JPS60108625A - Air conditioning device in turbine power generating facility - Google Patents

Air conditioning device in turbine power generating facility

Info

Publication number
JPS60108625A
JPS60108625A JP58214111A JP21411183A JPS60108625A JP S60108625 A JPS60108625 A JP S60108625A JP 58214111 A JP58214111 A JP 58214111A JP 21411183 A JP21411183 A JP 21411183A JP S60108625 A JPS60108625 A JP S60108625A
Authority
JP
Japan
Prior art keywords
water
nozzle
pipe
temperature
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58214111A
Other languages
Japanese (ja)
Inventor
Seiichi Izumi
和泉 誠一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58214111A priority Critical patent/JPS60108625A/en
Publication of JPS60108625A publication Critical patent/JPS60108625A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K17/00Using steam or condensate extracted or exhausted from steam engine plant
    • F01K17/04Using steam or condensate extracted or exhausted from steam engine plant for specific purposes other than heating

Abstract

PURPOSE:To miniaturize the titled device and improve the reliability thereof by constituting the titled device used in an atomic power plant in such a manner that the reduced pressure vaporization and lowering of water temperature of a stored water circulation type atomizing device are carried out by the negative pressure operation of a nozzle provided within an air vent pipe and water is cooled with low-temperature stored water. CONSTITUTION:The nozzle 23 is provided in an air vent pipeline 21 which leads a part of exhaust vapor of the low pressure turbine to a supply water heater, and the downstream of the nozzle 23 is connected to the upper part of a hermetically closed vessel 25 containing therein a sprayer 32. By this construction, pressure is reduced in the hermetically closed vessel by the negative pressure operation of the nozzle 23, and stored water is evaporated, thus lowering the temperature. Stored water the temperature of which has been lowered, is dispersed from the sprayer 32 to cool water within a cool water pipe 33 containing no radioactivity. By this construction, the air conditioning device can be miniaturized and the reliability of the device can be improved.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、原子力発電所や火力発電所のようにタービン
により発電するタービン発電設備における空気調和装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an air conditioner in a turbine power generation facility that uses a turbine to generate electricity, such as a nuclear power plant or a thermal power plant.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

一般に、原子力発電n[においては原子炉建屋やタービ
ン建屋を冷房しなければならないが、従来はこの冷房を
吸収式冷凍様やターボ式冷凍機により行なっていた。し
かしながら吸収式冷凍様による冷房は設備が大型になる
し、またターボ式冷凍機による冷房は独立したタービン
を必要とするといった問題点があった。
Generally, in nuclear power generation, it is necessary to cool the reactor building and turbine building, but conventionally this cooling has been performed using absorption refrigeration or turbo chillers. However, cooling using absorption refrigeration requires large equipment, and cooling using a turbo chiller requires an independent turbine.

〔発明の目的〕[Purpose of the invention]

本発明は、このような従来のものにおける問題点を解消
し、タービン蒸気のエイ・ルギを利用して小型でしかも
信頼性の高いタービン発電設備における空気部オl]装
置を提供することを目的とする。
The purpose of the present invention is to solve the problems with the conventional ones and provide a compact and highly reliable air section system for turbine power generation equipment that utilizes the energy of turbine steam. shall be.

〔発明の概要〕[Summary of the invention]

本発明は、タービンからの抽気管路に形成されたノズル
と、このノズルの下流側の抽気管路と上部において連通
し、下部に水が満たされた密閉容器と、前記密閉容器内
に配置され、下部の貯溜水を循環させて密閉容器内に散
布するスプレィと、このスプレィから散布水と熱交換可
能に前記密閉容器内に延在されている冷水管路とを設け
、蒸気の運動エネルギによシ密閉答器内を負圧にして容
器内の水を低温で蒸発せしめ、この蒸発潜熱を奪うこと
によシ容器内の水を冷却し、この水をスプレィから冷水
管路へ散布して冷水管路内の水を冷却するようにしたも
のでおる。
The present invention provides a nozzle formed in an air bleed pipe line from a turbine, a closed container communicating at the upper part with the air bleed pipe line downstream of the nozzle, and having a lower part filled with water; , a spray that circulates water stored in the lower part and sprays it inside the sealed container, and a cold water pipe that extends into the sealed container so that heat can be exchanged from the spray with the sprayed water are provided, and the kinetic energy of the steam is converted into The water in the container is evaporated at low temperature by creating a negative pressure inside the sealed reactor, and the water in the container is cooled by removing this latent heat of evaporation, and this water is sprayed into the cold water pipe. This filter is designed to cool the water in the cold water pipe.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を回向に示す実施例によシ説明する。 Hereinafter, the present invention will be explained by way of examples.

第1図は本発明の空気調和装置を適用した原子力発電所
を示すものであシ、内部に炉心2の形成された原子炉圧
力容器1からは主蒸気管3が導出され、この主蒸気管3
は高圧タービン4に接続されており、原子炉圧力容器1
内で発生した蒸気が主蒸気管3を介して高圧タービン4
に供給され、仕事をするようになっている。また、この
高圧タービン4は、湿分分離器5の介装された主蒸気管
6を介して低圧タービン7と接続されておシ高圧タービ
ン4において仕事をした蒸気は低圧タービン7において
再度仕事をするようになっている。
FIG. 1 shows a nuclear power plant to which the air conditioner of the present invention is applied. A main steam pipe 3 is led out from a reactor pressure vessel 1 in which a reactor core 2 is formed. 3
is connected to the high pressure turbine 4, and the reactor pressure vessel 1
Steam generated in the high pressure turbine 4 is passed through the main steam pipe 3
are supplied and put to work. The high-pressure turbine 4 is also connected to a low-pressure turbine 7 via a main steam pipe 6 in which a moisture separator 5 is installed. It is supposed to be done.

前記低圧タービン7は主復水器8と接続されており、こ
の主復水器8内には、循環水ポンプ9の介装された循環
水管路10が臨み、海水や河川水によp主復水器8内の
蒸気を凝縮して復水させるようになっている。前記主復
水器8および原子炉圧力容器1間の給水ラインは、復水
ポンプ11および主給水ポンプ】2の介装された給水管
路13によシ接続されており、復水を再度原子炉圧力容
器lに供給するようになっている。また、前記両ポンプ
11゜12同の給水前略13にはドレン冷却器14およ
び給水加熱器15が介装されている。さらに、前記主復
水器8には気体廃棄物処理U路16が接続されており、
この処理管路16には、空気抽出器17および真空ポン
プ18が並列に介装されている。これらの空気抽出器1
7および真空ポンプ18の下流側には気体廃棄物処理系
19が介装されておシ、ここで処理された廃棄物は主排
気筒加から大気中に放出されるようになっている。
The low-pressure turbine 7 is connected to a main condenser 8, and a circulating water pipe 10 in which a circulating water pump 9 is installed faces the main condenser 8. The steam in the condenser 8 is condensed and condensed. The water supply line between the main condenser 8 and the reactor pressure vessel 1 is connected to a water supply pipe 13 interposed between a condensate pump 11 and a main water supply pump 2, and the condensate is re-atomized. It is designed to supply the furnace pressure vessel l. Further, a drain cooler 14 and a feed water heater 15 are interposed in the water supply front section 13 of both pumps 11 and 12. Furthermore, a gaseous waste treatment U path 16 is connected to the main condenser 8,
An air extractor 17 and a vacuum pump 18 are installed in parallel in this processing line 16. These air extractors 1
A gaseous waste treatment system 19 is interposed downstream of the vacuum pump 18 and the gaseous waste treatment system 19, and the waste treated here is discharged into the atmosphere from the main exhaust pipe.

一方、前記低圧タービン7からは抽気管路21が導出し
ておシ、この抽気管路21は、前記給水加熱器15およ
びドレン冷却器14を介してiiJ記主復水器8と接続
されている。
On the other hand, an air bleed line 21 is led out from the low pressure turbine 7, and this air bleed line 21 is connected to the main condenser 8 via the feed water heater 15 and drain cooler 14. There is.

ここまでの414或は、一般的な原子力発電所の措成で
あるが、本発明の空気調和装置nがhIJ記給水給水加
熱器14流側の抽気管路21に設けられている。
414 or the configuration of a general nuclear power plant, the air conditioner n of the present invention is provided in the air bleed pipe 21 on the downstream side of the hIJ feed water heater 14.

前記空気調和装置22は、第2図に計示されているよう
に、前記抽気管路21内に形成されているノズル乙およ
びディフューザ24を有している。前記抽気管路21の
近傍には密閉容器δが配設されており、この’tslf
目j器乙の上部と、前記ノズルz3およびディフューザ
別間のiu記抽気?j・路21とが連ノlil ’θ路
かにより連通されている。この祈し1谷器21には、第
1図の復水ポンプ1]の下流側の給水管路13から分岐
している補給水管路27葡介して水が供給されるように
なってお9、この補給水管路27に介装されている補給
水弁28は、前記密閉容器21に設けられている水位用
管路29に介装されているレベルスイッチ加によシ開閉
されるようになっている。したがって、密閉容器21内
の水位は常に設定レベルに制御されることになる。
As shown in FIG. 2, the air conditioner 22 includes a nozzle B and a diffuser 24 formed in the air extraction pipe 21. A closed container δ is arranged near the air bleed pipe 21, and this 'tslf
Air bleed between the upper part of the eyepiece and the nozzle z3 and the diffuser? The j path 21 is connected to the path 21 by a continuous path 21. Water is supplied to this water supply pipe 21 through a make-up water pipe 27 branching from the water supply pipe 13 on the downstream side of the condensate pump 1 shown in Fig. 1. A make-up water valve 28 installed in the make-up water pipe 27 is opened and closed by a level switch installed in a water level pipe 29 provided in the closed container 21. ing. Therefore, the water level in the closed container 21 is always controlled to the set level.

まだ、前記密閉容器2工の下端部にはスプレィ用管路3
1が接続されておシ、このスプレィ用管路31の下流側
端部は密閉容器21内の上部に臨み、この部分に被数の
スノルイ32 、32・・・が突設されている。
There is still no spray pipe 3 at the bottom end of the 2 sealed containers.
1 is connected, and the downstream end of this spray conduit 31 faces the upper part of the closed container 21, and a number of snowdrops 32, 32, . . . are provided protruding from this portion.

づらに、前記密閉容器2工内には、前記スプレィ32刀
・ら散布される水が散布され、熱交換可能に冷水管路3
3が臨んでおり、この冷水管路33内の水は図示しない
原子炉建屋やタービン建屋などを冷房するために使用さ
れるようになっている。なお、前記スプレィ用管路31
には流量制御r(1弁あが弁装されておシ、この流量制
御弁34は前記冷水管路33内の冷水の温度を検知する
温度スイッチ35によシ開度を制御されるようになって
いる。また、前記スプレィ用管路31にはスプレィポン
プ洲が介装されている。
In addition, the water sprayed by the spray 32 is sprayed into the airtight container 2, and the cold water pipe 3 is heated so that heat can be exchanged.
3 is facing, and the water in this cold water pipe 33 is used to cool a nuclear reactor building, a turbine building, etc. (not shown). Note that the spray pipe 31
is equipped with a flow rate control valve (1 valve A), and the opening degree of this flow rate control valve 34 is controlled by a temperature switch 35 that detects the temperature of the cold water in the cold water pipe 33. In addition, a spray pump is interposed in the spray conduit 31.

つぎに、前述した実施例の作用について説明する。Next, the operation of the above-described embodiment will be explained.

原子炉圧力容器1で発生した蒸気は、主蒸気管3を介し
て、高圧タービン4を駆動した後、湿分分離器5で町び
乾いた蒸気にして、低圧タービン7を駆動するが、この
低圧タービン7からの排気蒸気の一部が抽気管路21に
よって給水加熱器15に抽気され、最終的に、この排気
蒸気は凝縮水となって真空ポンプ18によって真空に保
たれ、かつ循環水管路10により冷却されている主復水
器8に導かれる。前記抽気管路21より導かれた数〜十
数に一排気蒸気は、抽気管路21内に形成さ扛たノズル
nから高速で吹射され、その速度エネルギを利用して連
通管路26で接続された密閉容器5は負圧によシ低圧に
される。その低圧の下で密閉容器5内の水を蒸発させて
、その潜熱を吸収し、低温水とする。その低温水をスプ
レイボンゾ36によりスプレィ用管路31を介してスプ
レィ32から冷水管路33に散布することにより、放射
能を含まない冷水管路33内の冷水を供給することがで
きる。なお、密閉容器部内の水から発生した蒸気は、タ
ービン排気蒸気とノズルnへの流入部で混合し、抽気管
路21内のノズル21下流側のディフューザUを通る際
にその運転エネルギは、圧力エネルギに変化され、凝縮
圧力まで高まった後、給水加熱器15に導かれ、給水を
加熱した後、抜水となシ、主復水器8に導かれる。
The steam generated in the reactor pressure vessel 1 passes through a main steam pipe 3 to drive a high-pressure turbine 4, and then is turned into dry steam by a moisture separator 5, which drives a low-pressure turbine 7. A part of the exhaust steam from the low-pressure turbine 7 is extracted to the feed water heater 15 through the bleed line 21, and finally, this exhaust steam becomes condensed water and is kept in a vacuum by the vacuum pump 18, and the circulating water line 10 to the main condenser 8 which is cooled. The exhaust steam led from the air bleed pipe 21 is blown at high speed from a nozzle n formed in the air bleed pipe 21, and is blown into the communication pipe 26 using its velocity energy. The connected closed container 5 is brought to a low pressure by negative pressure. The water in the closed container 5 is evaporated under the low pressure, its latent heat is absorbed, and the water is turned into low-temperature water. By spraying the low-temperature water from the spray 32 to the cold water pipe 33 via the spray pipe 31 by the spray bonzo 36, it is possible to supply cold water in the cold water pipe 33 that does not contain radioactivity. Note that the steam generated from the water in the closed container mixes with the turbine exhaust steam at the inlet to the nozzle n, and when passing through the diffuser U downstream of the nozzle 21 in the bleed pipe 21, its operating energy is reduced by the pressure After being converted into energy and increasing to condensing pressure, the water is led to the feed water heater 15 to heat the feed water, then drained and led to the main condenser 8.

主復水器8は、真空ポンプ18によシ十分な真空度を有
し、かつ、海または河川の水による循環水音路10によ
シ冷却されているため、タービン排気蒸気の最終的な凝
紬器として機能する。
The main condenser 8 has a sufficient degree of vacuum due to the vacuum pump 18 and is cooled by the circulating water passage 10 using sea or river water, so that the final Functions as a pongee vessel.

したがって、新たに、本空気調和装置のために凝縮器を
設置することが不要となる。また、主復水器8には、非
凝縮性ガス等を除去するための空気抽出器17が設けら
れており、そのようなガスは、気体廃棄物処理系19で
処理されるので、やけp最「たに空気抽出器を設ける必
要がない。
Therefore, it becomes unnecessary to newly install a condenser for this air conditioner. In addition, the main condenser 8 is provided with an air extractor 17 for removing non-condensable gas, etc., and such gas is treated in the gaseous waste treatment system 19, so that it does not cause burns. Most importantly, there is no need to install an air extractor.

以上、本発明の一実施例について説明したが、この実施
例の応用例として、蒸気の抽気点を、直接主蒸気管3,
6とすることや、抽気管路21を給水加熱器15に接続
せず、直接主復水器8に接続することも考えられる。こ
の場合には、主復水器の6負圧f:積極的にかつ直接的
に第1」用することができる。
An embodiment of the present invention has been described above, but as an application example of this embodiment, the steam bleed point can be directly connected to the main steam pipe 3,
6, or connecting the bleed air pipe 21 directly to the main condenser 8 without connecting it to the feed water heater 15 is also conceivable. In this case, the negative pressure f of the main condenser can be actively and directly used.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明のタービン用蒸気を利用し
た空気調和装置は、発生蒸気と既設の発電設備を有効に
利用することにより、ゼイラー、凝縮器、抽気装置をλ
l(たに設ける必要がなく、容易に冷水を得ることがで
き、設備費および、運転費に関し非宮に経済的である。
As explained above, the air conditioner using turbine steam of the present invention effectively utilizes the generated steam and existing power generation equipment to reduce the
There is no need to install a cold water tank, cold water can be easily obtained, and it is extremely economical in terms of equipment costs and operating costs.

また、)l「だに設けた設置110も、はとんどか配管
、容器などの静的様器でかつ、簡素な構成となっている
ため、設備の保守がし易く、システムの信頼性が良い。
In addition, the installation 110 installed in the factory is mostly static-like equipment such as piping and containers, and has a simple configuration, making it easy to maintain the equipment and improving the reliability of the system. good.

したがって、原子炉発屯ノツ[からの放射能7)、’m
洩の恐れが少ないといえる。
Therefore, the radioactivity from the nuclear reactor
It can be said that there is little risk of leakage.

【図面の簡単な説明】[Brief explanation of the drawing]

、第1図は本発明に係る空気調和装置と、原子炉発電R
[の既設設備との関係を示した管路図、第2図は本発明
に係る空気調和装置の一実施例を示す正面図である。 1・・・原子炉圧力容器、4・・・高圧タービン、7・
−・低圧タービン、8・・・主復水器、15・・・給水
加熱器、21・・・抽気管路、n・・・空気調和装置、
乙・・・ノズル、U・・・ディフューザ、5・・・密閉
容器、32・・・2、ゾレイ、33・・・冷水管路。
, FIG. 1 shows an air conditioner according to the present invention and a nuclear reactor power generation R
FIG. 2 is a front view showing an embodiment of the air conditioner according to the present invention. 1... Reactor pressure vessel, 4... High pressure turbine, 7...
- Low pressure turbine, 8 Main condenser, 15 Feed water heater, 21 Air bleed pipe, n Air conditioner,
B: Nozzle, U: Diffuser, 5: Sealed container, 32: 2, Zorei, 33: Cold water pipe.

Claims (1)

【特許請求の範囲】 1、タービンからの抽気管路に形成されたノズルと、こ
のノズルの下流側の抽気管路と上部において連通し、下
部に水が満たされた密閉容器と、上記密閉容器内に配置
され、下部の貯溜水を循環させて密閉容器内に散布する
スプレィと、このスプレィからの散布水と熱交換可能に
前記密閉容器内に延在されている冷水管路とをイイする
ことを特徴とするタービン発電設備における空気調和装
置。 2、前記密閉容器には補給水管路が接続され、この補給
水管路には、密閉容器内のレベルスイッチによシ開閉さ
れる制御弁が介装されている特許請求の範囲第1項記載
のタービン発電設備における空気調和装置。
[Scope of Claims] 1. A nozzle formed in an air bleed line from the turbine, an airtight container that communicates at the upper part with the air bleed line downstream of this nozzle and whose lower part is filled with water, and said airtight container. a sprayer disposed within the sealed container that circulates water stored in the lower part and sprays it inside the sealed container; and a cold water pipe extending into the sealed container so as to be able to exchange heat with the sprayed water from the spray. An air conditioner in a turbine power generation facility characterized by: 2. A make-up water pipe is connected to the closed container, and a control valve that is opened and closed by a level switch in the closed container is interposed in the make-up water pipe. Air conditioner in turbine power generation equipment.
JP58214111A 1983-11-16 1983-11-16 Air conditioning device in turbine power generating facility Pending JPS60108625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58214111A JPS60108625A (en) 1983-11-16 1983-11-16 Air conditioning device in turbine power generating facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58214111A JPS60108625A (en) 1983-11-16 1983-11-16 Air conditioning device in turbine power generating facility

Publications (1)

Publication Number Publication Date
JPS60108625A true JPS60108625A (en) 1985-06-14

Family

ID=16650413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58214111A Pending JPS60108625A (en) 1983-11-16 1983-11-16 Air conditioning device in turbine power generating facility

Country Status (1)

Country Link
JP (1) JPS60108625A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2682214A1 (en) * 1991-10-03 1993-04-09 Trepaud Sa Nuclear power station with radioactive material separator
CN105157144A (en) * 2015-08-21 2015-12-16 深圳智慧能源技术有限公司 Air conditioning and power generating all-in-one machine
JP2019209249A (en) * 2018-06-04 2019-12-12 オルガノ株式会社 Apparatus and method of evaporative concentration apparatus for power generation facility and power generation facility

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2682214A1 (en) * 1991-10-03 1993-04-09 Trepaud Sa Nuclear power station with radioactive material separator
CN105157144A (en) * 2015-08-21 2015-12-16 深圳智慧能源技术有限公司 Air conditioning and power generating all-in-one machine
JP2019209249A (en) * 2018-06-04 2019-12-12 オルガノ株式会社 Apparatus and method of evaporative concentration apparatus for power generation facility and power generation facility

Similar Documents

Publication Publication Date Title
US4037413A (en) Power plant with a closed cycle comprising a gas turbine and a work gas cooling heat exchanger
CA2060094C (en) Method and apparatus for maintaining a required temperature differential in vacuum deaerators
CN108444146A (en) A kind of marine air-conditioning system and refrigerating method based on lithium bromide-water
KR0151674B1 (en) Absorptive cooling/heating apparatus
JPH0729363Y2 (en) Process equipment
EP1213548B1 (en) Heat pump
CN110068023A (en) It is a kind of to receive water fog dissipation system using the boiler wet flue gas condensation of surplus heat of power plant refrigeration
JPS60108625A (en) Air conditioning device in turbine power generating facility
JP7079151B2 (en) Evaporation and concentration equipment and methods for power generation equipment and power generation equipment
US3014349A (en) Method of operation of an absorption refrigeration system
JPH01105000A (en) Vacuum ejector device
KR101699905B1 (en) Absorption chiller system having fuel cell
CN100378297C (en) Refrigeration condensing and air cooling facilities and its heat energy reclaiming system of turbo generator
JP3318791B2 (en) Waste heat recovery system for direct-fired absorption chiller / heater
KR900007721B1 (en) Absorption type cooled water and warm water supplier
CN208296430U (en) A kind of Novel defrosting system for refrigeration house
JP3314441B2 (en) Absorption chiller / heater
JPS5849872A (en) Heat pump device
JPH0638009B2 (en) Air-cooled absorption cold / hot water unit
JP2877280B2 (en) Gas turbine intake cooling system
JPS631510B2 (en)
JPS6248798B2 (en)
JPS6122217Y2 (en)
JPH0354376Y2 (en)
KR950023943A (en) Ejector circulation type cold water heater