US20140096560A1 - Cooling system for vehicle - Google Patents

Cooling system for vehicle Download PDF

Info

Publication number
US20140096560A1
US20140096560A1 US13/722,146 US201213722146A US2014096560A1 US 20140096560 A1 US20140096560 A1 US 20140096560A1 US 201213722146 A US201213722146 A US 201213722146A US 2014096560 A1 US2014096560 A1 US 2014096560A1
Authority
US
United States
Prior art keywords
refrigerant
cooling
air
condenser
radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/722,146
Other languages
English (en)
Inventor
Jae Yeon Kim
Wan Je Cho
Sang-Ok Lee
Yoon Sung Kim
Soon-Jong Lee
Yong-Nam Ahn
Jun-II Jang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hyundai Motor Co
Doowon Climate Control Co Ltd
Hanon Systems Corp
Kia Corp
Original Assignee
Hyundai Motor Co
Kia Motors Corp
Halla Climate Control Corp
Doowon Climate Control Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyundai Motor Co, Kia Motors Corp, Halla Climate Control Corp, Doowon Climate Control Co Ltd filed Critical Hyundai Motor Co
Assigned to KIA MOTORS CORPORATION, DOOWON CLIMATE CONTROL CO., LTD., HALLA CLIMATE CONTROL CORP., HYUNDAI MOTOR COMPANY reassignment KIA MOTORS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AHN, YONG-NAM, CHO, WAN JE, JANG, JUN-IL, KIM, JAE YEON, KIM, YOON SUNG, LEE, SANG-OK, LEE, SOON-JONG
Publication of US20140096560A1 publication Critical patent/US20140096560A1/en
Assigned to HALLA VISTEON CLIMATE CONTROL CORPORATION reassignment HALLA VISTEON CLIMATE CONTROL CORPORATION CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: HALLA CLIMATE CONTROL CORPORATION
Assigned to HANON SYSTEMS reassignment HANON SYSTEMS CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: HALLA VISTEON CLIMATE CONTROL CORPORATION
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/18Arrangements or mounting of liquid-to-air heat-exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00321Heat exchangers for air-conditioning devices
    • B60H1/00328Heat exchangers for air-conditioning devices of the liquid-air type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00321Heat exchangers for air-conditioning devices
    • B60H1/00342Heat exchangers for air-conditioning devices of the liquid-liquid type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3227Cooling devices using compression characterised by the arrangement or the type of heat exchanger, e.g. condenser, evaporator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3228Cooling devices using compression characterised by refrigerant circuit configurations
    • B60H1/32281Cooling devices using compression characterised by refrigerant circuit configurations comprising a single secondary circuit, e.g. at evaporator or condenser side
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/007Ventilation with forced flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers

Definitions

  • the present invention relates to an air-conditioning system for a vehicle that improves overall cooling performance of the air-conditioning system by increasing a condensing rate of refrigerant.
  • An air conditioning system includes a compressor to compress a refrigerant, a condenser to condense and liquefy the refrigerant compressed by the compressor, an expansion valve to quickly expand the condensed and liquefied refrigerant by the condenser, and an evaporator to evaporate the refrigerant expanded by the expansion valve.
  • a water cooling type condenser has a heat capacity higher than that of an air cooling type condenser, the water cooling type condenser has a lower condensing pressure, but a temperature difference between a coolant and a refrigerant is small, and a temperature of the coolant is higher than an outdoor air and therefore it is hart to sub cool the refrigerant and overall cooling performance can be deteriorated thereby.
  • a large capacity of a cooling fan and a radiator are necessary to prevent the above problems, it is disadvantageous in a narrow engine compartment and in an aspect of weight and cost of a vehicle.
  • the coolant is introduced in a condenser. Accordingly, the condensing amount of the refrigerant may be greatly deteriorated along with the increased temperature.
  • Various aspects of the present invention are directed to providing an air-conditioning system for a vehicle having advantages of increasing condensing rate of refrigerant and improving overall cooling performance by using refrigerant and outside air when condensing refrigerant, wherein the refrigerant is condensed by refrigerant to reduce condensing pressure and the refrigerant is condensed by outside air to increase sub cooling effectiveness.
  • an air-conditioning system for a vehicle may include a cooling unit including a cooling fan to introduce air in a radiator, a reserver tank connected to the radiator through a cooling line to store a cooling fluid, and a water pump to circulate the cooling fluid, a first condenser connected to the cooling line between the radiator and the reserver tank wherein a refrigerant is introduced thereto through a refrigerant line and the refrigerant is condensed by heat exchange between the cooling fluid and the refrigerant, and a second condenser serially connected to the first condenser on the refrigerant line such that a condensed liquid refrigerant is introduced from the first condenser, and the refrigerant is condensed by heat exchange between the refrigerant and an outdoor air introduced on driving by being disposed on a front of the radiator.
  • a cooling unit including a cooling fan to introduce air in a radiator, a reserver tank connected to the radiator through a cooling line to store a cooling fluid, and a
  • An air-conditioning unit including an expansion valve to expand a condensed refrigerant, an evaporator to evaporate an expanded refrigerant by heat exchange with the air, and a compressor to compress the refrigerant of an evaporated gas state, which are connected to each other through the refrigerant line, wherein the compressed refrigerant discharged from the compressor is sequentially passed and condensed in each of the first condenser and the second condenser connected to each other through the refrigerant line.
  • the first condenser is integrally formed with a receiver drier to separate a remaining gaseous refrigerant in the condensed refrigerant, after the refrigerant connected and introduced through the compressor and the refrigerant line is condensed.
  • the first condenser is serially connected to the second condenser through the receiver drier.
  • a heating element is disposed between the water pump and the radiator, in which the cooling fluid that may have been passed the first condenser connected through the cooling line is introduced.
  • the heating element may include an electric power part, a motor, or a stack in an environmentally-friendly vehicle and a water cooling type intercooler in an internal combustion engine vehicle.
  • an air-conditioning system for a vehicle which may include an expansion valve to expand a liquid refrigerant, an evaporator to evaporate an expanded refrigerant by heat exchange with air, and a compressor to compress a gaseous refrigerant supplied from the evaporator, which are connected to each other through a refrigerant line
  • a cooling unit including a cooling fan to introduce air in a first radiator, a reserver tank connected to the first radiator through a cooling line to store a cooling fluid, and a water pump connected through the cooling line to circulate the cooling fluid, a first condenser disposed on one side of the first radiator such that the cooling fluid is introduced through the cooling line and the cooling unit, and the refrigerant is condensed by a water cooling type through heat exchange between the cooling fluid and the refrigerant introduced through the cooling line, and a second condenser serially connected to the first condenser on the refrigerant line such that a condensed liquid phase refriger
  • the first condenser is disposed between the first radiator and the reserver tank.
  • the first condenser is integrally formed with a receiver drier to separate a remaining gaseous refrigerant in the condensed refrigerant.
  • the first condenser is connected to the second condenser through the receiver drier.
  • a heating element is disposed between the first radiator and the water pump through the cooling line.
  • the heating element may include an electric power part, a motor, or a stack in an environmentally-friendly vehicle and a water cooling type intercooler in an internal combustion engine vehicle.
  • a second radiator for an internal combustion engine is provided between the first radiator and the cooling fan to cool the internal combustion engine in an internal combustion engine vehicle.
  • the condensing pressure can be reduced since a heat capacity of the cooling fluid is higher than that of the outdoor air, and when the refrigerant is secondarily condensed through the outdoor air, since a temperature difference between the cooling fluid and the refrigerant can be high to be advantageous to the formation of sub cool. Therefore, the overall air-conditioning cooling performance can be improved by increasing the condensing rate of the refrigerant.
  • the required works for the compressor can be reduced through the reduced condensing pressure of the refrigerant, and the water temperature of the cooling fluid can be reduced through the increased sub cool. Therefore, the cooling performance can be improved without increasing the capacity of the radiator and the cooling fan.
  • an electric power part, a motor, a stack or, a heating element such as an intercooler in an internal combustion engine vehicle, and the air-conditioning refrigerant can be cooled by one integrated radiator.
  • FIG. 1 is a block diagram illustrating an air-conditioning system for a vehicle according to a various exemplary embodiments of the present invention.
  • FIG. 2 is a block diagram illustrating an air-conditioning system for a vehicle according to a various exemplary embodiments of the present invention.
  • FIG. 3 is a block diagram illustrating an air-conditioning system for a vehicle according to a various exemplary embodiments of the present invention.
  • FIG. 4 is a block diagram illustrating an air-conditioning system for a vehicle according to a various exemplary embodiments of the present invention.
  • FIG. 1 is a block diagram illustrating an air-conditioning system for a vehicle according to a first exemplary embodiment of the present invention.
  • a condensing pressure can be reduced, when secondarily condensing the refrigerant through the outdoor air a sub cool can increased and a condensing rate of the refrigerant can be high such that a structure can be achieved in which overall air-conditioning performance can be improved.
  • the air-conditioning system 1 for the vehicle is configured to include a cooling unit, a first condenser 10 and a second condenser 20 , and the explanations for each of components will be described in more detail as follows.
  • the cooling unit includes a radiator 2 provided on a front of the vehicle, and a cooling fan 4 to introduce air in the radiator 2 .
  • the cooling fan 4 is connected to a controller so that airflows can be adjusted, depending on a condition of the vehicle and a temperature of the refrigerant or the cooling fluid.
  • the cooling unit is configured to include a water pump 6 connected through the radiator 2 and the cooling line (hereinafter, referred to as ‘C.L’) by which the cooling fluid flows to circulate the cooling fluid, the cooling line (C.L), and a reserver tank 8 to store the cooling fluid.
  • a water pump 6 connected through the radiator 2 and the cooling line (hereinafter, referred to as ‘C.L’) by which the cooling fluid flows to circulate the cooling fluid
  • the cooling line (C.L) the cooling line (C.L)
  • a reserver tank 8 to store the cooling fluid.
  • the cooling unit is configured to include the reserver tank 8 connected through the radiator 2 and the cooling line (hereinafter, referred to as ‘C.L’) by which the cooling fluid flows to store the cooling fluid, and the water pump 6 provided on the cooling line (C.L) to circulate the cooling fluid.
  • C.L the cooling line
  • the cooling fluid as described above may be configured as a coolant.
  • the first condenser 10 is connected to the cooling line (C.L) between the radiator 2 and the reserver tank 8 to introduce the cooling fluid, and the refrigerant is introduced through a refrigerant line (hereinafter, referred to as ‘R.L’) by which the refrigerant flows in the air-conditioning unit such that the refrigerant is primarily condensed by heat exchange between the cooling fluid and the refrigerant.
  • a refrigerant line hereinafter, referred to as ‘R.L’
  • the air-conditioning unit is configured to include an expansion valve 22 to expand the condensed refrigerant, an evaporator 24 to evaporate the expanded refrigerant by heat exchange with the air, and a compressor 26 to compress an evaporated gaseous refrigerant, which are connected to each other through the refrigerant line (R.L).
  • an expansion valve 22 to expand the condensed refrigerant
  • an evaporator 24 to evaporate the expanded refrigerant by heat exchange with the air
  • a compressor 26 to compress an evaporated gaseous refrigerant, which are connected to each other through the refrigerant line (R.L).
  • the first condenser 10 may be integrally formed with a receiver drier 12 to separate a remaining gaseous refrigerant in the condensed refrigerant, after condensing the refrigerant connected and introduced through the compressor 26 and the refrigerant line (R.L).
  • the receiver drier 12 can separate a gaseous refrigerant that is not changed into a liquid phase inside a refrigerant of a primarily condensed liquid state such that only a liquid phase refrigerant is discharged in the first condenser 10 .
  • the second condenser 20 is serially connected to the first condenser 10 to be introduced with the refrigerant in the liquid phase condensed from the first condenser 10 , and disposed on a front of the radiator 2 to secondarily condense the refrigerant through heat exchange between the refrigerant and an outdoor air introduced on driving.
  • the compressed refrigerant discharged from the compressor 26 is sequentially passed and condensed in the first condenser 10 and the second condenser 20 connected to each other through the refrigerant line (R.L).
  • the first condenser 10 is serially connected to the second condenser 20 through the receiver drier 12 .
  • the second condenser 20 can be secondarily condensed through the heat exchange between an outdoor air and only the liquid refrigerant that is introduced with the liquid phase in which the gaseous refrigerant that is not changed through the receiver drier 12 of the first condenser 10 is separated.
  • the first condenser 10 includes a water cooling type in which the coolant introduced by the cooling fluid and the refrigerant introduced into the inside are exchanged
  • the second condenser 20 includes an air cooling type in which the refrigerant and outdoor air introduced from the outside during the driving of the vehicle.
  • the first condenser 10 consisted of the water cooling type can cool the refrigerant using a coolant that has a high heat transfer coefficient compared to the outdoor air to reduce a condensing pressure in the inside.
  • the second condenser 20 consisted of the air cooling type can cool only gaseous refrigerant that the refrigerant condensed while passing through the first condenser 10 is supplied through receiver drier 12 using the outdoor air, such that a temperature difference between the outdoor air and the refrigerant can be high to be advantageous to the formation of sub cool and the total heat of the cooling line (R.L) can be reduced.
  • the air-conditioning system 1 according to the first exemplary embodiment of the present invention can be applied to both of the first and second condensers 10 and 20 each applied with the water cooling type and the air cooling type. Accordingly, since the condensing pressure reduction that is an advantage of the water cooling type and a favorable position to obtain the sub cooling formation that is an advantage of the air cooling type can be effectively used, and drawbacks according to each types can be compensated, the overall cooling air-conditioning performance can be improved.
  • the cooling fluid and the outdoor air are each used when condensing the refrigerant. Accordingly, when the refrigerant is primarily condensed through the cooling fluid, the condensing pressure can be reduced since a heat capacity of the cooling fluid is higher than that of the outdoor air, and when the refrigerant is secondarily condensed through the outdoor air, since a temperature difference between the cooling fluid and the refrigerant can be high to be advantageous to the formation of sub cool. Therefore, the overall air-conditioning cooling performance can be improved by increasing the condensing rate of the refrigerant.
  • the required works for the compressor can be reduced through the reduced condensing pressure of the refrigerant, thereby reducing operating fuel consumption, and reducing the total amount of heat of the cooling line (C.L) can be reduced through the increased sub cool, thereby reducing the water temperature of the cooling fluid that is circulated along with the cooling line (R.L). Therefore, since the cooling performance can be improved without increasing the capacity of the radiator 2 and the cooling fan 4 , space utilization can be increased by simplifying a layout in a narrow engine room, and weight reduction and the manufacturing cost can be saved.
  • FIG. 2 is a block diagram illustrating an air-conditioning system for a vehicle according to a second exemplary embodiment of the present invention.
  • the air-conditioning system 100 may be applied to a fuel cell vehicle, an electric vehicle and the like, which are environmentally-friendly vehicles, wherein the cooling fluid and the outdoor air are each used when condensing the refrigerant. Accordingly, when the refrigerant is primarily condensed through the cooling fluid, the condensing pressure can be reduced, and when the refrigerant is secondarily condensed through the outdoor air, the sub cool can be increased. Therefore, the overall air-conditioning cooling performance can be improved by increasing the condensing rate of the refrigerant.
  • the air-conditioning system 100 may be configured to include a cooling unit, a first condenser 110 and a second condenser 120 .
  • the cooling unit may be configured to include a radiator 102 provided on a front of the vehicle, a cooling fan 104 to introduce air in the radiator 102 , a reserver tank 108 connected through the radiator 2 and the cooling line (hereinafter, referred to as ‘C.L’) by which the cooling fluid flows to store the cooling fluid, and the water pump 106 provided on the cooling line (C.L) to circulate the cooling fluid.
  • a radiator 102 provided on a front of the vehicle
  • a cooling fan 104 to introduce air in the radiator 102
  • a reserver tank 108 connected through the radiator 2 and the cooling line (hereinafter, referred to as ‘C.L’) by which the cooling fluid flows to store the cooling fluid
  • the water pump 106 provided on the cooling line (C.L) to circulate the cooling fluid.
  • the cooling fan 104 is connected to a controller so that airflows can be adjusted, depending on a condition of the vehicle and a temperature of the refrigerant or the cooling fluid, and the cooling fluid may be configured as a coolant.
  • the first condenser 110 is connected to the cooling line (C.L) between the radiator 102 and the reserver tank 108 to introduce the cooling fluid, and the refrigerant is introduced through a refrigerant line (hereinafter, referred to as ‘R.L’) by which the refrigerant flows in the air-conditioning unit such that the refrigerant is primarily condensed by heat exchange between the cooling fluid and the refrigerant.
  • C.L cooling line
  • R.L refrigerant line
  • the air-conditioning unit is configured to include an expansion valve 122 to expand the condensed refrigerant, an evaporator 124 to evaporate the expanded refrigerant by heat exchange with the air, and a compressor 126 to compress an evaporated gaseous refrigerant, which are connected to each other through the refrigerant line (R.L).
  • an expansion valve 122 to expand the condensed refrigerant
  • an evaporator 124 to evaporate the expanded refrigerant by heat exchange with the air
  • a compressor 126 to compress an evaporated gaseous refrigerant
  • the first condenser 110 may be integrally formed with a receiver drier 112 to separate a remaining gaseous refrigerant in the condensed refrigerant, after condensing the refrigerant connected and introduced through the compressor 126 and the refrigerant line (R.L).
  • the receiver drier 112 can separate a gaseous refrigerant that is not changed into a liquid phase inside a refrigerant of a primarily condensed liquid state such that only a liquid phase refrigerant is discharged in the first condenser 110 .
  • the second condenser 120 is serially connected to the first condenser 110 to be introduced with the refrigerant in the liquid phase condensed from the first condenser 110 , and disposed on a front of the radiator 102 to secondarily condense the refrigerant through heat exchange between the refrigerant and an outdoor air introduced on driving.
  • a heating element 130 may be disposed between the water pump 108 and the radiator 102 in which the cooling fluid stored in the reserver tank 108 is introduced after the cooling fluid is connected through the cooling line (C.L) and passed through the first condenser 110 .
  • the heating element 130 may be configured to include an electric power part, motor or stack applied to an environmentally-friendly vehicle such as a fuel cell vehicle, an electric vehicle and the like, and the water cooling type intercooler in an internal combustion engine vehicle.
  • the heat of the heating element 130 can be cooled by the coolant discharged from the first condenser 110 through the cooling line (C.L).
  • the coolant is circulated along the cooling line (C.L) and re-introduced into the radiator 102 to be cooled through the water pump 106 while maintaining the heating state.
  • the coolant is stored in reserver tank 108 by the water pump 106 and then introduced into the first condenser 110 to be heat-exchanged. The operation is repeatedly performed.
  • the compressed refrigerant discharged from the compressor 126 may be condensed while being sequentially passed through the first condenser 110 and the second condenser 120 connected to each other through the refrigerant line (R.L).
  • the first condenser 110 may be serially connected to the second condenser 120 through the receiver drier 12 .
  • the second condenser 120 can be secondarily condensed through the heat exchange between an outdoor air and only the liquid refrigerant that is introduced with the liquid phase at which the gaseous refrigerant that is not changed through the receiver drier 112 of the first condenser 110 is separated.
  • the receiver drier 112 can also perform a function of filtering a foreign material contained in the refrigerant.
  • the first condenser 110 includes a water cooling type in which the coolant introduced by the cooling fluid and the refrigerant introduced into the inside are exchanged
  • the second condenser 120 includes an air cooling type in which the refrigerant and outdoor air introduced from the outside during the driving of the vehicle.
  • the first condenser 110 consisted of the water cooling type can cool the refrigerant using a coolant that has a high heat transfer coefficient compared to the outdoor air to reduce a condensing pressure in the inside.
  • the second condenser 120 consisted of the air cooling type can cool only gaseous refrigerant that the refrigerant condensed while passing through the first condenser 110 is supplied through receiver drier 112 using the outdoor air, such that a temperature difference between the outdoor air and the refrigerant can be high to be advantageous to the formation of sub cool and the total heat of the cooling line (R.L) can be reduced.
  • the cooling fluid and the outdoor air are each used when condensing the refrigerant. Accordingly, when the refrigerant is primarily condensed through the cooling fluid, the condensing pressure can be reduced since a heat capacity of the cooling fluid is higher than that of the outdoor air, and when the refrigerant is secondarily condensed through the outdoor air, since a temperature difference between the cooling fluid and the refrigerant can be high to be advantageous to the formation of sub cool. Therefore, the overall air-conditioning cooling performance can be improved by increasing the condensing rate of the refrigerant.
  • the required works for the compressor can be reduced through the reduced condensing pressure of the refrigerant, thereby reducing operating fuel consumption, and reducing the total amount of heat of the cooling line (C.L) can be reduced through the increased sub cool, thereby reducing the water temperature of the cooling fluid that is circulated along with the cooling line (R.L). Therefore, since the cooling performance can be improved without increasing the capacity of the radiator 102 and the cooling fan 104 , space utilization can be increased by simplifying a layout in a narrow engine room, and weight reduction and the manufacturing cost can be saved.
  • an environmentally-friendly vehicle such as fuel cell and electric vehicles or the like
  • an electric power part, a stack, and the heating element 130 such as an intercooler in an internal combustion engine vehicle, and a refrigerant can be cooled by one integrated radiator 102 . Accordingly, the cooling performance can be improved and the configuration can be simplified.
  • FIG. 3 is a block diagram illustrating an air-conditioning system for a vehicle according to a third exemplary embodiment of the present invention.
  • the air-conditioning system 200 may be applied to a fuel cell vehicle, an electric vehicle and the like, which are environmentally-friendly vehicles, wherein the cooling fluid and the outdoor air are each used when condensing the refrigerant. Accordingly, when the refrigerant is primarily condensed through the cooling fluid, the condensing pressure can be reduced, and when the refrigerant is secondarily condensed through the outdoor air, the sub cool can be increased. Therefore, the overall air-conditioning cooling performance can be improved by increasing the condensing rate of the refrigerant.
  • the air-conditioning system 200 may be configured to include an expansion valve 202 to expand the liquid refrigerant, an evaporator 204 to evaporate the expanded refrigerant by the expansion valve 202 by heat exchange with the air, and a compressor 206 to compress a gaseous refrigerant supplied from the evaporator 204 , which are basically connected to each other through the refrigerant line (R.L).
  • an expansion valve 202 to expand the liquid refrigerant
  • an evaporator 204 to evaporate the expanded refrigerant by the expansion valve 202 by heat exchange with the air
  • a compressor 206 to compress a gaseous refrigerant supplied from the evaporator 204 , which are basically connected to each other through the refrigerant line (R.L).
  • the air-conditioning system 200 may be configured to further include a cooling unit, a first condenser 216 and a second condenser 220 .
  • the cooling unit may be configured to include a radiator 208 provided on a front of a vehicle, a cooling fan 210 to introduce air in the radiator 208 , a reserver tank 214 connected through the radiator 208 and the cooling line (C.L) by which the cooling fluid flows to store the cooling fluid, and a water pump 212 connected through the cooling line (C.L) to circulate the cooling fluid.
  • the cooling fan 204 in the cooling unit as configured above is connected to a controller so that airflows can be adjusted, depending on a condition of the vehicle and a temperature of the refrigerant or the cooling fluid, and the cooling fluid may be configured as a coolant.
  • a heating element 230 connected through the cooling line (C.L) may be disposed between the radiator 208 and the water pump 230 .
  • the heating element 230 may be configured to include an electric power part, a motor or stack applied to an environmentally-friendly vehicle such as a fuel cell vehicle, an electric vehicle and the like, or a stack, and a water cooling type intercooler in an internal combustion engine vehicle.
  • an environmentally-friendly vehicle such as a fuel cell vehicle, an electric vehicle and the like, or a stack
  • a water cooling type intercooler in an internal combustion engine vehicle.
  • the generated heat of the heating element 230 is cooled while the coolant stored in reserver tank 214 is introduced through the cooling line (C.L).
  • the coolant is circulated along the cooling line (C.L) and re-introduced into the radiator 202 to be cooled through the water pump 206 while maintaining the heating state.
  • the coolant is introduced into the first condenser 210 to be heat-exchanged with the refrigerant. The operation is repeatedly performed.
  • the cooling fluid which is a coolant
  • the cooling line C.L.
  • the refrigerant is condensed by a water cooling type through heat exchange between the cooling fluid and the refrigerant introduced through the refrigerant line.
  • the first condenser 216 may be disposed on one side of the radiator 208 between the reserver tank 214 and the radiator 208 .
  • first condenser 216 may be integrally formed with a receiver drier 218 that separates a remaining gaseous refrigerant in the condensed refrigerant, after condensing the refrigerant connected and introduced through the compressor 206 and the refrigerant line (R.L).
  • the receiver drier 218 can separate a gaseous refrigerant that is not changed into a liquid phase inside a refrigerant of a primarily condensed liquid state such that only a liquid phase refrigerant is discharged in the first condenser 216 , and perform a function of removing a foreign material contained in the refrigerant at the same time.
  • the second condenser 220 is serially connected to the first condenser 216 on the refrigerant line (R.L) such that the condensed liquid phase refrigerant can be introduced, and disposed on the front of the radiator 208 such that the refrigerant can be condensed by the air cooling type through heat exchange between the refrigerant and an outdoor air introduced on driving.
  • R.L refrigerant line
  • first condenser 216 and the second condenser 220 may be serially connected to each other.
  • first condenser 216 may be connected to the second condenser 220 through the receiver drier 218 .
  • the first condenser 216 includes a water cooling type in which the coolant introduced by the cooling fluid and the refrigerant introduced into the inside are exchanged
  • the second condenser 220 includes an air cooling type in which the refrigerant and outdoor air introduced from the outside during the driving of the vehicle.
  • the first condenser 216 consisted of the water cooling type can cool the refrigerant using a coolant that has a high heat transfer coefficient compared to the outdoor air to reduce a condensing pressure in the inside.
  • the second condenser 220 consisted of the air cooling type can cool only gaseous refrigerant that the refrigerant condensed while passing through the first condenser 216 is supplied through receiver drier 218 using the outdoor air, such that a temperature difference between the outdoor air and the refrigerant can be high to be advantageous to the formation of sub cool and the total amount of heat of the cooling line (R.L) can be reduced.
  • the coolant to be circulated along the cooling line (C.L) in the cooling unit can cool the heat generated from the heating element 230 using the radiator 208 , the overall configuration can be simplified.
  • the cooling fluid and the outdoor air are each used when condensing the refrigerant. Accordingly, when the refrigerant is primarily condensed through the cooling fluid, the condensing pressure can be reduced since a heat capacity of the cooling fluid is higher than that of the outdoor air, and when the refrigerant is secondarily condensed through the outdoor air, since a temperature difference between the cooling fluid and the refrigerant can be high to be advantageous to the formation of sub cool. Therefore, the overall air-conditioning cooling performance can be improved by increasing the condensing rate of the refrigerant.
  • the required works for the compressor can be reduced through the reduced condensing pressure of the refrigerant, thereby reducing operating fuel consumption, and reducing the total amount of heat of the cooling line (C.L) can be reduced through the increased sub cool, thereby reducing the water temperature of the cooling fluid that is circulated along with the cooling line (R.L). Therefore, since the cooling performance can be improved without increasing the capacity of the radiator 208 and the cooling fan 210 , space utilization can be increased by simplifying a layout in a narrow engine room, and weight reduction and the manufacturing cost can be saved.
  • an electric power part, a stack or, the heating element 230 such as an intercooler in an internal combustion engine vehicle, and a refrigerant can be cooled by one integrated radiator 208 . Accordingly, the cooling performance can be improved and the configuration can be simplified.
  • FIG. 4 is a block diagram illustrating an air-conditioning system for a vehicle according to a fourth exemplary embodiment of the present invention.
  • the air-conditioning system 300 for a vehicle according to the fourth exemplary embodiment of the present invention can be applied to a vehicle to which an internal combustion engine is provided, wherein in a case a refrigerant is condensed each using a cooling fluid and an outdoor air, the condensing pressure can be reduced, when the refrigerant is primarily condensed through the cooling fluid, and a sub cool can be increased, when the refrigerant is secondarily condensed through the outdoor air, such that overall air-conditioning cooling performance can be improved.
  • the air-conditioning system 300 may be configured to include an expansion valve 303 to expand the liquid refrigerant, an evaporator 304 to evaporate the expanded refrigerant by the expansion valve 303 by heat exchange with the air, and a compressor 306 to compress a gaseous refrigerant supplied from the evaporator 304 , which are basically connected to each other through the refrigerant line (R.L).
  • an expansion valve 303 to expand the liquid refrigerant
  • an evaporator 304 to evaporate the expanded refrigerant by the expansion valve 303 by heat exchange with the air
  • a compressor 306 to compress a gaseous refrigerant supplied from the evaporator 304 , which are basically connected to each other through the refrigerant line (R.L).
  • the air-conditioning system 300 may be configured to further include a cooling unit, a first condenser 316 and a second condenser 320 .
  • the cooling unit may be configured to include a radiator 308 provided on a front of a vehicle, a cooling fan 310 to introduce air in the radiator 308 , a reserver tank 314 connected through the radiator 308 and the cooling line (C.L) by which the cooling fluid flows to store the cooling fluid, and a water pump 312 connected through the cooling line (C.L) to circulate the cooling fluid.
  • the cooling fan 304 in the cooling unit as configured above is connected to a controller so that airflows can be adjusted, depending on a condition of the vehicle and a temperature of the refrigerant or the cooling fluid, and the cooling fluid may be configured as a coolant.
  • a radiator 330 for an internal combustion engine may be further included between the radiator 308 and the cooling fan 310 in an internal combustion engine vehicle.
  • the radiator 330 for the internal combustion engine is connected to the internal combustion engine of the vehicle through a separate cooling line that is different from the cooling line (C.L) consisting the cooling unit, such that after heat generated from the internal combustion engine is cooled, the heated cooling fluid can be cooled through the outdoor air and operation of the cooling fan 310 , and the cooling fluid can be again supplied.
  • C.L cooling line
  • the cooling fluid which is a coolant
  • the cooling line (C.L.) and the cooling unit the refrigerant is condensed by a water cooling type through heat exchange between the cooling fluid and the refrigerant introduced through the refrigerant line (R.L).
  • the first condenser 316 may be disposed on one side of the radiator 308 between the reserver tank 314 and the radiator 308 .
  • first condenser 316 may be integrally formed with a receiver drier 318 that separates a remaining gaseous refrigerant in the condensed refrigerant, after condensing the refrigerant connected and introduced through the compressor 306 and the refrigerant line (R.L).
  • the receiver drier 318 can separate a gaseous refrigerant that is not changed into a liquid phase inside a refrigerant of a primarily condensed liquid state such that only a liquid phase refrigerant is discharged in the first condenser 316 , and perform a function of removing a foreign material contained in the refrigerant at the same time.
  • the second condenser 320 is serially connected to the first condenser 316 on the refrigerant line (R.L) such that the condensed liquid phase refrigerant can be introduced, and disposed on the front of the radiator 308 such that the refrigerant can be condensed by the air cooling type through heat exchange between the refrigerant and an outdoor air introduced on driving.
  • R.L refrigerant line
  • first condenser 316 and the second condenser 320 may be serially connected to each other. At this time, the first condenser 316 may be connected to the second condenser 320 through the receiver drier 318 .
  • the first condenser 316 includes a water cooling type in which the coolant introduced by the cooling fluid and the refrigerant introduced into the inside are exchanged
  • the second condenser 320 includes an air cooling type in which the refrigerant and outdoor air introduced from the outside during the driving of the vehicle.
  • the first condenser 316 consisted of the water cooling type can cool the refrigerant using a coolant that has a high heat transfer coefficient compared to the outdoor air to reduce a condensing pressure in the inside.
  • the second condenser 320 consisted of the air cooling type can cool only gaseous refrigerant that the refrigerant condensed while passing through the first condenser 316 is supplied through receiver drier 318 using the outdoor air, such that a temperature difference between the outdoor air and the refrigerant can be high to be advantageous to the formation of sub cool and the total amount of heat of the cooling line (R.L) can be reduced.
  • the cooling fluid and the outdoor air are each used when condensing the refrigerant. Accordingly, when the refrigerant is primarily condensed through the cooling fluid, the condensing pressure can be reduced since a heat capacity of the cooling fluid is higher than that of the outdoor air, and when the refrigerant is secondarily condensed through the outdoor air, since a temperature difference between the cooling fluid and the refrigerant can be high to be advantageous to the formation of sub cool. Therefore, the overall air-conditioning cooling performance can be improved by increasing the condensing rate of the refrigerant.
  • the required works for the compressor can be reduced through the reduced condensing pressure of the refrigerant, thereby reducing operating fuel consumption, and reducing the total amount of heat of the cooling line (C.L) can be reduced through the increased sub cool, thereby reducing the water temperature of the cooling fluid that is circulated along with the cooling line (R.L). Therefore, since the cooling performance can be improved without increasing the capacity of the radiator 308 and the cooling fan 310 , space utilization can be increased by simplifying a layout in a narrow engine room, and weight reduction and the manufacturing cost can be saved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
US13/722,146 2012-10-05 2012-12-20 Cooling system for vehicle Abandoned US20140096560A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120110929A KR101438603B1 (ko) 2012-10-05 2012-10-05 차량용 에어컨 시스템
KR10-2012-0110929 2012-10-05

Publications (1)

Publication Number Publication Date
US20140096560A1 true US20140096560A1 (en) 2014-04-10

Family

ID=50336905

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/722,146 Abandoned US20140096560A1 (en) 2012-10-05 2012-12-20 Cooling system for vehicle

Country Status (5)

Country Link
US (1) US20140096560A1 (de)
JP (1) JP6137828B2 (de)
KR (1) KR101438603B1 (de)
CN (1) CN103712278A (de)
DE (1) DE102012113059B4 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140124159A1 (en) * 2012-11-08 2014-05-08 Hyundai Motor Company Air conditioner for vehicle
US20170122188A1 (en) * 2015-11-03 2017-05-04 Hyundai Motor Company Water-cooled intercooler system using air conditioning system and control method thereof
US20170246934A1 (en) * 2014-07-29 2017-08-31 Hanon Systems Air conditioner system for vehicle
US10648710B2 (en) 2016-03-30 2020-05-12 Kabushiki Kaisha Toyota Chuo Kenkyusho Heat pump system and cooling generation method
CN113829832A (zh) * 2021-09-27 2021-12-24 浙江吉利控股集团有限公司 热管理系统及车辆
US11209790B2 (en) 2016-04-15 2021-12-28 Omron Corporation Actuator control system, actuator control method, information processing program, and storage medium

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8428778B2 (en) 2002-09-13 2013-04-23 Irobot Corporation Navigational control system for a robotic device
US7620476B2 (en) 2005-02-18 2009-11-17 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
EP1969438B1 (de) 2005-12-02 2009-09-09 iRobot Corporation Modularer roboter
EP2394553B1 (de) 2006-05-19 2016-04-20 iRobot Corporation Müllentfernung aus Reinigungsrobotern
EP3031375B1 (de) 2007-05-09 2021-11-03 iRobot Corporation Kompakter roboter mit autonomer reichweite
CN105147193B (zh) 2010-02-16 2018-06-12 艾罗伯特公司 真空吸尘器毛刷
KR101534708B1 (ko) * 2013-12-18 2015-07-07 현대자동차 주식회사 차량용 에어컨 시스템 제어방법
KR20160059031A (ko) 2014-11-17 2016-05-26 현대자동차주식회사 차량용 제습 장치
KR101755480B1 (ko) 2015-12-10 2017-07-10 현대자동차 주식회사 차량용 쿨링팬 제어방법
KR102383479B1 (ko) 2016-10-27 2022-04-06 현대자동차주식회사 저온 영역에서 성능이 개선된 차량용 에어컨디셔너 및 저온 영역에서의 차량용 에어컨디셔너의 제어방법
KR101846915B1 (ko) * 2016-11-01 2018-05-28 현대자동차 주식회사 차량용 히트 펌프 시스템
JP2019002350A (ja) * 2017-06-15 2019-01-10 カルソニックカンセイ株式会社 冷却システム
CN109383228B (zh) * 2018-09-29 2020-05-05 珠海格力电器股份有限公司 一种热泵空调器及其控制方法
CN109269037A (zh) * 2018-10-09 2019-01-25 珠海格力电器股份有限公司 空调系统的控制方法和装置
KR102009338B1 (ko) 2019-01-14 2019-08-12 (주)세원글로벌 고효율 리사이클 응축기
JP7202223B2 (ja) * 2019-03-11 2023-01-11 株式会社Subaru 車両
CN111609480A (zh) * 2020-04-23 2020-09-01 海信(山东)空调有限公司 一种空调器制冷系统及空调器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5408843A (en) * 1994-03-24 1995-04-25 Modine Manufacturing Co. Vehicular cooling system and liquid cooled condenser therefor
US6370903B1 (en) * 2001-03-14 2002-04-16 Visteon Global Technologies, Inc. Heat-pump type air conditioning and heating system for fuel cell vehicles
US20040007012A1 (en) * 2002-07-09 2004-01-15 Halla Climate Control Corporation Receiver-drier for air-conditioning system and method of manufacturing the same
US20040134217A1 (en) * 2003-01-09 2004-07-15 Satoshi Itoh Air conditioner with dehumidifying and heating operation
US20060179874A1 (en) * 2005-02-17 2006-08-17 Eric Barger Refrigerant based heat exchange system
US20110132030A1 (en) * 2009-12-03 2011-06-09 Hyundai Motor Company Integrated Cooling System for Eco-Friendly Vehicle
US20110284181A1 (en) * 2009-02-13 2011-11-24 Arkema France Method for heating and/or air-conditioning in a vehicle
US20120291478A1 (en) * 2011-05-20 2012-11-22 Kia Motors Corporation Condenser for vehicle and air conditioning system for vehicle
US20120297820A1 (en) * 2011-05-27 2012-11-29 Akira Masuda Combined heat exchanger system

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19536973C2 (de) 1995-07-06 2000-10-19 Valeo Klimatech Gmbh & Co Kg Klimatisierungsanordnung für Nutzfahrzeuge, insbesondere Omnibusse
JP2000205612A (ja) * 1999-01-18 2000-07-28 Zexel Corp 蓄冷式空調装置
JP4078812B2 (ja) * 2000-04-26 2008-04-23 株式会社デンソー 冷凍サイクル装置
JP4569041B2 (ja) 2000-07-06 2010-10-27 株式会社デンソー 車両用冷凍サイクル装置
US6708522B2 (en) 2000-08-11 2004-03-23 Showa Denko K.K. Receiver tank for use in refrigeration cycle, heat exchanger with said receiver tank, and condensing apparatus for use in refrigeration cycle
KR101015640B1 (ko) * 2003-04-30 2011-02-22 한라공조주식회사 차량용 공조시스템
JP2007278624A (ja) 2006-04-07 2007-10-25 Denso Corp ヒートポンプサイクル
US20080023173A1 (en) 2006-07-31 2008-01-31 Valeo, Inc. Fan shroud for automotive applications
CN201173635Y (zh) * 2008-01-29 2008-12-31 李国章 冷气空调装置
KR101405753B1 (ko) * 2008-10-15 2014-06-10 현대자동차주식회사 연료전지 차량의 실내 난방 장치
KR101054750B1 (ko) * 2008-11-26 2011-08-05 현대자동차주식회사 차량용 증발 사이클 열교환 시스템
KR101360636B1 (ko) * 2009-12-03 2014-02-10 기아자동차주식회사 친환경 차량용 냉각시스템
FR2967759B1 (fr) * 2010-11-22 2015-02-27 Valeo Systemes Thermiques Dispositif de conditionnement thermique d'un habitacle de vehicule
JP5960955B2 (ja) * 2010-12-03 2016-08-02 現代自動車株式会社Hyundai Motor Company 車両用コンデンサ
KR101373657B1 (ko) * 2011-01-27 2014-03-13 한라비스테온공조 주식회사 응축기
KR101318644B1 (ko) * 2011-02-21 2013-10-17 한라비스테온공조 주식회사 차량용 에어컨의 냉동 사이클
KR20120110929A (ko) 2011-03-30 2012-10-10 조동혁 복수 개의 카메라센서를 튜브 내에 설치하여 감시하는 병렬 감시카메라 시스템

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5408843A (en) * 1994-03-24 1995-04-25 Modine Manufacturing Co. Vehicular cooling system and liquid cooled condenser therefor
US6370903B1 (en) * 2001-03-14 2002-04-16 Visteon Global Technologies, Inc. Heat-pump type air conditioning and heating system for fuel cell vehicles
US20040007012A1 (en) * 2002-07-09 2004-01-15 Halla Climate Control Corporation Receiver-drier for air-conditioning system and method of manufacturing the same
US20040134217A1 (en) * 2003-01-09 2004-07-15 Satoshi Itoh Air conditioner with dehumidifying and heating operation
US20060179874A1 (en) * 2005-02-17 2006-08-17 Eric Barger Refrigerant based heat exchange system
US20110284181A1 (en) * 2009-02-13 2011-11-24 Arkema France Method for heating and/or air-conditioning in a vehicle
US20110132030A1 (en) * 2009-12-03 2011-06-09 Hyundai Motor Company Integrated Cooling System for Eco-Friendly Vehicle
US20120291478A1 (en) * 2011-05-20 2012-11-22 Kia Motors Corporation Condenser for vehicle and air conditioning system for vehicle
US20120297820A1 (en) * 2011-05-27 2012-11-29 Akira Masuda Combined heat exchanger system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140124159A1 (en) * 2012-11-08 2014-05-08 Hyundai Motor Company Air conditioner for vehicle
US9440512B2 (en) * 2012-11-08 2016-09-13 Hyundai Motor Company Air conditioning system for vehicle
US20170246934A1 (en) * 2014-07-29 2017-08-31 Hanon Systems Air conditioner system for vehicle
US10766340B2 (en) * 2014-07-29 2020-09-08 Hanon Systems Air conditioner system for vehicle
US20170122188A1 (en) * 2015-11-03 2017-05-04 Hyundai Motor Company Water-cooled intercooler system using air conditioning system and control method thereof
US10240514B2 (en) * 2015-11-03 2019-03-26 Hyundai Motor Company Water-cooled intercooler system using air conditioning system and control method thereof
US10648710B2 (en) 2016-03-30 2020-05-12 Kabushiki Kaisha Toyota Chuo Kenkyusho Heat pump system and cooling generation method
US11209790B2 (en) 2016-04-15 2021-12-28 Omron Corporation Actuator control system, actuator control method, information processing program, and storage medium
CN113829832A (zh) * 2021-09-27 2021-12-24 浙江吉利控股集团有限公司 热管理系统及车辆

Also Published As

Publication number Publication date
DE102012113059A1 (de) 2014-04-10
JP6137828B2 (ja) 2017-05-31
KR20140044672A (ko) 2014-04-15
DE102012113059B4 (de) 2022-09-01
KR101438603B1 (ko) 2014-09-05
CN103712278A (zh) 2014-04-09
JP2014076792A (ja) 2014-05-01

Similar Documents

Publication Publication Date Title
US20140096560A1 (en) Cooling system for vehicle
US9440512B2 (en) Air conditioning system for vehicle
US10753686B2 (en) Condenser for vehicle
US10634402B2 (en) Heat pump system for vehicle with battery and electronic component cooling
US9140473B2 (en) Condenser for vehicle
US11292313B2 (en) Heat pump system for vehicle
US9242532B2 (en) Air conditioner system control method for vehicle
US9239193B2 (en) Unitary heat pump air conditioner having a heat exchanger with an integral receiver and sub-cooler
US20120291478A1 (en) Condenser for vehicle and air conditioning system for vehicle
US20140060102A1 (en) Mild ambient vehicular heat pump system
WO2011087001A1 (ja) 車両用空調システム
US20160116197A1 (en) Refrigeration cycle device
US11325443B2 (en) Heat pump system for vehicle
US20150089967A1 (en) Heat pump system for vehicle
US20150153078A1 (en) Heat pump system for vehicle
US11338646B2 (en) Device for distributing the coolant in an air-conditioning system of a motor vehicle
US20140110093A1 (en) Condenser for vehicle
US20130145789A1 (en) Condenser for vehicle
US20140166250A1 (en) Cooling module for vehicle
US10240514B2 (en) Water-cooled intercooler system using air conditioning system and control method thereof
CN104976814B (zh) 车辆中的热泵系统
JP2012245866A (ja) 複合熱交換器
KR20160017153A (ko) 차량용 에어컨시스템
KR20160091463A (ko) 차량용 에어컨시스템
KR20150144358A (ko) 차량용 에어컨시스템

Legal Events

Date Code Title Description
AS Assignment

Owner name: KIA MOTORS CORPORATION, KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KIM, JAE YEON;CHO, WAN JE;LEE, SANG-OK;AND OTHERS;REEL/FRAME:029511/0680

Effective date: 20121208

Owner name: DOOWON CLIMATE CONTROL CO., LTD., KOREA, REPUBLIC

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KIM, JAE YEON;CHO, WAN JE;LEE, SANG-OK;AND OTHERS;REEL/FRAME:029511/0680

Effective date: 20121208

Owner name: HALLA CLIMATE CONTROL CORP., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KIM, JAE YEON;CHO, WAN JE;LEE, SANG-OK;AND OTHERS;REEL/FRAME:029511/0680

Effective date: 20121208

Owner name: HYUNDAI MOTOR COMPANY, KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KIM, JAE YEON;CHO, WAN JE;LEE, SANG-OK;AND OTHERS;REEL/FRAME:029511/0680

Effective date: 20121208

AS Assignment

Owner name: HALLA VISTEON CLIMATE CONTROL CORPORATION, KOREA,

Free format text: CHANGE OF NAME;ASSIGNOR:HALLA CLIMATE CONTROL CORPORATION;REEL/FRAME:033072/0978

Effective date: 20130318

AS Assignment

Owner name: HANON SYSTEMS, KOREA, REPUBLIC OF

Free format text: CHANGE OF NAME;ASSIGNOR:HALLA VISTEON CLIMATE CONTROL CORPORATION;REEL/FRAME:037007/0103

Effective date: 20150728

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION