitrogen is used as the carrier gas. The humidified carrier gas is discharged from the humidification tower 60 via a pipe 91 connected to the upper part of the humidification tower 60. The humidifying tower 60 is provided with a sprayer 66 that sprays the water to be treated against the carrier gas. A filler for promoting gas-liquid contact may be installed inside the humidifying tower 60. Further, the inside of the humidifying tower 60 may have a structure in which bubbling columns are provided in multiple stages as required, as disclosed in Patent Document 3. A water storage unit 61 for temporarily storing the water to be treated is formed at the lower portion of the humidifying tower 60, and a pipe 62 for discharging the water to be treated is connected thereto. The pipe 62 is connected to the inlet on the secondary side of the heat exchanger 80. A circulation pipe 63 for circulating the water to be treated to the humidification tower 60 is connected to the outlet on the secondary side of the heat exchanger 80. The circulation pipe 63 is provided with a heat exchanger 65 to be described later, and the tip of the circulation pipe 63 is connected to the sprayer 66 described above. The piping 62, the secondary side of the heat exchanger 80, and the circulation piping 63 constitute a first circulation path for circulating the water to be treated to the humidification tower 60 while heating the water to be treated. Is provided in the first circulation path. Here, the heat exchanger 65 is provided in the first circulation path. However, the heat exchanger 65 may be provided separately from the first circulation path as long as the water to be treated can be heated. . Furthermore, a pipe 64 for discharging the water to be treated as concentrated water described later is also connected to the pipe 62. The pipe 64 may be connected so as to directly discharge the water to be treated from the water storage unit 61 of the humidification tower 60. In the pipe 62, a pipe 67 for supplying the water to be treated to the first circulation path is connected to a position downstream of the branch point to the pipe 64. If the gas-liquid contact between the water to be treated and the carrier gas can be realized, the water to be treated may be directly supplied to the humidification tower 20.

除湿塔70は、加湿塔60から加湿されたキャリアガスが配管91を介して供給され、このキャリアガスを噴霧器76から噴霧される冷却水と気液接触させることによってキャリアガス中の水分を凝縮させるものである。水分の一部が凝縮除去されたキャリアガスは、除湿されたキャリアガスとして、除湿塔70の上部に接続した配管92を介して除湿塔70から外部に排出される。除湿塔70の内部には、気液接触を促進するための充填物を設置してもよい。また除湿塔70の内部は、特許文献4に開示されているような、バブリングカラムを必要に応じて多段に設けたような構造であっても構わない。除湿塔70の下部には冷却水を一時的に貯える貯水部71が形成され、さらに、冷却水を排出する配管72が接続している。配管72は、熱交換器80の一次側の入口に接続している。熱交換器80の一次側の出口には、冷却水を除湿塔70に循環させるための循環配管73が接続し、循環配管73の先端は上述した噴霧器76に接続している。循環配管73には、処理水として冷却水を排出する配管74も接続している。配管74は、除湿塔70の貯水部71から冷却水を直接排出するように、除湿塔70に接続していてもよい。配管72、熱交換器80の一次側、及び循環配管73によって、冷却水を冷却しつつ除湿塔70に対して冷却水を循環させる第2の循環経路が構成されている。   The dehumidifying tower 70 is supplied with the carrier gas humidified from the humidifying tower 60 via the pipe 91, and condenses the moisture in the carrier gas by bringing the carrier gas into gas-liquid contact with the cooling water sprayed from the sprayer 76. Is. The carrier gas from which a part of the moisture has been condensed and removed is discharged from the dehumidification tower 70 to the outside as a dehumidified carrier gas through a pipe 92 connected to the upper part of the dehumidification tower 70. A filling for promoting gas-liquid contact may be installed inside the dehumidifying tower 70. The inside of the dehumidifying tower 70 may have a structure in which bubbling columns are provided in multiple stages as required, as disclosed in Patent Document 4. A water storage part 71 for temporarily storing cooling water is formed at the lower part of the dehumidifying tower 70, and a pipe 72 for discharging the cooling water is further connected. The pipe 72 is connected to the inlet on the primary side of the heat exchanger 80. A circulation pipe 73 for circulating the cooling water to the dehumidification tower 70 is connected to the outlet on the primary side of the heat exchanger 80, and the tip of the circulation pipe 73 is connected to the sprayer 76 described above. A pipe 74 for discharging cooling water as treated water is also connected to the circulation pipe 73. The pipe 74 may be connected to the dehumidification tower 70 so that the cooling water is directly discharged from the water storage section 71 of the dehumidification tower 70. The piping 72, the primary side of the heat exchanger 80, and the circulation piping 73 constitute a second circulation path for circulating the cooling water to the dehumidifying tower 70 while cooling the cooling water.

次に、接続部30について説明する。キャリアガス式蒸発装置として構成された本体部50は、熱交換器65において被処理水が加温されることによって動作する。そこで接続部30は、発電設備の配管24を流れる熱水の熱エネルギーを熱交換器65に与えて被処理水を加温する機能を有する。しかしながら、被処理水中にはイオン性不純物などの各種の成分が混入しており、これらの成分が発電設備のボイラー循環水の系統に漏れ出すことは絶対に避けなければならない。そこで本実施形態では、接続部30は、配管24を流れる熱水を熱交換器65に直接供給するのではなく、中間となる熱交換器33を備え、熱交換器33を介して間接的に熱交換器65に熱を供給する。   Next, the connection unit 30 will be described. The main body 50 configured as a carrier gas type evaporator operates when the water to be treated is heated in the heat exchanger 65. Therefore, the connection unit 30 has a function of heating the water to be treated by applying thermal energy of the hot water flowing through the piping 24 of the power generation facility to the heat exchanger 65. However, various components such as ionic impurities are mixed in the water to be treated, and it is absolutely necessary to avoid leakage of these components into the boiler circulating water system of the power generation facility. Therefore, in the present embodiment, the connection unit 30 does not directly supply the hot water flowing through the pipe 24 to the heat exchanger 65 but includes an intermediate heat exchanger 33 and indirectly through the heat exchanger 33. Heat is supplied to the heat exchanger 65.

発電設備においてドレインタンク23から熱水を排出する配管24にバイパス弁31が挿入されており、バイパス弁31の両側を接続するように配管32が設けられている。配管32は、加温用配管であって熱交換器33の一次側に熱水を通水する。配管32の入口と出口となる位置には、それぞれ、開閉弁37,38が設けられている。熱交換器33の二次側と蒸発濃縮装置の本体部50の熱交換器65の一次側とは配管34,35によって接続され、純水などの熱媒が配管34,35を介して熱交換器33と熱交換器65との間で循環するように構成されている。これにより、配管32を流れる熱水によって、熱交換器65を流れる被処理水が間接的に加温される。さらに、被処理水が発電設備側に万が一漏れ出すなどの異常を検知するために、配管35にはヘッドタンク36が設けられ、配管32では熱交換器33の出口よりも下流側の位置に導電率計(EC)39が設けられている。ヘッドタンク36の液面変動をレベル計や漏水センサーなどによって監視することにより、熱交換器33,65及び配管34,35による熱媒の循環経路での異常の発生を検知することができる。熱交換器33から排出される熱水の導電率を導電率計39によって監視することにより、蒸発濃縮装置の本体部50側から配管32への被処理水のリークの発生を検知することができる。   In the power generation facility, a bypass valve 31 is inserted into a pipe 24 for discharging hot water from the drain tank 23, and a pipe 32 is provided so as to connect both sides of the bypass valve 31. The pipe 32 is a heating pipe and passes hot water to the primary side of the heat exchanger 33. On-off valves 37 and 38 are provided at positions serving as an inlet and an outlet of the pipe 32, respectively. The secondary side of the heat exchanger 33 and the primary side of the heat exchanger 65 of the main body 50 of the evaporation concentrator are connected by pipes 34 and 35, and a heat medium such as pure water exchanges heat through the pipes 34 and 35. It is configured to circulate between the heat exchanger 33 and the heat exchanger 65. Thereby, the to-be-processed water which flows through the heat exchanger 65 is indirectly heated with the hot water which flows through the piping 32. FIG. Further, in order to detect an abnormality such that the water to be treated leaks to the power generation facility side, a head tank 36 is provided in the pipe 35, and the pipe 32 conducts at a position downstream of the outlet of the heat exchanger 33. A rate meter (EC) 39 is provided. By monitoring the liquid level fluctuation of the head tank 36 with a level meter, a water leakage sensor, etc., it is possible to detect the occurrence of an abnormality in the heat medium circulation path by the heat exchangers 33 and 65 and the pipes 34 and 35. By monitoring the conductivity of the hot water discharged from the heat exchanger 33 with the conductivity meter 39, it is possible to detect the occurrence of leakage of water to be treated from the main body 50 side of the evaporation concentrator to the pipe 32. .

次に、図2に示す発電設備での蒸発濃縮装置による蒸発濃縮処理について説明する。蒸発濃縮処理を行なうために、接続部30においてバイパス弁31を閉じ、開閉弁37,38を開けて、ドレインタンクから排出される熱水が配管32を介して熱交換器33の一次側に流れるようにする。そして、不図示のポンプを駆動することにより、熱交換器33と本体部50の熱交換器65との間で熱媒を循環させる。その結果、熱交換器65は、そこを流れる被処理水を加温できるようになる。   Next, the evaporation concentration process by the evaporation concentration apparatus in the power generation facility shown in FIG. 2 will be described. In order to perform the evaporative concentration process, the bypass valve 31 is closed at the connection portion 30 and the on-off valves 37 and 38 are opened, so that hot water discharged from the drain tank flows to the primary side of the heat exchanger 33 via the pipe 32. Like that. And a heat medium is circulated between the heat exchanger 33 and the heat exchanger 65 of the main-body part 50 by driving a pump not shown. As a result, the heat exchanger 65 can heat the water to be treated flowing therethrough.

本体部50において、混入成分を含む被処理水は、配管67を介して第1の循環経路に供給され、熱交換器65,80によって加温され、噴霧器66から加湿塔60内に噴霧される。加湿塔60では、キャリアガスが供給されるとともに第1の循環経路を介して加温された被処理水が噴霧されるので、キャリアガスと被処理水との気液接触により、被処理水の水分の一部が水蒸気としてキャリアガスに移行する。このようにして加湿されたキャリアガスは、配管91を介して除湿塔70に送られる。被処理水の加温及び循環と、被処理水とキャリアガスとの気液接触を継続すると、水分がキャリアガスに継続的に移行するので、第1の循環経路内を循環する被処理水中の混入成分濃度が上昇する。蒸発濃縮装置の起動時には混入成分を含まない被処理水が第1の循環経路内を循環していたとしても、混入成分を含む被処理水を配管67を介して供給することにより、蒸発濃縮装置の運転を継続するにつれて配管67からの被処理水における混入成分濃度よりも循環する被処理水中の混入成分濃度が高くなる。被処理水中の混入成分濃度が所定の値よりも高くなったら、被処理水の一部を、混入成分濃度が高められた濃縮水として配管64から外部に排出する。排出した濃縮水に対しては、適切な排水処理を行なえばよい。あるいは、例えば蒸発濃縮処理の終了時に加湿塔20から被処理水の全部を濃縮水として排出してもよい。   In the main body 50, the water to be treated containing mixed components is supplied to the first circulation path via the pipe 67, heated by the heat exchangers 65 and 80, and sprayed from the sprayer 66 into the humidification tower 60. . In the humidification tower 60, since the carrier gas is supplied and the water to be treated heated through the first circulation path is sprayed, the water to be treated is brought into contact with the carrier gas and the water to be treated by gas-liquid contact. Part of the water moves to the carrier gas as water vapor. The carrier gas thus humidified is sent to the dehumidifying tower 70 via the pipe 91. If the heating and circulation of the water to be treated and the gas-liquid contact between the water to be treated and the carrier gas are continued, the moisture continuously moves to the carrier gas, so the water in the water to be treated that circulates in the first circulation path. Contaminant concentration increases. Even when the water to be treated that does not contain the mixed component circulates in the first circulation path when the evaporative concentration device is started up, the water to be treated that contains the mixed component is supplied via the pipe 67, thereby As the operation is continued, the concentration of mixed components in the circulating water to be treated becomes higher than the concentration of mixed components in the treated water from the pipe 67. When the mixed component concentration in the treated water becomes higher than a predetermined value, a part of the treated water is discharged from the pipe 64 to the outside as concentrated water with the mixed component concentration increased. Appropriate waste water treatment may be performed on the discharged concentrated water. Alternatively, for example, all of the water to be treated may be discharged from the humidification tower 20 as concentrated water at the end of the evaporation concentration process.

除湿塔70では、加湿塔60から配管91を介して加湿されたキャリアガスが供給されるとともに、第2の循環経路を介して冷却水が循環し、キャリアガスと噴霧器76から噴霧される冷却水との接触により、キャリアガス中の水分の少なくとも一部が凝縮して冷却水に移行する。水分の凝縮によりキャリアガスは除湿されたことになり、除湿されたキャリアガスは配管92を介して外部に排ガスとして排出される。配管72から排出された冷却水は熱交換器80を通過するときに被処理水に熱を与え、それによって冷却され、除湿塔70に循環する。冷却水の冷却及び循環と、冷却水とキャリアガスとの気液接触を継続すると、キャリアガス中の水分が冷却水に継続的に移行するので、冷却水の量が増加する。キャリアガスからの凝縮水には混入成分はほとんど含まれていないので、増大した冷却水も混入成分をほとんど含んでいない。冷却水がある程度まで増加したら、冷却水の一部を、混入成分が除去された処理水として、配管64を介して外部に排出する。除湿塔70の貯水部71から処理水を直接排出するようにしてもよい。   In the dehumidifying tower 70, the carrier gas humidified from the humidifying tower 60 is supplied via the pipe 91, and the cooling water is circulated through the second circulation path, and the carrier gas and the cooling water sprayed from the sprayer 76 are used. , At least part of the moisture in the carrier gas is condensed and transferred to cooling water. The carrier gas is dehumidified by the condensation of moisture, and the dehumidified carrier gas is discharged to the outside through the pipe 92 as exhaust gas. The cooling water discharged from the pipe 72 gives heat to the water to be treated when passing through the heat exchanger 80, thereby being cooled and circulated to the dehumidifying tower 70. When cooling and circulation of the cooling water and gas-liquid contact between the cooling water and the carrier gas are continued, the water in the carrier gas continuously shifts to the cooling water, so that the amount of the cooling water increases. Since the condensed water from the carrier gas contains almost no mixed components, the increased cooling water also contains almost no mixed components. When the cooling water increases to some extent, a part of the cooling water is discharged to the outside through the pipe 64 as treated water from which the mixed components have been removed. The treated water may be directly discharged from the water storage unit 71 of the dehumidifying tower 70.

蒸発濃縮装置を動作させないときは、開閉弁37,38を閉じ、バイパス弁31を開け、ドレインタンク23からの熱水が、配管32に流れることなく配管24から復水器17あるいは配管27に直接戻されるようにする。また、熱交換器33と熱交換器65の間での熱媒の循環に異常が生じたときや、蒸発濃縮装置からの被処理水のリークが疑われるときには、具体的には、ヘッドタンク36での液面変動があったときや、導電率計39で検出される導電率の値が規定値を超えたときには、直ちに、開閉弁37,38と閉じてバイパス弁31を開け、蒸発濃縮装置を発電設備から切り離すようにする。そのため、ヘッドタンク36の液面を検出する不図示のセンサからの検出結果と導電率計39からの検出結果とが入力し、液面変動を検出したときや導電率の値が規定値を超えたときに開閉弁36,37を閉じバイパス弁31を開ける制御装置(不図示)を設けることが好ましい。異常を検出したときに蒸発濃縮装置を発電設備から切り離すことによって、蒸発処理装置側の被処理水がボイラー循環水に混入することを確実に防止できる。   When the evaporative concentration apparatus is not operated, the on-off valves 37 and 38 are closed, the bypass valve 31 is opened, and hot water from the drain tank 23 does not flow into the pipe 32 but directly from the pipe 24 to the condenser 17 or the pipe 27. To be returned. Further, when an abnormality occurs in the circulation of the heat medium between the heat exchanger 33 and the heat exchanger 65, or when leakage of water to be treated from the evaporation concentrator is suspected, specifically, the head tank 36 is used. When the liquid level fluctuates at the time point, or when the conductivity value detected by the conductivity meter 39 exceeds the specified value, the on-off valves 37 and 38 are immediately closed and the bypass valve 31 is opened, and the evaporation concentrator Be disconnected from the power generation equipment. Therefore, a detection result from a sensor (not shown) that detects the liquid level in the head tank 36 and a detection result from the conductivity meter 39 are input, and when the liquid level fluctuation is detected or the conductivity value exceeds a specified value. It is preferable to provide a control device (not shown) that closes the on-off valves 36 and 37 and opens the bypass valve 31 at the time. By separating the evaporation concentrating device from the power generation facility when an abnormality is detected, it is possible to reliably prevent the water to be treated on the evaporation processing device side from being mixed into the boiler circulating water.

ここで図2に示す蒸発濃縮装置における熱の移動について説明する。ドレインタンク23からの熱水によって熱交換器65が間接的に加熱され、熱交換器65を通過することによって被処理水が加温される。熱交換器65の二次側の出口での被処理水の温度、すなわち噴霧器66から噴霧される被処理水の温度をT1とする。加湿塔61において被処理水を噴霧し、被処理水中の水分の一部をキャリアガスに移行することにより、蒸発潜熱及びキャリアガスとの熱交換、配管67から供給される新たな被処理水との混合のために被処理水の温度は低下する。配管62での被処理水の温度をT2とすると、T1>T2である。この被処理水は熱交換器80によって加温される。熱交換器80の二次側出口での被処理水の温度をT3とすれば、T1>T3>T2である。一方、冷却水について、熱交換器80の一次側の出口での冷却水の温度をT4とする。温度T4は除湿塔70でキャリアガスに対して噴霧される冷却水の温度である。除湿塔70では、キャリアガスを冷却することによってキャリアガス中の水分が凝縮するので、除湿塔70から配管72に流れ出る冷却水の温度をT5とすれば、加湿塔60からキャリアガスが持ち込んだ顕熱と凝縮潜熱とにより、T5>T4となる。また、熱交換器80の一次側と二次側との間で、T5>T3かつT4>T2が成り立つ。 Here, heat transfer in the evaporative concentration apparatus shown in FIG. 2 will be described. The heat exchanger 65 is indirectly heated by the hot water from the drain tank 23, and the water to be treated is heated by passing through the heat exchanger 65. Temperature of the water to be treated at the exit of the secondary side of the heat exchanger 65, i.e., the temperature of the water to be treated is sprayed from the sprayer 66 to T 1. By spraying the water to be treated in the humidifying tower 61 and transferring a part of the water in the water to be treated to the carrier gas, heat exchange with the latent heat of vaporization and the carrier gas, new water to be treated supplied from the pipe 67 and The temperature of the water to be treated is lowered due to the mixing. When the temperature of the water to be treated in the pipe 62 is T 2 , T 1 > T 2 . This treated water is heated by the heat exchanger 80. When the temperature of the water to be treated at the secondary outlet of the heat exchanger 80 is T 3 , T 1 > T 3 > T 2 . On the other hand, regarding the cooling water, the temperature of the cooling water at the outlet on the primary side of the heat exchanger 80 is T 4 . The temperature T 4 is the temperature of the cooling water sprayed on the carrier gas in the dehumidifying tower 70. In the dehumidifying tower 70, moisture in the carrier gas is condensed by cooling the carrier gas. Therefore, if the temperature of the cooling water flowing from the dehumidifying tower 70 to the pipe 72 is T 5 , the carrier gas is brought in from the humidifying tower 60. T 5 > T 4 due to sensible heat and latent heat of condensation. Further, T 5 > T 3 and T 4 > T 2 are established between the primary side and the secondary side of the heat exchanger 80.

ここで、本実施形態の蒸発濃縮装置を動作させることによる熱効率の向上について説明する。まず、図1に示した従来の一般的な発電設備における、低圧給水加熱器19からドレインタンク23に貯められた熱水について説明する。ドレインタンク23に供給された熱水は、配管24を介して、復水器17あるいは配管27に戻される。発電設備の通常運転時には熱水が配管24から弁26を介して配管27に戻される場合が多く、この場合、発電設備の全体として熱のロスはほぼない。これに対し発電設備の立ち上げ時などには熱水が配管24から弁25を介して復水器17に戻される場合が多く、この場合、戻された熱水は復水器17において冷却されるため、その分、発電設備全体としては熱のロスが発生する。   Here, the improvement of the thermal efficiency by operating the evaporative concentration apparatus of this embodiment is demonstrated. First, hot water stored in the drain tank 23 from the low-pressure feed water heater 19 in the conventional general power generation facility shown in FIG. 1 will be described. The hot water supplied to the drain tank 23 is returned to the condenser 17 or the pipe 27 via the pipe 24. During normal operation of the power generation equipment, hot water is often returned from the pipe 24 to the pipe 27 via the valve 26. In this case, there is almost no loss of heat as a whole of the power generation equipment. On the other hand, hot water is often returned from the pipe 24 to the condenser 17 through the valve 25 when the power generation facility is started up. In this case, the returned hot water is cooled in the condenser 17. For this reason, heat loss is generated in the entire power generation facility.

一方、図2に示す本実施形態の発電設備においてドレインタンク23からの熱水を配管32を介して蒸発濃縮装置の熱源として利用する場合も、配管32からの使用済みの熱水の戻し先については図1に示した従来の発電設備と同様の基準で決定される。ここで熱水が配管32及び配管24を介して復水器17に戻された場合、熱交換器33を介して熱交換器65に間接的に熱を与えることにより熱水の温度が低下するため、復水器17においてて冷却される熱負荷が小さくなるだけである。そのため、従来のものと比較して発電設備全体として発生する熱のロスに変化はなく、効率的に熱エネルギーを使用することができる。他方で、配管32からの熱水を配管27に戻す場合は、熱交換器65に間接的に熱を与えたことによる熱水の温度低下の分、発電設備全体としては熱のロスになるため、蒸発濃縮装置において使用する分の熱を新たにボイラー12において発生させる必要がある。しかしながら発電設備において主蒸気源と使用されるボイラー12は、一般に熱効率が高いので、この場合であっても蒸発濃縮装置を含めた発電設備の全体として高い熱効率が維持され、蒸発濃縮処理を行なうための付加的なコストを最小限に抑えることができる。   On the other hand, when the hot water from the drain tank 23 is used as a heat source of the evaporation concentrator through the pipe 32 in the power generation facility of this embodiment shown in FIG. Is determined on the same basis as the conventional power generation facility shown in FIG. Here, when hot water is returned to the condenser 17 via the pipe 32 and the pipe 24, the temperature of the hot water is lowered by indirectly applying heat to the heat exchanger 65 via the heat exchanger 33. Therefore, only the heat load cooled in the condenser 17 is reduced. Therefore, there is no change in the loss of heat generated as a whole of the power generation equipment compared to the conventional one, and the heat energy can be used efficiently. On the other hand, when the hot water from the pipe 32 is returned to the pipe 27, the temperature of the hot water is reduced due to the indirect heat applied to the heat exchanger 65, resulting in a loss of heat for the entire power generation facility. It is necessary to newly generate heat in the boiler 12 for the amount used in the evaporative concentration apparatus. However, since the boiler 12 used as the main steam source in the power generation facility generally has high thermal efficiency, even in this case, high thermal efficiency is maintained as a whole of the power generation facility including the evaporation concentrator, and the evaporation concentration process is performed. The additional cost of can be minimized.

図2に示した蒸発濃縮装置では、第1の循環経路を流れる被処理水と第2の循環経路を流れる冷却水との間で熱交換を行なう熱交換器80を設けているが、第2の循環経路を流れる冷却水を冷却する機構を備えるのであれば、熱交換器80は設けなくてもよい。さらに、大量の冷却水を確保できる場合には、第2の循環経路を設けることなく、外部から冷却水を除湿塔70に供給し、凝縮水を含んで除湿塔70から流れ出る冷却水をそのまま放流することも可能である。   In the evaporative concentration apparatus shown in FIG. 2, a heat exchanger 80 is provided for exchanging heat between the water to be treated flowing in the first circulation path and the cooling water flowing in the second circulation path. If a mechanism for cooling the cooling water flowing through the circulation path is provided, the heat exchanger 80 may not be provided. Furthermore, when a large amount of cooling water can be secured, the cooling water is supplied from the outside to the dehumidifying tower 70 without providing the second circulation path, and the cooling water flowing out from the dehumidifying tower 70 including condensed water is discharged as it is. It is also possible to do.

上述した実施形態では、蒸発濃縮装置での被処理水に含まれるイオン性不純物などが発電設備のボイラー循環水の系統に漏れ出すことを確実に防止するために、2つの熱交換器33,65を用いて間接的に第1の循環経路を流れる被処理水を加温している。熱交換器の十分な信頼性が確保される場合には、被処理水が二次側を流れる熱交換器65のみを設け、この熱交換器65の一次側に対して配管24を流れる熱水を直接供給することも不可能ではないが、その場合であっても、加温手段である熱交換器65の一次側の下流側、すなわち、加温手段に熱を供給したのちの熱水が流れる位置に導電率計を設けてイオン性不純物などのリークの監視を行うことが望ましい。   In the above-described embodiment, the two heat exchangers 33 and 65 are used to reliably prevent ionic impurities and the like contained in the water to be treated in the evaporative concentration apparatus from leaking into the boiler circulating water system of the power generation facility. The to-be-processed water which flows through a 1st circulation path indirectly is heated using. When sufficient reliability of the heat exchanger is ensured, only the heat exchanger 65 in which the water to be treated flows on the secondary side is provided, and the hot water flowing in the pipe 24 with respect to the primary side of the heat exchanger 65 Although it is not impossible to supply the water directly, even in that case, the downstream side of the primary side of the heat exchanger 65 that is the heating means, that is, the hot water after the heat is supplied to the heating means It is desirable to monitor the leak of ionic impurities by providing a conductivity meter at the flowing position.

12 ボイラー
13 高圧タービン
14 中圧タービン
15 低圧タービン
17 復水器
19 低圧給水加熱器
23 ドレインタンク
30 接続部
31 バイパス弁
33,65,80 熱交換器
36 ヘッドタンク
39 導電率計
50 本体部
60 加湿塔
70 除湿塔
DESCRIPTION OF SYMBOLS 12 Boiler 13 High pressure turbine 14 Medium pressure turbine 15 Low pressure turbine 17 Condenser 19 Low pressure feed water heater 23 Drain tank 30 Connection part 31 Bypass valve 33,65,80 Heat exchanger 36 Head tank 39 Conductivity meter 50 Main part 60 Humidification Tower 70 Dehumidification Tower

Claims (11)

発電設備に設けられ、混入成分を含む被処理水に対して蒸発濃縮処理を行なう蒸発濃縮装置であって、
キャリアガスと被処理水が供給されて前記キャリアガスと前記被処理水とを気液接触させ、前記キャリアガスを加湿して排出する加湿塔と、
前記加湿されたキャリアガスと冷却水とを気液接触させて前記加湿されたキャリアガスを冷却し、水分の少なくとも一部を凝縮させることにより、除湿されたキャリアガスを生成して排出する除湿塔と、
前記加湿塔に対して前記被処理水を循環させる第1の循環経路と、
前記被処理水を加温する加温手段と、
を有し、
前記加温手段は、前記発電設備の給水加熱器から排出される熱水を熱源として前記被処理水を加温する、蒸発濃縮装置。
An evaporative concentration apparatus that is provided in a power generation facility and performs evaporative concentration processing on water to be treated containing mixed components,
A humidifying tower that is supplied with a carrier gas and water to be treated to bring the carrier gas and the water to be treated into gas-liquid contact, and humidifies and discharges the carrier gas;
A dehumidifying tower that generates and discharges a dehumidified carrier gas by bringing the humidified carrier gas and cooling water into gas-liquid contact to cool the humidified carrier gas and condensing at least part of the moisture. When,
A first circulation path for circulating the treated water to the humidification tower;
Heating means for heating the water to be treated;
Have
The said heating means is an evaporative concentration apparatus which heats the said to-be-processed water by using the hot water discharged | emitted from the feed water heater of the said power generation equipment as a heat source.
前記給水加熱器から排出される前記熱水を前記発電設備内に戻し、
前記加温手段に熱を供給したのちの前記熱水が流れる位置に設けられた導電率計をさらに有する請求項1に記載の蒸発濃縮装置。
Returning the hot water discharged from the feed water heater into the power generation facility,
The evaporative concentration apparatus according to claim 1, further comprising a conductivity meter provided at a position where the hot water flows after supplying heat to the heating means.
前記発電設備において前記熱水を循環させる配管に設けられたバイパス弁と、
前記バイパス弁の両端に接続する加温用配管と、
を備え、
前記加温用配管を流れる前記熱水を熱源として前記被処理水が加温される、請求項2に記載の蒸発濃縮装置。
A bypass valve provided in a pipe for circulating the hot water in the power generation facility;
Piping for heating connected to both ends of the bypass valve;
With
The evaporative concentration apparatus according to claim 2, wherein the water to be treated is heated using the hot water flowing through the heating pipe as a heat source.
前記導電率計で検出した導電率値が所定値を超えるときに前記バイパス弁を開いて前記熱水の経路を前記加温用配管から前記バイパス弁を通る経路に切り替える、請求項3に記載の蒸発濃縮装置。   The said bypass valve is opened when the conductivity value detected with the said conductivity meter exceeds predetermined value, The path | route of the said hot water is switched to the path | route which passes along the said bypass valve from the said heating piping. Evaporative concentration device. 前記加温用配管に第1の熱交換器が設けられ、
前記加温手段は、前記第1の熱交換器によって加温された熱媒が循環する第2の熱交換器を有して前記熱媒の熱によって前記被処理水を加温する、請求項3または4に記載の蒸発濃縮装置。
A first heat exchanger is provided in the heating pipe;
The said heating means has a 2nd heat exchanger with which the heat medium heated by the said 1st heat exchanger circulates, and heats the to-be-processed water with the heat | fever of the said heat medium. The evaporative concentration apparatus according to 3 or 4.
前記導電率計は前記加温用配管において前記第1の熱交換器の下流に設けられている、請求項5に記載の蒸発濃縮装置。   The evaporative concentration apparatus according to claim 5, wherein the conductivity meter is provided downstream of the first heat exchanger in the heating pipe. 前記第1の熱交換器と前記第2の熱交換器の間を循環する前記熱媒の経路にヘッドタンクが設けられている、請求項5または6に記載の蒸発濃縮装置。   The evaporative concentration apparatus according to claim 5 or 6, wherein a head tank is provided in a path of the heat medium that circulates between the first heat exchanger and the second heat exchanger. 前記ヘッドタンクでの液面変動に基づいて前記バイパス弁を開き、前記熱水の経路を前記加温用配管から前記バイパス弁を通る経路に切り替える、請求項7に記載の蒸発濃縮装置。   The evaporative concentration apparatus according to claim 7, wherein the bypass valve is opened based on a liquid level fluctuation in the head tank, and the path of the hot water is switched from the heating pipe to a path passing through the bypass valve. 前記被処理水は前記第1の循環経路を介して前記加湿塔に供給され、前記加湿塔から流出する水の少なくとも一部を、前記混入成分を含む濃縮水として排出する、請求項1乃至8のいずれか1項に記載の蒸発濃縮装置。   The treated water is supplied to the humidification tower via the first circulation path, and at least a part of the water flowing out of the humidification tower is discharged as concentrated water containing the mixed components. The evaporative concentration apparatus according to any one of the above. 請求項1乃至9のいずれか1項に記載の蒸発濃縮装置を備える発電設備。   Power generation equipment provided with the evaporative concentration apparatus of any one of Claims 1 thru | or 9. 発電設備において混入成分を含む被処理水に対して蒸発濃縮処理を行なう蒸発濃縮方法であって、
キャリアガスと被処理水が供給されて前記キャリアガスと前記被処理水とを気液接触させ、前記キャリアガスを加湿して排出する加湿塔と、前記加湿されたキャリアガスと冷却水とを気液接触させて前記加湿されたキャリアガスを冷却し、水分の少なくとも一部を凝縮させることにより、除湿されたキャリアガスを生成して排出する除湿塔と、前記加湿塔に対して前記被処理水を循環させる第1の循環経路と、を有するキャリアガス式蒸発装置を使用し、
前記発電設備の給水加熱器から排出される熱水を熱源として前記キャリアガス式蒸発装置において前記被処理水を加温する、蒸発濃縮方法。
An evaporative concentration method for evaporating and concentrating water to be treated containing mixed components in a power generation facility,
A carrier gas and water to be treated are supplied to bring the carrier gas and the water to be treated into gas-liquid contact, and a humidifying tower for humidifying and discharging the carrier gas, and the humidified carrier gas and cooling water are gasified. A dehumidifying tower for generating and discharging a dehumidified carrier gas by cooling the humidified carrier gas by liquid contact and condensing at least part of the water, and the water to be treated with respect to the humidifying tower A carrier gas evaporator having a first circulation path for circulating
An evaporative concentration method in which the water to be treated is heated in the carrier gas evaporator using hot water discharged from a feed water heater of the power generation facility as a heat source.
JP2018106894A 2018-06-04 2018-06-04 Evaporation and concentration equipment and methods for power generation equipment and power generation equipment Active JP7079151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018106894A JP7079151B2 (en) 2018-06-04 2018-06-04 Evaporation and concentration equipment and methods for power generation equipment and power generation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018106894A JP7079151B2 (en) 2018-06-04 2018-06-04 Evaporation and concentration equipment and methods for power generation equipment and power generation equipment

Publications (2)

Publication Number Publication Date
JP2019209249A true JP2019209249A (en) 2019-12-12
JP7079151B2 JP7079151B2 (en) 2022-06-01

Family

ID=68846010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018106894A Active JP7079151B2 (en) 2018-06-04 2018-06-04 Evaporation and concentration equipment and methods for power generation equipment and power generation equipment

Country Status (1)

Country Link
JP (1) JP7079151B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113426257A (en) * 2021-06-08 2021-09-24 威海金宏科技有限公司 Wastewater recovery process and system based on low-grade heat source
CN113440985A (en) * 2021-06-08 2021-09-28 威海金宏科技有限公司 Multi-effect heat exchange wastewater recovery process and system for humidification-dehumidification tower

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6060207A (en) * 1983-09-13 1985-04-06 Toshiba Corp Steam turbine plant
JPS60108625A (en) * 1983-11-16 1985-06-14 Toshiba Corp Air conditioning device in turbine power generating facility
JPH01207184A (en) * 1988-02-15 1989-08-21 Toshiba Corp Waste liquid enricher
JP2005349299A (en) * 2004-06-10 2005-12-22 Mitsubishi Heavy Ind Ltd Freshwater production apparatus
WO2010029723A1 (en) * 2008-09-09 2010-03-18 日曹エンジニアリング株式会社 Multistage evaporating-thickening/condensing apparatus and method
WO2011148422A1 (en) * 2010-05-27 2011-12-01 日立Geニュークリア・エナジー株式会社 Power generation/seawater desalination complex plant
WO2012039009A1 (en) * 2010-09-24 2012-03-29 株式会社 日立製作所 Seawater desalination method, seawater desalination equipment and combined cycle power plant using same
WO2015158783A1 (en) * 2014-04-17 2015-10-22 Kaiser Ag Disposal vehicle for receiving waste water, and disposal method
JP2016090127A (en) * 2014-11-04 2016-05-23 三菱日立パワーシステムズ株式会社 Power generation plant and operation method of power generation plant

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6060207A (en) * 1983-09-13 1985-04-06 Toshiba Corp Steam turbine plant
JPS60108625A (en) * 1983-11-16 1985-06-14 Toshiba Corp Air conditioning device in turbine power generating facility
JPH01207184A (en) * 1988-02-15 1989-08-21 Toshiba Corp Waste liquid enricher
JP2005349299A (en) * 2004-06-10 2005-12-22 Mitsubishi Heavy Ind Ltd Freshwater production apparatus
WO2010029723A1 (en) * 2008-09-09 2010-03-18 日曹エンジニアリング株式会社 Multistage evaporating-thickening/condensing apparatus and method
WO2011148422A1 (en) * 2010-05-27 2011-12-01 日立Geニュークリア・エナジー株式会社 Power generation/seawater desalination complex plant
WO2012039009A1 (en) * 2010-09-24 2012-03-29 株式会社 日立製作所 Seawater desalination method, seawater desalination equipment and combined cycle power plant using same
WO2015158783A1 (en) * 2014-04-17 2015-10-22 Kaiser Ag Disposal vehicle for receiving waste water, and disposal method
JP2016090127A (en) * 2014-11-04 2016-05-23 三菱日立パワーシステムズ株式会社 Power generation plant and operation method of power generation plant

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113426257A (en) * 2021-06-08 2021-09-24 威海金宏科技有限公司 Wastewater recovery process and system based on low-grade heat source
CN113440985A (en) * 2021-06-08 2021-09-28 威海金宏科技有限公司 Multi-effect heat exchange wastewater recovery process and system for humidification-dehumidification tower

Also Published As

Publication number Publication date
JP7079151B2 (en) 2022-06-01

Similar Documents

Publication Publication Date Title
JP4578354B2 (en) Waste heat utilization equipment for steam turbine plant
RU2485331C2 (en) Method and device for conversion of thermal energy of low-temperature source of heat into mechanical energy
KR101259515B1 (en) Method for the operation of a steam power station, especially a steam power station of a power plant used for generating at least electrical power, and corresponding steam power station
JP2007064047A (en) Waste heat recovery facility for steam turbine plant
JP2008101521A (en) Power generation system by exhaust heat
RU2631182C2 (en) Process of fresh water preliminary heating in steam-turbine power plants with process steam vent
JPH03124902A (en) Combined cycle power plant and operating method therefor
JP7079151B2 (en) Evaporation and concentration equipment and methods for power generation equipment and power generation equipment
JP4821457B2 (en) Advanced water generation system
JP7096021B2 (en) Evaporation concentrator
CN104961178A (en) Evaporation type liquid concentration treatment system and treatment method thereof
JP2013007369A (en) Waste-heat power generation apparatus
JP6199428B2 (en) Superheated steam generator
JP5334885B2 (en) Boiler heat recovery apparatus and heat recovery method in power generation facilities
JP4095738B2 (en) Nuclear power generation equipment
CN112384479A (en) Reverse osmosis treatment method and system
JP5658473B2 (en) Power generation device and operation method of power generation device
JP3524582B2 (en) Non-azeotropic mixed fluid cycle plant
KR20100103770A (en) The condensing system for thermal plant using refrigerant evaporation heat
JP2007017035A (en) System for effectively using energy
US10132542B2 (en) Pressure control for refrigerant system
WO2020031667A1 (en) Acid electrical conductivity measurement device and method, and steam turbine plant
JP4622714B2 (en) Energy efficient use system
JP5921788B1 (en) Cooling system
KR102541651B1 (en) Apparatus and method for producing high-pressure steam using waste heat of fuel cell stack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220520

R150 Certificate of patent or registration of utility model

Ref document number: 7079151

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150