JP7096021B2 - Evaporation concentrator - Google Patents

Evaporation concentrator Download PDF

Info

Publication number
JP7096021B2
JP7096021B2 JP2018052278A JP2018052278A JP7096021B2 JP 7096021 B2 JP7096021 B2 JP 7096021B2 JP 2018052278 A JP2018052278 A JP 2018052278A JP 2018052278 A JP2018052278 A JP 2018052278A JP 7096021 B2 JP7096021 B2 JP 7096021B2
Authority
JP
Japan
Prior art keywords
water
treated
heat
carrier gas
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018052278A
Other languages
Japanese (ja)
Other versions
JP2019162591A (en
Inventor
理 中森
伸一 大橋
昭吾 梅本
康秀 田熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2018052278A priority Critical patent/JP7096021B2/en
Publication of JP2019162591A publication Critical patent/JP2019162591A/en
Application granted granted Critical
Publication of JP7096021B2 publication Critical patent/JP7096021B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

本発明は、混入成分を含む被処理水に対して蒸発濃縮処理を行って混入成分が濃縮された濃縮水を生成する蒸発濃縮装置に関し、特に、キャリアガス式蒸発装置による蒸発濃縮装置に関する。 The present invention relates to an evaporative concentrator that evaporates and concentrates water to be treated containing contaminated components to generate concentrated water in which the contaminated components are concentrated, and more particularly to an evaporative concentrator using a carrier gas type evaporative device.

各産業のさまざまなプロセスにおいて、酸、アルカリ、金属塩などの各種の成分が混入した排水が発生する。最近では、水質汚染の防止や水資源の有効利用の観点から、海外を中心に液体廃棄物の量をゼロとするZLD(Zero Liquid Discharge)規制が適用されることが多くなってきている。そのため、各種の成分を含む排水である被処理水から混入成分が濃縮された濃縮水を生成する蒸発濃縮技術が必要とされるようになってきた。被処理水に対して蒸発濃縮処理を行ったのち、例えば濃縮水からは混入成分が分離される。蒸発濃縮処理により混入成分を含まない処理水も発生するが、処理水は再利用することができる。蒸発濃縮装置としては、多重効用缶式や多段蒸留式、機械的圧縮式などが知られているが、より温和な条件で被処理水に対して蒸発濃縮処理を行うことができるキャリアガス式蒸発装置が注目されている。特許文献1,2は、キャリアガス式蒸発装置の例を示している。 Wastewater mixed with various components such as acids, alkalis and metal salts is generated in various processes of each industry. Recently, from the viewpoint of prevention of water pollution and effective use of water resources, ZLD (Zero Liquid Discharge) regulations that reduce the amount of liquid waste to zero are often applied mainly overseas. Therefore, an evaporation concentration technique for producing concentrated water in which mixed components are concentrated from water to be treated, which is wastewater containing various components, has been required. After the water to be treated is subjected to the evaporation concentration treatment, the mixed components are separated from the concentrated water, for example. Although treated water that does not contain mixed components is also generated by the evaporation concentration treatment, the treated water can be reused. As the evaporation concentration device, a multi-effect can type, a multi-stage distillation type, a mechanical compression type, etc. are known, but a carrier gas type evaporation capable of performing evaporation concentration treatment on the water to be treated under milder conditions is known. The device is attracting attention. Patent Documents 1 and 2 show an example of a carrier gas type evaporator.

キャリアガス式蒸発装置とは、加湿塔において沸点以下の比較的温度の高い条件で被処理水とキャリアガスとを気液接触させて被処理水中の水分を水蒸気としてキャリアガスに移行させてキャリアガスを加湿し、次に、水蒸気を含むキャリアガスを除湿塔において冷却し、キャリアガス中の水蒸気の少なくとも一部を凝縮させるものである。加湿塔内の被処理水中の水分が除湿塔における凝縮水に移行するので、加湿塔側では被処理水中の混入成分が濃縮されたことになる。除湿塔では凝縮水を処理水として取り出すことができる。キャリアガス式蒸発装置では、加湿塔側において加温し、除湿塔では冷却を行うが、特許文献3,4は、加温と冷却とを行うためにヒートポンプを用いることを開示している。また、気液接触により気体を加湿する際に気液接触の効率を高めるものとして、特許文献5は、バブリングカラムを多段に設けることを開示している。また気液接触により気体を冷却し気体中の水分を凝縮させる際に気液接触の効率を高めるものとして、特許文献6は、バブリングカラムを多段に設けることを開示している。 The carrier gas type evaporator is a carrier gas in which the water to be treated and the carrier gas are brought into gas-liquid contact in a humidifying tower under relatively high temperature conditions below the boiling point, and the water in the water to be treated is transferred to the carrier gas as water vapor. Then, the carrier gas containing water vapor is cooled in the dehumidifying tower to condense at least a part of the water vapor in the carrier gas. Since the water in the water to be treated in the humidifying tower is transferred to the condensed water in the dehumidifying tower, the mixed components in the water to be treated are concentrated on the humidifying tower side. Condensed water can be taken out as treated water in the dehumidification tower. In the carrier gas type evaporator, heating is performed on the humidifying tower side and cooling is performed in the dehumidifying tower, but Patent Documents 3 and 4 disclose that a heat pump is used for heating and cooling. Further, Patent Document 5 discloses that a bubbling column is provided in multiple stages as a means of increasing the efficiency of gas-liquid contact when humidifying a gas by gas-liquid contact. Further, Patent Document 6 discloses that a bubbling column is provided in multiple stages as a means for enhancing the efficiency of gas-liquid contact when the gas is cooled by gas-liquid contact and the moisture in the gas is condensed.

特表2015-527930号公報Special Table 2015-527930 特表2016-530096号公報Special Table 2016-53096 Gazette 特許第4319958号公報Japanese Patent No. 4319958 米国特許出願公開第2016/0251235号明細書US Patent Application Publication No. 2016/0251235 米国特許第9120033号明細書US Pat. No. 9,100,000 米国特許出願公開第2015/0129410号明細書US Patent Application Publication No. 2015/0129410

キャリアガス式蒸発装置を用いる蒸発濃縮装置では、例えば熱効率の点で改善の余地が残されている。 In the evaporation concentrator using the carrier gas type evaporator, there is room for improvement in terms of thermal efficiency, for example.

本発明の目的は、改善されたキャリアガス式蒸発装置を備える蒸発濃縮装置を提供することにある。 An object of the present invention is to provide an evaporation concentrator with an improved carrier gas type evaporator.

本発明の蒸発濃縮装置は、混入成分を含む被処理水が供給されて被処理水に対して蒸発濃縮処理を行なう蒸発濃縮装置であって、キャリアガスが供給されてキャリアガスと被処理水とを気液接触させ、キャリアガスを加湿して排出する加湿塔と、加湿されたキャリアガスと冷却水とを気液接触させて加湿されたキャリアガスを冷却し、水分の少なくとも一部を凝縮させることにより、除湿されたキャリアガスを生成して排出する除湿塔と、加湿塔に対して被処理水を循環させる第1の循環経路と、第1の循環経路に設けられて被処理水を加温する加温手段と、加温手段とは別個に設けられ、除湿塔で発生した熱を回収して第1の循環経路を流れる被処理水に熱を与えるヒートポンプと、を有し、加湿塔から流出する水の少なくとも一部を、混入成分を含む濃縮水として排出する。 The evaporative concentrator of the present invention is an evaporative concentrator to which water to be treated containing mixed components is supplied and evaporates and concentrates the water to be treated, and a carrier gas is supplied to the carrier gas and the water to be treated. A humidifying tower that humidifies and discharges the carrier gas, and the humidified carrier gas and cooling water are brought into gas-liquid contact to cool the humidified carrier gas and condense at least a part of the water. As a result, a dehumidifying tower that generates and discharges dehumidified carrier gas, a first circulation path that circulates the water to be treated to the humidifying tower, and a first circulation path that is provided in the first circulation path to add water to be treated. It has a heating means for heating and a heat pump which is provided separately from the heating means and recovers the heat generated in the dehumidifying tower to give heat to the water to be treated flowing through the first circulation path. At least a part of the water flowing out from is discharged as concentrated water containing contaminated components.

加湿されたキャリアガスを除湿塔に導いて冷却水と気液接触させ、キャリアガス中の水分の少なくとも一部を凝縮させれば、凝縮熱が発生する。本発明によれば、第1の循環経路において被処理水を加温する加温手段とは別個に、キャリアガスにより除湿塔に持ち込まれた熱や除湿塔で発生した凝縮熱を回収して第1の循環経路を流れる被処理水に熱を与えるヒートポンプを設けることにより、系全体としての熱効率を向上することができる。 If the humidified carrier gas is guided to the dehumidifying tower and brought into gas-liquid contact with the cooling water to condense at least a part of the water in the carrier gas, heat of condensation is generated. According to the present invention, the heat brought into the dehumidifying tower by the carrier gas and the condensed heat generated in the dehumidifying tower are recovered separately from the heating means for heating the water to be treated in the first circulation path. By providing a heat pump that gives heat to the water to be treated flowing through the circulation path of No. 1, the thermal efficiency of the entire system can be improved.

キャリアガス式蒸発装置による蒸発濃縮装置の一例を示す図である。It is a figure which shows an example of the evaporation concentration apparatus by a carrier gas type evaporation apparatus. 本発明の第1の実施形態の蒸発濃縮装置を示す図である。It is a figure which shows the evaporation concentration apparatus of 1st Embodiment of this invention. 第1の実施形態の蒸発濃縮装置の別の例を示す図である。It is a figure which shows another example of the evaporation concentration apparatus of 1st Embodiment. 第2の実施形態の蒸発濃縮装置を示す図である。It is a figure which shows the evaporation concentration apparatus of 2nd Embodiment.

本発明の実施の形態について、図面を参照して説明する。本発明に基づく蒸発濃縮装置のよりよい理解のために、最初に、キャリアガス式蒸発装置による一般的な蒸発濃縮装置について、図1を用いて説明する。 Embodiments of the present invention will be described with reference to the drawings. For a better understanding of the evaporative concentrator based on the present invention, first, a general evaporative concentrator using a carrier gas type evaporative apparatus will be described with reference to FIG.

図1に示す蒸発濃縮装置は、大別すると、加湿塔10と、除湿塔20と、加湿塔10の側で循環する被処理水と除湿塔20の側で循環する冷却水との間で熱交換を行う熱交換器30と、を備えている。加湿塔10と除湿塔20とによってキャリアガス式蒸発装置が構成されている。加湿塔10は、キャリアガスが供給されてキャリアガスを被処理水とを気液接触させ、キャリアガスを加湿するものである。キャリアガスとしては、例えば空気や窒素などが用いられる。加湿されたキャリアガスは、加湿塔10の上部に接続した配管41を介して加湿塔10から排出される。加湿塔10には、キャリアガスに対して被処理水を噴霧する噴霧器16が設けられている。加湿塔10の内部には、気液接触を促進するための充填物を設置してもよい。また加湿塔10の内部は、特許文献5に開示されているような、バブリングカラムを必要に応じて多段に設けたような構造であっても構わない。加湿塔10の下部には被処理水を一時的に貯える貯水部11が形成され、さらに、被処理水を排出する配管12が接続している。配管12は、熱交換器30の二次側の入口に接続する。熱交換器30の二次側の出口には、被処理水を加湿塔10に循環させるための循環配管13が接続する。循環配管13には、外部から熱媒が供給されて被処理水を加温するための熱交換器15が設けられている。循環配管13の先端は上述した噴霧器16に接続している。配管12、熱交換器30の二次側、循環配管13及び熱交換器15によって、被処理水を加温しつつ加湿塔10に対して被処理水を循環させる第1の循環経路が構成されている。さらに配管12には、後述する濃縮水として被処理水を排出する配管14も接続している。そして配管12において、配管14への分岐点よりも下流側の位置に、被処理水を第1の循環経路に供給するための配管17が接続している。この蒸発濃縮装置に外部から供給される被処理水が十分に高温である場合には、加湿塔10に配管17を接続して外部からの被処理水が加湿塔10に直接供給されるようにしてもよい。 The evaporative concentrator shown in FIG. 1 is roughly classified into heat between the humidifying tower 10, the dehumidifying tower 20, the water to be treated circulating on the side of the humidifying tower 10, and the cooling water circulating on the side of the dehumidifying tower 20. It is provided with a heat exchanger 30 for exchanging. The humidifying tower 10 and the dehumidifying tower 20 constitute a carrier gas type evaporator. The humidifying tower 10 is supplied with a carrier gas to bring the carrier gas into gas-liquid contact with the water to be treated to humidify the carrier gas. As the carrier gas, for example, air or nitrogen is used. The humidified carrier gas is discharged from the humidifying tower 10 via a pipe 41 connected to the upper part of the humidifying tower 10. The humidifying tower 10 is provided with a sprayer 16 for spraying water to be treated with respect to the carrier gas. A filler for promoting gas-liquid contact may be installed inside the humidifying column 10. Further, the inside of the humidifying tower 10 may have a structure in which bubbling columns are provided in multiple stages as required, as disclosed in Patent Document 5. A water storage unit 11 for temporarily storing the water to be treated is formed in the lower part of the humidifying tower 10, and a pipe 12 for discharging the water to be treated is connected to the water storage unit 11. The pipe 12 is connected to the inlet on the secondary side of the heat exchanger 30. A circulation pipe 13 for circulating the water to be treated to the humidifying tower 10 is connected to the outlet on the secondary side of the heat exchanger 30. The circulation pipe 13 is provided with a heat exchanger 15 for heating the water to be treated by supplying a heat medium from the outside. The tip of the circulation pipe 13 is connected to the atomizer 16 described above. The pipe 12, the secondary side of the heat exchanger 30, the circulation pipe 13, and the heat exchanger 15 constitute a first circulation path for circulating the water to be treated to the humidifying tower 10 while heating the water to be treated. ing. Further, a pipe 14 for discharging the water to be treated as concentrated water, which will be described later, is also connected to the pipe 12. Then, in the pipe 12, a pipe 17 for supplying the water to be treated to the first circulation path is connected at a position on the downstream side of the branch point to the pipe 14. When the water to be treated externally supplied to this evaporation concentrator is at a sufficiently high temperature, a pipe 17 is connected to the humidifying tower 10 so that the water to be treated from the outside is directly supplied to the humidifying tower 10. You may.

除湿塔20は、加湿塔10から加湿されたキャリアガスが配管41を介して供給され、このキャリアガスを噴霧器26から噴霧される冷却水と気液接触させることによってキャリアガス中の水分を凝縮させるものである。水分の一部が凝縮除去されたキャリアガスは、除湿されたキャリアガスとして、除湿塔20の上部に接続した配管42を介して除湿塔20から外部に排出される。除湿塔20の内部には、気液接触を促進するための充填物を設置してもよい。また除湿塔20の内部は、特許文献6に開示されているような、バブリングカラムを必要に応じて多段に設けたような構造であっても構わない。除湿塔20の下部には冷却水を一時的に貯える貯水部21が形成され、さらに、冷却水を排出する配管22が接続している。配管22は、熱交換器30の一次側の入口に接続している。熱交換器30の一次側の出口には、冷却水を除湿塔20に循環させるための循環配管23が接続し、循環配管23の先端は上述した噴霧器26に接続している。循環配管23には、処理水として冷却水を排出する配管24も接続している。配管22、熱交換器30の一次側、及び循環配管23によって、冷却水を冷却しつつ除湿塔20に対して冷却水を循環させる第2の循環経路が構成されている。 In the dehumidifying tower 20, the carrier gas humidified from the humidifying tower 10 is supplied via the pipe 41, and the carrier gas is brought into gas-liquid contact with the cooling water sprayed from the atomizer 26 to condense the water in the carrier gas. It is a thing. The carrier gas from which a part of the water is condensed and removed is discharged to the outside from the dehumidifying tower 20 as the dehumidified carrier gas through the pipe 42 connected to the upper part of the dehumidifying tower 20. A filler for promoting gas-liquid contact may be installed inside the dehumidifying tower 20. Further, the inside of the dehumidifying tower 20 may have a structure in which bubbling columns are provided in multiple stages as required, as disclosed in Patent Document 6. A water storage unit 21 for temporarily storing cooling water is formed in the lower part of the dehumidifying tower 20, and a pipe 22 for discharging the cooling water is connected to the water storage unit 21. The pipe 22 is connected to the inlet on the primary side of the heat exchanger 30. A circulation pipe 23 for circulating cooling water to the dehumidifying tower 20 is connected to the outlet on the primary side of the heat exchanger 30, and the tip of the circulation pipe 23 is connected to the atomizer 26 described above. A pipe 24 for discharging cooling water as treated water is also connected to the circulation pipe 23. The pipe 22, the primary side of the heat exchanger 30, and the circulation pipe 23 constitute a second circulation path for circulating the cooling water to the dehumidifying tower 20 while cooling the cooling water.

次に、図1に示した蒸発濃縮装置による蒸発濃縮処理について説明する。混入成分を含む被処理水は、配管17を介して第1の循環経路に供給され、熱交換器15,30によって加温され、噴霧器16から加湿塔10内に噴霧される。加湿塔10では、キャリアガスが供給されるとともに第1の循環経路を介して加温された被処理水が噴霧されるので、キャリアガスと被処理水との気液接触により、被処理水の水分の一部が水蒸気としてキャリアガスに移行する。このようにして加湿されたキャリアガスは、配管41を介して除湿塔20に送られる。被処理水の加温及び循環と、被処理水とキャリアガスとの気液接触を継続すると、水分がキャリアガスに継続的に移行するので、第1の循環経路内を循環する被処理水中の混入成分濃度が上昇する。蒸発濃縮装置の起動時には混入成分を含まない被処理水が第1の循環経路内を循環していたとしても、混入成分を含む被処理水を配管17を介して供給することにより、蒸発濃縮装置の運転を継続するにつれて配管17からの被処理水における混入成分濃度よりも循環する被処理水中の混入成分濃度が高くなる。被処理水中の混入成分濃度が所定の値よりも高くなったら、被処理水の一部を、混入成分濃度が高められた濃縮水として配管14から外部に排出する。排出した濃縮水に対しては、必要に応じて適切な排水処理を行なえばよい。 Next, the evaporation concentration treatment by the evaporation concentration apparatus shown in FIG. 1 will be described. The water to be treated containing the mixed component is supplied to the first circulation path through the pipe 17, heated by the heat exchangers 15 and 30, and sprayed from the atomizer 16 into the humidifying tower 10. In the humidifying tower 10, the carrier gas is supplied and the heated water to be treated is sprayed through the first circulation path. Therefore, the water to be treated is brought into contact with the carrier gas and the water to be treated. Part of the water is transferred to the carrier gas as water vapor. The carrier gas humidified in this way is sent to the dehumidifying tower 20 via the pipe 41. When the heating and circulation of the water to be treated and the gas-liquid contact between the water to be treated and the carrier gas are continued, the water is continuously transferred to the carrier gas, so that the water to be treated circulates in the first circulation path. The concentration of mixed components increases. Even if the water to be treated that does not contain the contaminated component circulates in the first circulation path at the time of starting the evaporative concentrator, the evaporative concentrator is supplied by supplying the water to be treated containing the contaminated component through the pipe 17. As the operation of the above is continued, the concentration of the mixed component in the circulating water to be treated becomes higher than the concentration of the mixed component in the water to be treated from the pipe 17. When the concentration of the mixed component in the water to be treated becomes higher than a predetermined value, a part of the water to be treated is discharged to the outside from the pipe 14 as concentrated water having an increased concentration of the mixed component. Appropriate wastewater treatment may be performed on the discharged concentrated water as necessary.

除湿塔20では、加湿塔10から配管41を介して加湿されたキャリアガスが供給されるとともに、第2の循環経路を介して冷却水が循環し、キャリアガスと噴霧器26から噴霧される冷却水との接触により、キャリアガス中の水分の少なくとも一部が凝縮して冷却水に移行する。水分の凝縮によりキャリアガスは除湿されたことになり、除湿されたキャリアガスは配管42を介して外部に排ガスとして排出される。配管22から排出された冷却水は熱交換器30を通過するときに被処理水に熱を与え、それによって冷却され、除湿塔20に循環することになる。冷却水の冷却及び循環と、冷却水とキャリアガスとの気液接触を継続すると、キャリアガス中の水分が冷却水に継続的に移行するので、冷却水の量が増加する。キャリアガスからの凝縮水には混入成分はほとんど含まれていないので、増大した冷却水も混入成分をほとんど含んでいないことになる。冷却水がある程度まで増加したら、冷却水の一部を、混入成分が除去された処理水として、配管14を介して外部に排出する。 In the dehumidifying tower 20, the carrier gas humidified from the humidifying tower 10 is supplied through the pipe 41, and the cooling water circulates through the second circulation path, and the carrier gas and the cooling water sprayed from the atomizer 26 are sprayed. Upon contact with, at least a part of the water in the carrier gas is condensed and transferred to the cooling water. The carrier gas is dehumidified by the condensation of water, and the dehumidified carrier gas is discharged to the outside as exhaust gas through the pipe 42. The cooling water discharged from the pipe 22 gives heat to the water to be treated as it passes through the heat exchanger 30, and is cooled by the heat and circulates in the dehumidifying tower 20. When the cooling and circulation of the cooling water and the gas-liquid contact between the cooling water and the carrier gas are continued, the water content in the carrier gas is continuously transferred to the cooling water, so that the amount of the cooling water increases. Since the condensed water from the carrier gas contains almost no contaminated components, the increased cooling water also contains almost no contaminated components. When the amount of cooling water increases to a certain extent, a part of the cooling water is discharged to the outside through the pipe 14 as treated water from which the mixed components have been removed.

ここで図1に示す蒸発濃縮装置における熱の移動について説明する。配管内を移動する際の伝熱等による温度変化は考えないものとする。熱交換器15の二次側の出口での被処理水の温度、すなわち噴霧器16から噴霧される被処理水の温度をT1とする。加湿塔11において被処理水を噴霧し、被処理水中の水分の一部をキャリアガスに移行することにより、蒸発潜熱およびキャリアガスとの熱交換、配管17から供給される新たな被処理水との混合のために被処理水の温度は低下する。配管12での被処理水の温度をT2とすると、T1>T2である。この被処理水は熱交換器30によって加温される。熱交換器30の二次側出口での被処理水の温度をT3とすれば、T1>T3>T2である。一方、冷却水について、熱交換器30の一次側の出口での冷却水の温度をT4とする。温度T4は除湿塔20でキャリアガスに対して噴霧される冷却水の温度である。除湿塔20では、キャリアガスを冷却することによってキャリアガス中の水分が凝縮するので、除湿塔20から配管22に流れ出る冷却水の温度をT5とすれば、加湿塔10からキャリアガスが持ち込んだ顕熱と凝縮潜熱とにより、T5>T4となる。また、熱交換器30の一次側と二次側との間で、T5>T3かつT4>T2が成り立つ。 Here, the heat transfer in the evaporation concentrator shown in FIG. 1 will be described. Temperature changes due to heat transfer, etc. when moving in the piping shall not be considered. Let T 1 be the temperature of the water to be treated at the outlet on the secondary side of the heat exchanger 15, that is, the temperature of the water to be treated to be sprayed from the atomizer 16. By spraying the water to be treated in the humidifying tower 11 and transferring a part of the water in the water to be treated to the carrier gas, latent heat of evaporation and heat exchange with the carrier gas, and new water to be treated supplied from the pipe 17 The temperature of the water to be treated drops due to the mixing of the water. Assuming that the temperature of the water to be treated in the pipe 12 is T 2 , T 1 > T 2 . The water to be treated is heated by the heat exchanger 30. If the temperature of the water to be treated at the secondary outlet of the heat exchanger 30 is T 3 , then T 1 > T 3 > T 2 . On the other hand, for the cooling water, the temperature of the cooling water at the outlet on the primary side of the heat exchanger 30 is T 4 . The temperature T 4 is the temperature of the cooling water sprayed on the carrier gas in the dehumidifying tower 20. In the dehumidifying tower 20, the moisture in the carrier gas is condensed by cooling the carrier gas. Therefore, if the temperature of the cooling water flowing from the dehumidifying tower 20 to the pipe 22 is T 5 , the carrier gas is brought in from the humidifying tower 10. Due to the sensible heat and the latent heat of condensation, T 5 > T 4 . Further, T 5 > T 3 and T 4 > T 2 hold between the primary side and the secondary side of the heat exchanger 30.

図2は、本発明の第1の実施形態の蒸発濃縮装置を示している。図1に示す蒸発濃縮装置では、加温手段である熱交換器15に対し系外から熱エネルギーを供給して被処理水を加温しているので、熱効率を向上させるためには、除湿塔20側から熱エネルギーをさらに回収し、被処理水の加温に用いればよいことになる。図1に示す蒸発濃縮装置を検討すると、配管42を介して除湿塔20から排出される排ガスの熱エネルギーが利用されていないことがわかる。そこで図2に示す第1の実施形態の蒸発濃縮装置では、図1に示す装置において、排ガスから熱を回収するヒートポンプ31を設け、回収した熱で被処理水を加熱するようにしたものである。具体的には、排ガスの配管42をヒートポンプ31の低温側の入口に接続し、循環配管13を流れる被処理水が、熱交換器15で加温される前にヒートポンプ31の高温側を通過して加温されるようにしている。 FIG. 2 shows an evaporation concentrator according to the first embodiment of the present invention. In the evaporative concentrator shown in FIG. 1, heat energy is supplied from outside the system to the heat exchanger 15, which is a heating means, to heat the water to be treated. Therefore, in order to improve the heat efficiency, a dehumidifying tower is used. The heat energy may be further recovered from the 20 side and used for heating the water to be treated. Examining the evaporation concentrator shown in FIG. 1, it can be seen that the thermal energy of the exhaust gas discharged from the dehumidifying tower 20 via the pipe 42 is not used. Therefore, in the evaporation concentrating device of the first embodiment shown in FIG. 2, in the device shown in FIG. 1, a heat pump 31 for recovering heat from the exhaust gas is provided, and the water to be treated is heated by the recovered heat. .. Specifically, the exhaust gas pipe 42 is connected to the inlet on the low temperature side of the heat pump 31, and the water to be treated flowing through the circulation pipe 13 passes through the high temperature side of the heat pump 31 before being heated by the heat exchanger 15. It is designed to be heated.

図2に示す蒸発濃縮装置では、配管42を介してヒートポンプ31の低温側に供給される排ガスは、その温度において飽和湿度のものである。この排ガスは、ヒートポンプ31を通過することによって冷却されるともに、凝縮水を発生する。凝縮水はヒートポンプ31から処理水として回収される。一方、被処理水は、ヒートポンプ31の高温側を通過することによって、温度がT3からT6(ただし、T1>T6>T3)まで加温されることになる。図2に示す蒸発濃縮装置では、熱交換器15は、被処理水を温度T6からT1まで昇温すればよいことになるから、図1に示す装置に比べ、加温手段である熱交換器15での加熱負荷を抑えることができ、ランニングコストを低下させることができる。また、ヒートポンプ31で凝縮水を回収できるので、被処理水からの全体としての水の回収率が向上する。 In the evaporation concentrator shown in FIG. 2, the exhaust gas supplied to the low temperature side of the heat pump 31 via the pipe 42 has a saturated humidity at that temperature. This exhaust gas is cooled by passing through the heat pump 31, and also generates condensed water. The condensed water is recovered as treated water from the heat pump 31. On the other hand, the temperature of the water to be treated is heated from T 3 to T 6 (however, T 1 > T 6 > T 3 ) by passing through the high temperature side of the heat pump 31. In the evaporation concentrator shown in FIG. 2, the heat exchanger 15 only needs to raise the temperature of the water to be treated from the temperature T 6 to T 1 , so that the heat exchanger 15 is a heating means as compared with the apparatus shown in FIG. The heating load in the exchanger 15 can be suppressed, and the running cost can be reduced. Further, since the condensed water can be recovered by the heat pump 31, the recovery rate of the water as a whole from the water to be treated is improved.

図3は、第1の実施形態の蒸発濃縮装置の別の構成を示している。図2に示す蒸発濃縮装置において、ヒートポンプ31の低温側の出口から加湿塔10に接続する配管43を設け、ヒートポンプ31の低温側の出口から排出される排ガスをキャリアガスとして加湿塔10に循環させるようにしたものである。ヒートポンプ31の低温側の出口からの排ガスは、ヒートポンプ31において凝縮水が分離されたことから明らかなように、低温かつ水分含有量が少ない気体である。この気体を加湿塔10に戻すことによって、キャリアガスの循環使用が可能になる。 FIG. 3 shows another configuration of the evaporation concentrator of the first embodiment. In the evaporation concentrator shown in FIG. 2, a pipe 43 connected to the humidifying tower 10 from the outlet on the low temperature side of the heat pump 31 is provided, and the exhaust gas discharged from the outlet on the low temperature side of the heat pump 31 is circulated to the humidifying tower 10 as carrier gas. It is something like that. The exhaust gas from the outlet on the low temperature side of the heat pump 31 is a gas having a low temperature and a low water content, as is clear from the separation of the condensed water in the heat pump 31. By returning this gas to the humidifying tower 10, the carrier gas can be circulated and used.

なお、ヒートポンプ31を設けずに排ガスをキャリアガスとして使用することで、排ガスの熱エネルギーを加湿塔10側で回収することになるため、エネルギーの回収の観点で考えるとヒートポンプ31を設ける必要がなくなるが、その場合、キャリアガスがかなりの水分を含んでいるため、加湿塔10内で被処理水からキャリアガスに移行する水分量が少なくなり、全体としてみると被処理水からの水の回収率が低下する。水の回収率を上げるためには排ガスを冷却して凝縮水として回収する必要があるから、結局、ヒートポンプ31を設けることが必要となる。 By using the exhaust gas as a carrier gas without providing the heat pump 31, the heat energy of the exhaust gas is recovered on the humidifying tower 10 side, so that it is not necessary to provide the heat pump 31 from the viewpoint of energy recovery. However, in that case, since the carrier gas contains a considerable amount of water, the amount of water transferred from the water to be treated to the carrier gas in the humidifying tower 10 is reduced, and the recovery rate of water from the water to be treated is reduced as a whole. Decreases. In order to increase the water recovery rate, it is necessary to cool the exhaust gas and recover it as condensed water, so it is necessary to provide a heat pump 31 after all.

次に、本発明の第2の実施形態の蒸発濃縮装置について、図4を用いて説明する。図2及び図3に示した第1の実施形態の蒸発濃縮装置は、除湿塔20の排ガスから熱を回収しているが、除湿塔20側からの熱の回収元は排ガスに限られるものではない。第2の循環経路を流れる処理水からも熱を回収することができる。図4に示した蒸発濃縮装置では、図1に示す蒸発濃縮装置において、第2の循環経路を流れる処理水から熱を回収するヒートポンプ32を設け、回収した熱で被処理水を加熱するようにしたものである。具体的には、熱交換器30の一次側の出口とヒートポンプ32の低温側の入口とを接続し、ヒートポンプ32の低温側の出口から処理水が循環配管23に流れ、循環配管13を流れる被処理水が、熱交換器15で加温される前にヒートポンプ31の高温側を通過して加温されるようにしたものである。この構成では、図1に示した装置に比べ、熱交換器15の入口温度を高くすることができるので熱交換器15での加熱負荷を小さくすることができ、また、除湿塔20で噴霧される冷却水の温度を低くできるので、キャリアガスからの凝縮水の量を多くできて水の回収率が向上する。 Next, the evaporation concentrator of the second embodiment of the present invention will be described with reference to FIG. The evaporation concentrator of the first embodiment shown in FIGS. 2 and 3 recovers heat from the exhaust gas of the dehumidifying tower 20, but the heat recovery source from the dehumidifying tower 20 side is not limited to the exhaust gas. do not have. Heat can also be recovered from the treated water flowing through the second circulation path. In the evaporation concentrator shown in FIG. 4, in the evaporation concentrator shown in FIG. 1, a heat pump 32 for recovering heat from the treated water flowing through the second circulation path is provided, and the recovered water is used to heat the water to be treated. It was done. Specifically, the outlet on the primary side of the heat exchanger 30 and the inlet on the low temperature side of the heat pump 32 are connected, and the treated water flows from the outlet on the low temperature side of the heat pump 32 to the circulation pipe 23 and flows through the circulation pipe 13. The treated water is heated by passing through the high temperature side of the heat pump 31 before being heated by the heat exchanger 15. In this configuration, the inlet temperature of the heat exchanger 15 can be made higher than that of the apparatus shown in FIG. 1, so that the heating load in the heat exchanger 15 can be reduced, and the heat is sprayed in the dehumidifying tower 20. Since the temperature of the cooling water can be lowered, the amount of condensed water from the carrier gas can be increased and the water recovery rate can be improved.

10 加湿塔
16,26 噴霧器
20 除湿塔
15,30 熱交換器
31,32 ヒートポンプ
10 Humidifier tower 16, 26 Atomizer 20 Dehumidifier tower 15, 30 Heat exchanger 31, 32 Heat pump

Claims (6)

混入成分を含む被処理水が供給されて前記被処理水に対して蒸発濃縮処理を行なう蒸発濃縮装置であって、
キャリアガスが供給されて前記キャリアガスと前記被処理水とを気液接触させ、前記キャリアガスを加湿して排出する加湿塔と、
前記加湿されたキャリアガスと冷却水とを気液接触させて前記加湿されたキャリアガスを冷却し、水分の少なくとも一部を凝縮させることにより、除湿されたキャリアガスを生成して排出する除湿塔と、
前記加湿塔に対して前記被処理水を循環させる第1の循環経路と、
前記第1の循環経路に設けられて前記被処理水を加温する加温手段と、
前記加温手段とは別個に設けられ、前記除湿塔で発生した熱を回収して前記第1の循環経路を流れる前記被処理水に熱を与えるヒートポンプと、
前記冷却水を前記除湿塔に対して循環させる第2の循環経路と、
前記第2の循環経路を流れる前記冷却水と、前記第1の循環経路において前記加湿塔の出口と前記加温手段の入口との間を流れる前記被処理水との間で熱交換を行なう熱交換器と、
を有し、
前記除湿塔から排出される前記冷却水の一部が、前記混入成分が除去された処理水として回収され、
前記加湿塔から流出する水の少なくとも一部を、前記混入成分を含む濃縮水として排出する、蒸発濃縮装置。
An evaporative concentrator that is supplied with water to be treated containing mixed components and evaporates and concentrates the water to be treated.
A humidifying tower to which a carrier gas is supplied to bring the carrier gas into gas-liquid contact with the water to be treated to humidify and discharge the carrier gas.
A dehumidifying tower that produces and discharges dehumidified carrier gas by bringing the humidified carrier gas and cooling water into gas-liquid contact to cool the humidified carrier gas and condensing at least a part of the water. When,
A first circulation path for circulating the water to be treated to the humidifying tower,
A heating means provided in the first circulation path for heating the water to be treated, and
A heat pump provided separately from the heating means, which recovers the heat generated in the dehumidifying tower and gives heat to the water to be treated flowing through the first circulation path.
A second circulation path for circulating the cooling water to the dehumidifying tower,
Heat that exchanges heat between the cooling water flowing through the second circulation path and the water to be treated flowing between the outlet of the humidifying tower and the inlet of the heating means in the first circulation path. With the exchanger,
Have,
A part of the cooling water discharged from the dehumidifying tower is recovered as treated water from which the mixed components have been removed.
An evaporation concentrator that discharges at least a part of the water flowing out of the humidifying tower as concentrated water containing the mixed components.
前記ヒートポンプは、前記除湿塔から排出される前記除湿されたキャリアガスから熱を回収して前記第1の循環経路を流れる前記被処理水に対して熱を与える、請求項に記載の蒸発濃縮装置。 The evaporation concentration according to claim 1 , wherein the heat pump recovers heat from the dehumidified carrier gas discharged from the dehumidifying tower and gives heat to the water to be treated flowing through the first circulation path. Device. 前記ヒートポンプで発生した凝縮水が前記処理水として回収される、請求項に記載の蒸発濃縮装置。 The evaporation concentrator according to claim 2 , wherein the condensed water generated by the heat pump is recovered as the treated water. 前記ヒートポンプによって熱が回収された前記除湿されたキャリアガスを前記加湿塔に供給する配管を備える、請求項2または3に記載の蒸発濃縮装置。 The evaporation concentrator according to claim 2 or 3 , further comprising a pipe for supplying the dehumidified carrier gas whose heat has been recovered by the heat pump to the humidifying tower. 前記ヒートポンプは、前記第2の循環経路を流れる前記冷却水から熱を回収して、前記第1の循環経路を流れる前記被処理水に対して熱を与える、請求項に記載の蒸発濃縮装置。 The evaporation concentrator according to claim 1 , wherein the heat pump recovers heat from the cooling water flowing through the second circulation path and gives heat to the water to be treated flowing through the first circulation path. .. 前記ヒートポンプが前記被処理水に熱を与える位置は、前記第1の循環経路において前記加湿塔の出口と前記加温手段の入口との間の位置である、請求項1乃至のいずれか1項に記載の蒸発濃縮装置。 Any one of claims 1 to 5 , wherein the position where the heat pump applies heat to the water to be treated is a position between the outlet of the humidifying tower and the inlet of the heating means in the first circulation path. The evaporative concentration device according to the section.
JP2018052278A 2018-03-20 2018-03-20 Evaporation concentrator Active JP7096021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018052278A JP7096021B2 (en) 2018-03-20 2018-03-20 Evaporation concentrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018052278A JP7096021B2 (en) 2018-03-20 2018-03-20 Evaporation concentrator

Publications (2)

Publication Number Publication Date
JP2019162591A JP2019162591A (en) 2019-09-26
JP7096021B2 true JP7096021B2 (en) 2022-07-05

Family

ID=68065418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018052278A Active JP7096021B2 (en) 2018-03-20 2018-03-20 Evaporation concentrator

Country Status (1)

Country Link
JP (1) JP7096021B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112960716A (en) * 2021-02-18 2021-06-15 同济大学 Aeration type humidification, dehumidification and evaporation system and method
CN115231717B (en) * 2022-08-26 2023-12-19 镇江新区固废处置股份有限公司 High-salt organic wastewater treatment system and technology based on EVAIR technology

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005349299A (en) 2004-06-10 2005-12-22 Mitsubishi Heavy Ind Ltd Freshwater production apparatus
US20070137996A1 (en) 2002-09-10 2007-06-21 Beckman James R Method and apparatus for simultaneous heat and mass transfer utilizing a carrier-gas
JP2012217963A (en) 2011-04-12 2012-11-12 Tohoku Univ Seawater desalination apparatus
US20130263616A1 (en) 2012-04-10 2013-10-10 Chaloke Pungtrakul Fresh-water production, salt-solution concentration, volatile-matter extraction, air conditioning/refrigeration, thermal heat pump, low-temperature heat energy upgrading, and electricity generation
US20140061958A1 (en) 2011-05-24 2014-03-06 Saltworks Technologies Inc. Method, Apparatus And System For Concentrating Solutions Using Evaporation

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4963231A (en) * 1988-06-13 1990-10-16 Ahlstromforetagen Svenska Ab Method for evaporation of liquids
US5102503A (en) * 1989-08-04 1992-04-07 Environmental Technology Group Corporation Mobile self-contained system for on-site recovery of solvents
DE4109276C2 (en) * 1991-03-21 1994-08-04 Winter & Sohn Ernst Process and plant for the treatment of waste liquids, especially industrial waste water with a high solids content
JPH0857202A (en) * 1994-08-25 1996-03-05 Konica Corp Heat pump type evaporation-concentration apparatus and treatment method using the apparatus
JPH09262401A (en) * 1996-03-27 1997-10-07 Konica Corp Heat pump type evaporative concentrator
JP3448201B2 (en) * 1998-01-28 2003-09-22 三菱重工業株式会社 Wastewater evaporative concentrator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070137996A1 (en) 2002-09-10 2007-06-21 Beckman James R Method and apparatus for simultaneous heat and mass transfer utilizing a carrier-gas
JP2005349299A (en) 2004-06-10 2005-12-22 Mitsubishi Heavy Ind Ltd Freshwater production apparatus
JP2012217963A (en) 2011-04-12 2012-11-12 Tohoku Univ Seawater desalination apparatus
US20140061958A1 (en) 2011-05-24 2014-03-06 Saltworks Technologies Inc. Method, Apparatus And System For Concentrating Solutions Using Evaporation
US20130263616A1 (en) 2012-04-10 2013-10-10 Chaloke Pungtrakul Fresh-water production, salt-solution concentration, volatile-matter extraction, air conditioning/refrigeration, thermal heat pump, low-temperature heat energy upgrading, and electricity generation

Also Published As

Publication number Publication date
JP2019162591A (en) 2019-09-26

Similar Documents

Publication Publication Date Title
US6076369A (en) Evaporative concentration apparatus for waste water
US7938888B2 (en) Systems and methods for dehumidification
KR102528072B1 (en) Drying apparatus
US6514321B1 (en) Dehumidification using desiccants and multiple effect evaporators
US5097668A (en) Energy reuse regenerator for liquid desiccant air conditioners
JP2010247022A (en) Liquid desiccant regenerating apparatus and desiccant dehumidifying air conditioner
JP2015064195A (en) Air for wet type cooling tower device-air heat exchanger bypass and method
JP7096021B2 (en) Evaporation concentrator
EP2949997B2 (en) Method and arrangement for transferring heat from flue gas into fluid
JPS63104604A (en) Multiple effective evaporator having evaporation type condenser having liquid evaporation effect
EP2039407B1 (en) MSF desalination apparatus with heat-pipe heat dissipater
US11192049B2 (en) Method and device for obtaining water from ambient air
JP7079151B2 (en) Evaporation and concentration equipment and methods for power generation equipment and power generation equipment
JP2011072973A (en) Treatment device and treatment method for waste liquid comprising basic substance having volatility
JPS597862A (en) Absorption type heat pump system
JP6916714B2 (en) Power generation system and condensing absorber
JP4426263B2 (en) Air conditioner
US10221726B2 (en) Condensing heat recovery steam generator
JPS6223419A (en) Wet type dehumidifier
KR20160001959A (en) Reducing apparatus of white smoke having heat pipe
KR960010363B1 (en) Evaporating and concentrating method of aqueous organic materials
EP3184757A1 (en) Condensing heat recovery steam generator
JP2006051451A (en) Power generation and seawater desalination system
CN118615727A (en) Double-evaporation efficient concentration waste liquid system
JP2005313117A (en) Method and apparatus for evaporation concentration

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220623

R150 Certificate of patent or registration of utility model

Ref document number: 7096021

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150