JP4426263B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP4426263B2
JP4426263B2 JP2003398080A JP2003398080A JP4426263B2 JP 4426263 B2 JP4426263 B2 JP 4426263B2 JP 2003398080 A JP2003398080 A JP 2003398080A JP 2003398080 A JP2003398080 A JP 2003398080A JP 4426263 B2 JP4426263 B2 JP 4426263B2
Authority
JP
Japan
Prior art keywords
filler
air
heat medium
fillers
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003398080A
Other languages
Japanese (ja)
Other versions
JP2005156077A (en
Inventor
猛 海老根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Techno Ryowa Ltd
Original Assignee
Techno Ryowa Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Techno Ryowa Ltd filed Critical Techno Ryowa Ltd
Priority to JP2003398080A priority Critical patent/JP4426263B2/en
Publication of JP2005156077A publication Critical patent/JP2005156077A/en
Application granted granted Critical
Publication of JP4426263B2 publication Critical patent/JP4426263B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Drying Of Gases (AREA)

Description

本発明は、処理対象となる空気の温湿度調整を行う空気調和機に係り、特に、熱効率の上昇と液ガス比の減少、必要冷水及び温水温度の緩和を図ると共に、省スペースかつ省エネルギー化を実現すべく改良を施した空気調和機に関する。   The present invention relates to an air conditioner that adjusts the temperature and humidity of the air to be processed, and in particular, increases thermal efficiency, decreases the liquid gas ratio, reduces the required cold water and hot water temperatures, and saves space and energy. The present invention relates to an air conditioner that has been improved to be realized.

電子工業や精密機械工業の工場、食品保存用の貯蔵庫、実験用動物飼育室、バイオロジカルクリーンルームなどにおいては、温度・湿度などの室内環境を一定に保つ必要がある。このため、このような設備においては、室内の恒温・恒湿を目的とした空気調和機が設置されている。   In electronic and precision machinery factories, food storage warehouses, laboratory animal breeding rooms, biological clean rooms, etc., it is necessary to maintain a constant indoor environment such as temperature and humidity. For this reason, in such equipment, an air conditioner for the purpose of constant temperature and humidity in the room is installed.

このような空気調和機に用いられる熱交換方式としては、コイルフィン方式、ワッシャー方式あるいは充填材方式等が知られている。このうち、コイルフィン方式においては、コイルフィン内に熱媒を通して用いるため、冷却する空気に対して、大量の冷却水が必要であるなど、液ガス比が大きいという問題点があった。   As a heat exchange system used for such an air conditioner, a coil fin system, a washer system, a filler system, or the like is known. Among these, the coil fin system has a problem that the liquid-gas ratio is large because, for example, a large amount of cooling water is required for the air to be cooled because the heating medium is passed through the coil fin.

一方、ワッシャー方式と充填材方式は、熱媒(冷水や温水)と空気を直接接触させる方式であるため、上記コイルフィン方式に比べて熱効率が良く、加湿方式として省エネルギーシステムを構築しやすい。また、液ガス比がコイルフィン方式に比べて小さく、副次効果として処理対象となる空気の臭気(ガス成分)を吸収除去できるという利点がある(特許文献1等)。
特開2000−317248号公報 特開2003−202174号公報
On the other hand, the washer method and the filler method are methods in which a heat medium (cold water or hot water) and air are brought into direct contact with each other. Therefore, the washer method and the filler method are more efficient than the coil fin method, and it is easy to construct an energy saving system as a humidification method. Further, the liquid gas ratio is smaller than that of the coil fin method, and there is an advantage that the odor (gas component) of the air to be processed can be absorbed and removed as a secondary effect (Patent Document 1 and the like).
JP 2000-317248 A JP 2003-202174 A

一般に、熱交換効率を向上させるためには、空気と熱媒を対向流とすることが望ましく、上記コイルフィン方式ではすでに採用されている。しかしながら、上記のワッシャー方式では、空気と熱媒は直行流であり、より熱交換効率の高い対向流方式を採用しようとすると、容器内部に、熱媒を噴霧するノズルとノズルから噴霧された水滴を捕集するエリミネーターを複数段設けなければならず、このため装置全体の寸法が長くなり、スペース、コスト面において問題があった。   In general, in order to improve the heat exchange efficiency, it is desirable to use air and a heat medium as opposed flows, and the coil fin method has already been adopted. However, in the above washer method, the air and the heat medium are in a direct flow, and if a counter flow method with higher heat exchange efficiency is adopted, a nozzle for spraying the heat medium and water droplets sprayed from the nozzle inside the container. The eliminator that collects the carbon dioxide must be provided in a plurality of stages, which increases the overall size of the apparatus and causes problems in terms of space and cost.

また、上記特許文献1に示された発明は、ガス除去を目的とするものであって、冷却や加熱は、別途設けられた冷却コイルや加熱コイルなどにより行うものであった。さらに、上記特許文献2に示された発明は、空気と熱媒(冷却水)は直行流であり、その熱交換効率は1段式のエアワッシャと同等であり、より高効率の液ガス比の小さい空気調和機が望まれていた。   The invention disclosed in Patent Document 1 is intended for gas removal, and cooling and heating are performed by a separately provided cooling coil or heating coil. Further, in the invention disclosed in Patent Document 2, the air and the heat medium (cooling water) are in a direct flow, and the heat exchange efficiency is equivalent to that of a single-stage air washer. A small air conditioner was desired.

本発明は、このような従来技術の持つ問題点を解決するために提案されたものであり、その目的は、熱媒の流れと空気の流れを対向流として、熱効率の上昇と液ガス比の減少、必要冷水及び温水温度の緩和を図り、省スペースかつ省エネルギー化を実現することができる空気調和機を提供することにある。   The present invention has been proposed in order to solve such problems of the prior art, and the purpose thereof is to increase the heat efficiency and the liquid-gas ratio by using the flow of the heat medium and the flow of air as counterflows. An object of the present invention is to provide an air conditioner capable of reducing space, reducing required cold water temperature and warm water temperature, and realizing space saving and energy saving.

上記目的を達成するため、請求項1に記載の空気調和機は、空気取入口と空気供給口との間の空気流路に充填材が配設され、この充填材に冷水又は温水などの熱媒を滴下して、この熱媒に処理対象となる空気を直接接触させることによって該空気の除湿、冷却、加熱または加湿を行う空気調和機において、前記充填材が、前記空気流路に沿って複数段設けられ、前記熱媒は、前記複数の充填材のうち、空気流路に対して最も下流に設けられた充填材から同じ充填材に再循環することなく上流側に隣接して設けられた充填材に順次供給され、最上流の充填材を流下した後、熱交換器を介して、再度、最下流の充填材に供給され、前記空気の流れと前記熱媒の流れとが対向流とされていることを特徴とすIn order to achieve the above object, the air conditioner according to claim 1 is provided with a filler in an air flow path between the air intake and the air supply port, and heat such as cold water or hot water is provided in the filler. In the air conditioner that dehumidifies, cools, heats or humidifies the air by dropping the medium and bringing the air to be treated into direct contact with the heat medium, the filler is disposed along the air flow path. A plurality of stages are provided, and the heating medium is provided adjacent to the upstream side without recirculation from the filler provided most downstream with respect to the air flow path to the same filler among the plurality of fillers. Are sequentially supplied to the filler, and after flowing down the most upstream filler, are again supplied to the downstream filler via a heat exchanger, and the air flow and the heat medium flow are opposed to each other. it characterized in that there is a.

また、請求項2に記載の空気調和機は、空気取入口と空気供給口との間の空気流路に充填材が配設され、この充填材に冷水又は温水などの熱媒を滴下して、この熱媒に処理対象となる空気を直接接触させることによって該空気の除湿、冷却、加熱または加湿を行う空気調和機において、前記充填材が、前記空気流路に沿って複数段設けられ、前記各充填材の上部には、この充填材に熱媒を滴下するノズルが設けられ、前記各充填材の下部には、この充填材から排出される熱媒を受ける水槽が設けられ、前記複数の充填材のうち最も下流に設けられた充填材には、熱媒を供給する熱媒供給部が接続され、前記各充填材間下部の前記水槽には、この水槽に溜まった熱媒を、上流側に隣接して設けられた充填材上部のノズルに対して送る配管が接続され、この配管には、前記熱媒をポンプアップするポンプが設けられ、前記熱媒は、前記複数の充填材のうち、空気流路に対して最も下流に設けられた充填材から同じ充填材に再循環することなく上流側に隣接して設けられた充填材に順次供給され、最上流の充填材を流下した後、熱交換器を介して、再度、最下流の充填材に供給されることを特徴とすIn the air conditioner according to claim 2, a filler is disposed in an air flow path between the air intake and the air supply port, and a heat medium such as cold water or hot water is dropped on the filler. In the air conditioner that dehumidifies, cools, heats or humidifies the air by directly contacting the air to be treated with the heat medium, the filler is provided in a plurality of stages along the air flow path, A nozzle for dropping a heat medium onto the filler is provided at the top of each filler, and a water tank for receiving the heat medium discharged from the filler is provided at the bottom of each filler. A heating medium supply unit that supplies a heating medium is connected to the packing material provided most downstream of the fillers, and the water medium in the lower part between the fillers is filled with the heat medium accumulated in the water tank , pipe connections be sent to the filler top of nozzles provided adjacent to the upstream side Is, in this pipe, the heating medium pump for pumping up is provided, the heating medium, the one of the plurality of filler, the same filler from the filling material provided on the most downstream with respect to the air flow path Without being recirculated to the upstream side, it is sequentially supplied to the filler provided adjacent to the upstream side, and after flowing down the most upstream filler, it is supplied again to the downstreammost filler via the heat exchanger. it shall be the features a.

以上のような構成からなる請求項1又は請求項2に記載の発明では、熱媒の流れを空気の流れに対して対向流とすることにより、熱交換効率が良くなり、液ガス比を小さくでき、必要冷水、温水の温度が緩和される。例えば、冷水温度を高くできるため、冷凍機COPが上がる。また、温水としては、冷却塔排熱等のより低温のエネルギーが使用可能となる。さらに、熱媒側温度差が大きくとれるため、搬送動力が下がり、初期設備容量も下がる、空気圧損が下がるといった効果が得られる。   In the invention according to claim 1 or claim 2 configured as described above, the heat exchange efficiency is improved and the liquid gas ratio is reduced by making the flow of the heat medium counterflow with respect to the air flow. The temperature of necessary cold water and hot water can be relaxed. For example, since the cold water temperature can be increased, the refrigerator COP increases. Moreover, lower temperature energy such as cooling tower exhaust heat can be used as the hot water. Furthermore, since the temperature difference on the heat medium side can be increased, effects such as a decrease in conveying power, an initial capacity, and a decrease in air pressure loss can be obtained.

本発明の空気調和機によれば、熱媒の流れと空気の流れを対向流として、熱効率の上昇と液ガス比の減少、必要冷水及び温水温度の緩和により、省スペースかつ省エネルギー化を実現することができる空気調和機を提供することができる。   According to the air conditioner of the present invention, the flow of the heat medium and the flow of air are opposed to each other, and the space efficiency and the energy saving are realized by increasing the thermal efficiency, decreasing the liquid gas ratio, and relaxing the necessary cold water and hot water temperatures. An air conditioner that can be provided can be provided.

以下、本発明の空気調和機に係る実施の形態(以下、実施形態という)の一例について、図面を参照して具体的に説明する。   Hereinafter, an example of an embodiment (hereinafter referred to as an embodiment) according to an air conditioner of the present invention will be specifically described with reference to the drawings.

(1)構成
図1は、本発明に係る空気調和機の構成を示す模式図である。すなわち、本実施形態の空気調和機のチャンバ20内部には、空気取入口側から、プレフィルタ1、中性能フィルタ2、第1〜第3の充填材3a〜3c、再熱コイル4及び送風機5が順次設けられている。また、第1〜第3の充填材3a〜3cの下部には、それぞれ第1〜第3の水槽6a〜6cが配設されている。
(1) Configuration FIG. 1 is a schematic diagram showing a configuration of an air conditioner according to the present invention. That is, inside the chamber 20 of the air conditioner of this embodiment, from the air intake side, the pre-filter 1, the medium performance filter 2, the first to third fillers 3a to 3c, the reheating coil 4, and the blower 5 are provided. Are provided sequentially. Moreover, the 1st-3rd water tanks 6a-6c are arrange | positioned under the 1st-3rd fillers 3a-3c, respectively.

また、前記第1〜第3の充填材3a〜3cは共に、十分な気液接触面積を有する冷却塔に用いられる樹脂性素材、又は吸水性あるいは親水性の気化式加湿素材から構成されており、第1〜第3の充填材3a〜3c間で、順次、熱媒である液体(純水)が循環供給されるように構成されている。すなわち、最下流に配設された第3の充填材3cには、給水管7及びノズル8を介して、上方から熱媒が滴下され、その表面に液膜が形成されるように構成されている。   The first to third fillers 3a to 3c are both made of a resinous material used for a cooling tower having a sufficient gas-liquid contact area, or a water-absorbing or hydrophilic vaporizing humidifying material. The liquid (pure water) as a heat medium is sequentially circulated and supplied between the first to third fillers 3a to 3c. That is, the third filling material 3c disposed on the most downstream side is configured such that a heat medium is dropped from above through the water supply pipe 7 and the nozzle 8, and a liquid film is formed on the surface thereof. Yes.

また、この第3の充填材3cに滴下された熱媒のうち、第3の水槽6cに回収された熱媒は、第1のポンプ9によって隣接する第2の充填材3bの上部に供給され、同様に、第2の水槽6bに回収された熱媒は、第2のポンプ10によって上流側の第1の充填材3aの上部に供給されるように構成されている。   Of the heat medium dropped onto the third filler 3c, the heat medium recovered in the third water tank 6c is supplied to the upper part of the adjacent second filler 3b by the first pump 9. Similarly, the heat medium recovered in the second water tank 6b is configured to be supplied to the upper portion of the first filler 3a on the upstream side by the second pump 10.

そして、第1の充填材3aを流下し、第1の水槽6aに蓄えられた熱媒は、第3のポンプ12を介して熱交換器30に送られ、この熱交換器30により所定の温度に調整され、再度、給水管7を介して、第3の充填材3cの上部に供給されるように構成されている。すなわち、第3の充填材3cに供給される熱媒は、該空気調和機が冷却及び除湿操作を行う場合には、熱交換器30により所定の温度に冷却され、該空気調和機が暖房及び加湿操作を行う場合には、所定の温度に加温されるように構成されている。   And the heat medium which flowed down the 1st filler 3a and was stored in the 1st water tank 6a is sent to the heat exchanger 30 via the 3rd pump 12, and this heat exchanger 30 carries out predetermined temperature. And is again supplied to the upper portion of the third filler 3c through the water supply pipe 7. That is, the heat medium supplied to the third filler 3c is cooled to a predetermined temperature by the heat exchanger 30 when the air conditioner performs cooling and dehumidifying operations, and the air conditioner is heated and When performing humidification operation, it is comprised so that it may heat to predetermined temperature.

さらに、これらの充填材の空気下流側には、空気を所定温度に加温するための再熱コイルが設置されている。
なお、第1の充填材3aの下部に配設された第1の水槽6aには、排水管11が設けられている。
Further, a reheating coil for heating the air to a predetermined temperature is installed on the air downstream side of these fillers.
In addition, the drain pipe 11 is provided in the 1st water tank 6a arrange | positioned under the 1st filler 3a.

さらに、第3の水槽6cには、補給水として微量の純水(L/G=0.01〜0.02程度)が供給されるように構成され、これにより空気中のガス(アンモニア等)を連続的に吸収除去することが可能となっている。   Further, the third water tank 6c is configured to be supplied with a small amount of pure water (L / G = 0.01 to 0.02) as makeup water, whereby a gas in the air (such as ammonia). Can be continuously absorbed and removed.

このように、本実施形態の充填材3a〜3cは、上記給水管7より供給された温水あるいは冷水等の熱媒を、下流側の充填材3cから上流側の充填材3aに向かって循環供給すると共に、上流側の充填材3aの側方より処理対象となる空気を通過させることにより、熱媒の流れと空気の流れとが対向流となるように構成されている。なお、本実施形態では、充填材3を3層で形成したが、2層であっても、あるいは4層以上の場合であっても、下流の充填材から上流の充填材に至るまで、上記と同様に構成することができる。   As described above, the fillers 3a to 3c of the present embodiment circulate and supply a heat medium such as hot water or cold water supplied from the water supply pipe 7 toward the upstream side filler 3a from the downstream side filler 3c. At the same time, the air to be treated is passed from the side of the filler 3a on the upstream side so that the flow of the heat medium and the air flow are opposed to each other. In the present embodiment, the filler 3 is formed of three layers. However, even if there are two layers or four layers or more, the above-mentioned ones are provided from the downstream filler to the upstream filler. It can be configured in the same manner.

なお、上記充填材としては、冷却塔に用いられる樹脂製の熱交換材料、ウェットマスター(株)製の気化式加湿素材、ムンタース(株)製の気化式加湿素材、特許文献2に示された斜行ハニカム、ニチアス(株)製の気化式加湿素材等を用いることができる。   In addition, as said filler, it was shown by the heat exchange material made from resin used for a cooling tower, the vaporization type humidification material by Wet Master, the vaporization type humidification material by Munters, and patent document 2 A slanted honeycomb, a vaporizing humidification material manufactured by Nichias Corporation, or the like can be used.

(2)作用
以上のような構成を有する本実施形態の空気調和機は、以下のように作用する。すなわち、空気取入口からチャンバ20内部に導入された処理対象となる空気は、プレフィルタ1、中性能フィルタ2を通過することによって塵埃等が除去された後、第1の充填材3a〜第3の充填材3cに順次供給される。
(2) Operation The air conditioner of the present embodiment having the above configuration operates as follows. That is, the air to be processed introduced into the chamber 20 from the air intake port passes through the pre-filter 1 and the medium-performance filter 2 to remove dust and the like, and then the first fillers 3 a to 3. Are sequentially supplied to the filler 3c.

一方、3層から構成される充填材3には、熱媒が、空気流路の最も下流に位置する第3の充填材3c側に設けられた給水管7からノズル8を介して滴下され、さらに第3の充填材3cを通過し、第3の水槽6cに貯留され、第1のポンプ9によって、第2の充填材3bに送られ、さらに、第1の充填材3aに供給される。そして、第1の充填材3aを通過した熱媒は、第1の水槽6aから第3のポンプ12を介して、熱交換器30へ送られる。   On the other hand, to the filler 3 composed of three layers, the heat medium is dropped through the nozzle 8 from the water supply pipe 7 provided on the third filler 3c side located on the most downstream side of the air flow path. Further, it passes through the third filler 3c, is stored in the third water tank 6c, is sent to the second filler 3b by the first pump 9, and is further supplied to the first filler 3a. And the heat medium which passed the 1st filler 3a is sent to the heat exchanger 30 via the 3rd pump 12 from the 1st water tank 6a.

このような充填材3a〜3cに対して、プレフィルタ1及び中性能フィルタ2を通過した空気は、第1の充填材3aに送られ、この充填材内部に滴下された温水あるいは冷水の熱媒と直接接触し、冷却、除湿又は加温、加湿される。   With respect to such fillers 3a to 3c, the air that has passed through the prefilter 1 and the medium performance filter 2 is sent to the first filler 3a, and a heating medium of hot water or cold water dropped into the filler. Direct contact with, cooled, dehumidified or warmed, humidified.

ここで、充填材3に供給される熱媒が温水である場合には、熱媒の温度は、熱媒の流れからみて最も上流側の第3の充填材3cにおいて最も高温となり、最も下流側の第1の充填材3aにおいて最も低温となる。反対に、熱媒が冷水である場合には、熱媒の温度は、第3の充填材3cにおいて最も低温となり、第1の充填材3aにおいて最も高温となる。このように、処理対象となる空気は、3層の充填材3を通過するごとに冷却、除湿あるいは加熱、加湿されることとなる。この部分の対象空気は、所定の絶対湿度及び所定の乾球温度以下に制御され、この後、再熱コイル4によって所定の乾球温度に再度加熱され、送風機6によって、室内に送られる。   Here, when the heat medium supplied to the filler 3 is hot water, the temperature of the heat medium is the highest in the third filler 3c on the most upstream side in view of the flow of the heat medium, and the most downstream side. The first filler 3a has the lowest temperature. On the other hand, when the heat medium is cold water, the temperature of the heat medium is the lowest in the third filler 3c and the highest in the first filler 3a. In this way, the air to be treated is cooled, dehumidified, heated, or humidified every time it passes through the three layers of filler 3. The target air in this part is controlled to a predetermined absolute humidity and a predetermined dry bulb temperature or less, and then heated again to a predetermined dry bulb temperature by the reheating coil 4 and sent indoors by the blower 6.

(3)効果
このように、本実施形態においては、処理対象となる空気は、フィルタ1,2により塵埃等が除去された後、第1の充填材3aと接触し、ここである程度の冷却あるいは加熱処理がなされる。続いて、第2、第3の充填材に供給されるに従って、冷却処理の場合には、順次より低温の熱媒と接触することができるように構成され、一方、加熱処理の場合には、順次より高温の熱媒と接触することができるように構成されているので、熱効率を大幅に向上させることができる。
(3) Effect As described above, in the present embodiment, the air to be processed comes into contact with the first filler 3a after the dust and the like are removed by the filters 1 and 2, and is cooled to some extent here. Heat treatment is performed. Subsequently, as it is supplied to the second and third fillers, in the case of the cooling process, it is configured so as to be able to come into contact with a lower-temperature heat medium sequentially, while in the case of the heating process, Since it is configured so as to be able to come into contact with a higher-temperature heat medium sequentially, the thermal efficiency can be greatly improved.

また、充填材を1つとした場合に比べて、液ガス比が小さくなり、必要冷水、温水温度が緩和される。たとえば、冷水温度を高くできるため、冷凍機COPが上がるという利点もある。また、温水としては、冷却塔排熱等のより低温のエネルギーが使用可能となる。さらに、熱媒側温度差が大きくとれるため、搬送動力が下がり、初期設備容量も下がる、空気圧損が下がる、空気下流の液温が低いため、ガス成分除去能力がアップするといった効果も得られる。   Moreover, compared with the case where one filler is used, the liquid gas ratio is reduced, and the required cold water and hot water temperatures are relaxed. For example, since the cold water temperature can be increased, there is an advantage that the refrigerator COP is increased. Moreover, lower temperature energy such as cooling tower exhaust heat can be used as the hot water. Further, since the temperature difference on the heat medium side can be increased, the conveyance power is reduced, the initial equipment capacity is reduced, the air pressure loss is reduced, and the liquid temperature downstream of the air is low, so that the gas component removing ability is improved.

(4)具体例
本発明に係る空気調和機を採用することにより得られる効果を、従来の充填材方式の空気調和機を用いた場合と比較して具体的に説明する(図2参照)。なお、本例は、理解を容易にするため、従来の充填材方式と同量の充填材を2層式とし、夏季の冷房運転時において、熱媒として用いる冷却水の温度を17℃に調整し、湿球温度27℃、乾球温度33℃、相対湿度63%の処理空気が、プレフィルタ1、中性能フィルタ2を介してチャンバ内に取り入れられ、熱媒の循環量をL/G(熱媒重量/処理空気重量)=1.2とした場合についてのものである。
(4) Specific Example The effect obtained by employing the air conditioner according to the present invention will be specifically described in comparison with the case where a conventional filler-type air conditioner is used (see FIG. 2). In this example, for ease of understanding, the same amount of filler as the conventional filler method is a two-layer type, and the temperature of the cooling water used as a heating medium is adjusted to 17 ° C. during the cooling operation in summer. Then, treated air having a wet bulb temperature of 27 ° C., a dry bulb temperature of 33 ° C., and a relative humidity of 63% is introduced into the chamber through the prefilter 1 and the medium performance filter 2, and the circulation amount of the heat medium is set to L / G ( This is for the case where (heat medium weight / process air weight) = 1.2.

まず、図2(A)に示したような従来の充填材方式の空気調和機を用いた場合、1段構成の充填材に、湿球温度27℃、乾球温度33℃、相対湿度63%、エンタルピー20.3kcal/kgの処理空気が導入され、その充填材の上方から17℃の熱媒が滴下されると、充填材の出口側からは、湿球温度20.9℃、乾球温度21.5℃、相対湿度95%、エンタルピー14.5kcal/kgの空気が排出される。また、1段構成の充填材から排出される熱媒の温度は21.83℃となる。   First, when a conventional filler-type air conditioner as shown in FIG. 2 (A) is used, the wet-bulb temperature is 27 ° C., the dry-bulb temperature is 33 ° C., and the relative humidity is 63%. When the processing air of enthalpy 20.3 kcal / kg is introduced and a heating medium of 17 ° C. is dropped from above the filler, the wet bulb temperature is 20.9 ° C. and the dry bulb temperature is from the outlet side of the filler. Air of 21.5 ° C., relative humidity 95% and enthalpy 14.5 kcal / kg is discharged. Moreover, the temperature of the heat medium discharged | emitted from the filler of 1 step | paragraph structure will be 21.83 degreeC.

従って、従来の充填材方式の空気調和機を用いた場合の空気側のΔiは、20.3−14.5=5.83kcal/kgとなり、水側のΔtは、21.83−17=4.83℃となる。   Therefore, Δi on the air side when using a conventional air conditioner of the filler type is 20.3-14.5 = 5.83 kcal / kg, and Δt on the water side is 21.83-17 = 4. .83 ° C.

一方、図2(B)に示したような充填材を2段構成とした本発明に係る空気調和機においては、空気側のΔi及び水側のΔtは以下のようになる。すなわち、第1の充填材に湿球温度27℃、乾球温度33℃、相対湿度63%、エンタルピー20.3kcal/kgの処理空気が導入され、第2の充填材の上方から17℃の熱媒が滴下され、さらに、第2の充填材から第1の充填材にその熱媒が供給されると、第2の充填材の出口側からは、湿球温度19.4℃、乾球温度20.0℃、相対湿度95%、エンタルピー13.3kcal/kgの空気が排出される。また、第1の充填材から排出される熱媒の温度は22.83℃となる。   On the other hand, in the air conditioner according to the present invention in which the filler as shown in FIG. 2B has a two-stage structure, Δi on the air side and Δt on the water side are as follows. That is, treated air having a wet bulb temperature of 27 ° C., a dry bulb temperature of 33 ° C., a relative humidity of 63%, and an enthalpy of 20.3 kcal / kg is introduced into the first filler, and heat of 17 ° C. is applied from above the second filler. When the medium is dropped and the heat medium is further supplied from the second filler to the first filler, the wet bulb temperature is 19.4 ° C. and the dry bulb temperature from the outlet side of the second filler. Air at 20.0 ° C., relative humidity 95%, and enthalpy 13.3 kcal / kg is discharged. Moreover, the temperature of the heat medium discharged | emitted from a 1st filler becomes 22.83 degreeC.

従って、本発明に係る空気調和機を用いた場合の空気側のΔiは、20.3−13.3=7.0kcal/kgとなり、水側のΔtは、22.83−17=5.83℃となる。   Therefore, Δi on the air side when the air conditioner according to the present invention is used is 20.3−13.3 = 7.0 kcal / kg, and Δt on the water side is 22.83-17 = 5.83. It becomes ℃.

その結果、従来の充填材方式の空気調和機を用いた場合と本発明に係る空気調和機を用いた場合とを比較すると、空気側のΔiの熱交換効率は、(7.0−5.8)/5.8=0.21と21%向上し、水側のΔtの熱交換効率は、(5.83−4.83)/4.83=0.21と21%向上させることができる。
従って、入口側及び出口側の空気条件を同一とすれば、熱媒の温度を上げて冷凍機効率を上げたり、あるいは熱媒の温度差を大きくとり、循環水量を減少させることができる。
As a result, comparing the case of using the conventional air conditioner of the filler type and the case of using the air conditioner according to the present invention, the heat exchange efficiency of Δi on the air side is (7.0-5. 8) /5.8=0.21, an increase of 21%, and the heat exchange efficiency of Δt on the water side can be improved by 21%, (5.83−4.83) /4.83=0.21. it can.
Therefore, if the air conditions on the inlet side and the outlet side are the same, the temperature of the heat medium can be increased to increase the efficiency of the refrigerator, or the temperature difference of the heat medium can be increased to reduce the amount of circulating water.

本発明に係る空気調和機の構成を示す模式図である。It is a schematic diagram which shows the structure of the air conditioner which concerns on this invention. 本発明に係る空気調和機の作用を説明する図であって、(A)は従来の充填材方式の空気調和機の場合、(B)は充填材を2層構成とした本発明に係る空気調和機の場合を示す図である。It is a figure explaining the effect | action of the air conditioner which concerns on this invention, Comprising: (A) is the case of the conventional air conditioner of a filler material type, (B) is the air which concerns on this invention which made the filler a 2 layer structure. It is a figure which shows the case of a harmony machine.

符号の説明Explanation of symbols

1…プレフィルタ
2…中性能フィルタ
3a〜3c…充填材
4…再熱コイル
5…送風機
6a〜6c…水槽
7…給水管
8…ノズル
9、10、12…ポンプ
11…排水管
20…チャンバ
30…熱交換器
DESCRIPTION OF SYMBOLS 1 ... Pre filter 2 ... Medium performance filter 3a-3c ... Filler 4 ... Reheating coil 5 ... Blower 6a-6c ... Water tank 7 ... Water supply pipe 8 ... Nozzle 9, 10, 12 ... Pump 11 ... Drain pipe 20 ... Chamber 30 …Heat exchanger

Claims (2)

空気取入口と空気供給口との間の空気流路に充填材が配設され、この充填材に冷水又は温水などの熱媒を滴下して、この熱媒に処理対象となる空気を直接接触させることによって該空気の除湿、冷却、加熱または加湿を行う空気調和機において、
前記充填材が、前記空気流路に沿って複数段設けられ、
前記熱媒は、前記複数の充填材のうち、空気流路に対して最も下流に設けられた充填材から同じ充填材に再循環することなく上流側に隣接して設けられた充填材に順次供給され、最上流の充填材を流下した後、熱交換器を介して、再度、最下流の充填材に供給され、
前記空気の流れと前記熱媒の流れとが対向流とされていることを特徴とする空気調和機。
A filler is arranged in the air flow path between the air intake and the air supply port, and a heat medium such as cold water or hot water is dropped on the filler, and the air to be treated is brought into direct contact with the heat medium. In an air conditioner that dehumidifies, cools, heats or humidifies the air,
The filler is provided in a plurality of stages along the air flow path,
The heating medium is sequentially applied to the fillers provided adjacent to the upstream side without recirculation from the filler provided most downstream with respect to the air flow path to the same filler among the plurality of fillers. After being supplied and flowing down the most upstream filler, it is again supplied to the most downstream filler through the heat exchanger,
The air conditioner characterized in that the air flow and the heat medium flow are opposed to each other.
空気取入口と空気供給口との間の空気流路に充填材が配設され、この充填材に冷水又は温水などの熱媒を滴下して、この熱媒に処理対象となる空気を直接接触させることによって該空気の除湿、冷却、加熱または加湿を行う空気調和機において、
前記充填材が、前記空気流路に沿って複数段設けられ、
前記各充填材の上部には、この充填材に熱媒を滴下するノズルが設けられ、
前記各充填材の下部には、この充填材から排出される熱媒を受ける水槽が設けられ、
前記複数の充填材のうち最も下流に設けられた充填材には、熱媒を供給する熱媒供給部が接続され、
前記各充填材間下部の前記水槽には、この水槽に溜まった熱媒を、上流側に隣接して設けられた充填材上部のノズルに対して送る配管が接続され、この配管には、前記熱媒をポンプアップするポンプが設けられ
前記熱媒は、前記複数の充填材のうち、空気流路に対して最も下流に設けられた充填材から同じ充填材に再循環することなく上流側に隣接して設けられた充填材に順次供給され、最上流の充填材を流下した後、熱交換器を介して、再度、最下流の充填材に供給されることを特徴とする空気調和機。
A filler is arranged in the air flow path between the air intake and the air supply port, and a heat medium such as cold water or hot water is dropped on the filler, and the air to be treated is brought into direct contact with the heat medium. In an air conditioner that dehumidifies, cools, heats or humidifies the air,
The filler is provided in a plurality of stages along the air flow path,
A nozzle for dropping a heat medium on the filler is provided at the top of each filler,
A water tank for receiving the heat medium discharged from the filler is provided at the lower part of each filler,
A heating medium supply unit that supplies a heating medium is connected to the filler provided downstream of the plurality of fillers,
A pipe for sending the heat medium accumulated in the water tank to the nozzle on the upper part of the filler provided adjacent to the upstream side is connected to the water tank at the lower part between the fillers. A pump to pump up the heat medium is provided ,
The heating medium is sequentially applied to the fillers provided adjacent to the upstream side without recirculation from the filler provided most downstream with respect to the air flow path to the same filler among the plurality of fillers. The air conditioner is characterized in that after being supplied and flowing down the most upstream filler, it is supplied again to the most downstream filler via a heat exchanger .
JP2003398080A 2003-11-27 2003-11-27 Air conditioner Expired - Lifetime JP4426263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003398080A JP4426263B2 (en) 2003-11-27 2003-11-27 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003398080A JP4426263B2 (en) 2003-11-27 2003-11-27 Air conditioner

Publications (2)

Publication Number Publication Date
JP2005156077A JP2005156077A (en) 2005-06-16
JP4426263B2 true JP4426263B2 (en) 2010-03-03

Family

ID=34723049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003398080A Expired - Lifetime JP4426263B2 (en) 2003-11-27 2003-11-27 Air conditioner

Country Status (1)

Country Link
JP (1) JP4426263B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101324720B1 (en) * 2013-07-23 2013-11-05 김인봉 Parallel micro-spray air conditioning apparatus
KR20220152024A (en) * 2021-05-07 2022-11-15 주식회사 신성이엔지 Eliminator and outdoor air handling unit having the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4757725B2 (en) * 2005-07-07 2011-08-24 三菱電機株式会社 Air conditioner
JP2009014226A (en) * 2007-07-02 2009-01-22 Techno Ryowa Ltd Air conditioning system
JP5294191B2 (en) * 2008-01-31 2013-09-18 国立大学法人東北大学 Wet desiccant air conditioner
CN104315638A (en) * 2014-10-28 2015-01-28 东南大学 Liquid dehumidification device based on ultrasonic atomization and electrostatic hydrophobic
JP6885479B1 (en) 2020-01-20 2021-06-16 ブラザー工業株式会社 Water supply body, heat exchanger unit and air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101324720B1 (en) * 2013-07-23 2013-11-05 김인봉 Parallel micro-spray air conditioning apparatus
KR20220152024A (en) * 2021-05-07 2022-11-15 주식회사 신성이엔지 Eliminator and outdoor air handling unit having the same
KR102524179B1 (en) * 2021-05-07 2023-04-21 주식회사 신성이엔지 Eliminator and outdoor air handling unit having the same

Also Published As

Publication number Publication date
JP2005156077A (en) 2005-06-16

Similar Documents

Publication Publication Date Title
KR102396679B1 (en) An air conditioning method using a staged process using a liquid desiccant
US8171746B2 (en) Humidity control device
US9631824B1 (en) Liquid desiccant HVAC system
JP4799635B2 (en) Liquid desiccant regenerator and desiccant dehumidifier air conditioner
KR0133007B1 (en) Heat exchanger of director indirect colosed circuit evaporation type wich is combined with heat exchanger type
US4910971A (en) Indirect air conditioning system
CN103075770B (en) Rotating wheel dehumidification device utilizing indoor exhaust evaporation cooling and use method of rotating wheel dehumidification device
US20030051367A1 (en) Conditioning apparatus
CN105164484A (en) Evaporative cooling system with liquid-to-air membrane energy exchanger
KR101071350B1 (en) Hybrid desiccant cooling oac system for cleanroom
US20150047382A1 (en) Fully regenerative liquid desiccant system for residential applications
CN103502760B (en) The evaporation-cooled device of cooling fluid and method
WO2010042827A1 (en) Liquid desiccant dehumidifier
JP2002061903A (en) Wet film coil tape air conditioner
JP2006177567A (en) Air-conditioning system
JP4426263B2 (en) Air conditioner
CN207849601U (en) Data center module recovery efficient Cooling Air-conditioning System
CN109812913B (en) Indirect evaporation inner-cooling type solution fresh air dehumidifying device
KR101250765B1 (en) Heat exchanger having fluid distributor, and air conditioning system using the same
KR20110029513A (en) Dehumidifier using liquid desiccant
JP4911968B2 (en) Outside air cooling method and air conditioning system
WO2004081462A1 (en) Air conditioning method using liquid desiccant
CN206919233U (en) A kind of solution dehumidifier
JP2002061902A (en) Wet film coil and wet film forming apparatus for coil
CN103994525B (en) It is a kind of that the energy is two-way utilizes constant temperature and humidity conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091210

R150 Certificate of patent or registration of utility model

Ref document number: 4426263

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term