US20140031389A1 - Screening methods and pharmaceutical compositions for the treatment of inflammatory bowel diseases - Google Patents
Screening methods and pharmaceutical compositions for the treatment of inflammatory bowel diseases Download PDFInfo
- Publication number
- US20140031389A1 US20140031389A1 US14/111,291 US201214111291A US2014031389A1 US 20140031389 A1 US20140031389 A1 US 20140031389A1 US 201214111291 A US201214111291 A US 201214111291A US 2014031389 A1 US2014031389 A1 US 2014031389A1
- Authority
- US
- United States
- Prior art keywords
- expression
- phosphorylation
- inflammatory bowel
- eif2a
- bowel disease
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 74
- 208000022559 Inflammatory bowel disease Diseases 0.000 title claims abstract description 46
- 238000011282 treatment Methods 0.000 title claims abstract description 28
- 238000012216 screening Methods 0.000 title claims abstract description 18
- 239000008194 pharmaceutical composition Substances 0.000 title claims abstract description 12
- 238000012360 testing method Methods 0.000 claims abstract description 103
- 239000000126 substance Substances 0.000 claims abstract description 86
- 230000003938 response to stress Effects 0.000 claims abstract description 28
- 230000002265 prevention Effects 0.000 claims abstract description 11
- 108090000623 proteins and genes Proteins 0.000 claims description 101
- 230000014509 gene expression Effects 0.000 claims description 92
- 101100072149 Drosophila melanogaster eIF2alpha gene Proteins 0.000 claims description 88
- 230000026731 phosphorylation Effects 0.000 claims description 65
- 238000006366 phosphorylation reaction Methods 0.000 claims description 65
- 101000611643 Homo sapiens Protein phosphatase 1 regulatory subunit 15A Proteins 0.000 claims description 33
- 102100040714 Protein phosphatase 1 regulatory subunit 15A Human genes 0.000 claims description 33
- 239000003795 chemical substances by application Substances 0.000 claims description 28
- 230000015572 biosynthetic process Effects 0.000 claims description 24
- 230000030609 dephosphorylation Effects 0.000 claims description 22
- 238000006209 dephosphorylation reaction Methods 0.000 claims description 22
- 101000905743 Homo sapiens Cyclic AMP-dependent transcription factor ATF-4 Proteins 0.000 claims description 20
- 102100023580 Cyclic AMP-dependent transcription factor ATF-4 Human genes 0.000 claims description 19
- 239000003814 drug Substances 0.000 claims description 19
- 108091000080 Phosphotransferase Proteins 0.000 claims description 18
- 102000020233 phosphotransferase Human genes 0.000 claims description 18
- 239000008187 granular material Substances 0.000 claims description 16
- LCOIAYJMPKXARU-VAWYXSNFSA-N salubrinal Chemical compound C=1C=CC2=CC=CN=C2C=1NC(=S)NC(C(Cl)(Cl)Cl)NC(=O)\C=C\C1=CC=CC=C1 LCOIAYJMPKXARU-VAWYXSNFSA-N 0.000 claims description 15
- 239000003112 inhibitor Substances 0.000 claims description 13
- 230000003449 preventive effect Effects 0.000 claims description 12
- 229940124597 therapeutic agent Drugs 0.000 claims description 12
- 101150009360 ATF4 gene Proteins 0.000 claims description 8
- DSPNTLCJTJBXTD-IRNRRZNASA-N pateamine Chemical group C[C@H]1C[C@@H](N)CC(=O)O[C@@H](C)C\C(C)=C\C=C/C(=O)O[C@H](\C=C(/C)\C=C\C(\C)=C\CN(C)C)CC2=NC1=CS2 DSPNTLCJTJBXTD-IRNRRZNASA-N 0.000 claims description 7
- DSPNTLCJTJBXTD-UHFFFAOYSA-N pateamine A Natural products CC1CC(N)CC(=O)OC(C)CC(C)=CC=CC(=O)OC(C=C(C)C=CC(C)=CCN(C)C)CC2=NC1=CS2 DSPNTLCJTJBXTD-UHFFFAOYSA-N 0.000 claims description 6
- 238000011272 standard treatment Methods 0.000 claims description 6
- WDZVGELJXXEGPV-YIXHJXPBSA-N Guanabenz Chemical compound NC(N)=N\N=C\C1=C(Cl)C=CC=C1Cl WDZVGELJXXEGPV-YIXHJXPBSA-N 0.000 claims description 5
- 230000007774 longterm Effects 0.000 claims description 5
- 101150101702 PP1 gene Proteins 0.000 claims description 4
- 229960004553 guanabenz Drugs 0.000 claims description 4
- 238000001356 surgical procedure Methods 0.000 claims description 3
- 101150084750 1 gene Proteins 0.000 claims 1
- 206010009900 Colitis ulcerative Diseases 0.000 description 131
- 201000006704 Ulcerative Colitis Diseases 0.000 description 131
- 210000004027 cell Anatomy 0.000 description 73
- 210000004877 mucosa Anatomy 0.000 description 72
- 230000035882 stress Effects 0.000 description 58
- 102000004169 proteins and genes Human genes 0.000 description 48
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 41
- 241000699670 Mus sp. Species 0.000 description 38
- 108020004999 messenger RNA Proteins 0.000 description 36
- 235000018102 proteins Nutrition 0.000 description 36
- 230000000112 colonic effect Effects 0.000 description 35
- 230000001965 increasing effect Effects 0.000 description 32
- 150000007523 nucleic acids Chemical group 0.000 description 32
- 230000014616 translation Effects 0.000 description 27
- 238000003556 assay Methods 0.000 description 26
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 24
- 108090000174 Interleukin-10 Proteins 0.000 description 24
- 102000039446 nucleic acids Human genes 0.000 description 24
- 108020004707 nucleic acids Proteins 0.000 description 24
- 102000003814 Interleukin-10 Human genes 0.000 description 23
- 239000000203 mixture Substances 0.000 description 22
- 238000013519 translation Methods 0.000 description 22
- 206010009887 colitis Diseases 0.000 description 21
- KBOPZPXVLCULAV-UHFFFAOYSA-N mesalamine Chemical compound NC1=CC=C(O)C(C(O)=O)=C1 KBOPZPXVLCULAV-UHFFFAOYSA-N 0.000 description 20
- 230000004906 unfolded protein response Effects 0.000 description 20
- 210000001072 colon Anatomy 0.000 description 19
- 206010061218 Inflammation Diseases 0.000 description 18
- 210000002175 goblet cell Anatomy 0.000 description 18
- 230000004054 inflammatory process Effects 0.000 description 18
- 102100034174 Eukaryotic translation initiation factor 2-alpha kinase 3 Human genes 0.000 description 15
- 230000027455 binding Effects 0.000 description 15
- 108091008010 PERKs Proteins 0.000 description 14
- 230000000694 effects Effects 0.000 description 14
- 230000001105 regulatory effect Effects 0.000 description 14
- 239000000523 sample Substances 0.000 description 14
- 230000014621 translational initiation Effects 0.000 description 14
- 241000282414 Homo sapiens Species 0.000 description 13
- 241000700605 Viruses Species 0.000 description 13
- 238000001574 biopsy Methods 0.000 description 13
- 150000001875 compounds Chemical class 0.000 description 13
- 230000001404 mediated effect Effects 0.000 description 13
- 239000013612 plasmid Substances 0.000 description 13
- 210000002729 polyribosome Anatomy 0.000 description 13
- 239000000243 solution Substances 0.000 description 13
- 108090000994 Catalytic RNA Proteins 0.000 description 12
- 102000053642 Catalytic RNA Human genes 0.000 description 12
- 230000002950 deficient Effects 0.000 description 12
- 108091092562 ribozyme Proteins 0.000 description 12
- 239000013598 vector Substances 0.000 description 12
- 108020004414 DNA Proteins 0.000 description 11
- 230000004913 activation Effects 0.000 description 10
- 108090000765 processed proteins & peptides Proteins 0.000 description 10
- 102100029145 DNA damage-inducible transcript 3 protein Human genes 0.000 description 9
- 101001095320 Homo sapiens Serine/threonine-protein phosphatase PP1-beta catalytic subunit Proteins 0.000 description 9
- 108700008625 Reporter Genes Proteins 0.000 description 9
- 102100037764 Serine/threonine-protein phosphatase PP1-beta catalytic subunit Human genes 0.000 description 9
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 9
- 238000001514 detection method Methods 0.000 description 9
- 238000009396 hybridization Methods 0.000 description 9
- -1 rapamycine Chemical compound 0.000 description 9
- 230000002829 reductive effect Effects 0.000 description 9
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 8
- 108091008038 CHOP Proteins 0.000 description 8
- 108700011259 MicroRNAs Proteins 0.000 description 8
- 108091034117 Oligonucleotide Proteins 0.000 description 8
- 230000003321 amplification Effects 0.000 description 8
- 239000000074 antisense oligonucleotide Substances 0.000 description 8
- 238000012230 antisense oligonucleotides Methods 0.000 description 8
- 210000002919 epithelial cell Anatomy 0.000 description 8
- 238000009472 formulation Methods 0.000 description 8
- 230000006870 function Effects 0.000 description 8
- 238000003018 immunoassay Methods 0.000 description 8
- 229960004963 mesalazine Drugs 0.000 description 8
- 238000003199 nucleic acid amplification method Methods 0.000 description 8
- 230000037361 pathway Effects 0.000 description 8
- 239000013615 primer Substances 0.000 description 8
- 239000002987 primer (paints) Substances 0.000 description 8
- 0 *C/C=C(C)/C=C/C(C)=C/C1CC2=NC(=CS2)[C@@H](C)C[C@@H](N)CC(=O)O[C@@H](C)C/C(C)=C/C=C\C(=O)O1 Chemical compound *C/C=C(C)/C=C/C(C)=C/C1CC2=NC(=CS2)[C@@H](C)C[C@@H](N)CC(=O)O[C@@H](C)C/C(C)=C/C=C\C(=O)O1 0.000 description 7
- 108700041152 Endoplasmic Reticulum Chaperone BiP Proteins 0.000 description 7
- 102000004190 Enzymes Human genes 0.000 description 7
- 108090000790 Enzymes Proteins 0.000 description 7
- 101150112743 HSPA5 gene Proteins 0.000 description 7
- 230000009471 action Effects 0.000 description 7
- 230000001413 cellular effect Effects 0.000 description 7
- 210000004922 colonic epithelial cell Anatomy 0.000 description 7
- 230000003247 decreasing effect Effects 0.000 description 7
- 102100034175 eIF-2-alpha kinase GCN2 Human genes 0.000 description 7
- 239000013604 expression vector Substances 0.000 description 7
- 229910052739 hydrogen Inorganic materials 0.000 description 7
- 239000001257 hydrogen Substances 0.000 description 7
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 7
- 238000002493 microarray Methods 0.000 description 7
- 230000008506 pathogenesis Effects 0.000 description 7
- 150000003839 salts Chemical class 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- 241001430294 unidentified retrovirus Species 0.000 description 7
- 102100021451 Endoplasmic reticulum chaperone BiP Human genes 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 101000926525 Homo sapiens eIF-2-alpha kinase GCN2 Proteins 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- 108010059000 Protein Phosphatase 1 Proteins 0.000 description 6
- 102000005569 Protein Phosphatase 1 Human genes 0.000 description 6
- 101100111629 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR2 gene Proteins 0.000 description 6
- 108091027967 Small hairpin RNA Proteins 0.000 description 6
- 108010022173 Thiosulfate sulfurtransferase Proteins 0.000 description 6
- 102100034707 Thiosulfate sulfurtransferase Human genes 0.000 description 6
- 125000003282 alkyl amino group Chemical group 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 230000006907 apoptotic process Effects 0.000 description 6
- 238000003776 cleavage reaction Methods 0.000 description 6
- 230000001419 dependent effect Effects 0.000 description 6
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 6
- 230000007613 environmental effect Effects 0.000 description 6
- 101150028578 grp78 gene Proteins 0.000 description 6
- 238000013537 high throughput screening Methods 0.000 description 6
- 210000004962 mammalian cell Anatomy 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 6
- 238000010208 microarray analysis Methods 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 230000008672 reprogramming Effects 0.000 description 6
- 230000007017 scission Effects 0.000 description 6
- 239000011780 sodium chloride Substances 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- NCEXYHBECQHGNR-QZQOTICOSA-N sulfasalazine Chemical compound C1=C(O)C(C(=O)O)=CC(\N=N\C=2C=CC(=CC=2)S(=O)(=O)NC=2N=CC=CC=2)=C1 NCEXYHBECQHGNR-QZQOTICOSA-N 0.000 description 6
- 238000013518 transcription Methods 0.000 description 6
- 230000035897 transcription Effects 0.000 description 6
- 101001082110 Acanthamoeba polyphaga mimivirus Eukaryotic translation initiation factor 4E homolog Proteins 0.000 description 5
- 102100021864 Cocaine esterase Human genes 0.000 description 5
- 102100032620 Cytotoxic granule associated RNA binding protein TIA1 Human genes 0.000 description 5
- 101710086368 Cytotoxic granule associated RNA binding protein TIA1 Proteins 0.000 description 5
- 101001082109 Danio rerio Eukaryotic translation initiation factor 4E-1B Proteins 0.000 description 5
- 241000702421 Dependoparvovirus Species 0.000 description 5
- 238000002965 ELISA Methods 0.000 description 5
- 101000898006 Homo sapiens Cocaine esterase Proteins 0.000 description 5
- 101000938676 Homo sapiens Liver carboxylesterase 1 Proteins 0.000 description 5
- 108010006519 Molecular Chaperones Proteins 0.000 description 5
- 108010063954 Mucins Proteins 0.000 description 5
- 108010046644 Polymeric Immunoglobulin Receptors Proteins 0.000 description 5
- 102100035187 Polymeric immunoglobulin receptor Human genes 0.000 description 5
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 5
- 108020004459 Small interfering RNA Proteins 0.000 description 5
- 108010021188 Superoxide Dismutase-1 Proteins 0.000 description 5
- 102000008221 Superoxide Dismutase-1 Human genes 0.000 description 5
- 230000001594 aberrant effect Effects 0.000 description 5
- 239000004480 active ingredient Substances 0.000 description 5
- 238000007792 addition Methods 0.000 description 5
- 125000000217 alkyl group Chemical group 0.000 description 5
- 230000004075 alteration Effects 0.000 description 5
- 239000011324 bead Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000003153 chemical reaction reagent Substances 0.000 description 5
- 230000000875 corresponding effect Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 125000004663 dialkyl amino group Chemical group 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 5
- 229940079593 drug Drugs 0.000 description 5
- 108010037623 eIF-2 Kinase Proteins 0.000 description 5
- 102000010982 eIF-2 Kinase Human genes 0.000 description 5
- 210000000981 epithelium Anatomy 0.000 description 5
- 238000001727 in vivo Methods 0.000 description 5
- 230000005764 inhibitory process Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 5
- 102000004196 processed proteins & peptides Human genes 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 230000016914 response to endoplasmic reticulum stress Effects 0.000 description 5
- 230000001225 therapeutic effect Effects 0.000 description 5
- 230000003612 virological effect Effects 0.000 description 5
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 4
- 108020000948 Antisense Oligonucleotides Proteins 0.000 description 4
- 241000894006 Bacteria Species 0.000 description 4
- 206010009944 Colon cancer Diseases 0.000 description 4
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 4
- 102000004127 Cytokines Human genes 0.000 description 4
- 108090000695 Cytokines Proteins 0.000 description 4
- 102100034169 Eukaryotic translation initiation factor 2-alpha kinase 1 Human genes 0.000 description 4
- 108010055717 JNK Mitogen-Activated Protein Kinases Proteins 0.000 description 4
- UETNIIAIRMUTSM-UHFFFAOYSA-N Jacareubin Natural products CC1(C)OC2=CC3Oc4c(O)c(O)ccc4C(=O)C3C(=C2C=C1)O UETNIIAIRMUTSM-UHFFFAOYSA-N 0.000 description 4
- 102000005431 Molecular Chaperones Human genes 0.000 description 4
- 102000015728 Mucins Human genes 0.000 description 4
- 206010028980 Neoplasm Diseases 0.000 description 4
- 108091028043 Nucleic acid sequence Proteins 0.000 description 4
- CKMOQBVBEGCJGW-LLIZZRELSA-L OC1=CC=C(C=C1C(=O)O[Na])\N=N\C1=CC=C(C=C1)C(=O)NCCC(=O)O[Na] Chemical compound OC1=CC=C(C=C1C(=O)O[Na])\N=N\C1=CC=C(C=C1)C(=O)NCCC(=O)O[Na] CKMOQBVBEGCJGW-LLIZZRELSA-L 0.000 description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 4
- 102000001253 Protein Kinase Human genes 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 229930006000 Sucrose Natural products 0.000 description 4
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 4
- 230000005856 abnormality Effects 0.000 description 4
- 125000003545 alkoxy group Chemical group 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 210000004082 barrier epithelial cell Anatomy 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 4
- 238000012512 characterization method Methods 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 238000006731 degradation reaction Methods 0.000 description 4
- 208000035475 disorder Diseases 0.000 description 4
- 230000004890 epithelial barrier function Effects 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- 230000002068 genetic effect Effects 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 108010017007 glucose-regulated proteins Proteins 0.000 description 4
- 230000013632 homeostatic process Effects 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- 230000000977 initiatory effect Effects 0.000 description 4
- 238000007918 intramuscular administration Methods 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- GLVAUDGFNGKCSF-UHFFFAOYSA-N mercaptopurine Chemical compound S=C1NC=NC2=C1NC=N2 GLVAUDGFNGKCSF-UHFFFAOYSA-N 0.000 description 4
- 244000005700 microbiome Species 0.000 description 4
- QQBDLJCYGRGAKP-FOCLMDBBSA-N olsalazine Chemical compound C1=C(O)C(C(=O)O)=CC(\N=N\C=2C=C(C(O)=CC=2)C(O)=O)=C1 QQBDLJCYGRGAKP-FOCLMDBBSA-N 0.000 description 4
- 229920001184 polypeptide Polymers 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 230000000770 proinflammatory effect Effects 0.000 description 4
- 230000004224 protection Effects 0.000 description 4
- 108060006633 protein kinase Proteins 0.000 description 4
- 238000000163 radioactive labelling Methods 0.000 description 4
- 238000007920 subcutaneous administration Methods 0.000 description 4
- 125000001424 substituent group Chemical group 0.000 description 4
- 239000005720 sucrose Substances 0.000 description 4
- 229960001940 sulfasalazine Drugs 0.000 description 4
- NCEXYHBECQHGNR-UHFFFAOYSA-N sulfasalazine Natural products C1=C(O)C(C(=O)O)=CC(N=NC=2C=CC(=CC=2)S(=O)(=O)NC=2N=CC=CC=2)=C1 NCEXYHBECQHGNR-UHFFFAOYSA-N 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 239000003981 vehicle Substances 0.000 description 4
- 238000001262 western blot Methods 0.000 description 4
- 102100023583 Cyclic AMP-dependent transcription factor ATF-6 alpha Human genes 0.000 description 3
- 101100232687 Drosophila melanogaster eIF4A gene Proteins 0.000 description 3
- 102100039328 Endoplasmin Human genes 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- 101000905751 Homo sapiens Cyclic AMP-dependent transcription factor ATF-6 alpha Proteins 0.000 description 3
- 101000926530 Homo sapiens Eukaryotic translation initiation factor 2-alpha kinase 1 Proteins 0.000 description 3
- 101001133081 Homo sapiens Mucin-2 Proteins 0.000 description 3
- 102100034170 Interferon-induced, double-stranded RNA-activated protein kinase Human genes 0.000 description 3
- 101710089751 Interferon-induced, double-stranded RNA-activated protein kinase Proteins 0.000 description 3
- 101150058357 Muc2 gene Proteins 0.000 description 3
- 102100034263 Mucin-2 Human genes 0.000 description 3
- 241000283984 Rodentia Species 0.000 description 3
- 230000000844 anti-bacterial effect Effects 0.000 description 3
- 239000000427 antigen Substances 0.000 description 3
- 230000001580 bacterial effect Effects 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 3
- 230000037396 body weight Effects 0.000 description 3
- 210000001185 bone marrow Anatomy 0.000 description 3
- 201000011510 cancer Diseases 0.000 description 3
- 239000002775 capsule Substances 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 230000010001 cellular homeostasis Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 210000004953 colonic tissue Anatomy 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 3
- 230000002596 correlated effect Effects 0.000 description 3
- 230000006735 deficit Effects 0.000 description 3
- 230000002074 deregulated effect Effects 0.000 description 3
- 230000003831 deregulation Effects 0.000 description 3
- 230000003828 downregulation Effects 0.000 description 3
- 230000006353 environmental stress Effects 0.000 description 3
- 230000002255 enzymatic effect Effects 0.000 description 3
- 108010085279 eukaryotic translation initiation factor 5A Proteins 0.000 description 3
- 210000001035 gastrointestinal tract Anatomy 0.000 description 3
- 238000003119 immunoblot Methods 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 3
- 239000000411 inducer Substances 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 230000000968 intestinal effect Effects 0.000 description 3
- 238000001990 intravenous administration Methods 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 239000003446 ligand Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000006166 lysate Substances 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 210000004379 membrane Anatomy 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 239000002773 nucleotide Substances 0.000 description 3
- 125000003729 nucleotide group Chemical group 0.000 description 3
- 229930182977 pateamine Natural products 0.000 description 3
- 239000013600 plasmid vector Substances 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 230000002285 radioactive effect Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000010076 replication Effects 0.000 description 3
- 238000003757 reverse transcription PCR Methods 0.000 description 3
- 235000004400 serine Nutrition 0.000 description 3
- 230000011664 signaling Effects 0.000 description 3
- 239000002924 silencing RNA Substances 0.000 description 3
- 239000004055 small Interfering RNA Substances 0.000 description 3
- 239000007790 solid phase Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 210000000952 spleen Anatomy 0.000 description 3
- 230000002269 spontaneous effect Effects 0.000 description 3
- 230000005531 stress granule assembly Effects 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- 231100000331 toxic Toxicity 0.000 description 3
- 230000002588 toxic effect Effects 0.000 description 3
- 238000010361 transduction Methods 0.000 description 3
- 230000026683 transduction Effects 0.000 description 3
- 241000701161 unidentified adenovirus Species 0.000 description 3
- 239000013603 viral vector Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 125000006273 (C1-C3) alkyl group Chemical group 0.000 description 2
- NBGAYCYFNGPNPV-UHFFFAOYSA-N 2-aminooxybenzoic acid Chemical class NOC1=CC=CC=C1C(O)=O NBGAYCYFNGPNPV-UHFFFAOYSA-N 0.000 description 2
- TVZRAEYQIKYCPH-UHFFFAOYSA-N 3-(trimethylsilyl)propane-1-sulfonic acid Chemical compound C[Si](C)(C)CCCS(O)(=O)=O TVZRAEYQIKYCPH-UHFFFAOYSA-N 0.000 description 2
- HSFWRNGVRCDJHI-UHFFFAOYSA-N Acetylene Chemical class C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 2
- 241001655883 Adeno-associated virus - 1 Species 0.000 description 2
- 108020005544 Antisense RNA Proteins 0.000 description 2
- 108090001008 Avidin Proteins 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 108020004635 Complementary DNA Proteins 0.000 description 2
- PMATZTZNYRCHOR-CGLBZJNRSA-N Cyclosporin A Chemical compound CC[C@@H]1NC(=O)[C@H]([C@H](O)[C@H](C)C\C=C\C)N(C)C(=O)[C@H](C(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)N(C)C(=O)CN(C)C1=O PMATZTZNYRCHOR-CGLBZJNRSA-N 0.000 description 2
- 108010036949 Cyclosporine Proteins 0.000 description 2
- 238000000018 DNA microarray Methods 0.000 description 2
- 229920002307 Dextran Polymers 0.000 description 2
- 102100038912 E3 SUMO-protein ligase RanBP2 Human genes 0.000 description 2
- 101710198453 E3 SUMO-protein ligase RanBP2 Proteins 0.000 description 2
- 238000012286 ELISA Assay Methods 0.000 description 2
- 102100030013 Endoribonuclease Human genes 0.000 description 2
- 108050000946 Eukaryotic translation initiation factor 4E-binding protein 1 Proteins 0.000 description 2
- 102100022466 Eukaryotic translation initiation factor 4E-binding protein 1 Human genes 0.000 description 2
- 101710091919 Eukaryotic translation initiation factor 4G Proteins 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- 102000012153 HLA-B27 Antigen Human genes 0.000 description 2
- 108010061486 HLA-B27 Antigen Proteins 0.000 description 2
- 101001010783 Homo sapiens Endoribonuclease Proteins 0.000 description 2
- 101000669447 Homo sapiens Toll-like receptor 4 Proteins 0.000 description 2
- 101000666295 Homo sapiens X-box-binding protein 1 Proteins 0.000 description 2
- 206010021143 Hypoxia Diseases 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 102000004019 NADPH Oxidase 1 Human genes 0.000 description 2
- 108090000424 NADPH Oxidase 1 Proteins 0.000 description 2
- 244000061176 Nicotiana tabacum Species 0.000 description 2
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 2
- 239000000020 Nitrocellulose Substances 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 108010044843 Peptide Initiation Factors Proteins 0.000 description 2
- 102000005877 Peptide Initiation Factors Human genes 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 108010049395 Prokaryotic Initiation Factor-2 Proteins 0.000 description 2
- 108091028664 Ribonucleotide Proteins 0.000 description 2
- 229940124639 Selective inhibitor Drugs 0.000 description 2
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 2
- 241000700584 Simplexvirus Species 0.000 description 2
- 102100032891 Superoxide dismutase [Mn], mitochondrial Human genes 0.000 description 2
- 108090000925 TNF receptor-associated factor 2 Proteins 0.000 description 2
- 102100034779 TRAF family member-associated NF-kappa-B activator Human genes 0.000 description 2
- QJJXYPPXXYFBGM-LFZNUXCKSA-N Tacrolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1\C=C(/C)[C@@H]1[C@H](C)[C@@H](O)CC(=O)[C@H](CC=C)/C=C(C)/C[C@H](C)C[C@H](OC)[C@H]([C@H](C[C@H]2C)OC)O[C@@]2(O)C(=O)C(=O)N2CCCC[C@H]2C(=O)O1 QJJXYPPXXYFBGM-LFZNUXCKSA-N 0.000 description 2
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 2
- 239000004473 Threonine Substances 0.000 description 2
- 241000723873 Tobacco mosaic virus Species 0.000 description 2
- 102100039360 Toll-like receptor 4 Human genes 0.000 description 2
- 108020000999 Viral RNA Proteins 0.000 description 2
- 102100038151 X-box-binding protein 1 Human genes 0.000 description 2
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 229960002964 adalimumab Drugs 0.000 description 2
- 125000004466 alkoxycarbonylamino group Chemical group 0.000 description 2
- 125000000304 alkynyl group Chemical group 0.000 description 2
- 235000001014 amino acid Nutrition 0.000 description 2
- 229940024606 amino acid Drugs 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 238000010171 animal model Methods 0.000 description 2
- 230000003078 antioxidant effect Effects 0.000 description 2
- 229940020544 apriso Drugs 0.000 description 2
- AQLMHYSWFMLWBS-UHFFFAOYSA-N arsenite(1-) Chemical compound O[As](O)[O-] AQLMHYSWFMLWBS-UHFFFAOYSA-N 0.000 description 2
- 229940072224 asacol Drugs 0.000 description 2
- LMEKQMALGUDUQG-UHFFFAOYSA-N azathioprine Chemical compound CN1C=NC([N+]([O-])=O)=C1SC1=NC=NC2=C1NC=N2 LMEKQMALGUDUQG-UHFFFAOYSA-N 0.000 description 2
- 229960002170 azathioprine Drugs 0.000 description 2
- 229940064856 azulfidine Drugs 0.000 description 2
- 229960004168 balsalazide Drugs 0.000 description 2
- IPOKCKJONYRRHP-FMQUCBEESA-N balsalazide Chemical compound C1=CC(C(=O)NCCC(=O)O)=CC=C1\N=N\C1=CC=C(O)C(C(O)=O)=C1 IPOKCKJONYRRHP-FMQUCBEESA-N 0.000 description 2
- 239000012472 biological sample Substances 0.000 description 2
- 229960002685 biotin Drugs 0.000 description 2
- 235000020958 biotin Nutrition 0.000 description 2
- 239000011616 biotin Substances 0.000 description 2
- 230000003915 cell function Effects 0.000 description 2
- 108091092356 cellular DNA Proteins 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- 229960001265 ciclosporin Drugs 0.000 description 2
- 229940112505 colazal Drugs 0.000 description 2
- 238000012321 colectomy Methods 0.000 description 2
- 230000008951 colonic inflammation Effects 0.000 description 2
- 239000003184 complementary RNA Substances 0.000 description 2
- 239000003246 corticosteroid Substances 0.000 description 2
- 229960001334 corticosteroids Drugs 0.000 description 2
- 229930182912 cyclosporin Natural products 0.000 description 2
- 230000001120 cytoprotective effect Effects 0.000 description 2
- 230000001086 cytosolic effect Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 229920003045 dextran sodium sulfate Polymers 0.000 description 2
- 229940104799 dipentum Drugs 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 230000009266 disease activity Effects 0.000 description 2
- 239000002612 dispersion medium Substances 0.000 description 2
- 238000001493 electron microscopy Methods 0.000 description 2
- 230000002616 endonucleolytic effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 208000010227 enterocolitis Diseases 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 230000009368 gene silencing by RNA Effects 0.000 description 2
- 238000001415 gene therapy Methods 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 150000003278 haem Chemical class 0.000 description 2
- 230000003394 haemopoietic effect Effects 0.000 description 2
- 230000007954 hypoxia Effects 0.000 description 2
- 208000009326 ileitis Diseases 0.000 description 2
- 210000002865 immune cell Anatomy 0.000 description 2
- 230000028993 immune response Effects 0.000 description 2
- 238000003364 immunohistochemistry Methods 0.000 description 2
- 239000003018 immunosuppressive agent Substances 0.000 description 2
- 229940124589 immunosuppressive drug Drugs 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 230000008595 infiltration Effects 0.000 description 2
- 238000001764 infiltration Methods 0.000 description 2
- 208000027866 inflammatory disease Diseases 0.000 description 2
- 229960000598 infliximab Drugs 0.000 description 2
- 238000001802 infusion Methods 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 210000002490 intestinal epithelial cell Anatomy 0.000 description 2
- 238000007912 intraperitoneal administration Methods 0.000 description 2
- 238000010253 intravenous injection Methods 0.000 description 2
- 229940013926 lialda Drugs 0.000 description 2
- 238000007834 ligase chain reaction Methods 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 230000002934 lysing effect Effects 0.000 description 2
- 229960001428 mercaptopurine Drugs 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229960000485 methotrexate Drugs 0.000 description 2
- 108091070501 miRNA Proteins 0.000 description 2
- 239000002679 microRNA Substances 0.000 description 2
- 210000003470 mitochondria Anatomy 0.000 description 2
- 229940051875 mucins Drugs 0.000 description 2
- 230000004682 mucosal barrier function Effects 0.000 description 2
- 210000003097 mucus Anatomy 0.000 description 2
- 230000006892 negative regulation of dephosphorylation Effects 0.000 description 2
- 229920001220 nitrocellulos Polymers 0.000 description 2
- 210000004940 nucleus Anatomy 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 235000019198 oils Nutrition 0.000 description 2
- 229960004110 olsalazine Drugs 0.000 description 2
- 230000036542 oxidative stress Effects 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 239000000123 paper Substances 0.000 description 2
- 238000007911 parenteral administration Methods 0.000 description 2
- 230000001717 pathogenic effect Effects 0.000 description 2
- 229940072223 pentasa Drugs 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 2
- 108091005981 phosphorylated proteins Proteins 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 230000001124 posttranscriptional effect Effects 0.000 description 2
- 230000035755 proliferation Effects 0.000 description 2
- 230000007111 proteostasis Effects 0.000 description 2
- RXWNCPJZOCPEPQ-NVWDDTSBSA-N puromycin Chemical compound C1=CC(OC)=CC=C1C[C@H](N)C(=O)N[C@H]1[C@@H](O)[C@H](N2C3=NC=NC(=C3N=C2)N(C)C)O[C@@H]1CO RXWNCPJZOCPEPQ-NVWDDTSBSA-N 0.000 description 2
- 238000011002 quantification Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 238000010839 reverse transcription Methods 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 239000002336 ribonucleotide Substances 0.000 description 2
- 125000002652 ribonucleotide group Chemical group 0.000 description 2
- 238000004626 scanning electron microscopy Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000001488 sodium phosphate Substances 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 230000009221 stress response pathway Effects 0.000 description 2
- 108010045815 superoxide dismutase 2 Proteins 0.000 description 2
- 230000000153 supplemental effect Effects 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 239000003826 tablet Substances 0.000 description 2
- 229960001967 tacrolimus Drugs 0.000 description 2
- QJJXYPPXXYFBGM-SHYZHZOCSA-N tacrolimus Natural products CO[C@H]1C[C@H](CC[C@@H]1O)C=C(C)[C@H]2OC(=O)[C@H]3CCCCN3C(=O)C(=O)[C@@]4(O)O[C@@H]([C@H](C[C@H]4C)OC)[C@@H](C[C@H](C)CC(=C[C@@H](CC=C)C(=O)C[C@H](O)[C@H]2C)C)OC QJJXYPPXXYFBGM-SHYZHZOCSA-N 0.000 description 2
- 239000013076 target substance Substances 0.000 description 2
- 230000000699 topical effect Effects 0.000 description 2
- 230000002103 transcriptional effect Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000009261 transgenic effect Effects 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 229960004914 vedolizumab Drugs 0.000 description 2
- 229950004393 visilizumab Drugs 0.000 description 2
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- 150000007550 19-membered macrocycles Chemical class 0.000 description 1
- NHJVRSWLHSJWIN-UHFFFAOYSA-N 2,4,6-trinitrobenzenesulfonic acid Chemical compound OS(=O)(=O)C1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O NHJVRSWLHSJWIN-UHFFFAOYSA-N 0.000 description 1
- FWBHETKCLVMNFS-UHFFFAOYSA-N 4',6-Diamino-2-phenylindol Chemical compound C1=CC(C(=N)N)=CC=C1C1=CC2=CC=C(C(N)=N)C=C2N1 FWBHETKCLVMNFS-UHFFFAOYSA-N 0.000 description 1
- 101150017816 40 gene Proteins 0.000 description 1
- 102000005869 Activating Transcription Factors Human genes 0.000 description 1
- 241000702423 Adeno-associated virus - 2 Species 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 108020004491 Antisense DNA Proteins 0.000 description 1
- 102100021569 Apoptosis regulator Bcl-2 Human genes 0.000 description 1
- 108091023037 Aptamer Proteins 0.000 description 1
- 101100339431 Arabidopsis thaliana HMGB2 gene Proteins 0.000 description 1
- 108010070255 Aspartate-ammonia ligase Proteins 0.000 description 1
- 201000001320 Atherosclerosis Diseases 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- 206010070545 Bacterial translocation Diseases 0.000 description 1
- 102000000806 Basic-Leucine Zipper Transcription Factors Human genes 0.000 description 1
- 108010001572 Basic-Leucine Zipper Transcription Factors Proteins 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 241000282465 Canis Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 208000005623 Carcinogenesis Diseases 0.000 description 1
- 102000003952 Caspase 3 Human genes 0.000 description 1
- 108090000397 Caspase 3 Proteins 0.000 description 1
- 241000701489 Cauliflower mosaic virus Species 0.000 description 1
- 206010008609 Cholangitis sclerosing Diseases 0.000 description 1
- 102000002029 Claudin Human genes 0.000 description 1
- 108050009302 Claudin Proteins 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 206010009895 Colitis ischaemic Diseases 0.000 description 1
- 206010056979 Colitis microscopic Diseases 0.000 description 1
- 208000018458 Colitis-Associated Neoplasms Diseases 0.000 description 1
- 208000011231 Crohn disease Diseases 0.000 description 1
- 102000005636 Cyclic AMP Response Element-Binding Protein Human genes 0.000 description 1
- 108010045171 Cyclic AMP Response Element-Binding Protein Proteins 0.000 description 1
- 108010016788 Cyclin-Dependent Kinase Inhibitor p21 Proteins 0.000 description 1
- 102100033270 Cyclin-dependent kinase inhibitor 1 Human genes 0.000 description 1
- NYHBQMYGNKIUIF-UHFFFAOYSA-N D-guanosine Natural products C1=2NC(N)=NC(=O)C=2N=CN1C1OC(CO)C(O)C1O NYHBQMYGNKIUIF-UHFFFAOYSA-N 0.000 description 1
- 101150017921 DDIT3 gene Proteins 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 108010041986 DNA Vaccines Proteins 0.000 description 1
- 230000005778 DNA damage Effects 0.000 description 1
- 231100000277 DNA damage Toxicity 0.000 description 1
- 229940021995 DNA vaccine Drugs 0.000 description 1
- 241000450599 DNA viruses Species 0.000 description 1
- 102000052510 DNA-Binding Proteins Human genes 0.000 description 1
- 108700020911 DNA-Binding Proteins Proteins 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- 101000678286 Danio rerio Eukaryotic translation initiation factor 4E-binding protein 3-like Proteins 0.000 description 1
- 206010012735 Diarrhoea Diseases 0.000 description 1
- 101000800913 Dictyostelium discoideum Eukaryotic translation initiation factor 4E-1A-binding protein homolog Proteins 0.000 description 1
- 101000800906 Drosophila melanogaster Eukaryotic translation initiation factor 4E-binding protein Proteins 0.000 description 1
- 102000015689 E-Selectin Human genes 0.000 description 1
- 108010024212 E-Selectin Proteins 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 102100021807 ER degradation-enhancing alpha-mannosidase-like protein 1 Human genes 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 241000792859 Enema Species 0.000 description 1
- 206010058838 Enterocolitis infectious Diseases 0.000 description 1
- 241000991587 Enterovirus C Species 0.000 description 1
- 102000003951 Erythropoietin Human genes 0.000 description 1
- 108090000394 Erythropoietin Proteins 0.000 description 1
- 108700039887 Essential Genes Proteins 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical group CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical class C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 102000008014 Eukaryotic Initiation Factor-2 Human genes 0.000 description 1
- 108010089791 Eukaryotic Initiation Factor-2 Proteins 0.000 description 1
- 101710196289 Eukaryotic translation initiation factor 2-alpha kinase 1 Proteins 0.000 description 1
- 101710196292 Eukaryotic translation initiation factor 2-alpha kinase 3 Proteins 0.000 description 1
- 102100038045 Eukaryotic translation initiation factor 2A Human genes 0.000 description 1
- 101710092068 Eukaryotic translation initiation factor 2A Proteins 0.000 description 1
- 241000282324 Felis Species 0.000 description 1
- 240000008168 Ficus benjamina Species 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 101000867289 Glycine max Hsp70-Hsp90 organizing protein 1 Proteins 0.000 description 1
- 108700010013 HMGB1 Proteins 0.000 description 1
- 101150021904 HMGB1 gene Proteins 0.000 description 1
- 241000713858 Harvey murine sarcoma virus Species 0.000 description 1
- 102100022054 Hepatocyte nuclear factor 4-alpha Human genes 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 102100037907 High mobility group protein B1 Human genes 0.000 description 1
- 101000971171 Homo sapiens Apoptosis regulator Bcl-2 Proteins 0.000 description 1
- 101001033280 Homo sapiens Cytokine receptor common subunit beta Proteins 0.000 description 1
- 101000895701 Homo sapiens ER degradation-enhancing alpha-mannosidase-like protein 1 Proteins 0.000 description 1
- 101001045740 Homo sapiens Hepatocyte nuclear factor 4-alpha Proteins 0.000 description 1
- 101000623897 Homo sapiens Mucin-12 Proteins 0.000 description 1
- 101001133091 Homo sapiens Mucin-20 Proteins 0.000 description 1
- 101000972286 Homo sapiens Mucin-4 Proteins 0.000 description 1
- 101000603223 Homo sapiens Nischarin Proteins 0.000 description 1
- 101000588302 Homo sapiens Nuclear factor erythroid 2-related factor 2 Proteins 0.000 description 1
- 101000687060 Homo sapiens Protein phosphatase 1 regulatory subunit 1A Proteins 0.000 description 1
- 101000714920 Homo sapiens Taste receptor type 2 member 13 Proteins 0.000 description 1
- 101000669406 Homo sapiens Toll-like receptor 6 Proteins 0.000 description 1
- 101001050288 Homo sapiens Transcription factor Jun Proteins 0.000 description 1
- 101000766345 Homo sapiens Tribbles homolog 3 Proteins 0.000 description 1
- 101150065069 Hsp90b1 gene Proteins 0.000 description 1
- 241000714260 Human T-lymphotropic virus 1 Species 0.000 description 1
- 241000701044 Human gammaherpesvirus 4 Species 0.000 description 1
- 101100321817 Human parvovirus B19 (strain HV) 7.5K gene Proteins 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 108091006081 Inositol-requiring enzyme-1 Proteins 0.000 description 1
- 102000015696 Interleukins Human genes 0.000 description 1
- 108010063738 Interleukins Proteins 0.000 description 1
- 108010076876 Keratins Proteins 0.000 description 1
- 102000011782 Keratins Human genes 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- 241000713666 Lentivirus Species 0.000 description 1
- 101150059949 MUC4 gene Proteins 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 101150084626 Mbtps1 gene Proteins 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 108060004795 Methyltransferase Proteins 0.000 description 1
- 101150024570 Mlip gene Proteins 0.000 description 1
- 241000713869 Moloney murine leukemia virus Species 0.000 description 1
- 102100023143 Mucin-12 Human genes 0.000 description 1
- 102100034242 Mucin-20 Human genes 0.000 description 1
- 102100022693 Mucin-4 Human genes 0.000 description 1
- 206010028116 Mucosal inflammation Diseases 0.000 description 1
- 241000204795 Muraena helena Species 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- 101100064554 Mus musculus Eif2ak4 gene Proteins 0.000 description 1
- 101000611644 Mus musculus Protein phosphatase 1 regulatory subunit 15B Proteins 0.000 description 1
- 241001668559 Mycale Species 0.000 description 1
- 101001134300 Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv) Multidomain regulatory protein Rv1364c Proteins 0.000 description 1
- 101000615835 Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv) Phosphoserine phosphatase SerB2 Proteins 0.000 description 1
- 101001082202 Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv) Triple specificity protein phosphatase PtpB Proteins 0.000 description 1
- 101001134301 Mycobacterium tuberculosis (strain CDC 1551 / Oshkosh) Multidomain regulatory protein MT1410 Proteins 0.000 description 1
- 102000003945 NF-kappa B Human genes 0.000 description 1
- 108010057466 NF-kappa B Proteins 0.000 description 1
- 101150036847 NOX1 gene Proteins 0.000 description 1
- 238000000636 Northern blotting Methods 0.000 description 1
- 102100031701 Nuclear factor erythroid 2-related factor 2 Human genes 0.000 description 1
- 108020004711 Nucleic Acid Probes Proteins 0.000 description 1
- 206010030113 Oedema Diseases 0.000 description 1
- 108010089429 PERK kinase Proteins 0.000 description 1
- 241001631646 Papillomaviridae Species 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 102000003992 Peroxidases Human genes 0.000 description 1
- 102000004861 Phosphoric Diester Hydrolases Human genes 0.000 description 1
- 108090001050 Phosphoric Diester Hydrolases Proteins 0.000 description 1
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 1
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 1
- 241000235648 Pichia Species 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 241001505332 Polyomavirus sp. Species 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 208000012287 Prolapse Diseases 0.000 description 1
- 102000006010 Protein Disulfide-Isomerase Human genes 0.000 description 1
- 108010026552 Proteome Proteins 0.000 description 1
- 241000125945 Protoparvovirus Species 0.000 description 1
- 238000002123 RNA extraction Methods 0.000 description 1
- 238000012228 RNA interference-mediated gene silencing Methods 0.000 description 1
- 239000013614 RNA sample Substances 0.000 description 1
- 108091030071 RNAI Proteins 0.000 description 1
- 238000011529 RT qPCR Methods 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 206010038063 Rectal haemorrhage Diseases 0.000 description 1
- 108091027981 Response element Proteins 0.000 description 1
- 206010038997 Retroviral infections Diseases 0.000 description 1
- 102000004389 Ribonucleoproteins Human genes 0.000 description 1
- 108010081734 Ribonucleoproteins Proteins 0.000 description 1
- 241000714474 Rous sarcoma virus Species 0.000 description 1
- 241000235070 Saccharomyces Species 0.000 description 1
- 101710184528 Scaffolding protein Proteins 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- 206010041660 Splenomegaly Diseases 0.000 description 1
- 238000000692 Student's t-test Methods 0.000 description 1
- 206010042566 Superinfection Diseases 0.000 description 1
- 241000282898 Sus scrofa Species 0.000 description 1
- 101150082530 TJP1 gene Proteins 0.000 description 1
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 1
- 102100034686 Tight junction protein ZO-1 Human genes 0.000 description 1
- QHNORJFCVHUPNH-UHFFFAOYSA-L To-Pro-3 Chemical compound [I-].[I-].S1C2=CC=CC=C2[N+](C)=C1C=CC=C1C2=CC=CC=C2N(CCC[N+](C)(C)C)C=C1 QHNORJFCVHUPNH-UHFFFAOYSA-L 0.000 description 1
- 102100039387 Toll-like receptor 6 Human genes 0.000 description 1
- 108010048992 Transcription Factor 4 Proteins 0.000 description 1
- 108010057666 Transcription Factor CHOP Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102100023489 Transcription factor 4 Human genes 0.000 description 1
- 102100023132 Transcription factor Jun Human genes 0.000 description 1
- 108020004566 Transfer RNA Proteins 0.000 description 1
- 102100026390 Tribbles homolog 3 Human genes 0.000 description 1
- YJQCOFNZVFGCAF-UHFFFAOYSA-N Tunicamycin II Natural products O1C(CC(O)C2C(C(O)C(O2)N2C(NC(=O)C=C2)=O)O)C(O)C(O)C(NC(=O)C=CCCCCCCCCC(C)C)C1OC1OC(CO)C(O)C(O)C1NC(C)=O YJQCOFNZVFGCAF-UHFFFAOYSA-N 0.000 description 1
- 102000006275 Ubiquitin-Protein Ligases Human genes 0.000 description 1
- 108010083111 Ubiquitin-Protein Ligases Proteins 0.000 description 1
- 101800001117 Ubiquitin-related Proteins 0.000 description 1
- 241000700618 Vaccinia virus Species 0.000 description 1
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 1
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 1
- 230000004156 Wnt signaling pathway Effects 0.000 description 1
- 241000269370 Xenopus <genus> Species 0.000 description 1
- 206010000269 abscess Diseases 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000008649 adaptation response Effects 0.000 description 1
- 108091005764 adaptor proteins Proteins 0.000 description 1
- 102000035181 adaptor proteins Human genes 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 230000004520 agglutination Effects 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 125000005024 alkenyl aryl group Chemical group 0.000 description 1
- 125000005055 alkyl alkoxy group Chemical group 0.000 description 1
- 125000000278 alkyl amino alkyl group Chemical group 0.000 description 1
- 125000005189 alkyl hydroxy group Chemical group 0.000 description 1
- 230000037354 amino acid metabolism Effects 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000002424 anti-apoptotic effect Effects 0.000 description 1
- 230000001028 anti-proliverative effect Effects 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000003816 antisense DNA Substances 0.000 description 1
- 230000001640 apoptogenic effect Effects 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 230000035578 autophosphorylation Effects 0.000 description 1
- 230000007375 bacterial translocation Effects 0.000 description 1
- 102000055102 bcl-2-Associated X Human genes 0.000 description 1
- 108700000707 bcl-2-Associated X Proteins 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 229920002988 biodegradable polymer Polymers 0.000 description 1
- 239000004621 biodegradable polymer Substances 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- HOQPTLCRWVZIQZ-UHFFFAOYSA-H bis[[2-(5-hydroxy-4,7-dioxo-1,3,2$l^{2}-dioxaplumbepan-5-yl)acetyl]oxy]lead Chemical compound [Pb+2].[Pb+2].[Pb+2].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O HOQPTLCRWVZIQZ-UHFFFAOYSA-H 0.000 description 1
- GEHJBWKLJVFKPS-UHFFFAOYSA-N bromochloroacetic acid Chemical compound OC(=O)C(Cl)Br GEHJBWKLJVFKPS-UHFFFAOYSA-N 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 230000036952 cancer formation Effects 0.000 description 1
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 231100000504 carcinogenesis Toxicity 0.000 description 1
- 102000013515 cdc42 GTP-Binding Protein Human genes 0.000 description 1
- 108010051348 cdc42 GTP-Binding Protein Proteins 0.000 description 1
- 230000022131 cell cycle Effects 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 230000006727 cell loss Effects 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 230000017455 cell-cell adhesion Effects 0.000 description 1
- 210000004671 cell-free system Anatomy 0.000 description 1
- 230000007248 cellular mechanism Effects 0.000 description 1
- 230000005754 cellular signaling Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- 208000003167 cholangitis Diseases 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 230000006020 chronic inflammation Effects 0.000 description 1
- 208000037976 chronic inflammation Diseases 0.000 description 1
- 235000019504 cigarettes Nutrition 0.000 description 1
- 230000008045 co-localization Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 208000008609 collagenous colitis Diseases 0.000 description 1
- 201000010897 colon adenocarcinoma Diseases 0.000 description 1
- 230000008984 colonic lesion Effects 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 238000002052 colonoscopy Methods 0.000 description 1
- 230000004732 colorectal carcinogenesis Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000001447 compensatory effect Effects 0.000 description 1
- 230000009918 complex formation Effects 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 238000010205 computational analysis Methods 0.000 description 1
- 238000001218 confocal laser scanning microscopy Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- WZHCOOQXZCIUNC-UHFFFAOYSA-N cyclandelate Chemical compound C1C(C)(C)CC(C)CC1OC(=O)C(O)C1=CC=CC=C1 WZHCOOQXZCIUNC-UHFFFAOYSA-N 0.000 description 1
- 230000016396 cytokine production Effects 0.000 description 1
- 230000000120 cytopathologic effect Effects 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000012969 defense response to bacterium Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 239000000412 dendrimer Substances 0.000 description 1
- 229920000736 dendritic polymer Polymers 0.000 description 1
- 238000010217 densitometric analysis Methods 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 238000001784 detoxification Methods 0.000 description 1
- 229950006137 dexfosfoserine Drugs 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- UGMCXQCYOVCMTB-UHFFFAOYSA-K dihydroxy(stearato)aluminium Chemical compound CCCCCCCCCCCCCCCCCC(=O)O[Al](O)O UGMCXQCYOVCMTB-UHFFFAOYSA-K 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 125000002147 dimethylamino group Chemical group [H]C([H])([H])N(*)C([H])([H])[H] 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 229910000397 disodium phosphate Inorganic materials 0.000 description 1
- 235000019800 disodium phosphate Nutrition 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 210000004921 distal colon Anatomy 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 239000006196 drop Substances 0.000 description 1
- 241001493065 dsRNA viruses Species 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000004064 dysfunction Effects 0.000 description 1
- 230000008482 dysregulation Effects 0.000 description 1
- 101710090764 eIF-2-alpha kinase GCN2 Proteins 0.000 description 1
- 230000002497 edematous effect Effects 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 238000011846 endoscopic investigation Methods 0.000 description 1
- 210000003038 endothelium Anatomy 0.000 description 1
- 239000007920 enema Substances 0.000 description 1
- 229940079360 enema for constipation Drugs 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 210000002615 epidermis Anatomy 0.000 description 1
- 230000007275 epithelial homeostasis Effects 0.000 description 1
- 230000004887 epithelial permeability Effects 0.000 description 1
- 230000008508 epithelial proliferation Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 210000003013 erythroid precursor cell Anatomy 0.000 description 1
- 229940105423 erythropoietin Drugs 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- 210000004265 eukaryotic small ribosome subunit Anatomy 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 238000001215 fluorescent labelling Methods 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 239000012458 free base Substances 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 1
- 210000004907 gland Anatomy 0.000 description 1
- 230000000762 glandular Effects 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 210000004524 haematopoietic cell Anatomy 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000007490 hematoxylin and eosin (H&E) staining Methods 0.000 description 1
- 238000012188 high-throughput screening assay Methods 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 230000003118 histopathologic effect Effects 0.000 description 1
- 102000055647 human CSF2RB Human genes 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 235000011167 hydrochloric acid Nutrition 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 230000037417 hyperactivation Effects 0.000 description 1
- 208000026278 immune system disease Diseases 0.000 description 1
- 238000003365 immunocytochemistry Methods 0.000 description 1
- 238000000760 immunoelectrophoresis Methods 0.000 description 1
- 238000010166 immunofluorescence Methods 0.000 description 1
- 238000003125 immunofluorescent labeling Methods 0.000 description 1
- 239000002955 immunomodulating agent Substances 0.000 description 1
- 229940121354 immunomodulator Drugs 0.000 description 1
- 238000001114 immunoprecipitation Methods 0.000 description 1
- 230000001506 immunosuppresive effect Effects 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000000126 in silico method Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 208000027139 infectious colitis Diseases 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 210000004969 inflammatory cell Anatomy 0.000 description 1
- 230000006749 inflammatory damage Effects 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 239000007972 injectable composition Substances 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000002743 insertional mutagenesis Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229940076144 interleukin-10 Drugs 0.000 description 1
- 229940047122 interleukins Drugs 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 201000008222 ischemic colitis Diseases 0.000 description 1
- JJWLVOIRVHMVIS-UHFFFAOYSA-N isopropylamine Chemical compound CC(C)N JJWLVOIRVHMVIS-UHFFFAOYSA-N 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 208000004341 lymphocytic colitis Diseases 0.000 description 1
- 230000002101 lytic effect Effects 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 230000006679 metabolic signaling pathway Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 108091047758 miR-185 stem-loop Proteins 0.000 description 1
- 108091054189 miR-196a stem-loop Proteins 0.000 description 1
- 108091061970 miR-26a stem-loop Proteins 0.000 description 1
- 108091088477 miR-29a stem-loop Proteins 0.000 description 1
- 108091029716 miR-29a-1 stem-loop Proteins 0.000 description 1
- 108091092089 miR-29a-2 stem-loop Proteins 0.000 description 1
- 108091066559 miR-29a-3 stem-loop Proteins 0.000 description 1
- 108091007432 miR-29b Proteins 0.000 description 1
- 108091055059 miR-30c stem-loop Proteins 0.000 description 1
- 108091046551 miR-324 stem-loop Proteins 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 208000008275 microscopic colitis Diseases 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 230000002438 mitochondrial effect Effects 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 230000004879 molecular function Effects 0.000 description 1
- 239000003068 molecular probe Substances 0.000 description 1
- 229910000403 monosodium phosphate Inorganic materials 0.000 description 1
- 235000019799 monosodium phosphate Nutrition 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- 230000009854 mucosal lesion Effects 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 210000000066 myeloid cell Anatomy 0.000 description 1
- 230000009826 neoplastic cell growth Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000003499 nucleic acid array Methods 0.000 description 1
- 239000002853 nucleic acid probe Substances 0.000 description 1
- 210000000287 oocyte Anatomy 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 229910000489 osmium tetroxide Inorganic materials 0.000 description 1
- 239000012285 osmium tetroxide Substances 0.000 description 1
- 230000008723 osmotic stress Effects 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 210000003134 paneth cell Anatomy 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 231100000915 pathological change Toxicity 0.000 description 1
- 230000036285 pathological change Effects 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 230000007310 pathophysiology Effects 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 239000000816 peptidomimetic Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 108040007629 peroxidase activity proteins Proteins 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 239000012660 pharmacological inhibitor Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229960003742 phenol Drugs 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 150000004713 phosphodiesters Chemical class 0.000 description 1
- 235000011007 phosphoric acid Nutrition 0.000 description 1
- 150000003016 phosphoric acids Chemical class 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 208000014081 polyp of colon Diseases 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M potassium chloride Inorganic materials [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 1
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 201000000742 primary sclerosing cholangitis Diseases 0.000 description 1
- 230000004647 pro-inflammatory pathway Effects 0.000 description 1
- 230000001686 pro-survival effect Effects 0.000 description 1
- 230000001566 pro-viral effect Effects 0.000 description 1
- MFDFERRIHVXMIY-UHFFFAOYSA-N procaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1 MFDFERRIHVXMIY-UHFFFAOYSA-N 0.000 description 1
- 229960004919 procaine Drugs 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000002633 protecting effect Effects 0.000 description 1
- 230000009979 protective mechanism Effects 0.000 description 1
- 235000004252 protein component Nutrition 0.000 description 1
- 108020003519 protein disulfide isomerase Proteins 0.000 description 1
- 230000012846 protein folding Effects 0.000 description 1
- 229940121649 protein inhibitor Drugs 0.000 description 1
- 239000012268 protein inhibitor Substances 0.000 description 1
- 238000001243 protein synthesis Methods 0.000 description 1
- 238000000575 proteomic method Methods 0.000 description 1
- 229950010131 puromycin Drugs 0.000 description 1
- 238000012207 quantitative assay Methods 0.000 description 1
- 238000003127 radioimmunoassay Methods 0.000 description 1
- 238000003753 real-time PCR Methods 0.000 description 1
- 108091006084 receptor activators Proteins 0.000 description 1
- 238000003259 recombinant expression Methods 0.000 description 1
- 230000007115 recruitment Effects 0.000 description 1
- 239000006215 rectal suppository Substances 0.000 description 1
- 229940100618 rectal suppository Drugs 0.000 description 1
- 210000000664 rectum Anatomy 0.000 description 1
- 230000009719 regenerative response Effects 0.000 description 1
- 238000007634 remodeling Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 230000001177 retroviral effect Effects 0.000 description 1
- 210000003705 ribosome Anatomy 0.000 description 1
- 208000010157 sclerosing cholangitis Diseases 0.000 description 1
- 210000002955 secretory cell Anatomy 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 150000003355 serines Chemical class 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 102000030938 small GTPase Human genes 0.000 description 1
- 108060007624 small GTPase Proteins 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000003393 splenic effect Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 238000005556 structure-activity relationship Methods 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- RTKIYNMVFMVABJ-UHFFFAOYSA-L thimerosal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 1
- 229940033663 thimerosal Drugs 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 description 1
- 239000003104 tissue culture media Substances 0.000 description 1
- 230000005100 tissue tropism Effects 0.000 description 1
- 230000018889 transepithelial transport Effects 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 230000005945 translocation Effects 0.000 description 1
- 238000004627 transmission electron microscopy Methods 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- ZHSGGJXRNHWHRS-VIDYELAYSA-N tunicamycin Chemical compound O([C@H]1[C@@H]([C@H]([C@@H](O)[C@@H](CC(O)[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C(NC(=O)C=C2)=O)O)O1)O)NC(=O)/C=C/CC(C)C)[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1NC(C)=O ZHSGGJXRNHWHRS-VIDYELAYSA-N 0.000 description 1
- MEYZYGMYMLNUHJ-UHFFFAOYSA-N tunicamycin Natural products CC(C)CCCCCCCCCC=CC(=O)NC1C(O)C(O)C(CC(O)C2OC(C(O)C2O)N3C=CC(=O)NC3=O)OC1OC4OC(CO)C(O)C(O)C4NC(=O)C MEYZYGMYMLNUHJ-UHFFFAOYSA-N 0.000 description 1
- 208000025086 undetermined colitis Diseases 0.000 description 1
- 108020005087 unfolded proteins Proteins 0.000 description 1
- 241000701447 unidentified baculovirus Species 0.000 description 1
- 241001529453 unidentified herpesvirus Species 0.000 description 1
- 241001515965 unidentified phage Species 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 230000006516 vital cellular process Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 230000037314 wound repair Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K67/00—Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
- A01K67/027—New or modified breeds of vertebrates
- A01K67/0275—Genetically modified vertebrates, e.g. transgenic
- A01K67/0276—Knock-out vertebrates
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K67/00—Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
- A01K67/02—Breeding vertebrates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/13—Amines
- A61K31/155—Amidines (), e.g. guanidine (H2N—C(=NH)—NH2), isourea (N=C(OH)—NH2), isothiourea (—N=C(SH)—NH2)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
- A61K31/425—Thiazoles
- A61K31/429—Thiazoles condensed with heterocyclic ring systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/47—Quinolines; Isoquinolines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/0004—Screening or testing of compounds for diagnosis of disorders, assessment of conditions, e.g. renal clearance, gastric emptying, testing for diabetes, allergy, rheuma, pancreas functions
- A61K49/0008—Screening agents using (non-human) animal models or transgenic animal models or chimeric hosts, e.g. Alzheimer disease animal model, transgenic model for heart failure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/04—Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/8509—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2217/00—Genetically modified animals
- A01K2217/15—Animals comprising multiple alterations of the genome, by transgenesis or homologous recombination, e.g. obtained by cross-breeding
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2227/00—Animals characterised by species
- A01K2227/10—Mammal
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2227/00—Animals characterised by species
- A01K2227/10—Mammal
- A01K2227/105—Murine
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2267/00—Animals characterised by purpose
- A01K2267/03—Animal model, e.g. for test or diseases
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2267/00—Animals characterised by purpose
- A01K2267/03—Animal model, e.g. for test or diseases
- A01K2267/0306—Animal model for genetic diseases
- A01K2267/0325—Animal model for autoimmune diseases
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/8509—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
- C12N2015/8527—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic for producing animal models, e.g. for tests or diseases
Definitions
- the present invention relates to screening methods and pharmaceutical compositions for the treatment of inflammatory bowel diseases.
- Ulcerative colitis is a chronic intermittent and relapsing inflammatory bowel disease (IBD) of the colon characterized by superficial mucosal lesions that extend through the rectum and progress upstream.
- IBD inflammatory bowel disease
- the natural history of UC is characterized by the progression of colonic lesions in up to 50% of subjects. This suggests that the colonic mucosa has a “global” susceptibility to environmental factors.
- genome-wide association studies have already identified more than 40 gene loci associated with UC, the primary defects initiating the cascade of events in colonic epithelial cells and leading to inflammation remain largely unknown.
- Spontaneous inflammatory disease in transgenic rats expressing HLA-B27 and human beta 2m an animal model of HLA-B27-associated human disorders. Cell 63, 1099-112 (1990)). It has been suggested that the UPR might help intestinal epithelial cells cope with endoplasmic reticulum (ER) stress and thus deter pro-inflammatory pathways allowing the cell to adapt and respond to environmental changes.
- ER endoplasmic reticulum
- the UPR is mediated by i)—IRE1 that signals through a transcription factor X-box protein 1 (XBP-1) to activate UPR target genes, ii)—ATF6 ⁇ that induces XBP-1 mRNA and enhances the ability of the cell to cope with the load of unfolded proteins, and iii)—PERK that phosphorylates the alpha subunit of translation initiation factor 2 (eIF2 ⁇ ) which abolishes the eIF2 ⁇ -GTP-Met-tRNA i Met ternary complex formation and inhibits translation of most mRNAs.
- This adaptation is believed to protect cells against toxic malfolded proteins that can accumulate under stress and to conserve ATP and amino acids in ER stressed cells.
- Paradoxically, eIF2 ⁇ phosphorylation stimulates the translation of a subset of genes including ATF4, an inducer of the integrated stress response (ISR) and its downstream transcriptional target, DDIT3 (CHOP).
- the present invention relates to screening methods and pharmaceutical compositions for the treatment of inflammatory bowel diseases.
- the present invention relates to a method for screening a plurality of test substances useful for the prevention or treatment of an inflammatory bowel disease comprising the steps consisting of (a) testing each of the test substances for its ability to restore the integrated stress response and (b) and positively selecting the test substances capable of restoring said integrated stress response.
- a further aspect of the invention relates to an agent capable of restoring the integrated stress response (ISR) for use in the treatment of an inflammatory bowel disease.
- ISR integrated stress response
- the inventors show that unaffected UC mucosa exhibit inappropriate ER stress compared to control subjects.
- the results show unexpected impairment of the ISR pathway due to a net decrease in eIF2 ⁇ phosphorylation and thus suggest that the defect in this central stress response associated with the absence of stress granule assembly and increased expression of key components of the translational initiation machinery cause the reprogramming of protein translation in UC.
- This is supported by a genome-wide microarray analysis of polysome-bound mRNAs isolated from the unaffected mucosa of UC subjects vs. controls.
- These stress-modulated processes affect several key functions of the epithelial barrier which might explain the susceptibility of colonic UC mucosa to environmental stresses. Accordingly ISR represents an attractive target for new therapeutic options to maintain UC subjects in long-term remission.
- integrated stress response As used herein the term “integrated stress response” or “ISR” has its general meaning in the art and refers to the pathway described in Schroder & Kaufman ER stress and unfolded protein response. Mut Res. 2005, 569: 29; Ron & Walter, “Signal integration in the endoplasmic reticulum unfolded protein responses”, Nat Rev Mol Cell Biol 2007, 8: 519 and in Moenner et al., “Integrated stress response in cancer”, Cancer Res. 2007, 67: 10631, The term ‘integrated stress response” is also named as the “eIF2 ⁇ pathway”.
- the phosphorylation event of eIF2 ⁇ integrates various types of environmental and endogenous stress signals beyond ER stress, such as amino acid deprivation, exposure to double-stranded viral RNA, osmotic stress, UV light exposure, heme deficiency, hypoxia, and oxidative stress (Harding et al., (2003) “.An integrated stress response regulates amino acid metabolism and resistance to oxidative stress” Mol Cell, 11 (3), 619-33)
- These divergent signals activate four different eIF2 ⁇ kinases including PERK (which is activated by ER stress, radiation, or hypoxia), general control nonderepressible-2 (GCN2, which is activated by uncharged tRNAs in amino acid-starved cells), heme-regulated inhibitor (HRI, which is activated by heme deficiency in erythroid precursor cells), and PKR (which is activated by double-stranded RNA and in some contexts, ER stress (Nakamura et al
- mammalian cells activate a protective mechanism to prevent damage of vital cellular processes required for homeostasis, once the stress is relieved (Nover et al., (1989), “Cytoplasmic heat shock granules are formed from precursor particles and are associated with a specific set of mRNAs” Mol Cell Biol, 9 (3): 1298-308).
- SGs stress granules
- the rapid formation of stress granules (SGs) in the cytoplasm is one of the main mechanisms by which the cell inhibits translation of mRNAs encoding for “housekeeping” functions to prioritize the synthesis of chaperones and enzymes needed for the stress response (Anderson and Kedersha, (2002) “Visibly stressed: the role of eIF2, TIA-1, and stress granules in protein translation” Cell Stress Chaperones, 7 (2), 213-21).
- the process that inhibits translation during the ER stress, and which also acts as a stimulus for SG assembly targets specifically the initiation phase of translation (Anderson and Kedersha, (2006) “RNA granules” J Cell Biol., 172 (6), 803-8).
- SG formation by mitochondrial poisons has been documented to occur in the absence of eIF2 phosphorylation (Kedersha et al., (2002) “Evidence that ternary complex (eIF2-GTP-tRNA(i)(Met))-deficient preinitiation complexes are core constituents of mammalian stress granules”, Mol Biol Cell, 13 (1), 195-210). This suggests that inhibition of translation initiation by stimuli that do not induce eIF2 ⁇ phosphorylation may also be capable of inducing SG formation.
- eIF2 ⁇ has its general meaning in the art and refers to the eukaryotic translation initiation factor 2A that is a 65-kD protein that catalyzes the formation of puromycin-sensitive 80S preinitiation complexes (Zoll W L et al. (2002). “Characterization of mammalian eIF2A and identification of the yeast homolog”. J Biol Chem 277 (40): 37079-87..; Merrick W C (1992). “Mechanism and regulation of eukaryotic protein synthesis”. Microbiol Rev 56 (2): 291-315).
- PERK has its general meaning in the art and refers to the eukaryotic translation initiation factor 2-alpha kinase 3 (Shi Y, et al. (1998) “Identification and characterization of pancreatic eukaryotic initiation factor 2 alpha-subunit kinase, PEK, involved in translational control”. Mol Cell Biol. 18(12):7499-509).
- GCN2 has its general meaning in the art and refers to the eukaryotic translation initiation factor 2 alpha kinase 4 (Berlanga J J et al. (1999) “Characterization of a mammalian homolog of the GCN2 eukaryotic initiation factor 2alpha kinase”. Eur J Biochem.;265(2):754-62).
- ATF4 has its general meaning in the art and refers to the Activating transcription factor 4 (tax-responsive enhancer element B67) (Tsujimoto Aet al. (1991). “Isolation of cDNAs for DNA-binding proteins which specifically bind to a tax-responsive enhancer element in the long terminal repeat of human T-cell leukemia virus type I”. Journal of Virology 65 (3): 1420-6.. Karpinski B Aet al. (1992). “Molecular cloning of human CREB-2: an ATF/CREB transcription factor that can negatively regulate transcription from the cAMP response element”. Proceedings of the National Academy of Sciences of the United States of America 89 (11): 4820-4.)
- GADD34 for “DNA damage-inducible protein 34” or MyD116 or PPP1R15A has its general meaning in the art and refers to a protein inhibitor 1 (I-1) interacting protein that associates with the C terminus of human I-1.
- I-1 protein inhibitor 1
- GADD34 whose expression in mammalian cells is elevated by growth arrest, DNA damage, and other forms of cell stress has structural homology to a region of the herpes simplex virus (HSV-1) neurovirulence factor ICP-345, previously shown to bind PP1.
- HSV-1 herpes simplex virus
- ICP-345 neurovirulence factor
- GADD34 is an effector of a negative feedback loop that terminates UPR signaling and recruits a catalytic subunit of protein phosphatase 1 (PP1c) to dephosphorylate eIF2 ⁇ .
- protein phosphatase 1 denotes a major eukaryotic protein serine/threonine phosphatase that regulates an enormous variety of cellular functions through the interaction of its catalytic subunit (PP1c) with over fifty different established or putative regulatory subunits.
- an inhibitor of the formation of the PP1/GADD34 complex denotes an inhibitor able to compete in the ⁇ M range with GADD34 to form a complex with PP1 and thereby render said complex non functional, or to block GADD34 expression or to render GADD34 structurally inactive.
- an inhibitor of the formation of the PP1/GADD34 complex will have an EC50 not greater than 50 ⁇ M and preferably not greater than 25 ⁇ M.
- inflammatory bowel disease has its general meaning in the art and refers to any inflammatory disease that affects the bowel.
- the term includes but is not limited to ulcerative colitis, Crohn's disease in a state that affect specifically the colon with or without ileitis, microscopic colitis (lymphocytic colitis and collagenous colitis), infectious colitis caused by bacteria or by virus, radiation colitis, ischemic colitis, pediatric colitis, undetermined colitis, and functional bowel disorders (described symptoms without evident anatomical abnormalities).
- a subject denotes a mammal, such as a rodent, a feline, a canine, and a primate.
- a subject according to the invention is a human.
- An aspect of the invention relates to a method for screening a plurality of test substances useful for the prevention or treatment of an inflammatory bowel disease comprising the steps consisting of (a) testing each of the test substances for its ability to restore the integrated stress response and (b) and positively selecting the test substances capable of restoring said integrated stress response.
- step (a) of the screening method may consist in determining whether the test substances i) increase the phosphorylation of eIF2a ⁇ ii) activate the expression of ATF4 gene, ii) activate the expression of some genes targeted by ATF4 as depicted in Table 1, iii) activate the kinases that promote eIF2 ⁇ phosphorylation, iv) inhibit the dephosphorylation of phosphorylated eIF2 ⁇ .
- RANKL receptor activator Yang & Karsenty, of NF-kB 2004 E selectin Liang & Hai, 1997; VEGF Roybal et al. 2005 Gadd153 Fawcett et al 1999 Asparagine synthase Chen, & Kilberg, 2004 TRB3 Ohoka et al 2005 Nrf2 and HO1 Cullinan and Diehl 2006.
- the present invention is directed to a method for screening a plurality of test substances useful for the prevention or treatment of an inflammatory bowel disease, which comprises the steps of i) testing each of the test substances for its ability to activate the expression of ATF4 gene, and ii) identifying the test substance which activates the expression of ATF4, thereby to identify a test substance useful as a preventive or therapeutic agent for an inflammatory bowel disease.
- the invention is directed to a method, which comprises the steps of i) contacting the test substance or each of the test substances with a cell transfected with a reporter gene operatively linked to all or part of the promoter of the ATF4 gene, ii) assessing the level of expression of said reporter gene, and iii) identifying the test substance which activates the expression of said reporter gene, thereby to identify a test substance useful as a preventive or therapeutic agent for an inflammatory bowel disease.
- the reporter gene encodes one of the groups consisting of GFP, CAT, GAL, LUC, and GUS.
- the cell is one of the groups consisting of a CHO, BHK, 3T3, and HEK293 cell line.
- the invention is directed to a method, which comprises the steps of i) contacting the test substance or each of the test substances with a cell capable of expressing the ATF4 gene, ii) assessing the level of expression of said gene, and iii) identifying the test substance which activates the expression of said gene, thereby to identify a test substance useful as a preventive or therapeutic agent for an inflammatory bowel disease.
- the level of expression is assessed by determining the level of transcription of said gene.
- the determination of the level of translation of said gene is effected by means of an immunoassay.
- the invention is also directed to a method for screening a plurality of test substances useful for the prevention or treatment of an inflammatory bowel disease, which comprises the steps of i) testing each of the test substances for its ability to activate the expression of a gene depicted in Table 1, and ii) identifying the test substance which activates the expression of said gene, thereby to identify a test substance useful as a preventive or therapeutic agent for an inflammatory bowel disease.
- the method comprises the steps of i) contacting the test substance or each of the test substances with a cell transfected with a reporter gene operatively linked to all or part of the promoter of said gene depicted in Table 1, ii) assessing the level of expression of said reporter gene, and iii) identifying the test substance which activates the expression of said reporter gene, thereby to identify a test substance useful as a preventive or therapeutic agent for an inflammatory bowel disease.
- the reporter gene encodes one of the groups consisting of GFP, CAT, GAL, LUC, and GUS.
- the cell is one of the groups consisting of a CHO, BHK, 3T3, and HEK293 cell line.
- Activation of expression of any gene can be assessed by determining either the level of transcription or the level of translation in the presence of the test substance in comparison with control assays performed in the absence of the test substance.
- Such assays are well known in the art and are depicted herein after. For example such assays may be performed on cells capable of expressing the gene (host cells).
- the invention is also directed to a method for screening a plurality of test substances useful for the prevention or treatment of an inflammatory bowel disease, which comprises the steps of i) testing each of the test substances for its ability to increase phosphorylation of eIF2 ⁇ , and ii) identifying the test substance which increases phosphorylation of eIF2 ⁇ , thereby to identify a test substance useful as a preventive or therapeutic agent for an inflammatory bowel disease.
- the invention is also directed to the method, which comprises the steps of i) contacting the test substance or each of the test substances with a cell capable of expressing eIF2 ⁇ , ii) assessing the level of phosphorylation of eIF2 ⁇ , and iii) identifying the test substance which increases the phosphorylation of eIF2 ⁇ , thereby to identify a test substance useful as a preventive or therapeutic agent for an inflammatory bowel disease.
- the assessment of the level of phosphorylation of eIF2 ⁇ is effected by an immunoassay using an antibody that specifically recognizes the phosphorylated form of eIF2 ⁇ .
- the assessment of the level of phosphorylation of eIF2 ⁇ is effected by tracking the covalent binding of a radiolabeled phosphate group to eIF2 ⁇ ,
- the invention is also directed to a method for screening a plurality of test substances useful for the prevention or treatment of an inflammatory bowel disease, which comprises the steps of i) testing each of the test substances for its ability to inhibit the dephosphorylation of eIF2 ⁇ , and ii) identifying the test substance which inhibits the dephosphorylation of eIF2 ⁇ , thereby to identify a test substance useful as a preventive or therapeutic agent for an inflammatory bowel disease.
- the invention is directed to a method, which comprises the steps of i) contacting the test substance or each of the test substances with a cell-free composition containing GADD34 and PP1c proteins in the form of a purified complex and eIF2 ⁇ , in a phosphorylated form, ii) assessing the level of phosphorylation of eIF2 ⁇ , in comparison with the level of phosphorylation determined in the absence of test substances, in a cell-free composition containing GADD34 and PP1c proteins in the form of a purified complex and eIF2 ⁇ , in a phosphorylated form, and iii) identifying the test substance which provides a higher level of phosphorylation of eIF2 ⁇ , in comparison with the level of phosphorylation determined in the absence of test substance, thereby to identify a test substance useful as a preventive or therapeutic agent for an inflammatory bowel disease.
- the assessment of the level of phosphorylation of eIF2 ⁇ is effected by an immunoassay using an antibody that specifically recognizes the phosphorylated form of eIF2 ⁇ .
- the assessment of the level of phosphorylation of eIF2 ⁇ is effected by tracking the covalent binding of a radiolabeled phosphate group to eIF2 ⁇ ,
- the invention is also directed to a method for screening a plurality of test substances useful for the prevention or treatment of an inflammatory bowel disease, which comprises the steps of i) testing each of the test substances for its ability to activate an eIF2 ⁇ ,a kinase and ii) identifying the test substance which activates an eIF2 ⁇ , kinase, thereby to identify a test substance useful as a preventive or therapeutic agent for an inflammatory bowel disease.
- the kinase is PERK.
- the kinase is GCN2.
- the kinase is HRI.
- the kinase is PKR.
- host-expression vector systems may be utilized to express the genes used in the assays of this invention. These include, but are not limited to, mammalian cell systems such as human cell lines derived from colon adenocarcinoma including HT-29, Caco-2, SW480, HTC116 cell lines.
- the mammalian cell systems may harbour recombinant expression constructs containing promoters derived from the genome of mammalian cells or from mammalian viruses (e.g., the adenovirus late promoter or the vaccine virus 7.5K promoter).
- Additional host-expression vector systems include, but are not limited to, microorganisms such as bacteria (e.g., E. 5 coli or B. subtilis ) transformed with recombinant bacteriophage DNA, plasmid DNA, or cosmid DNA expression vectors containing PTK or adaptor protein coding sequences; yeast (e.g., Saccharomyces, Pichia ) transformed with recombinant yeast expression vectors containing the protein or peptide oding sequences; insect cell systems, such as Sf9 or Sf21 infected with recombinant virus expression vectors (e.g., baculovirus) containing the protein or peptide coding sequences; amphibian cells, such as Xenopus oocytes; or plant cell systems infected with recombinant virus express—15 sion vectors (e.g., cauliflower mosaic virus, CMV; tobacco mosaic virus, TMV) or transformed with recombinant plamid expression vectors (e.g., Ti
- DNA encoding proteins to be assayed can be transiently or stably expressed in the cell lines by several methods known in the art, such as, calcium phosphate-mediated, DEAE-dextran mediated, liposomal-mediated, viral-mediated, electroporation-mediated and microinjection delivery. Each of these methods may require optimization of assorted experimental parameters depending on the DNA, cell line, and the type of assay to be subsequently employed.
- Determination of the expression level of a gene can be performed by a variety of techniques. Generally, the expression level as determined is a relative expression level.
- the determination comprises contacting the sample with selective reagents such as probes, primers or ligands, and thereby detecting the presence, or measuring the amount, of polypeptide or nucleic acids of interest originally in the sample.
- Contacting may be performed in any suitable device, such as a plate, microtiter dish, test tube, well, glass, column, and so forth
- the contacting is performed on a substrate coated with the reagent, such as a nucleic acid array or a specific ligand array.
- the substrate may be a solid or semi-solid substrate such as any suitable support comprising glass, plastic, nylon, paper, metal, polymers and the like.
- the substrate may be of various forms and sizes, such as a slide, a membrane, a bead, a column, a gel, etc.
- the contacting may be made under any condition suitable for a detectable complex, such as a nucleic acid hybrid or an antibody-antigen complex, to be formed between the reagent and the nucleic acids or polypeptides of the sample.
- the expression level may be determined by determining the quantity of mRNA.
- the nucleic acid contained in the samples e.g., cell or tissue prepared from the subject
- the samples e.g., cell or tissue prepared from the subject
- the extracted mRNA is then detected by hybridization (e. g., Northern blot analysis) and/or amplification (e.g., RT-PCR).
- hybridization e. g., Northern blot analysis
- amplification e.g., RT-PCR
- RT-PCR e.g., RT-PCR
- quantitative or semi-quantitative RT-PCR is preferred. Real-time quantitative or semi-quantitative RT-PCR is particularly advantageous.
- LCR ligase chain reaction
- TMA transcription-mediated amplification
- SDA strand displacement amplification
- NASBA nucleic acid sequence based amplification
- Nucleic acids having at least 10 nucleotides and exhibiting sequence complementarity or homology to the mRNA of interest herein find utility as hybridization probes or amplification primers. It is understood that such nucleic acids need not be identical, but are typically at least about 80% identical to the homologous region of comparable size, more preferably 85% identical and even more preferably 90-95% identical. In certain embodiments, it will be advantageous to use nucleic acids in combination with appropriate means, such as a detectable label, for detecting hybridization. A wide variety of appropriate indicators are known in the art including, fluorescent, radioactive, enzymatic or other ligands (e. g. avidin/biotin).
- Probes typically comprise single-stranded nucleic acids of between 10 to 1000 nucleotides in length, for instance of between 10 and 800, more preferably of between 15 and 700, typically of between 20 and 500.
- Primers typically are shorter single-stranded nucleic acids, of between 10 to 25 nucleotides in length, designed to perfectly or almost perfectly match a nucleic acid of interest, to be amplified.
- the probes and primers are “specific” to the nucleic acids they hybridize to, i.e. they preferably hybridize under high stringency hybridization conditions (corresponding to the highest melting temperature Tm, e.g., 50% formamide, 5x or 6x SCC. SCC is a 0.15 M NaCl, 0.015 M Na-citrate).
- the nucleic acid primers or probes used in the above amplification and detection method may be assembled as a kit.
- a kit includes consensus primers and molecular probes.
- a preferred kit also includes the components necessary to determine if amplification has occurred.
- the kit may also include, for example, PCR buffers and enzymes; positive control sequences, reaction control primers; and instructions for amplifying and detecting the specific sequences.
- the expression level is determined by DNA chip analysis.
- DNA chip or nucleic acid microarray consists of different nucleic acid probes that are chemically attached to a substrate, which can be a microchip, a glass slide or a microsphere-sized bead.
- a microchip may be constituted of polymers, plastics, resins, polysaccharides, silica or silica-based materials, carbon, metals, inorganic glasses, or nitrocellulose.
- Probes comprise nucleic acids such as cDNAs or oligonucleotides that may be about 10 to about 60 base pairs.
- a sample from a test subject optionally first subjected to a reverse transcription, is labelled and contacted with the microarray in hybridization conditions, leading to the formation of complexes between target nucleic acids that are complementary to probe sequences attached to the microarray surface.
- the labelled hybridized complexes are then detected and can be quantified or semi-quantified. Labelling may be achieved by various methods, e.g. by using radioactive or fluorescent labelling. Many variants of the microarray hybridization technology are available to the man skilled in the art (see e.g. the review by Hoheisel, Nature Reviews, Genetics, 2006, 7:200-210)
- Other methods for determining the expression level of said genes include the determination of the quantity of proteins encoded by said genes.
- Such methods comprise contacting a biological sample with a binding partner capable of selectively interacting with a marker protein present in the sample.
- the binding partner is generally an antibody that may be polyclonal or monoclonal, preferably monoclonal.
- the presence of the protein can be detected using standard electrophoretic and immunodiagnostic techniques, including immunoassays such as competition, direct reaction, or sandwich type assays.
- immunoassays include, but are not limited to, Western blots; agglutination tests; enzyme-labeled and mediated immunoassays, such as ELISAs; biotin/avidin type assays; radioimmunoassays; immunoelectrophoresis; immunoprecipitation, etc.
- the reactions generally include revealing labels such as fluorescent, chemiluminescent, radioactive, enzymatic labels or dye molecules, or other methods for detecting the formation of a complex between the antigen and the antibody or antibodies reacted therewith.
- the aforementioned assays generally involve separation of unbound protein in a liquid phase from a solid phase support to which antigen-antibody complexes are bound.
- Solid supports which can be used in the practice of the invention include substrates such as nitrocellulose (e. g., in membrane or microtiter well form); polyvinylchloride (e. g., sheets or microtiter wells); polystyrene latex (e.g., beads or microtiter plates); polyvinylidine fluoride; diazotized paper; nylon membranes; activated beads, magnetically responsive beads, and the like.
- an ELISA method can be used, wherein the wells of a microtiter plate are coated with an antibody against the protein to be tested. A biological sample containing or suspected of containing the marker protein is then added to the coated wells. After a period of incubation sufficient to allow the formation of antibody-antigen complexes, the plate (s) can be washed to remove unbound moieties and a detectably labeled secondary binding molecule added. The secondary binding molecule is allowed to react with any captured sample marker protein, the plate washed and the presence of the secondary binding molecule detected using methods well known in the art.
- the levels of phosphorylation of proteins can be assessed by various methods, including immunoassays or radiolabeling.
- the levels of phosphorylation of target proteins can be assessed by various methods, including immunoassays or radiolabelling. Specifically, the increase of phosphorylation of eIF2 ⁇ may be measured, activation of the kinases that promote eIF2 ⁇ phosphorylation may be assayed, and inhibition of dephosphorylation of phosphorylated eIF2 ⁇ may also be determined by these techniques.
- the level of phosphorylation of a protein is assessed by utilizing a binding partner, which should be highly specific for the target protein. It is preferred that the binding partner be an antibody. It is preferably generated against a unique epitope of the substrate. In an alternative, the binding partner should be specific for the phosphorylated form of the target protein.
- the detection procedure used to assess the phosphorylation state of eIF2 ⁇ may for instance employ an anti-phosphoserine antibody or a peptide that recognizes and binds to phosphorylated serines.
- the detection antibody is preferably a polyclonal antibody to maximize the signal, but may also be specific monoclonal antibodies which have been optimized for signal generation.
- levels of eIF2 ⁇ phosphorylated on serine 51 can be measured by immunoblot or immunocytochemistry utilizing a commercially available antibodies, for example, product #9721 from Cell Signalling Technology.
- the commercially available antisera to phosphorylated eIF2 ⁇ may be used to develop high throughput screening assays for test substances that promote the accumulation of phosphorylated eIF2 ⁇ .
- inhibition of dephosphorylation of eIF2a on serine 51 may be assayed by screening a test substance's ability to inhibit the activity of the PP1c and GADD34 complex (Novoa, I., et al. (2001). “Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2 ⁇ ”. J. Cell. Biol. 28;153(5):1011-22).
- the PP1c and GADD34 complex is active in vitro, and its activity may be reconstituted using recombinant proteins.
- a cell-free assay may be used with the PP1c/GADD34 complex in combination with phosphorylated eIF2 ⁇ and test substances.
- dephosphorylation of eIF2 ⁇ by the PP1c/GADD34 complex and inhibition of this dephosphorylation by a test substance may be monitored by measuring the decrease in phosphorylated eIF2 ⁇ signal.
- activation of the eIF2 ⁇ kinases may be measured.
- Activation of the kinases is associated with an autophosphorylation event on known residues in the kinase (e.g., threonine 898 of mouse GCN2 and threonine 980 of mouse PERK).
- antisera which recognize the phosphorylated and activated forms of the kinases
- activation of the kinases may be detected using immunoblot or immunochemistry, such as with an ELISA.
- Antisera for the phosphorylated forms of the kinases PERK and GCN2 have been developed. (Harding, H., et al. (2000). “Regulated translation initiation controls stress induced gene expression in mammalian cells”. Mol. Cell 6, 1099-1108).
- immunoassays may be replaced by the detection of radiolabeled phosphate according to a standard technique. This involves incubating cells with the test substances and radiolabeled phosphate, lysing the cells, separating cellular protein components of the lysate using as SDS-polyacrylamide gel (SDS-PAGE) technique, in either one or two dimensions, and detecting the presence of phosphorylated proteins by exposing X-ray film.
- SDS-PAGE SDS-polyacrylamide gel
- the phosphorylation of a protein may also be conveniently detected by migration on an electrophoresis gel and Western blot, to thereby observe whether a shift of the molecular weight of the protein occurs, a phosphorylated protein being heavier than the corresponding non-phosphorylated form.
- the test substance of may be selected from the group consisting of peptides, peptidomimetics, small organic molecules, antibodies, aptamers or nucleic acids.
- the test substance according to the invention may be selected from a library of compounds previously synthesized, or a library of compounds for which the structure is determined in a database, or from a library of compounds that have been synthesized de novo.
- test substance may be selected form small organic molecules.
- small organic molecule refers to a molecule of size comparable to those organic molecules generally sued in pharmaceuticals.
- the above assays may be performed using high throughput screening techniques for identifying test substances for developing drugs that may be useful to the treatment or prevention of an inflammatory bowel disease.
- High throughput screening techniques may be carried out using multi-well plates (e.g., 96-, 389-, or 1536-well plates), in order to carry out multiple assays using an automated robotic system.
- multi-well plates e.g., 96-, 389-, or 1536-well plates
- large libraries of test substances may be assayed in a highly efficient manner.
- a preferred strategy for identifying test substances starts with cultured cells transfected with a reporter gene fused to the promoter of any gene that is activated by the stress response pathway.
- stably-transfected HT-29 cells growing in wells of micro-titer plates can be adapted to high through-put screening of libraries of compounds.
- Compounds in the library will be applied one at a time in an automated fashion to the wells of the microtitre dishes containing the transgenic cells described above.
- test substances which activate one of the target genes are identified, it is preferable to then determine their site of action in the Integrated Stress Response pathway. It is particularly useful to define the site of action for the development of more refined assays for in order to optimize the target substance. Assays to determine the site of action of the target substance in the ISR may be carried out using high throughput techniques.
- the ELISA-based assay for measuring ATF4 translation is particularly adapted to rapid high throughput screening.
- an ELISA assay for measuring phosphorylated eIF2 ⁇ by means of commercially available antiserum, may be developed for high throughput screening.
- antisera to phorphorylated eIF2 ⁇ kinases may be advantageously used in ELISA-based high throughput screens to focus on upstream components of the pathway.
- ELISA-type assays may be performed in microtitre plates. See, for example, Peraldi et al., (1992), J. Biochem. 285: 71-78; Schraag, et al., (1993), Analytical Biochemistry 211: 233-239; Cleavland, (1990), Analytical Biochemistry 190: 249-253; Farley, (1992), Analytical Biochemistry 203: 151-157; and Lczaro, (1991), Analytical Biochemistry 192: 257-261.
- the rapid and quantitative assays systems described in U.S. Pat. No. 5,763,198.
- two embodiments may be contemplated as follows.
- the extent of phosphorylation of a target protein may be measured by exposing cells that express the target protein to a test substance and, thereafter, lysing the cell to release the cellular contents.
- the target protein is isolated by incubating the cell lysate with a binding partner to a solid support and thereafter washing away non-bound cellular components.
- a detection procedure is performed to assess the presence or absence of phosphorylated residues on the protein as compared to lysates of control cells, which were not exposed to the test substance.
- the binding partner may be directed against the phosphorylated forms of the target protein, so that the steps of isolation and of detection of phosphorylation are performed simultaneously.
- test substance to a whole cell allows for the evaluation of its activity in the natural context in which the test substance may act.
- radioactive labeling of the target cell proteins is not required in the assay. Because this assay can readily be performed in a microtitre plate format, the assays described can be performed by an automated robotic system, allowing for testing of large numbers of test samples within a reasonably short time frame.
- An alternative embodiment of the invention relates to methods for determining the effect of a test substance on the ability of kinases to phosphorylate eIF2 ⁇ in a cell-free system.
- the test substance is added to a reaction mixture containing the kinase and eIF2 ⁇ bound to a solid support by an antibody.
- the kinase reaction may be initiated by the addition of ATP.
- a detection procedure as described herein is performed on the substance to assess the presence or absence of the phosphorylated residues, and results are compared to those obtained for controls, i.e., reaction mixtures to which the test substance was not added.
- the assays of the invention can be used as a screen to assess the activity of a previously untested compound or extract, in which case a single concentration is tested and compared to controls. These assays can also be used to assess the relative potency of a compound by testing a range of concentrations, in a range of 100 ⁇ M to 1 ⁇ M, for example, and computing the concentration at which the amount of phosphorylation is increased by one-half (IC50) compared to controls.
- the whole cell assay of the invention described herein can be performed, for example, by utilizing pre-packaged kits comprising any or all of the reagents of the assay, such as a solid phase coated with a binding partner to a protein of interest, or a detection molecule.
- the cell-free assays of the invention may be performed, for example, by utilizing pre-packaged kits comprising any or all of the reagents of the assay.
- a further aspect of the invention relates to an agent capable of restoring the integrated stress response (ISR) for use in the treatment of an inflammatory bowel disease.
- ISR integrated stress response
- said agent is able to i) increase the phosphorylation of eIF2 ⁇ , ii) activate the expression of ATF4 gene, ii) activate the expression of some genes targeted by ATF4 as depicted in Table 1, iii) activate the kinases that promote eIF2 ⁇ phosphorylation, iv) inhibit the dephosphorylation of phosphorylated eIF2 ⁇ and v) promote stress granule formation.
- a further aspect of the invention relates to an agent capable of restoring the integrated stress response (ISR) for use in maintaining subjects affected by an inflammatory bowel disease in a long term remission after standard treatment or surgery.
- ISR integrated stress response
- standard treatment of the inflammatory bowel diseases, especially ulcerative colitis include administration of corticosteroids, immunosuppressive drugs, aminosalicylates sulfasalazine, such as Mesalazine (also known as 5-aminosalicylic acid, mesalamine, or 5-ASA.
- Brand name formulations include Apriso, Asacol, Pentasa, Mezavant, Lialda, Fivasa, Rovasa and Salofalk.), Sulfasalazine (also known as Azulfidine), Balsalazide (also known as Colazal or Colazide (UK)), Olsalazine (also known as Dipentum), immunosuppressors (azathioprine, 6-mercaptopurine, methotrexate, rapamycine, cyclosporine and tacrolimus) or biological treatments such as Infliximab, Visilizumab, Adalimumab, or Vedolizumab.
- the agent that inhibits the dephosphorylation of phosphorylated eIF2 ⁇ is salubrinal (3-phenyl-N-[2,2,2-trichloro-1-[[(8-quinolinylamino)thioxomethyl]amino]ethyl]-2-propenamide) (Boyce et al (2005) “A selective inhibitor of elF2alpha dephosphorylation protects cells from ER stress”. Science 307 935. Long et al (2005) “Structure-activity relationship studies of salubrinal lead to its active biotinylated derivative”. Bioorg.Med.Chem.Lett. 15 3849).
- Salubrinal is a cell-permeable, selective inhibitor of cellular phosphatase complexes that dephosphorylate eIF2 ⁇ . Salubrinal is available from Alexis Biochemicals or Tocris Bioscience (Cat No. 2347), or other source as known to one of skill in the art.
- the agent that inhibits the dephosphorylation of phosphorylated eIF2 ⁇ is guanabenz (2-(2,6-dichlorobenzylidene) hydrazinecarboximidamide).
- Guanabenz is a small-molecule which bound to a regulatory subunit of protein phosphatase 1, PPP1R15A/GADD34, selectively disrupting the stressinducedstress induced dephosphorylation of the a subunit of translation initiation factor 2 (eIF2 ⁇ ) (Tsaytler P, Harding HP, Ron D, Bertolotti “A.Selective inhibition of a regulatory subunit of protein phosphatase 1 restores proteostasis.”. Science. 2011 Apr 1;332(6025):91-4)
- the agent that inhibits the dephosphorylation of phosphorylated eIF2 is an inhibitor of GADD34 or PP1 gene expression.
- Inhibitors of expression for use in the present invention may be based on anti-sense oligonucleotide constructs.
- Anti-sense oligonucleotides including anti-sense RNA molecules and anti-sense DNA molecules, would act to directly block the translation of GADD34 or PP1 mRNA by binding thereto and thus preventing protein translation or increasing mRNA degradation, thus decreasing the level of GADD34 or PP1, and thus activity, in a cell.
- antisense oligonucleotides of at least about 15 bases and complementary to unique regions of the mRNA transcript sequence encoding GADD34 or PP1 can be synthesized, e.g., by conventional phosphodiester techniques and administered by e.g., intravenous injection or infusion.
- Methods for using antisense techniques for specifically inhibiting gene expression of genes whose sequence is known are well known in the art (e.g. see U.S. Pat. Nos. 6,566,135; 6,566,131; 6,365,354; 6,410,323; 6,107,091; 6,046,321; and 5,981,732).
- Small inhibitory RNAs siRNAs
- siRNAs can also function as inhibitors of expression for use in the present invention.
- GADD34 or PP1 gene expression can be reduced by contacting a subject or cell with a small double stranded RNA (dsRNA), or a vector or construct causing the production of a small double stranded RNA, such that GADD34 or PP1 gene expression is specifically inhibited (i.e. RNA interference or RNAi).
- dsRNA small double stranded RNA
- RNAi RNA interference or RNAi.
- siRNA sequences advantageously comprise at least twelve contiguous dinucleotides or their derivatives.
- RNA derivatives with respect to the present nucleic acid sequences refers to a nucleic acid having a percentage of identity of at least 90% with erythropoietin or fragment thereof, preferably of at least 95%, as an example of at least 98%, and more preferably of at least 98%.
- percentage of identity between two nucleic acid sequences, means the percentage of identical nucleic acid, between the two sequences to be compared, obtained with the best alignment of said sequences, this percentage being purely statistical and the differences between these two sequences being randomly spread over the nucleic acid acids sequences.
- “best alignment” or “optimal alignment”, means the alignment for which the determined percentage of identity (see below) is the highest. Sequences comparison between two nucleic acids sequences are usually realized by comparing these sequences that have been previously align according to the best alignment; this comparison is realized on segments of comparison in order to identify and compared the local regions of similarity. The best sequences alignment to perform comparison can be realized, beside by a manual way, by using the global homology algorithm developed by Smith and Waterman (Ad. App. Math., vol.2, p:482, 1981), by using the local homology algorithm developped by Neddleman and Wunsch (J. Mol. Biol., vol.48, p:443, 1970), by using the method of similarities developed by Pearson and Lipman (Proc. Natl.
- the identity percentage between two sequences of nucleic acids is determined by comparing these two sequences optimally aligned, the nucleic acids sequences being able to comprise additions or deletions in respect to the reference sequence in order to get the optimal alignment between these two sequences.
- the percentage of identity is calculated by determining the number of identical position between these two sequences, and dividing this number by the total number of compared positions, and by multiplying the result obtained by 100 to get the percentage of identity between these two sequences.
- shRNAs short hairpin RNAs
- shRNAs can also function as inhibitors of expression for use in the present invention.
- Ribozymes can also function as inhibitors of expression for use in the present invention.
- Ribozymes are enzymatic RNA molecules capable of catalyzing the specific cleavage of RNA.
- the mechanism of ribozyme action involves sequence specific hybridization of the ribozyme molecule to complementary target RNA, followed by endonucleolytic cleavage.
- Engineered hairpin or hammerhead motif ribozyme molecules that specifically and efficiently catalyze endonucleolytic cleavage of GADD34 or PP1 mRNA sequences are thereby useful within the scope of the present invention.
- ribozyme cleavage sites within any potential RNA target are initially identified by scanning the target molecule for ribozyme cleavage sites, which typically include the following sequences, GUA, GUU, and GUC. Once identified, short RNA sequences of between about 15 and 20 ribonucleotides corresponding to the region of the target gene containing the cleavage site can be evaluated for predicted structural features, such as secondary structure, that can render the oligonucleotide sequence unsuitable.
- antisense oligonucleotides and ribozymes useful as inhibitors of expression can be prepared by known methods. These include techniques for chemical synthesis such as, e.g., by solid phase phosphoramadite chemical synthesis. Alternatively, anti-sense RNA molecules can be generated by in vitro or in vivo transcription of DNA sequences encoding the RNA molecule. Such DNA sequences can be incorporated into a wide variety of vectors that incorporate suitable RNA polymerase promoters such as the T7 or SP6 polymerase promoters. Various modifications to the oligonucleotides of the invention can be introduced as a means of increasing intracellular stability and half-life.
- Possible modifications include but are not limited to the addition of flanking sequences of ribonucleotides or deoxyribonucleotides to the 5′ and/or 3′ ends of the molecule, or the use of phosphorothioate or 2′-O-methyl rather than phosphodiesterase linkages within the oligonucleotide backbone.
- Antisense oligonucleotides, siRNAs, shRNAs and ribozymes of the invention may be delivered in vivo alone or in association with a vector.
- a “vector” is any vehicle capable of facilitating the transfer of the antisense oligonucleotide, siRNA, shRNA or ribozyme nucleic acid to the cells and preferably cells expressing GADD34 or PP1.
- the vector transports the nucleic acid to cells with reduced degradation relative to the extent of degradation that would result in the absence of the vector.
- the vectors useful in the invention include, but are not limited to, plasmids, phagemids, viruses, other vehicles derived from viral or bacterial sources that have been manipulated by the insertion or incorporation of the antisense oligonucleotide, siRNA, shRNA or ribozyme nucleic acid sequences.
- Viral vectors are a preferred type of vector and include, but are not limited to nucleic acid sequences from the following viruses: retrovirus, such as moloney murine leukemia virus, harvey murine sarcoma virus, murine mammary tumor virus, and rous sarcoma virus; adenovirus, adeno-associated virus; SV40-type viruses; polyoma viruses; Epstein-Barr viruses; papilloma viruses; herpes virus; vaccinia virus; polio virus; and RNA virus such as a retrovirus.
- retrovirus such as moloney murine leukemia virus, harvey murine sarcoma virus, murine mammary tumor virus, and rous sarcoma virus
- adenovirus adeno-associated virus
- SV40-type viruses polyoma viruses
- Epstein-Barr viruses Epstein-Barr viruses
- papilloma viruses herpes virus
- vaccinia virus
- Non-cytopathic viruses include retroviruses (e.g., lentivirus), the life cycle of which involves reverse transcription of genomic viral RNA into DNA with subsequent proviral integration into host cellular DNA. Retroviruses have been approved for human gene therapy trials. Most useful are those retroviruses that are replication-deficient (i.e., capable of directing synthesis of the desired proteins, but incapable of manufacturing an infectious particle). Such genetically altered retroviral expression vectors have general utility for the high-efficiency transduction of genes in vivo.
- viruses for certain applications are the adenoviruses and adeno-associated (AAV) viruses, which are double-stranded DNA viruses that have already been approved for human use in gene therapy.
- AAV adeno-associated virus
- 12 different AAV serotypes AAV1 to 12
- Recombinant AAV are derived from the dependent parvovirus AAV2 (Choi, V W J Virol 2005; 79:6801-07).
- the adeno-associated virus type 1 to 12 can be engineered to be replication deficient and is capable of infecting a wide range of cell types and species (Wu, Z Mol Ther 2006; 14:316-27).
- the adeno-associated virus can integrate into human cellular DNA in a site-specific manner, thereby minimizing the possibility of insertional mutagenesis and variability of inserted gene expression characteristic of retroviral infection.
- wild-type adeno-associated virus infections have been followed in tissue culture for greater than 100 passages in the absence of selective pressure, implying that the adeno-associated virus genomic integration is a relatively stable event.
- the adeno-associated virus can also function in an extrachromosomal fashion.
- Plasmid vectors have been extensively described in the art and are well known to those of skill in the art. See e.g. Sambrook et al., 1989. In the last few years, plasmid vectors have been used as DNA vaccines for delivering antigen-encoding genes to cells in vivo. They are particularly advantageous for this because they do not have the same safety concerns as with many of the viral vectors. These plasmids, however, having a promoter compatible with the host cell, can express a peptide from a gene operatively encoded within the plasmid.
- Plasmids may be delivered by a variety of parenteral, mucosal and topical routes.
- the DNA plasmid can be injected by intramuscular, intradermal, subcutaneous, or other routes. It may also be administered by intranasal sprays or drops, rectal suppository and orally.
- the plasmids may be given in an aqueous solution, dried onto gold particles or in association with another DNA delivery system including but not limited to liposomes, dendrimers, cochleate and microencap sulation.
- the antisense oligonucleotide, siRNA, shRNA or ribozyme nucleic acid sequence is under the control of a heterologous regulatory region, e.g., a heterologous promoter.
- a heterologous promoter e.g., a heterologous promoter.
- the promoter can also be, e.g., a viral promoter, such as CMV promoter or any synthetic promoters.
- the agent that promotes stress granule formation is pateamine A.
- Pateamine was first isolated from the marine sponge Mycale found off the shores of New Zealand. Northcote, P. T. et al, Tetrahedron Lett., 32:6411-6414 (1991). The natural form bears a thiazole and an E,Z-dienoate within a 19-membered macrocycle and a trienylamine side chain. Two additional pateamines, pateamines B and C, were also isolated. Their structures differ from pateamine A only in the nature of the terminal group of the trienylamine side chain. The structure for all three isolated natural forms is shown below:
- the agent that promotes stress granule formation is a derivative of pateamine A which as the general formula:
- A-B is ethane, (E) and (Z)-ethene, (E) and (Z)-substituted ethene, ethyne,
- K is hydrogen or C1-C3 alkyl
- Q is NH or O
- X is hydrogen, hydroxy, alkoxy, alkyl, aminocarbonyl, amino, alkylamino, dialkylamino, alkoxycarbonylamino,
- Y is S, NH, or O
- Z is hydrogen, hydroxy, aminocarbonyl, alkylamino, dialkylamino, alkoxycarbonylamino, but not t-butoxycarbonylamino when R4 is dimethylamino,
- R1 is hydrogen or C1-C3 alkyl
- R is selected from the following:
- R2 is optionally substituted with one or more substituents selected from alkyl, alkylhydroxy, alkylalkoxy, alkylamino, alkylaminoalkyl, or alkylaminodialkyl;
- R3 is optionally substituted with one or more substituents selected from hydrogen, alkyl, alkyenyl, ankynyl, hydroxy, alkoxy, amino, alkylamino, dialkylamino, trifluromethane, or fluoro; and
- R4 is optionally substituted with one or more substituents selected from hydrogen, alkyl, alkyenyl, alkynyl, hydroxy, alkoxy, amino, alkylamino, or dialkylamino; and
- R4 is optionally substituted with one or more substituents selected from hydrogen, alkyl, alkyenyl, alkynyl, hydroxy, alkoxy, amino, alkylamino, or dialkylamino.
- Another object of the invention relates to a method for treating and/or preventing inflammatory bowel disease comprising administering a subject in need thereof with an agent capable of restoring the integrated stress response (ISR), as above described.
- ISR integrated stress response
- the agent capable of restoring the integrated stress response (ISR) may be administered in the form of a pharmaceutical composition, as defined below.
- said inhibitor is administered in a therapeutically effective amount.
- a “therapeutically effective amount” is meant a sufficient amount of the agent capable of restoring the integrated stress response (ISR) to treat and/or to prevent an inflammatory bowel disease at a reasonable benefit/risk ratio applicable to any medical treatment.
- ISR integrated stress response
- the total daily usage of the compounds and compositions of the present invention will be decided by the attending physician within the scope of sound medical judgment.
- the specific therapeutically effective dose level for any particular subject will depend upon a variety of factors including the disorder being treated and the severity of the disorder; activity of the specific compound employed; the specific composition employed, the age, body weight, general health, sex and diet of the subject; the time of administration, route of administration, and rate of excretion of the specific compound employed; the duration of the treatment; drugs used in combination or coincidental with the specific polypeptide employed; and like factors well known in the medical arts.
- the daily dosage of the products may be varied over a wide range from 0.01 to 1,000 mg per adult per day.
- the compositions contain 0.01, 0.05, 0.1, 0.5, 1.0, 2.5, 5.0, 10.0, 15.0, 25.0, 50.0, 100, 250 and 500 mg of the active ingredient for the symptomatic adjustment of the dosage to the subject to be treated.
- a medicament typically contains from about 0.01 mg to about 500 mg of the active ingredient, preferably from 1 mg to about 100 mg of the active ingredient.
- An effective amount of the drug is ordinarily supplied at a dosage level from 0.0002 mg/kg to about 20 mg/kg of body weight per day, especially from about 0.001 mg/kg to 7 mg/kg of body weight per day.
- Another object of the invention relates to a method for treating an inflammatory bowel disease comprising:
- step i) and ii) are performed concomitantly or preferably step ii) is performed sequentially after step i).
- the agent capable of restoring the integrated stress response may be combined with pharmaceutically acceptable excipients, and optionally sustained-release matrices, such as biodegradable polymers, to form therapeutic compositions.
- the active principle in the pharmaceutical compositions of the present invention for oral, sublingual, subcutaneous, intramuscular, intravenous, transdermal, local or rectal administration, can be administered in a unit administration form, as a mixture with conventional pharmaceutical supports, to animals and human beings.
- Suitable unit administration forms comprise oral-route forms such as tablets, gel capsules, powders, granules and oral suspensions or solutions, sublingual and buccal administration forms, aerosols, implants, subcutaneous, transdermal, topical, intraperitoneal, intramuscular, intravenous, subdermal, transdermal, intrathecal and intranasal administration forms and rectal administration forms (suppository and enemas).
- the pharmaceutical compositions contain vehicles which are pharmaceutically acceptable for a formulation capable of being injected.
- vehicles which are pharmaceutically acceptable for a formulation capable of being injected.
- These may be in particular isotonic, sterile, saline solutions (monosodium or disodium phosphate, sodium, potassium, calcium or magnesium chloride and the like or mixtures of such salts), or dry, especially freeze-dried compositions which upon addition, depending on the case, of sterilized water or physiological saline, permit the constitution of injectable solutions.
- the pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersions; formulations including sesame oil, peanut oil or aqueous propylene glycol; and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions.
- the form must be sterile and must be fluid to the extent that easy syringability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms, such as bacteria and fungi.
- Solutions comprising compounds of the invention as free base or pharmacologically acceptable salts can be prepared in water suitably mixed with a surfactant, such as hydroxypropylcellulose. Dispersions can also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms.
- the agent capable of restoring the integrated stress response (ISR) of the invention can be formulated into a composition in a neutral or salt form.
- Pharmaceutically acceptable salts include the acid addition salts (formed with the free amino groups of the protein) and which are formed with inorganic acids such as, for example, hydrochloric or phosphoric acids, or such organic acids as acetic, oxalic, tartaric, mandelic, and the like. Salts formed with the free carboxyl groups can also be derived from inorganic bases such as, for example, sodium, potassium, ammonium, calcium, or ferric hydroxides, and such organic bases as isopropylamine, trimethylamine, histidine, procaine and the like.
- the carrier can also be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), suitable mixtures thereof, and vegetables oils.
- the proper fluidity can be maintained, for example, by the use of a coating, such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants.
- the prevention of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like.
- isotonic agents for example, sugars or sodium chloride.
- Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminium monostearate and gelatin.
- Sterile injectable solutions are prepared by incorporating the active polypeptides in the required amount in the appropriate solvent with several of the other ingredients enumerated above, as required, followed by filtered sterilization.
- dispersions are prepared by incorporating the various sterilized active ingredients into a sterile vehicle which contains the basic dispersion medium and the required other ingredients from those enumerated above.
- the preferred methods of preparation are vacuum-drying and freeze-drying techniques which yield a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.
- solutions Upon formulation, solutions will be administered in a manner compatible with the dosage formulation and in such amount as is therapeutically effective.
- the formulations are easily administered in a variety of dosage forms, such as the type of injectable solutions described above, but drug release capsules and the like can also be employed.
- aqueous solutions For parenteral administration in an aqueous solution, for example, the solution should be suitably buffered if necessary and the liquid diluent first rendered isotonic with sufficient saline or glucose.
- aqueous solutions are especially suitable for intravenous, intramuscular, subcutaneous and intraperitoneal administration.
- sterile aqueous media which can be employed will be known to those of skill in the art in light of the present disclosure.
- one dosage could be dissolved in 1 ml of isotonic NaCl solution and either added to 1000 ml of hypodermoclysis fluid or injected at the proposed site of infusion. Some variation in dosage will necessarily occur depending on the condition of the subject being treated. The person responsible for administration will, in any event, determine the appropriate dose for the individual subject.
- the agent capable of restoring the integrated stress response (ISR) of the invention may be formulated within a therapeutic mixture to comprise about 0.0001 to 1.0 milligrams, or about 0.001 to 0.1 milligrams, or about 0.1 to 1.0 or even about 10 milligrams per dose or so. Multiple doses can also be administered.
- parenteral administration such as intravenous or intramuscular injection
- other pharmaceutically acceptable forms include, e.g. tablets or other solids for oral administration; liposomal formulations; time release capsules ; and any other form currently used.
- Biopsies (5 to 10) were taken from the right and left colon of each healthy control subject and processed as above. Endoscopic findings were normal in all subjects and biopsy specimens were systematically diagnosed as nonsignificant abnormalities with HE staining. Surgical samples were taken from healthy colon mucosa at least 10 cm from the cancer site, and processed as above.
- Biopsies were routinely stained with HE. Histological assessment of mucosal damage and inflammatory cell infiltrate were graded by the same expert pathologist using a previously validated score to characterize colonic involvement of IBD 12 .
- Immunohistological methods were performed on serial 4 ⁇ m deparaffinised sections from control and unaffected UC mucosa. After endogenous peroxidase removal, sections were incubated with specific antibodies. For immunofluorescence studies, cryoslide sections from control and unaffected UC mucosa were incubated with anti-TIA-1 and anti-eIF3 antibodies, and then labeled with secondary antibodies. Nuclei were stained using DAPI or TO-PRO-3 iodide. Fluorescence was detected by confocal laser scanning microscopy (CLSM-510-META, Zeiss). All images were acquired by using the Zeiss LSM Image Browser software.
- Colon biopsies were homogenized as previously described 13 . Equal amounts of total protein (50-75 ⁇ g) were then subjected to SDS-PAGE, transferred using iBlotGel Transfer Device (Invitrogen), and probed with primary antibodies (see Supplemental Informations). Labeled protein bands were scanned with an HP Scanjet 5500, and the relative protein content was determined by densitometric analysis.
- RNA quality was determined with an Agilent 2100 Bioanalyzer, as well as in a control gradient in which pooled colonic tissue from 2 UC patients and 2 healthy subjects were lysed in the presence of 25 mM EDTA (pH 8.0).
- the resulting polysome profile demonstrated a complete shift in mRNAs from the polysome-bound fraction towards lighter sucrose fractions (data not shown) verifying proper identification of polysomal peaks.
- RNAs from polysomes were pooled and purified. RNA samples were amplified and Cy3 labeled following the manufacturer's protocol.
- the hybridization procedure was performed by Tebu-Bio according to the Agilent 60-mer oligo microarray processing protocol using the Agilent Gene Expression Hybridization Kit and Agilent Whole Human Genome Oligo Microarrays 4 ⁇ 44 K which covers more than 41,000 genes and transcripts. Normalized data were serially filtered in the following order: eliminate genes flagged as absent in all groups, select genes up- or downregulated by at least two fold with P ⁇ 0.05 (unaffected UC mucosa vs. control, Student t-test with Benjamini and Hochberg false discovery rate as multiple testing correction).
- Unaffected colonic UC mucosa exhibit extended IRE1 ⁇ and ATF6 ⁇ branch signaling
- UPR activation was assessed by determining IRE1 ⁇ -mediated splicing of XPB-1 in unaffected colonic mucosa from UC and healthy individuals.
- Spliced XBP-1 (XBP-1s) mRNA levels were significantly increased in UC mucosa and the ratio of spliced to unspliced XBP-1 (XBP-1s/XBP-1u) was 1.8 and 3.8 in controls and UC, respectively.
- Consistent with hyperactivation of the IRE1 ⁇ /XBP-1 arm increased expression of the UPR-related target genes GRP94, GRP78, and EDEM1 was observed in UC patients compared to controls.
- IRE1 can also activate the c-Jun-N-terminal kinases (JNK) which regulate apoptosis and/or proinflammatory gene expression through the TRAF2/MAP3K cascade 15 .
- JNK c-Jun-N-terminal kinases
- ATF6 ⁇ functions as a proximal inducer of the UPR as p5OATF6 ⁇ , the active bZIP transcription factor converted from the latent p9OATF6 ⁇ , binds ER stress-responsive elements of genes including GRP78, GRP94 and XBP-1u 9 .
- the generation of p50ATF6 ⁇ was reproducible in UC patients and was associated with enhanced XBP-1u mRNA levels compared to controls.
- SGs stress granules
- SGs are specialized cytoplasmic foci which regulate mRNA translation and form by both eIF2 ⁇ phosphorylation-dependent 18 and -independent mechanisms 19 .
- SGs contain stalled mRNA bound to small 40S ribosomal subunits, aggregation-prone ribonucleoproteins (e.g. TIA-1 and TIAR), and different translational initiation factors 18 .
- Cryoslide sections of unaffected UC and control colonic mucosa were immunostained for TIA-1 and eIF3, two components of SGs. Colocalization of TIA-1 and eIF3 was observed in abundant punctuate foci in control colonic epithelial cells. In contrast, a marked loss of SGs was observed in unaffected UC mucosa. Only 10% of epithelial cells from each UC tissue section contained at least 5 SGs compared to over 45% of control mucosal cells. The reduction in the number of SGs was not due to a decrease in TIA-1 or eIF3 protein expression levels since Western blot analysis showed increased expression of these two proteins in unaffected UC mucosa.
- Altered ER stress response entails post-transcriptional reprogramming of mRNA translation in unaffected UC mucosa
- eIF4E a key player in translation initiation is eIF4E which is the limiting component of the eIF4F initiation complex.
- This complex contains two other subunits: eIF4A (an ATP-dependent helicase) and eIF4G (a large scaffolding protein), which associate with eIF4E and play a crucial role in the eIF2 ⁇ phosphorylation-independent mechanisms of SG formation 19 .
- eIF4E expression level was ⁇ 35% higher in unaffected UC mucosa than in controls.
- eIF4E In addition to its level of expression, availability of eIF4E for translation initiation is controlled by the phosphorylation status of 4E-BP 1 20 .
- the level of hyperphosphorylated 4E-BP1 (Ser65) was found to be increased by about threefold while the level of total 4E-BP1 was not affected in unaffected UC mucosa compared to controls.
- eIF4E phosphorylation (Ser209) which stimulates translation efficiency 21 and eIF4A and eIF4G expression levels were significantly increased in unaffected UC mucosa suggesting that eIF4F formation and unwinding of RNA secondary structures are optimized in unaffected UC mucosa.
- Gene products were grouped into functional categories and molecular functions according to the Gene Ontology (http://www.geneontology.org), GeneCards (http://www.genecards.org/) and GeneNote (http://bioinfo2.weizmann.ac.il/cgibin/genenote) data bases.
- GeneOntology http://www.geneontology.org
- GeneCards http://www.genecards.org/
- GeneNote http://bioinfo2.weizmann.ac.il/cgibin/genenote
- genes coding for ER stress response ATF4, ATF6, ER01
- translation elF2alpha, eIF5A
- mucins MUC2, MUC4, MUC12, MUC20
- ZO1, keratins, claudins immune response and antibacterial defenses
- TLR4, TLR6, IFR5, interleukins detoxification and antioxidative stress
- TST/CES2, SOD1, SOD2 detoxification and antioxidative stress
- wound repair and cell cycle cdc42, p21 WAF/cip , HMGB1 indicating that our microarray analysis provided an accurate representation of gene expression in unaffected UC mucosa and revealed new altered biological functions in UC.
- CDKN1A p21 WAF/cip
- eIF5A which promotes translation elongation, polysome disassembly, SG assembly, and inflammation 25
- RanBP2 which functions as the small ubiquitin-related E3 ligase of TCF-4 enhancing the Wnt signaling pathway 26
- SOD1 superoxide dismutase 1
- PgR polymeric immunoglobulin receptor
- TST/CES2 thiosulfate sulfurtransferase
- p21 WAF/cip , eIF5A, SOD1, PIgR, and TST/CES2 protein expression levels were significantly decreased while RanBP2 protein levels were increased in unaffected UC vs. control mucosa.
- Protein level changes in PIgR (membrane-associated protein) and TST/CES2 (mitochondrion-associated protein) were confirmed by immunohistochemistry (FIG. 5B).
- ISR immunosensing protein
- Decreased TST/CES2 expression in unaffected UC mucosa may increase epithelial cell exposure to the toxic effects of H 2 5 and lead to or worsen UC, as well as promote colorectal carcinogenesis 29 .
- the downregulation of critical cytoprotective proteins through the reprogramming of mRNA translation in UC could impair epithelial homeostasis.
- This could be the first step towards identifying the regulatory networks that control translational repression whose dysregulation could be involved in the pathophysiology of UC.
- RNAi screen links O-GlcNAc modification of ribosomal proteins to stress granule and processing body assembly.Nat Cell Biol 2008;10:1224-1231
- Ulcerative colitis is characterized by exclusive colonic involvement with superficial mucosal lesions associated with depletion in goblet cells and decreased secretion of mucins in inflammatory colonic mucosa 11 .
- epithelium of UC patients is diffusely abnormal irrespective to inflammation 12
- early alterations predating inflammation within colonic epithelial cell remain elusive.
- impairment of proper ERS resolution by altered unfolded protein response (UPR) in epithelial cells can lead or sensitize to colonic inflammation both in animal 2-8 and human studies 1,2 .
- URR unfolded protein response
- the UPR is a carefully orchestrated process involving three proximal sensors PERK, ATF6, and IRE1 that allow cells to cope with a wide variety of stressful conditions.
- the combined action of these sensors restores cell homeostasis by cessation of protein translation, increase of chaperones production, and degradation of the burden of aberrant proteins.
- Sustained or abnormal ERS adversely affects normal cell function leading to inflammation and/or apoptosis 13,14 .
- goblet cells goblet cells and mucus barrier have been linked to inflammation.
- knockout of the mucin gene Muc2 in mice is not sufficient to cause colitis since inflammation appears to arise only on a permissive genetic background 15,16 and patients with UC express MUC2.
- partial or total depletion in the number of goblet cells 17,20 and therefore in mucus and antibacterial products is insufficient to induce colitis.
- accumulation of missense mutated Muc2 ref7 or HLA-27 protein 9 which is prone to misfolding in the ER, or knockout of the protein disulfide isomerase Agr2 ref.5 induce exaggerated ERS in secretory cells and subsequent inflammation.
- the predisposition to colitis might reside in goblet cells themselves and in their inability to manage ERS in the absence of immune dysfunction and in the setting of a normal colonic flora.
- goblet cells are affected by ERS in UC
- IL-10 KO mice which express deregulated ERS in epithelial intestinal cells 8 and develop enterocolitis depending on both genetic background and environmental factors 21 .
- mice We next measured epithelial permeability of FITC-dextran in segments of distal colon and indigenous bacterial translocation was identified in the spleen of 7 and 12-week-old mice. Consistent with the colitis state, only IL10/Nox1 dKO mice demonstrated an increased permeability in the colon and exhibited splenomegaly which was closely correlated with increased Gram-negative commensal bacteria translocation. Interestingly, IL10/Nox1 dKO mice showed the main complications of UC such as colitis-associated colorectal cancer and spontaneously primary sclerosing cholangitis at 7/8 months of age.
- IL10 KO mice showed mild enterocolitis at low frequency ( ⁇ 20% at 34 weeks), without showing any signs of cholangitis or colorectal cancer (at >8 months of age; this study and 29 ).
- IL10 KO mice showed mild enterocolitis at low frequency ( ⁇ 20% at 34 weeks), without showing any signs of cholangitis or colorectal cancer (at >8 months of age; this study and 29 ).
- IL10 KO mice showed mild enterocolitis at low frequency ( ⁇ 20% at 34 weeks), without showing any signs of cholangitis or colorectal cancer (at >8 months of age; this study and 29 ).
- IL10 10/ Nox1 dKO mice 6- and 16-wk-old mice. Consistent with previous findings in patients with UC 30,31 , IL10/Nox1 dKO mice expressed almost 50% of microRNAs relevant in defining UC signature.
- IL10/Nox1 dKO mice showed increased expression levels of pro-inflammatory cytokines mainly involved in UC. Lymphoid and myeloid cell population analysis in the spleen did not differ between the four genotypes. By contrast, a massive infiltration of FoxP3 + T reg was only observed in the colonic tissue in spite of active mucosal inflammation and at lesser extent in the spleen of IL10/Nox1 dKO mice consistent with findings in UC 32 .
- BM bone marrow
- the colonic epithelium of IL10/Nox1 dKO mice showed a paucity of Alcian Blue/PAS positive mucins associated with loss of goblet cells at the ulcerated sites. Accordingly, Muc2 and Muc4 protein expression levels were dramatically low in the inflamed colonic areas of IL10/Nox1 dKO mice. Rarefaction and aberrant morphology of goblet cells with few and immature thecae associated with small amount of mucus and swollen, round mitochondria were similarly observed in the colon of both IL10/Nox1 dKO mice and patients with UC.
- Colonic section of IL10/Nox1 dKO mice displayed an increase in the number of PCNA-and phospho-histone 3-positive cells suggesting increased epithelial proliferation.
- Scanning electron microscopy (SEM) showed a ⁇ 30% increase in crypt length in IL10/Nox1 dKO mice.
- SEM displayed a wide spectrum of identical ultrastructural alterations of the mucosa both in IL10/Nox1 dKO mice and in unaffected colonic mucosa of patients with UC including crypt distortion, visible crypt openings disposed in rows, edematous glandular borders, and dilatation of the gland lumen.
- staining and quantitative assessment of apoptotic cells indicated that decreased expression of goblet cells in IL10/Nox1 dKO mice was due to increased apoptosis in the colon.
- IL10/Nox1 dKO mice exhibited ERS disturbances in the colonic mucosa prior inflammatory damages as previously described in patients with UC 1 .
- IRE1beta and ATF6alpha branch signaling were extended in colonic epithelial cells as evidenced by the increased XBP-1 mRNA splicing, the induction of GRP78, GRP94, PDI at both mRNA and protein levels, and dilated cisternae and gross distortion of the ER in goblet cells.
- identical defective phosphorylation of eIF2 ⁇ correlated with low expression of ATF4 was observed both in unaffected colonic mucosa of IL10/Nox1 dKO mice and patients with UC 1 .
- EIF2alpha phosphorylation is cytoprotective during ERS, because cells are sensitized to cell death when this pathway is genetically ablated 33 and protected when it is ectopically enforced 34 .
- IL10/Nox1 dKO mice were treated with 1 mg/kg salubrinal 35 for up to three weeks.
- salubrinal strongly reduced histological colitis score throughout the colon, markedly prevented immune cell infiltration, and restored intact mucosal architecture with normal goblet cells.
- Salubrinal caused robust elF2alpha phosphorylation and protected colonic mucosa against apoptosis at least in part for its anti-apoptotic activity on CHOP expression.
- NADPH oxidase 1 modulates WNT and NOTCH1 signaling to control the fate of proliferative progenitor cells in the colon. Mol Cell Biol 30, 2636-2650 (2010).
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Engineering & Computer Science (AREA)
- Public Health (AREA)
- Zoology (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Organic Chemistry (AREA)
- Epidemiology (AREA)
- Environmental Sciences (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- Wood Science & Technology (AREA)
- Biomedical Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- General Engineering & Computer Science (AREA)
- Animal Husbandry (AREA)
- Biodiversity & Conservation Biology (AREA)
- Physics & Mathematics (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Diabetes (AREA)
- Toxicology (AREA)
- Immunology (AREA)
- Endocrinology (AREA)
- Gastroenterology & Hepatology (AREA)
- Pathology (AREA)
- Rheumatology (AREA)
- Plant Pathology (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11162272 | 2011-04-13 | ||
EP11162272.6 | 2011-04-13 | ||
PCT/EP2012/056799 WO2012140208A1 (fr) | 2011-04-13 | 2012-04-13 | Procédés de criblage et compositions pharmaceutiques pour le traitement de syndromes abdominaux inflammatoires |
Publications (1)
Publication Number | Publication Date |
---|---|
US20140031389A1 true US20140031389A1 (en) | 2014-01-30 |
Family
ID=44351492
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/111,291 Abandoned US20140031389A1 (en) | 2011-04-13 | 2012-04-13 | Screening methods and pharmaceutical compositions for the treatment of inflammatory bowel diseases |
US14/118,001 Expired - Fee Related US9217156B2 (en) | 2011-04-13 | 2012-04-13 | Non human animal model for ulcerative colitis and its main complications |
US14/943,422 Abandoned US20160066551A1 (en) | 2011-04-13 | 2015-11-17 | Non human animal model for ulcerative colitis and its main complications |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/118,001 Expired - Fee Related US9217156B2 (en) | 2011-04-13 | 2012-04-13 | Non human animal model for ulcerative colitis and its main complications |
US14/943,422 Abandoned US20160066551A1 (en) | 2011-04-13 | 2015-11-17 | Non human animal model for ulcerative colitis and its main complications |
Country Status (6)
Country | Link |
---|---|
US (3) | US20140031389A1 (fr) |
EP (2) | EP2696859A1 (fr) |
JP (1) | JP2014512008A (fr) |
CA (2) | CA2832680A1 (fr) |
ES (1) | ES2607616T3 (fr) |
WO (2) | WO2012140208A1 (fr) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160124544A (ko) * | 2015-04-20 | 2016-10-28 | 삼성전자주식회사 | 담즙울체성 간질환 동물 모델 및 이의 제조 방법 |
CN107912366B (zh) * | 2017-12-06 | 2020-12-11 | 江苏珂玛麒生物科技有限公司 | 一种非酒精性慢性脂肪性肝炎非人灵长类动物模型及其构建方法和用途 |
JP7360106B2 (ja) | 2017-12-28 | 2023-10-12 | 小胞体ストレス研究所株式会社 | ベンゾチアゾイミダゾリル化合物を含有する小胞体ストレス調節剤 |
CN112913778B (zh) * | 2021-01-29 | 2022-11-01 | 石河子大学 | 一种绵羊慢性炎症模型的构建方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090281040A1 (en) * | 2008-05-08 | 2009-11-12 | Fumihiko Urano | Methods For Treating Endoplasmic Reticulum (ER) Stress Disorders |
WO2011061340A1 (fr) * | 2009-11-23 | 2011-05-26 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Inhibiteurs du complexe pp1/gadd34 pour le traitement d'un état nécessitant une activité d'immunosuppression |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5763198A (en) | 1994-07-22 | 1998-06-09 | Sugen, Inc. | Screening assays for compounds |
US6506559B1 (en) | 1997-12-23 | 2003-01-14 | Carnegie Institute Of Washington | Genetic inhibition by double-stranded RNA |
AUPP249298A0 (en) | 1998-03-20 | 1998-04-23 | Ag-Gene Australia Limited | Synthetic genes and genetic constructs comprising same I |
US6566131B1 (en) | 2000-10-04 | 2003-05-20 | Isis Pharmaceuticals, Inc. | Antisense modulation of Smad6 expression |
US6410323B1 (en) | 1999-08-31 | 2002-06-25 | Isis Pharmaceuticals, Inc. | Antisense modulation of human Rho family gene expression |
US6107091A (en) | 1998-12-03 | 2000-08-22 | Isis Pharmaceuticals Inc. | Antisense inhibition of G-alpha-16 expression |
US5981732A (en) | 1998-12-04 | 1999-11-09 | Isis Pharmaceuticals Inc. | Antisense modulation of G-alpha-13 expression |
US6046321A (en) | 1999-04-09 | 2000-04-04 | Isis Pharmaceuticals Inc. | Antisense modulation of G-alpha-i1 expression |
GB9927444D0 (en) | 1999-11-19 | 2000-01-19 | Cancer Res Campaign Tech | Inhibiting gene expression |
EP1272630A2 (fr) | 2000-03-16 | 2003-01-08 | Genetica, Inc. | Procedes et compositions d'interference d'arn |
US6365354B1 (en) | 2000-07-31 | 2002-04-02 | Isis Pharmaceuticals, Inc. | Antisense modulation of lysophospholipase I expression |
US6566135B1 (en) | 2000-10-04 | 2003-05-20 | Isis Pharmaceuticals, Inc. | Antisense modulation of caspase 6 expression |
WO2007084868A2 (fr) * | 2006-01-17 | 2007-07-26 | Kalypsys, Inc. | Traitement d'une inflammation et de troubles associes par l'activation de la reponse upr (proteine depliee) |
AU2007220039A1 (en) * | 2006-02-27 | 2007-09-07 | The Board Of Trustees Of The Leland Stanford Junior University | Inhibitors of the unfolded protein response and methods for their use |
JP2008118870A (ja) * | 2006-11-09 | 2008-05-29 | Dainippon Sumitomo Pharma Co Ltd | 自己免疫疾患治療剤のスクリーニング方法 |
US8268550B2 (en) * | 2009-06-26 | 2012-09-18 | Massachusetts Institute Of Technology | Compositions and methods for identification of PARP function, inhibitors, and activators |
-
2012
- 2012-04-13 EP EP12714698.3A patent/EP2696859A1/fr not_active Withdrawn
- 2012-04-13 EP EP12738593.8A patent/EP2696860B1/fr not_active Not-in-force
- 2012-04-13 CA CA2832680A patent/CA2832680A1/fr not_active Abandoned
- 2012-04-13 US US14/111,291 patent/US20140031389A1/en not_active Abandoned
- 2012-04-13 US US14/118,001 patent/US9217156B2/en not_active Expired - Fee Related
- 2012-04-13 JP JP2014504342A patent/JP2014512008A/ja active Pending
- 2012-04-13 ES ES12738593.8T patent/ES2607616T3/es active Active
- 2012-04-13 WO PCT/EP2012/056799 patent/WO2012140208A1/fr active Application Filing
- 2012-04-13 WO PCT/IB2012/000882 patent/WO2012140516A2/fr active Application Filing
- 2012-04-13 CA CA2834960A patent/CA2834960A1/fr not_active Abandoned
-
2015
- 2015-11-17 US US14/943,422 patent/US20160066551A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090281040A1 (en) * | 2008-05-08 | 2009-11-12 | Fumihiko Urano | Methods For Treating Endoplasmic Reticulum (ER) Stress Disorders |
WO2011061340A1 (fr) * | 2009-11-23 | 2011-05-26 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Inhibiteurs du complexe pp1/gadd34 pour le traitement d'un état nécessitant une activité d'immunosuppression |
Non-Patent Citations (1)
Title |
---|
CCFA (http://www.ccfa.org/resources/understanding-ibd-medications.html?print=t, published November 30, 2009) * |
Also Published As
Publication number | Publication date |
---|---|
CA2834960A1 (fr) | 2012-10-18 |
EP2696859A1 (fr) | 2014-02-19 |
CA2832680A1 (fr) | 2012-10-18 |
EP2696860B1 (fr) | 2016-10-19 |
WO2012140208A1 (fr) | 2012-10-18 |
WO2012140516A2 (fr) | 2012-10-18 |
US9217156B2 (en) | 2015-12-22 |
US20140373186A1 (en) | 2014-12-18 |
EP2696860A2 (fr) | 2014-02-19 |
JP2014512008A (ja) | 2014-05-19 |
WO2012140516A3 (fr) | 2012-11-29 |
US20160066551A1 (en) | 2016-03-10 |
ES2607616T3 (es) | 2017-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liu et al. | Molecular characterization of the transition from acute to chronic kidney injury following ischemia/reperfusion | |
Tréton et al. | Altered endoplasmic reticulum stress affects translation in inactive colon tissue from patients with ulcerative colitis | |
Emde et al. | Dysregulated mi RNA biogenesis downstream of cellular stress and ALS‐causing mutations: a new mechanism for ALS | |
Dalby et al. | Diet induced obesity is independent of metabolic endotoxemia and TLR4 signalling, but markedly increases hypothalamic expression of the acute phase protein, SerpinA3N | |
DK2026073T3 (en) | Diagnosis and treatment of macular degeneration-related disorders | |
Bräuninger et al. | Cardiac SARS-CoV-2 infection is associated with pro-inflammatory transcriptomic alterations within the heart | |
Durrenberger et al. | DnaJB6 is present in the core of Lewy bodies and is highly up‐regulated in parkinsonian astrocytes | |
Martin et al. | Experimental demyelination and axonal loss are reduced in MicroRNA-146a deficient mice | |
Yuan et al. | microRNA‐30a inhibits the liver cell proliferation and promotes cell apoptosis through the JAK/STAT signaling pathway by targeting SOCS‐1 in rats with sepsis | |
Zhang et al. | Elevated level of miR‐551b‐5p is associated with inflammation and disease progression in patients with severe acute pancreatitis | |
JP2011050383A (ja) | 硬化をもたらす増殖性疾患の検出方法及びキット、硬化をもたらす増殖性疾患の予防及び/又は治療剤、ならびに硬化をもたらす増殖性疾患の予防及び/又は治療に有効な物質を同定する方法及びキット | |
US20210228531A1 (en) | Targeted treatment of autism spectrum disorder and other neurological or psychiatric disorders | |
Ojeda-Juárez et al. | Lipocalin-2 mediates HIV-1 induced neuronal injury and behavioral deficits by overriding CCR5-dependent protection | |
Bello-Perez et al. | Zebrafish C-reactive protein isoforms inhibit SVCV replication by blocking autophagy through interactions with cell membrane cholesterol | |
Johswich et al. | Role of the C5a receptor (C5aR) in acute and chronic dextran sulfate-induced models of inflammatory bowel disease | |
JPWO2018025923A1 (ja) | 抗htlv−1剤、htlv−1関連脊髄症(ham/tsp)治療薬 | |
US20130079384A1 (en) | Means and Methods for Determining Risk of Cardiovascular Disease | |
CN112367970A (zh) | 用于治疗apoe4/4相关病症的方法 | |
Piccolo et al. | Up-regulation of miR-34b/c by JNK and FOXO3 protects from liver fibrosis | |
US20140031389A1 (en) | Screening methods and pharmaceutical compositions for the treatment of inflammatory bowel diseases | |
Inoue et al. | Regulatory network mediated by RBP-J/NFATc1-miR182 controls inflammatory bone resorption | |
EP2855516B1 (fr) | Polypeptides activant une inflammation et leurs utilisations | |
Chen et al. | Combination of azithromycin and methylprednisolone alleviates Mycoplasma pneumoniae induced pneumonia by regulating miR‑499a‑5p/STAT3 axis | |
US20180258484A1 (en) | Inflammation-enabling polypeptides and uses thereof | |
Chen et al. | Circulating exosomal microRNA-18a-5p accentuates intestinal inflammation in Hirschsprung-associated enterocolitis by targeting RORA |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INSERM (INSTITUT NATIONAL DE LA SANTE ET DE LA REC Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OGIER-DENIS, ERIC;TRETON, XAVIER;PEDRUZZI, ERIC;AND OTHERS;REEL/FRAME:031388/0760 Effective date: 20130930 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |