US20140011258A1 - Processing biomass - Google Patents
Processing biomass Download PDFInfo
- Publication number
- US20140011258A1 US20140011258A1 US14/016,455 US201314016455A US2014011258A1 US 20140011258 A1 US20140011258 A1 US 20140011258A1 US 201314016455 A US201314016455 A US 201314016455A US 2014011258 A1 US2014011258 A1 US 2014011258A1
- Authority
- US
- United States
- Prior art keywords
- biomass
- microorganism
- cellulosic
- enzyme
- lignocellulosic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000002028 Biomass Substances 0.000 title claims description 124
- 238000012545 processing Methods 0.000 title claims description 14
- 102000004190 Enzymes Human genes 0.000 claims abstract description 123
- 108090000790 Enzymes Proteins 0.000 claims abstract description 123
- 238000000034 method Methods 0.000 claims abstract description 111
- 239000002029 lignocellulosic biomass Substances 0.000 claims abstract description 28
- 230000001939 inductive effect Effects 0.000 claims abstract description 13
- 229940088598 enzyme Drugs 0.000 claims description 125
- 244000005700 microbiome Species 0.000 claims description 62
- 239000000047 product Substances 0.000 claims description 57
- 238000004519 manufacturing process Methods 0.000 claims description 47
- 235000000346 sugar Nutrition 0.000 claims description 44
- 238000011282 treatment Methods 0.000 claims description 42
- 239000000123 paper Substances 0.000 claims description 34
- 239000000203 mixture Substances 0.000 claims description 33
- 108010059892 Cellulase Proteins 0.000 claims description 31
- 238000000855 fermentation Methods 0.000 claims description 27
- 230000004151 fermentation Effects 0.000 claims description 27
- 229940106157 cellulase Drugs 0.000 claims description 22
- 240000008042 Zea mays Species 0.000 claims description 21
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 claims description 21
- 235000002017 Zea mays subsp mays Nutrition 0.000 claims description 21
- 235000005822 corn Nutrition 0.000 claims description 21
- -1 card stock Substances 0.000 claims description 17
- 239000010902 straw Substances 0.000 claims description 15
- 241000499912 Trichoderma reesei Species 0.000 claims description 13
- 239000002023 wood Substances 0.000 claims description 11
- 241000233866 Fungi Species 0.000 claims description 10
- 240000004808 Saccharomyces cerevisiae Species 0.000 claims description 10
- 239000002245 particle Substances 0.000 claims description 10
- 240000005979 Hordeum vulgare Species 0.000 claims description 9
- 235000007340 Hordeum vulgare Nutrition 0.000 claims description 9
- 241000894006 Bacteria Species 0.000 claims description 8
- 239000000126 substance Substances 0.000 claims description 8
- 240000007594 Oryza sativa Species 0.000 claims description 7
- 241000209504 Poaceae Species 0.000 claims description 7
- 238000000227 grinding Methods 0.000 claims description 7
- 239000010907 stover Substances 0.000 claims description 7
- 239000002699 waste material Substances 0.000 claims description 7
- 241000609240 Ambelania acida Species 0.000 claims description 6
- 241000195493 Cryptophyta Species 0.000 claims description 6
- 235000007164 Oryza sativa Nutrition 0.000 claims description 6
- 235000021307 Triticum Nutrition 0.000 claims description 6
- 239000002154 agricultural waste Substances 0.000 claims description 6
- 239000010905 bagasse Substances 0.000 claims description 6
- 238000004880 explosion Methods 0.000 claims description 6
- 230000003647 oxidation Effects 0.000 claims description 6
- 238000007254 oxidation reaction Methods 0.000 claims description 6
- 238000000197 pyrolysis Methods 0.000 claims description 6
- 235000009566 rice Nutrition 0.000 claims description 6
- 238000000527 sonication Methods 0.000 claims description 6
- 241001474374 Blennius Species 0.000 claims description 5
- 229920000742 Cotton Polymers 0.000 claims description 4
- 244000299507 Gossypium hirsutum Species 0.000 claims description 4
- 241001520808 Panicum virgatum Species 0.000 claims description 4
- 229920001131 Pulp (paper) Polymers 0.000 claims description 4
- 235000002595 Solanum tuberosum Nutrition 0.000 claims description 4
- 244000061456 Solanum tuberosum Species 0.000 claims description 4
- 239000000835 fiber Substances 0.000 claims description 4
- 239000010893 paper waste Substances 0.000 claims description 4
- 240000004246 Agave americana Species 0.000 claims description 3
- 244000198134 Agave sisalana Species 0.000 claims description 3
- 241000082175 Arracacia xanthorrhiza Species 0.000 claims description 3
- 235000017166 Bambusa arundinacea Nutrition 0.000 claims description 3
- 235000017491 Bambusa tulda Nutrition 0.000 claims description 3
- 235000016068 Berberis vulgaris Nutrition 0.000 claims description 3
- 241000335053 Beta vulgaris Species 0.000 claims description 3
- 235000014698 Brassica juncea var multisecta Nutrition 0.000 claims description 3
- 235000006008 Brassica napus var napus Nutrition 0.000 claims description 3
- 240000000385 Brassica napus var. napus Species 0.000 claims description 3
- 235000006618 Brassica rapa subsp oleifera Nutrition 0.000 claims description 3
- 235000004977 Brassica sinapistrum Nutrition 0.000 claims description 3
- 244000025254 Cannabis sativa Species 0.000 claims description 3
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 claims description 3
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 claims description 3
- 235000013162 Cocos nucifera Nutrition 0.000 claims description 3
- 244000060011 Cocos nucifera Species 0.000 claims description 3
- 235000006481 Colocasia esculenta Nutrition 0.000 claims description 3
- 244000205754 Colocasia esculenta Species 0.000 claims description 3
- 240000000491 Corchorus aestuans Species 0.000 claims description 3
- 235000011777 Corchorus aestuans Nutrition 0.000 claims description 3
- 235000010862 Corchorus capsularis Nutrition 0.000 claims description 3
- 235000009419 Fagopyrum esculentum Nutrition 0.000 claims description 3
- 240000008620 Fagopyrum esculentum Species 0.000 claims description 3
- 235000010469 Glycine max Nutrition 0.000 claims description 3
- 244000068988 Glycine max Species 0.000 claims description 3
- 244000017020 Ipomoea batatas Species 0.000 claims description 3
- 235000002678 Ipomoea batatas Nutrition 0.000 claims description 3
- 240000004322 Lens culinaris Species 0.000 claims description 3
- 235000014647 Lens culinaris subsp culinaris Nutrition 0.000 claims description 3
- 235000004431 Linum usitatissimum Nutrition 0.000 claims description 3
- 240000006240 Linum usitatissimum Species 0.000 claims description 3
- 240000003183 Manihot esculenta Species 0.000 claims description 3
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 claims description 3
- 240000004658 Medicago sativa Species 0.000 claims description 3
- 235000017587 Medicago sativa ssp. sativa Nutrition 0.000 claims description 3
- 240000003433 Miscanthus floridulus Species 0.000 claims description 3
- 240000005561 Musa balbisiana Species 0.000 claims description 3
- 240000000907 Musa textilis Species 0.000 claims description 3
- 235000018290 Musa x paradisiaca Nutrition 0.000 claims description 3
- 235000008469 Oxalis tuberosa Nutrition 0.000 claims description 3
- 244000079423 Oxalis tuberosa Species 0.000 claims description 3
- 244000081757 Phalaris arundinacea Species 0.000 claims description 3
- 235000010627 Phaseolus vulgaris Nutrition 0.000 claims description 3
- 244000046052 Phaseolus vulgaris Species 0.000 claims description 3
- 244000082204 Phyllostachys viridis Species 0.000 claims description 3
- 235000015334 Phyllostachys viridis Nutrition 0.000 claims description 3
- 240000004713 Pisum sativum Species 0.000 claims description 3
- 235000010582 Pisum sativum Nutrition 0.000 claims description 3
- 241000183024 Populus tremula Species 0.000 claims description 3
- 235000010575 Pueraria lobata Nutrition 0.000 claims description 3
- 244000046146 Pueraria lobata Species 0.000 claims description 3
- 241000193448 Ruminiclostridium thermocellum Species 0.000 claims description 3
- 240000003829 Sorghum propinquum Species 0.000 claims description 3
- 235000011684 Sorghum saccharatum Nutrition 0.000 claims description 3
- 241000746413 Spartina Species 0.000 claims description 3
- 239000011425 bamboo Substances 0.000 claims description 3
- 235000009120 camo Nutrition 0.000 claims description 3
- 239000011111 cardboard Substances 0.000 claims description 3
- 235000013339 cereals Nutrition 0.000 claims description 3
- 235000005607 chanvre indien Nutrition 0.000 claims description 3
- 235000004879 dioscorea Nutrition 0.000 claims description 3
- 210000003608 fece Anatomy 0.000 claims description 3
- 239000011487 hemp Substances 0.000 claims description 3
- 239000010871 livestock manure Substances 0.000 claims description 3
- 239000011087 paperboard Substances 0.000 claims description 3
- 239000010865 sewage Substances 0.000 claims description 3
- 239000004460 silage Substances 0.000 claims description 3
- 238000001238 wet grinding Methods 0.000 claims description 3
- 238000009837 dry grinding Methods 0.000 claims description 2
- 239000002440 industrial waste Substances 0.000 claims description 2
- 244000098338 Triticum aestivum Species 0.000 claims 2
- 239000000463 material Substances 0.000 description 94
- 230000008569 process Effects 0.000 description 41
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 39
- 229920002678 cellulose Polymers 0.000 description 33
- 239000001913 cellulose Substances 0.000 description 33
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 27
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 27
- 239000012978 lignocellulosic material Substances 0.000 description 27
- 150000008163 sugars Chemical class 0.000 description 27
- 239000008103 glucose Substances 0.000 description 26
- 239000000411 inducer Substances 0.000 description 25
- 108090000623 proteins and genes Proteins 0.000 description 23
- 241000196324 Embryophyta Species 0.000 description 22
- 229920005610 lignin Polymers 0.000 description 19
- 239000002609 medium Substances 0.000 description 18
- 210000004027 cell Anatomy 0.000 description 17
- 102000004169 proteins and genes Human genes 0.000 description 17
- 239000000243 solution Substances 0.000 description 17
- 235000018102 proteins Nutrition 0.000 description 16
- 230000000694 effects Effects 0.000 description 14
- 239000000543 intermediate Substances 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 229920002488 Hemicellulose Polymers 0.000 description 12
- 150000001298 alcohols Chemical class 0.000 description 12
- 239000000446 fuel Substances 0.000 description 12
- 102000005575 Cellulases Human genes 0.000 description 11
- 108010084185 Cellulases Proteins 0.000 description 11
- 238000010894 electron beam technology Methods 0.000 description 10
- GUBGYTABKSRVRQ-CUHNMECISA-N D-Cellobiose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-CUHNMECISA-N 0.000 description 9
- SRBFZHDQGSBBOR-IOVATXLUSA-N Xylose Natural products O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 9
- 150000001720 carbohydrates Chemical class 0.000 description 9
- 230000001461 cytolytic effect Effects 0.000 description 9
- 230000012010 growth Effects 0.000 description 9
- 230000006698 induction Effects 0.000 description 9
- 239000007788 liquid Substances 0.000 description 9
- 239000000758 substrate Substances 0.000 description 9
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 8
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 8
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 8
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 8
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 8
- 108010047754 beta-Glucosidase Proteins 0.000 description 8
- 102000006995 beta-Glucosidase Human genes 0.000 description 8
- 235000014633 carbohydrates Nutrition 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 7
- 235000013305 food Nutrition 0.000 description 7
- 150000007524 organic acids Chemical class 0.000 description 7
- 235000005985 organic acids Nutrition 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- 241001019659 Acremonium <Plectosphaerellaceae> Species 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 239000012620 biological material Substances 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 6
- 230000000813 microbial effect Effects 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 241000209140 Triticum Species 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 238000005119 centrifugation Methods 0.000 description 5
- 239000001963 growth medium Substances 0.000 description 5
- 238000003801 milling Methods 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 4
- 108010008885 Cellulose 1,4-beta-Cellobiosidase Proteins 0.000 description 4
- UNXHWFMMPAWVPI-UHFFFAOYSA-N Erythritol Natural products OCC(O)C(O)CO UNXHWFMMPAWVPI-UHFFFAOYSA-N 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 4
- 229920002472 Starch Polymers 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 239000006227 byproduct Substances 0.000 description 4
- 150000001735 carboxylic acids Chemical class 0.000 description 4
- 238000004587 chromatography analysis Methods 0.000 description 4
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000004821 distillation Methods 0.000 description 4
- HYBBIBNJHNGZAN-UHFFFAOYSA-N furfural Chemical compound O=CC1=CC=CO1 HYBBIBNJHNGZAN-UHFFFAOYSA-N 0.000 description 4
- 238000005984 hydrogenation reaction Methods 0.000 description 4
- 239000011261 inert gas Substances 0.000 description 4
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 4
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000004094 surface-active agent Substances 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 3
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 3
- 239000004386 Erythritol Substances 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 244000285963 Kluyveromyces fragilis Species 0.000 description 3
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 238000013019 agitation Methods 0.000 description 3
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 3
- 239000003242 anti bacterial agent Substances 0.000 description 3
- 230000000845 anti-microbial effect Effects 0.000 description 3
- 239000012736 aqueous medium Substances 0.000 description 3
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 description 3
- 235000013405 beer Nutrition 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000009395 breeding Methods 0.000 description 3
- 230000001488 breeding effect Effects 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- UNXHWFMMPAWVPI-ZXZARUISSA-N erythritol Chemical compound OC[C@H](O)[C@H](O)CO UNXHWFMMPAWVPI-ZXZARUISSA-N 0.000 description 3
- 235000019414 erythritol Nutrition 0.000 description 3
- 229940009714 erythritol Drugs 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 239000012467 final product Substances 0.000 description 3
- 229930182830 galactose Natural products 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 239000008101 lactose Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 235000015097 nutrients Nutrition 0.000 description 3
- 239000001965 potato dextrose agar Substances 0.000 description 3
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 3
- 238000011218 seed culture Methods 0.000 description 3
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 235000019698 starch Nutrition 0.000 description 3
- 239000008107 starch Substances 0.000 description 3
- 150000005846 sugar alcohols Chemical class 0.000 description 3
- ALRHLSYJTWAHJZ-UHFFFAOYSA-N 3-hydroxypropionic acid Chemical compound OCCC(O)=O ALRHLSYJTWAHJZ-UHFFFAOYSA-N 0.000 description 2
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 2
- 241001438635 Acremonium brachypenium Species 0.000 description 2
- 241001438625 Acremonium dichromosporum Species 0.000 description 2
- 241000228209 Acremonium persicinum Species 0.000 description 2
- 241001019292 Acremonium pinkertoniae Species 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 241000228212 Aspergillus Species 0.000 description 2
- 241000193830 Bacillus <bacterium> Species 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 241000135254 Cephalosporium sp. Species 0.000 description 2
- 241000123346 Chrysosporium Species 0.000 description 2
- 241000193403 Clostridium Species 0.000 description 2
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 2
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 2
- 108020004414 DNA Proteins 0.000 description 2
- 241001057636 Dracaena deremensis Species 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 229930091371 Fructose Natural products 0.000 description 2
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 2
- 239000005715 Fructose Substances 0.000 description 2
- 241000223221 Fusarium oxysporum Species 0.000 description 2
- 241001019284 Gliomastix roseogrisea Species 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- 241001480714 Humicola insolens Species 0.000 description 2
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 2
- 241000186660 Lactobacillus Species 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 241000235648 Pichia Species 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 241000190542 Sarocladium kiliense Species 0.000 description 2
- 241000906075 Simplicillium obclavatum Species 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 2
- 241001313536 Thermothelomyces thermophila Species 0.000 description 2
- 241000223259 Trichoderma Species 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 description 2
- 241000588901 Zymomonas Species 0.000 description 2
- 235000011054 acetic acid Nutrition 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 235000001014 amino acid Nutrition 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 230000003698 anagen phase Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 239000004599 antimicrobial Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 230000003115 biocidal effect Effects 0.000 description 2
- 239000003225 biodiesel Substances 0.000 description 2
- 239000002551 biofuel Substances 0.000 description 2
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000013354 cell banking Methods 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- MYSWGUAQZAJSOK-UHFFFAOYSA-N ciprofloxacin Chemical compound C12=CC(N3CCNCC3)=C(F)C=C2C(=O)C(C(=O)O)=CN1C1CC1 MYSWGUAQZAJSOK-UHFFFAOYSA-N 0.000 description 2
- 235000015165 citric acid Nutrition 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 239000012228 culture supernatant Substances 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 239000000539 dimer Substances 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 230000007071 enzymatic hydrolysis Effects 0.000 description 2
- 238000006047 enzymatic hydrolysis reaction Methods 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 230000007614 genetic variation Effects 0.000 description 2
- 238000003306 harvesting Methods 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- 229920000140 heteropolymer Polymers 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 2
- 238000011081 inoculation Methods 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 235000014655 lactic acid Nutrition 0.000 description 2
- 229940039696 lactobacillus Drugs 0.000 description 2
- 108010062085 ligninase Proteins 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000002207 metabolite Substances 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 2
- 229920001542 oligosaccharide Polymers 0.000 description 2
- 150000002482 oligosaccharides Chemical class 0.000 description 2
- 230000005789 organism growth Effects 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 229920005862 polyol Polymers 0.000 description 2
- 150000003077 polyols Chemical class 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 150000004804 polysaccharides Chemical class 0.000 description 2
- 229920000136 polysorbate Polymers 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- RXWNCPJZOCPEPQ-NVWDDTSBSA-N puromycin Chemical compound C1=CC(OC)=CC=C1C[C@H](N)C(=O)N[C@H]1[C@@H](O)[C@H](N2C3=NC=NC(=C3N=C2)N(C)C)O[C@@H]1CO RXWNCPJZOCPEPQ-NVWDDTSBSA-N 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 238000010008 shearing Methods 0.000 description 2
- 108010027322 single cell proteins Proteins 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 150000003384 small molecules Chemical class 0.000 description 2
- 239000000600 sorbitol Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 230000009261 transgenic effect Effects 0.000 description 2
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 2
- 229920001221 xylan Polymers 0.000 description 2
- 150000004823 xylans Chemical class 0.000 description 2
- 239000000811 xylitol Substances 0.000 description 2
- 235000010447 xylitol Nutrition 0.000 description 2
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 description 2
- 229960002675 xylitol Drugs 0.000 description 2
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 1
- LUAHEUHBAZYUOI-KVXMBEGHSA-N (2s,3r,4r,5r)-4-[(2r,3r,4r,5s,6r)-5-[(2r,3r,4r,5s,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyhexane-1,2,3,5,6-pentol Chemical compound O[C@@H]1[C@@H](O)[C@@H](O[C@@H]([C@H](O)[C@@H](O)CO)[C@H](O)CO)O[C@H](CO)[C@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)O)[C@@H](CO)O1 LUAHEUHBAZYUOI-KVXMBEGHSA-N 0.000 description 1
- OYHQOLUKZRVURQ-NTGFUMLPSA-N (9Z,12Z)-9,10,12,13-tetratritiooctadeca-9,12-dienoic acid Chemical compound C(CCCCCCC\C(=C(/C\C(=C(/CCCCC)\[3H])\[3H])\[3H])\[3H])(=O)O OYHQOLUKZRVURQ-NTGFUMLPSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 1
- SERLAGPUMNYUCK-DCUALPFSSA-N 1-O-alpha-D-glucopyranosyl-D-mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O SERLAGPUMNYUCK-DCUALPFSSA-N 0.000 description 1
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- SJZRECIVHVDYJC-UHFFFAOYSA-N 4-hydroxybutyric acid Chemical compound OCCCC(O)=O SJZRECIVHVDYJC-UHFFFAOYSA-N 0.000 description 1
- UHPMCKVQTMMPCG-UHFFFAOYSA-N 5,8-dihydroxy-2-methoxy-6-methyl-7-(2-oxopropyl)naphthalene-1,4-dione Chemical compound CC1=C(CC(C)=O)C(O)=C2C(=O)C(OC)=CC(=O)C2=C1O UHPMCKVQTMMPCG-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 241001114518 Acaulium acremonium Species 0.000 description 1
- 108700028369 Alleles Proteins 0.000 description 1
- 241001466460 Alveolata Species 0.000 description 1
- APKFDSVGJQXUKY-KKGHZKTASA-N Amphotericin-B Natural products O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1C=CC=CC=CC=CC=CC=CC=C[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-KKGHZKTASA-N 0.000 description 1
- 241000879125 Aureobasidium sp. Species 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 238000009010 Bradford assay Methods 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 241000222120 Candida <Saccharomycetales> Species 0.000 description 1
- 241001619326 Cephalosporium Species 0.000 description 1
- 241001147674 Chlorarachniophyceae Species 0.000 description 1
- 241001674013 Chrysosporium lucknowense Species 0.000 description 1
- 241000223782 Ciliophora Species 0.000 description 1
- 241001508811 Clavispora Species 0.000 description 1
- 241001508813 Clavispora lusitaniae Species 0.000 description 1
- 241001508812 Clavispora opuntiae Species 0.000 description 1
- 241000193401 Clostridium acetobutylicum Species 0.000 description 1
- 241001147704 Clostridium puniceum Species 0.000 description 1
- 241000429427 Clostridium saccharobutylicum Species 0.000 description 1
- 241000222511 Coprinus Species 0.000 description 1
- 244000251987 Coprinus macrorhizus Species 0.000 description 1
- 235000001673 Coprinus macrorhizus Nutrition 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- HEBKCHPVOIAQTA-QWWZWVQMSA-N D-arabinitol Chemical compound OC[C@@H](O)C(O)[C@H](O)CO HEBKCHPVOIAQTA-QWWZWVQMSA-N 0.000 description 1
- OXQKEKGBFMQTML-UHFFFAOYSA-N D-glycero-D-gluco-heptitol Natural products OCC(O)C(O)C(O)C(O)C(O)CO OXQKEKGBFMQTML-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-ZXXMMSQZSA-N D-iditol Chemical compound OC[C@@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-ZXXMMSQZSA-N 0.000 description 1
- SHZGCJCMOBCMKK-UHFFFAOYSA-N D-mannomethylose Natural products CC1OC(O)C(O)C(O)C1O SHZGCJCMOBCMKK-UHFFFAOYSA-N 0.000 description 1
- UNXHWFMMPAWVPI-QWWZWVQMSA-N D-threitol Chemical compound OC[C@@H](O)[C@H](O)CO UNXHWFMMPAWVPI-QWWZWVQMSA-N 0.000 description 1
- 241000235035 Debaryomyces Species 0.000 description 1
- 101001065501 Escherichia phage MS2 Lysis protein Proteins 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 241000195623 Euglenida Species 0.000 description 1
- 101710112457 Exoglucanase Proteins 0.000 description 1
- 241000192125 Firmicutes Species 0.000 description 1
- 241000223218 Fusarium Species 0.000 description 1
- 229930182566 Gentamicin Natural products 0.000 description 1
- CEAZRRDELHUEMR-URQXQFDESA-N Gentamicin Chemical compound O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N CEAZRRDELHUEMR-URQXQFDESA-N 0.000 description 1
- 229920001706 Glucuronoxylan Polymers 0.000 description 1
- 235000004341 Gossypium herbaceum Nutrition 0.000 description 1
- 240000002024 Gossypium herbaceum Species 0.000 description 1
- 241000206759 Haptophyceae Species 0.000 description 1
- SQUHHTBVTRBESD-UHFFFAOYSA-N Hexa-Ac-myo-Inositol Natural products CC(=O)OC1C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C1OC(C)=O SQUHHTBVTRBESD-UHFFFAOYSA-N 0.000 description 1
- 241000223198 Humicola Species 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- GRRNUXAQVGOGFE-UHFFFAOYSA-N Hygromycin-B Natural products OC1C(NC)CC(N)C(O)C1OC1C2OC3(C(C(O)C(O)C(C(N)CO)O3)O)OC2C(O)C(CO)O1 GRRNUXAQVGOGFE-UHFFFAOYSA-N 0.000 description 1
- 241000235649 Kluyveromyces Species 0.000 description 1
- SHZGCJCMOBCMKK-JFNONXLTSA-N L-rhamnopyranose Chemical compound C[C@@H]1OC(O)[C@H](O)[C@H](O)[C@H]1O SHZGCJCMOBCMKK-JFNONXLTSA-N 0.000 description 1
- PNNNRSAQSRJVSB-UHFFFAOYSA-N L-rhamnose Natural products CC(O)C(O)C(O)C(O)C=O PNNNRSAQSRJVSB-UHFFFAOYSA-N 0.000 description 1
- XJCCHWKNFMUJFE-CGQAXDJHSA-N Maltotriitol Chemical compound O[C@@H]1[C@@H](O)[C@@H](O[C@@H]([C@H](O)[C@@H](O)CO)[C@H](O)CO)O[C@H](CO)[C@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 XJCCHWKNFMUJFE-CGQAXDJHSA-N 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 241000123318 Meripilus giganteus Species 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 241001675980 Moniliella acetoabutens Species 0.000 description 1
- 241001182779 Moniliella megachiliensis Species 0.000 description 1
- 241000723128 Moniliella pollinis Species 0.000 description 1
- 241000226677 Myceliophthora Species 0.000 description 1
- 241001674208 Mycothermus thermophilus Species 0.000 description 1
- 229930193140 Neomycin Natural products 0.000 description 1
- 241000083073 Neopseudocercosporella capsellae Species 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 241000235652 Pachysolen Species 0.000 description 1
- 241000235647 Pachysolen tannophilus Species 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 241000228143 Penicillium Species 0.000 description 1
- 241000364057 Peoria Species 0.000 description 1
- 239000001888 Peptone Substances 0.000 description 1
- 108010080698 Peptones Proteins 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- 241000222180 Pseudozyma tsukubaensis Species 0.000 description 1
- 239000007868 Raney catalyst Substances 0.000 description 1
- NPXOKRUENSOPAO-UHFFFAOYSA-N Raney nickel Chemical compound [Al].[Ni] NPXOKRUENSOPAO-UHFFFAOYSA-N 0.000 description 1
- 229910000564 Raney nickel Inorganic materials 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 241000206572 Rhodophyta Species 0.000 description 1
- JVWLUVNSQYXYBE-UHFFFAOYSA-N Ribitol Natural products OCC(C)C(O)C(O)CO JVWLUVNSQYXYBE-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 241000235070 Saccharomyces Species 0.000 description 1
- 241000582914 Saccharomyces uvarum Species 0.000 description 1
- 241000192263 Scheffersomyces shehatae Species 0.000 description 1
- 241000235060 Scheffersomyces stipitis Species 0.000 description 1
- 241000223255 Scytalidium Species 0.000 description 1
- HIWPGCMGAMJNRG-ACCAVRKYSA-N Sophorose Natural products O([C@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HIWPGCMGAMJNRG-ACCAVRKYSA-N 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 241001466451 Stramenopiles Species 0.000 description 1
- 241000187747 Streptomyces Species 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- 108700005078 Synthetic Genes Proteins 0.000 description 1
- 241001494489 Thielavia Species 0.000 description 1
- 241001495429 Thielavia terrestris Species 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 241000006364 Torula Species 0.000 description 1
- 241000378866 Trichoderma koningii Species 0.000 description 1
- 241000223261 Trichoderma viride Species 0.000 description 1
- 241001079965 Trichosporon sp. Species 0.000 description 1
- 241000908249 Trichosporonoides Species 0.000 description 1
- 241001480015 Trigonopsis variabilis Species 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 241000918129 Typhula variabilis Species 0.000 description 1
- 241000221533 Ustilaginomycetes Species 0.000 description 1
- 229920002000 Xyloglucan Polymers 0.000 description 1
- 241000235015 Yarrowia lipolytica Species 0.000 description 1
- 241000235017 Zygosaccharomyces Species 0.000 description 1
- 241000588902 Zymomonas mobilis Species 0.000 description 1
- 241000222292 [Candida] magnoliae Species 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 229930013930 alkaloid Natural products 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- 229940100198 alkylating agent Drugs 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 239000002280 amphoteric surfactant Substances 0.000 description 1
- APKFDSVGJQXUKY-INPOYWNPSA-N amphotericin B Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-INPOYWNPSA-N 0.000 description 1
- 229960003942 amphotericin b Drugs 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 229920000617 arabinoxylan Polymers 0.000 description 1
- 150000004783 arabinoxylans Chemical class 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- HIWPGCMGAMJNRG-UHFFFAOYSA-N beta-sophorose Natural products OC1C(O)C(CO)OC(O)C1OC1C(O)C(O)C(O)C(CO)O1 HIWPGCMGAMJNRG-UHFFFAOYSA-N 0.000 description 1
- 238000010364 biochemical engineering Methods 0.000 description 1
- 230000003851 biochemical process Effects 0.000 description 1
- 230000031018 biological processes and functions Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 229940041514 candida albicans extract Drugs 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 238000012668 chain scission Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002962 chemical mutagen Substances 0.000 description 1
- 229960005091 chloramphenicol Drugs 0.000 description 1
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 1
- 229960003405 ciprofloxacin Drugs 0.000 description 1
- 150000001868 cobalt Chemical class 0.000 description 1
- GFHNAMRJFCEERV-UHFFFAOYSA-L cobalt chloride hexahydrate Chemical compound O.O.O.O.O.O.[Cl-].[Cl-].[Co+2] GFHNAMRJFCEERV-UHFFFAOYSA-L 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 229940099112 cornstarch Drugs 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- AIUDWMLXCFRVDR-UHFFFAOYSA-N dimethyl 2-(3-ethyl-3-methylpentyl)propanedioate Chemical class CCC(C)(CC)CCC(C(=O)OC)C(=O)OC AIUDWMLXCFRVDR-UHFFFAOYSA-N 0.000 description 1
- GOMCKELMLXHYHH-UHFFFAOYSA-L dipotassium;phthalate Chemical compound [K+].[K+].[O-]C(=O)C1=CC=CC=C1C([O-])=O GOMCKELMLXHYHH-UHFFFAOYSA-L 0.000 description 1
- 150000002016 disaccharides Chemical class 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002118 epoxides Chemical class 0.000 description 1
- 125000004494 ethyl ester group Chemical group 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000012632 extractable Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 239000002816 fuel additive Substances 0.000 description 1
- FBPFZTCFMRRESA-GUCUJZIJSA-N galactitol Chemical compound OC[C@H](O)[C@@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-GUCUJZIJSA-N 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 238000012239 gene modification Methods 0.000 description 1
- 230000030279 gene silencing Effects 0.000 description 1
- 238000012226 gene silencing method Methods 0.000 description 1
- 230000005017 genetic modification Effects 0.000 description 1
- 235000013617 genetically modified food Nutrition 0.000 description 1
- 229960002518 gentamicin Drugs 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 125000000291 glutamic acid group Chemical group N[C@@H](CCC(O)=O)C(=O)* 0.000 description 1
- 238000003621 hammer milling Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 210000002443 helper t lymphocyte Anatomy 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- GRRNUXAQVGOGFE-NZSRVPFOSA-N hygromycin B Chemical compound O[C@@H]1[C@@H](NC)C[C@@H](N)[C@H](O)[C@H]1O[C@H]1[C@H]2O[C@@]3([C@@H]([C@@H](O)[C@@H](O)[C@@H](C(N)CO)O3)O)O[C@H]2[C@@H](O)[C@@H](CO)O1 GRRNUXAQVGOGFE-NZSRVPFOSA-N 0.000 description 1
- 229940097277 hygromycin b Drugs 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 239000002054 inoculum Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- CDAISMWEOUEBRE-GPIVLXJGSA-N inositol Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](O)[C@@H]1O CDAISMWEOUEBRE-GPIVLXJGSA-N 0.000 description 1
- 229960000367 inositol Drugs 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 239000002563 ionic surfactant Substances 0.000 description 1
- 159000000014 iron salts Chemical class 0.000 description 1
- SURQXAFEQWPFPV-UHFFFAOYSA-L iron(2+) sulfate heptahydrate Chemical compound O.O.O.O.O.O.O.[Fe+2].[O-]S([O-])(=O)=O SURQXAFEQWPFPV-UHFFFAOYSA-L 0.000 description 1
- 239000000905 isomalt Substances 0.000 description 1
- 235000010439 isomalt Nutrition 0.000 description 1
- HPIGCVXMBGOWTF-UHFFFAOYSA-N isomaltol Natural products CC(=O)C=1OC=CC=1O HPIGCVXMBGOWTF-UHFFFAOYSA-N 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 229960000318 kanamycin Drugs 0.000 description 1
- 229930027917 kanamycin Natural products 0.000 description 1
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 1
- 229930182823 kanamycin A Natural products 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000002655 kraft paper Substances 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 239000000832 lactitol Substances 0.000 description 1
- 235000010448 lactitol Nutrition 0.000 description 1
- VQHSOMBJVWLPSR-JVCRWLNRSA-N lactitol Chemical compound OC[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O VQHSOMBJVWLPSR-JVCRWLNRSA-N 0.000 description 1
- 229960003451 lactitol Drugs 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000001638 lipofection Methods 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- WRUGWIBCXHJTDG-UHFFFAOYSA-L magnesium sulfate heptahydrate Chemical compound O.O.O.O.O.O.O.[Mg+2].[O-]S([O-])(=O)=O WRUGWIBCXHJTDG-UHFFFAOYSA-L 0.000 description 1
- 229940061634 magnesium sulfate heptahydrate Drugs 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- VQHSOMBJVWLPSR-WUJBLJFYSA-N maltitol Chemical compound OC[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O VQHSOMBJVWLPSR-WUJBLJFYSA-N 0.000 description 1
- 239000000845 maltitol Substances 0.000 description 1
- 235000010449 maltitol Nutrition 0.000 description 1
- 229940035436 maltitol Drugs 0.000 description 1
- 150000002696 manganese Chemical class 0.000 description 1
- ISPYRSDWRDQNSW-UHFFFAOYSA-L manganese(II) sulfate monohydrate Chemical compound O.[Mn+2].[O-]S([O-])(=O)=O ISPYRSDWRDQNSW-UHFFFAOYSA-L 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000013411 master cell bank Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- 229960004927 neomycin Drugs 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 235000019319 peptone Nutrition 0.000 description 1
- 229940066779 peptones Drugs 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 229940127557 pharmaceutical product Drugs 0.000 description 1
- QROGIFZRVHSFLM-UHFFFAOYSA-N phenylpropene group Chemical group C1(=CC=CC=C1)C=CC QROGIFZRVHSFLM-UHFFFAOYSA-N 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 229940116317 potato starch Drugs 0.000 description 1
- 235000012015 potatoes Nutrition 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 238000002731 protein assay Methods 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 229950010131 puromycin Drugs 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- HEBKCHPVOIAQTA-ZXFHETKHSA-N ribitol Chemical compound OC[C@H](O)[C@H](O)[C@H](O)CO HEBKCHPVOIAQTA-ZXFHETKHSA-N 0.000 description 1
- 229940100486 rice starch Drugs 0.000 description 1
- 238000011012 sanitization Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- CDAISMWEOUEBRE-UHFFFAOYSA-N scyllo-inosotol Natural products OC1C(O)C(O)C(O)C(O)C1O CDAISMWEOUEBRE-UHFFFAOYSA-N 0.000 description 1
- 238000005549 size reduction Methods 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- PZDOWFGHCNHPQD-VNNZMYODSA-N sophorose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](C=O)O[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O PZDOWFGHCNHPQD-VNNZMYODSA-N 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 229940005605 valeric acid Drugs 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- OXQKEKGBFMQTML-KVTDHHQDSA-N volemitol Chemical compound OC[C@@H](O)[C@@H](O)C(O)[C@H](O)[C@H](O)CO OXQKEKGBFMQTML-KVTDHHQDSA-N 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
- 229940100445 wheat starch Drugs 0.000 description 1
- 125000000969 xylosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)CO1)* 0.000 description 1
- 239000012138 yeast extract Substances 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
- RZLVQBNCHSJZPX-UHFFFAOYSA-L zinc sulfate heptahydrate Chemical compound O.O.O.O.O.O.O.[Zn+2].[O-]S([O-])(=O)=O RZLVQBNCHSJZPX-UHFFFAOYSA-L 0.000 description 1
- 229910003158 γ-Al2O3 Inorganic materials 0.000 description 1
Images
Classifications
-
- C12N9/42—
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/14—Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/24—Hydrolases (3) acting on glycosyl compounds (3.2)
- C12N9/2402—Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
- C12N9/2405—Glucanases
- C12N9/2434—Glucanases acting on beta-1,4-glucosidic bonds
- C12N9/2437—Cellulases (3.2.1.4; 3.2.1.74; 3.2.1.91; 3.2.1.150)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/24—Hydrolases (3) acting on glycosyl compounds (3.2)
- C12N9/2402—Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
- C12N9/2405—Glucanases
- C12N9/2434—Glucanases acting on beta-1,4-glucosidic bonds
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/02—Monosaccharides
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/04—Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/12—Disaccharides
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P5/00—Preparation of hydrocarbons or halogenated hydrocarbons
- C12P5/02—Preparation of hydrocarbons or halogenated hydrocarbons acyclic
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P5/00—Preparation of hydrocarbons or halogenated hydrocarbons
- C12P5/02—Preparation of hydrocarbons or halogenated hydrocarbons acyclic
- C12P5/023—Methane
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/02—Preparation of oxygen-containing organic compounds containing a hydroxy group
- C12P7/04—Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/02—Preparation of oxygen-containing organic compounds containing a hydroxy group
- C12P7/04—Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
- C12P7/06—Ethanol, i.e. non-beverage
- C12P7/08—Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate
- C12P7/10—Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate substrate containing cellulosic material
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/02—Preparation of oxygen-containing organic compounds containing a hydroxy group
- C12P7/04—Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
- C12P7/16—Butanols
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/24—Preparation of oxygen-containing organic compounds containing a carbonyl group
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/24—Preparation of oxygen-containing organic compounds containing a carbonyl group
- C12P7/26—Ketones
- C12P7/28—Acetone-containing products
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/40—Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/40—Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
- C12P7/42—Hydroxy-carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/40—Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
- C12P7/44—Polycarboxylic acids
- C12P7/46—Dicarboxylic acids having four or less carbon atoms, e.g. fumaric acid, maleic acid
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/40—Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
- C12P7/44—Polycarboxylic acids
- C12P7/48—Tricarboxylic acids, e.g. citric acid
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/40—Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
- C12P7/52—Propionic acid; Butyric acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/40—Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
- C12P7/56—Lactic acid
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/62—Carboxylic acid esters
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y302/00—Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
- C12Y302/01—Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
- C12Y302/01004—Cellulase (3.2.1.4), i.e. endo-1,4-beta-glucanase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P2201/00—Pretreatment of cellulosic or lignocellulosic material for subsequent enzymatic treatment or hydrolysis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
Definitions
- the invention pertains to the preparation enzymes useful in the processing of biomass materials.
- the invention relates to producing cellulase enzymes or other enzyme types.
- lignocellulosic feedstocks are available today, including agricultural residues, woody biomass, municipal waste, oilseeds/cakes and sea weeds, to name a few. At present these materials are either used as animal feed, biocompost materials, are burned in a cogeneration facility or are landfilled.
- Lignocellulosic biomass is recalcitrant to degradation as the plant cell walls have a structure that is rigid and compact.
- the structure comprises crystalline cellulose fibrils embedded in a hemicellulose matrix, surrounded by lignin.
- This compact matrix is difficult to access by enzymes and other chemical, biochemical and biological processes.
- Cellulosic biomass materials e.g., biomass material from which substantially all the lignin has been removed
- Lignocellulosic biomass is even more recalcitrant to enzyme attack.
- each type of lignocellulosic biomass has its own specific composition of cellulose, hemicellulose and lignin.
- a method in one aspect, includes combining a cellulosic or lignocellulosic biomass, which has been treated to reduce its recalcitrance, with a microorganism, to induce the production of one or more enzyme(s) by the microorganism by maintaining the microorganism-biomass combination under conditions that allow for the production of the enzyme(s) by the microorganism.
- the enzyme(s) are then used to saccharify cellulosic or lignocellulosic biomass.
- Also provided herein is a method for inducing the production of an enzyme by a microorganism, where the method includes: providing a first cellulosic or lignocellulosic biomass; treating the first biomass with a treatment method to reduce its recalcitrance, thereby producing a first treated biomass; providing a microorganism; providing a liquid medium; combining the first treated biomass, the microorganism, and the liquid medium, thereby producing a microorganism-biomass combination; and maintaining the microorganism-biomass combination under conditions allowing for the production of an enzyme by the microorganism, thereby producing an inductant-enzyme combination; thereby inducing the production of the enzyme by the microorganism.
- compositions that includes a liquid medium, a cellulosic or lignocellulosic biomass treated to reduce its recalcitrance, a microorganism, and one or more enzymes made by the microorganism.
- the treatment for reducing the recalcitrance of the biomass material(s) can be any of: bombardment with electrons, sonication, oxidation, pyrolysis, steam explosion, chemical treatment, mechanical treatment, and freeze grinding.
- the treatment method is bombardment with electrons.
- the methods and compositions can also include mechanically treating the first or the second cellulosic or lignocellulosic biomass to reduce its bulk density and/or increase its surface area.
- the biomass material(s) can be comminuted before being combined with the microorganism and liquid medium.
- the comminution can be dry milling or wet milling.
- the biomass material can have a particle size of about 30 to 1400 ⁇ m.
- any of the cellulosic or lignocellulosic biomasses can be: paper, paper products, paper waste, paper pulp, pigmented papers, loaded papers, coated papers, filled papers, magazines, printed matter, printer paper, polycoated paper, card stock, cardboard, paperboard, cotton, wood, particle board, forestry wastes, sawdust, aspen wood, wood chips, grasses, switchgrass, miscanthus, cord grass, reed canary grass, grain residues, rice hulls, oat hulls, wheat chaff, barley hulls, agricultural waste, silage, canola straw, wheat straw, barley straw, oat straw, rice straw, jute, hemp, flax, bamboo, sisal, abaca, corn cobs, corn stover, soybean stover, corn fiber, alfalfa, hay, coconut hair, sugar processing residues, bagasse, beet pulp, agave bagasse, algae, seaweed, manure,
- the microorganism can be any of a fungus, a bacterium, or a yeast.
- the microorganism can actually be a population of different microorganisms.
- the microorganism can be a strain that produces high levels of cellulase, and/or it can be genetically engineered.
- the microorganism can be Trichoderma reesei, or it can be Clostridium thermocellum, for example.
- the microorganism can be a T. reesei strain such as RUT-NG14, PC3-7, QM9414 or RUT-C30.
- the cellulosic or lignocellulosic biomass can be combined with the microorganism at a time when the microorganism is in lag phase.
- the methods and compositions can also include removing all or a portion of the liquid from the microorganism-inductant-enzyme combination, to produce an enzyme extract.
- the methods and compositions can also include concentrating one or more of the enzymes, and/or isolating one or more of the enzymes.
- the methods and compositions can also include allowing saccharification of the second cellulosic or lignocellulosic biomass to occur, so that one or more sugars are produced.
- the one or more sugars can be isolated and/or concentrated.
- FIG. 1 is a diagram illustrating the enzymatic hydrolysis of cellulose to glucose.
- Cellulosic substrate (A) is converted by endocellulase (i) to cellulose (B), which is converted by exocellulase (ii) to cellobiose (C), which is converted to glucose (D) by cellobiase (beta-glucosidase) (iii).
- FIG. 2 is a flow diagram illustrating conversion of a biomass feedstock to one or more products.
- Feedstock is physically pretreated (e.g., to reduce its size) ( 200 ), optionally treated to reduce its recalcitrance ( 210 ), saccharified to form a sugar solution ( 220 ), the solution is transported ( 230 ) to a manufacturing plant (e.g., by pipeline, railcar) (or if saccharification is performed en route, the feedstock, enzyme and water is transported), the saccharified feedstock is bio-processed to produce a desired product (e.g., alcohol) ( 240 ), and the product can be processed further, e.g., by distillation, to produce a final product ( 250 ).
- Treatment for recalcitrance can be modified by measuring lignin content ( 201 ) and setting or adjusting process parameters ( 205 ). Saccharifying the feedstock ( 220 ) can be modified by mixing the feedstock with medium and the enzyme ( 221 ).
- FIG. 3 is a flow diagram illustrating the treatment of a first biomass ( 300 ), addition of a cellulase producing organism ( 310 ), addition of a second biomass ( 320 ), and processing the resulting sugars to make products (e.g., alcohol(s), pure sugars) ( 330 ).
- the first treated biomass can optionally be split, and a portion added as the second biomass (A).
- FIG. 4 is a flow diagram illustrating the production of enzymes.
- a cellulase-producing organism is added to growth medium ( 400 )
- a treated first biomass ( 405 ) is added (A) to make a mixture ( 410 )
- a second biomass is added ( 420 )
- the resulting sugars are processed to make products (e.g., alcohol(s), pure sugars) ( 430 ).
- products e.g., alcohol(s), pure sugars
- Portions of the first biomass ( 405 ) can also be added (B) to the second biomass ( 420 ).
- FIG. 5 shows results of protein analysis using SDS PAGE.
- the inductant is made from biomass (cellulosic or lignocellulosic) that has been treated to reduce its recalcitrance.
- the treatment method can include subjecting the biomass to bombardment with electrons, sonication, oxidation, pyrolysis, steam explosion, chemical treatment, mechanical treatment, or freeze grinding.
- biomass that has been treated with such a method can be combined with a microorganism in a medium (such as a liquid medium), to induce the microorganism to produce one or more enzymes.
- the invention features a method that includes contacting an inducer comprising a lignocellulosic material with a microorganism to produce an enzyme.
- the processes described herein include saccharifying cellulosic and/or lignocellulosic materials using enzymes that have been produced by Trichoderma reesei fungi, as will be discussed in further detail below.
- the invention relates to improvements in processing biomass materials (e.g., biomass materials or biomass-derived materials) to produce intermediates and products, such as fuels and/or other products.
- biomass materials e.g., biomass materials or biomass-derived materials
- the processes may be used to produce sugars, alcohols (such as ethanol, isobutanol, or n-butanol), sugar alcohols (such as erythritol), or organic acids.
- the invention also relates to the preparation of enzymes useful in the processing of biomass materials.
- the invention relates to producing cellulase enzymes or other enzyme types.
- a typical biomass resource contains cellulose, hemicellulose, and lignin plus, lesser amounts of proteins, extractables and minerals.
- the complex carbohydrates contained in the cellulose and hemicellulose fractions can be converted into sugars, e.g., fermentable sugars, by saccharification, and the sugars can then be used as an end product or an intermediate, or converted by further processing, e.g., fermentation or hydrogenation, into a variety of products, such as alcohols or organic acids.
- the product obtained depends upon the method or microorganism utilized and the conditions under which the bioprocessing occurs.
- the invention includes a method of inducing the production of an enzyme.
- a cellulosic or lignocellulosic biomass is provided, treated to reduce its recalcitrance, and then combined with a microorganism in a liquid medium.
- the resulting microorganism-biomass combination is then maintained under conditions allowing for the growth of the organism and production of enzymes capable of degrading the biomass.
- the treated biomass acts as an inductant, causing the microorganism to produce enzymes.
- the method produces an inductant-enzyme combination.
- the treatment used to reduce the recalcitrance of the biomass is important in enzyme induction.
- the inventors have found that low levels of treatment result in either low levels of enzyme induction, or extremely long lag times, presumably because it is difficult for the microorganisms to extract sugars from the treated biomass material.
- very high levels of treatment also cause the microorganisms to produce low levels of enzymes, possibly because relatively easy extraction of sugars from the treated biomass lessens the need for the microorganisms to produce large amounts of enzymes.
- the recalcitrance treatment also serves to sterilize the material.
- Biomass material by its nature, contains contaminating microbes, which are often embedded deep within the material itself. Because the enzyme inductions as disclosed herein tend to be long fermentations (up to a week or more), sterilization is important. It would therefore be advantageous to treat the material as heavily as possible to sterilize it. However, such high levels of treatment would likely be counterproductive because high levels of treatment lessen the enzyme production by the microorganisms.
- inductant means a cellulosic or lignocellulosic biomass that encourages an organism to produce enzyme.
- An example would be biomass that has been treated to reduce its recalcitrance.
- the treated biomass is then used as an enzyme inductant, by being combined with one or more microorganisms in a liquid medium, and then being maintained under conditions that allow the microorganism to produce one or more enzymes.
- the inductant-enzyme combination can then be combined with another biomass, and used to saccharify it.
- treating the biomass before inoculating it with the microorganism causes an increased amount of enzymes to be produced by the microbes.
- different enzymes are produced on the treated biomass, relative to the use of untreated biomass.
- the cellulosic or lignocellulosic biomass can be sourced from a wide variety of materials.
- the biomass can be lignin hulls.
- lignin hulls as used herein, is meant material that is remaining after a biomass has been saccharified.
- the invention relates to processes for saccharifying a cellulosic or lignocellulosic material using an enzyme that has been produced by a fungus, e.g., by strains of the cellulolytic filamentous fungus Trichoderma reesei.
- a fungus e.g., by strains of the cellulolytic filamentous fungus Trichoderma reesei.
- high-yielding cellulase mutants of Trichoderma reesei are used, e.g., RUT-NG14, PC3-7, QM9414 and/or RUT-C30.
- Such strains are described, for example, in “Selective Screening Methods for the Isolation of High Yielding Cellulase Mutants of Trichoderma reesei ,” Montenecourt, B. S. and Everleigh, D. E. Adv. Chem. Ser. 181, 289-301 ( 1979 ).
- the enzyme production is conducted in the presence of a portion of the lignocellulosic material to be saccharified.
- the lignocellulosic material can act in the enzyme production process as an inducer for cellulase synthesis, producing a cellulase complex having an activity that is tailored to the particular lignocellulosic material.
- the recalcitrance of the lignocellulosic material is reduced prior to using it as an inducer. It is believed that this makes the cellulose within the lignocellulosic material more readily available to the fungus. Reducing the recalcitrance of the lignocellulosic material also facilitates saccharification.
- reducing the recalcitrance of the lignocellulosic material includes treating the lignocellulosic material with a physical treatment.
- the physical treatment can be, for example, radiation, e.g., electron bombardment, sonication, pyrolysis, oxidation, steam explosion, chemical treatment, or combinations of any of these treatments.
- the treatments can also include any one or more of the treatments disclosed herein, applied alone or in any desired combination, and applied once or multiple times.
- Enzymes and biomass-destroying organisms that break down biomass contain or manufacture various cellulolytic enzymes (cellulases), ligninases or various small molecule biomass-destroying metabolites. These enzymes may be a complex of enzymes that act synergistically to degrade crystalline cellulose or the lignin portions of biomass. Examples of cellulolytic enzymes include: endoglucanases, cellobiohydrolases, and cellobiases (beta-glucosidases).
- a cellulosic substrate (A) is initially hydrolyzed by endoglucanases (i) at random locations producing oligomeric intermediates (e.g., cellulose) (B). These intermediates are then substrates for exo-splitting glucanases (ii) such as cellobiohydrolase to produce cellobiose from the ends of the cellulose polymer.
- Cellobiose is a water-soluble 1,4-linked dimer of glucose.
- cellobiase iii) cleaves cellobiose (C) to yield glucose (D).
- the endoglucanases are particularly effective in attacking the crystalline portions of cellulose and increasing the effectiveness of exocellulases to produce cellobiose, which then requires the specificity of the cellobiose to produce glucose. Therefore, it is evident that depending on the nature and structure of the cellulosic substrate, the amount and type of the three different enzymes may need to be modified.
- the enzymes produced and used in the processes described herein can be produced by a fungus, e.g., by one or more strains of the fungus Trichoderma reesei.
- a fungus e.g., by one or more strains of the fungus Trichoderma reesei.
- high-yielding cellulase mutants of Trichoderma reesei e.g., RUT-NG14, PC3-7, QM9414 and/or RUT-C30, are used.
- enzyme production be conducted in the presence of a portion of the feedstock that will be saccharified, thereby producing a cellulase complex that is tailored to the particular feedstock.
- the feedstock may be treated prior to such use to reduce its recalcitrance, e.g., using one or more of the recalcitrance-reducing processes described herein, so as to make the cellulose in the feedstock more readily available to the fungus.
- the enzyme-inducing biomass can be treated by electron bombardment.
- the biomass can be treated, for instance, by electron bombardment with a total dose of less than about 1 Mrad, less than about 2 Mrad, less than about 5, about 10, about 20, about 50, about 100 or about 150 Mrad.
- the enzyme-inducing biomass is treated with a total dose of about 0.1 Mrad to about 150 Mrad, about 1 to about 100 Mrad, preferably about 2 to about 50 Mrad, or about 5 to about 40 Mrad.
- the enzyme As will be discussed further below, once the enzyme has been produced, it is used to saccharify the remaining feedstock that has not been used to produce the enzyme.
- the process for converting the feedstock to a desired product or intermediate generally includes other steps in addition to this saccharification step.
- a process for manufacturing an alcohol can include, for example, optionally mechanically treating a feedstock, e.g., to reduce its size ( 200 ), before and/or after this treatment, optionally treating the feedstock with another physical treatment to further reduce its recalcitrance ( 210 ), then saccharifying the feedstock, using the enzyme complex, to form a sugar solution ( 220 ).
- the method may also include transporting, e.g., by pipeline, railcar, truck or barge, the solution (or the feedstock, enzyme and water, if saccharification is performed en route) to a manufacturing plant ( 230 ).
- the saccharified feedstock is further bioprocessed (e.g., fermented) to produce a desired product e.g., alcohol ( 240 ).
- This resulting product may in some implementations be processed further, e.g., by distillation ( 250 ), to produce a final product.
- One method of reducing the recalcitrance of the feedstock is by electron bombardment of the feedstock.
- the enzyme induction biomass is corn cob.
- the biomass is treated by electron bombardment with a 35 Mrad electron beam.
- the biomass is comminuted to a particle size of 10-1400 um, more preferably less than 200 um, most preferably less than 50 um.
- the treated biomass (in either wet or dry form) is added in a total amount of about 25 to about 133 g/L of inoculated medium, more preferably 100 g/L.
- the inductant biomass can be added at any point in the growth of the microorganisms up through the third day after inoculation, but is preferably added 1-3 days after inoculation.
- the total amount of biomass to be added as an inductant can be added all at once, or in aliquots, for instance, in two parts, or in five parts.
- the corncob biomass is added all at once.
- the enzyme induction biomass can be presented to the microorganisms as a solid, or as a slurry. Preferably it is added as a slurry.
- Filamentous fungi, or bacteria that produce cellulase typically require a carbon source and an inducer for production of cellulase. Without being bound by any theory, it is believed that the enzymes of this disclosure are particularly suited for saccharification of the substrate used for inducing its production.
- Lignocellulosic materials comprise different combinations of cellulose, hemicellulose and lignin.
- Cellulose is a linear polymer of glucose forming a fairly stiff linear structure without significant coiling. Due to this structure and the disposition of hydroxyl groups that can hydrogen bond, cellulose contains crystalline and non-crystalline portions. The crystalline portions can also be of different types, noted as I(alpha) and I(beta) for example, depending on the location of hydrogen bonds between strands. The polymer lengths themselves can vary lending more variety to the form of the cellulose.
- Hemicellulose is any of several heteropolymers, such as xylan, glucuronoxylan, arabinoxylans, and xyloglucan.
- the primary sugar monomer present is xylose, although other monomers such as mannose, galactose, rhamnose, arabinose and glucose are present.
- hemicellulose forms branched structures with lower molecular weights than cellulose.
- Hemicellulose is therefore an amorphous material that is generally susceptible to enzymatic hydrolysis.
- Lignin is a complex high molecular weight heteropolymer generally. Although all lignins show variation in their composition, they have been described as an amorphous dendritic network polymer of phenyl propene units. The amounts of cellulose, hemicellulose and lignin in a specific biomaterial depends on the source of the biomaterial.
- wood derived biomaterial can be about 38-49% cellulose, 7-26% hemicellulose and 23-34% lignin depending on the type.
- Grasses typically are 33-38% cellulose, 24-32% hemicellulose and 17-22% lignin.
- lignocellulosic biomass constitutes a large class of substrates.
- the diversity of biomass materials may be further increased by pretreatment, for example, by changing the crystallinity and molecular weights of the polymers.
- the cellulase producing organism when contacted with a biomass will tend to produce enzymes that release molecules advantageous to the organism's growth, such as glucose. This is done through the phenomenon of enzyme induction as described above. Since there are a variety of substrates in a particular biomaterial, there are a variety of cellulases, for example, the endoglucanase, exoglucanase and cellobiase discussed previously. By selecting a particular lignocellulosic material as the inducer the relative concentrations and/or activities of these enzymes can be modulated so that the resulting enzyme complex will work efficiently on the lignocellulosic material used as the inducer or a similar material. For example, a biomaterial with a higher portion of crystalline cellulose may induce a more effective or higher amount of endoglucanase than a biomaterial with little crystalline cellulose.
- a first biomass is optionally pre-treated ( 300 ), for example to reduce its recalcitrance, and is then mixed with an aqueous medium and a cellulase producing organism ( 310 ). After an adequate time has passed for the cells to grow to a desired stage and enough enzymes have been produced, a second biomass is added ( 320 ). The action of the enzyme on the second and any remaining first biomass produces a mix of sugars, which can be further processed to useful products (e.g., alcohols, pure sugars) ( 330 ).
- the first and second biomass can be portions of the same biomass source material.
- a portion of the biomass can be combined with the cellulase producing organism and then another portion added at a later stage (A) once some of the enzymes have been produced.
- the first and second biomass may both be pretreated to reduce recalcitrance.
- the aqueous media will be discussed below.
- the cellulase producing organism ( 400 ) can be grown in a growth medium for a time to reach a specific growth phase. For example, this growth period could extend over a period of days or even weeks.
- Pretreated first biomass ( 405 ) can then be contacted (A) with the enzyme producing cells ( 410 ) so that after a time enzymes are produced. Enzyme production may also take place over an extended period of time.
- the enzyme containing solution is then combined with a second biomass ( 420 ).
- the action of the enzyme on the second and remaining first biomass produces mixed sugars which can be further processed to useful products ( 430 ).
- the first and second biomass can be portions of the same biomass or could be similar but not identical (e.g., pretreated and non-pretreated) material (B).
- the cellulase producing organism ( 400 ) may optionally be harvested prior to being combined with the first pretreated biomass ( 410 ). Harvesting may include partial or almost complete removal of the solvent and growth media components. For example, the cells may be collected by centrifugation and then washed with water or another solution.
- the enzyme(s) after the enzyme(s) is produced ( 410 ), it can be concentrated (e.g., between steps 410 and 420 of FIG. 4 ). Concentration may be by any useful method including chromatography, centrifugation, filtration, dialysis, extraction, evaporation of solvents, spray drying and adsorption onto a solid support. The concentrated enzyme can be stored for a time and then be used by addition of a second biomass ( 420 ) and production of useful products ( 430 ).
- the aqueous media used in the above described methods can contain added yeast extract, corn steep, peptones, amino acids, ammonium salts, phosphate salts, potassium salts, magnesium salts, calcium salts, iron salts, manganese salts, zinc salts and cobalt salts.
- the growth media typically contains 0 to 10% glucose (e.g., 1 to 5% glucose) as a carbon source.
- the inducer media can contain, in addition to the biomass discussed previously, other inducers. For example, some known inducers are lactose, pure cellulose and sophorose.
- Various components can be added and removed during the processing to optimize the desired production of useful products.
- the concentration of the biomass typically used for inducing enzyme production is greater than or equal to 0.1 wt. % and less than or equal to 50 wt. %, greater than or equal to 0.5 wt. % and less than or equal to 25 wt. %, greater than or equal to 1 wt. %, and less than or equal to 15 wt. %, and greater than or equal to 1 wt. % and less than or equal to 10 wt. %.
- any of the processes described above may be performed as a batch, a fed-batch or a continuous process.
- the processes are useful especially for industrial scale production, e.g., having a culture medium of at least 50 liters, preferably at least 100 liters, more preferably at least 500 liters, even more preferably at least 1,000 liters, in particular at least 5,000 liters 100,000 liters or 500,000 liters.
- the process may be carried out aerobically or anaerobically.
- Some enzymes are produced by submerged cultivation and some by surface cultivation.
- the enzyme can be manufactured and stored and then used to saccharify at a later date and/or different location.
- agitation may be performed using jet mixing as described in U.S. Pat. App. Pub. 2010/0297705 A1 by Medoff and Masterman, published Nov. 25, 2010, U.S. Pat. App. Pub. 2012/0091035 A1 to Medoff and Masterman, published Apr. 19, 2012, and U.S. Pat. App. Pub. 2012/0100572 A1 by Medoff and Masterman, published Apr. 26, 2012, the full disclosures of which are incorporated by reference herein.
- Temperatures for the growth of enzyme producing organisms are chosen to enhance organism growth.
- the optimal temperature is generally between 20 and 40° C. (e.g., 30° C.).
- the temperature for enzyme production is optimized for that part of the process.
- the optimal temperature for enzyme production is between 20 and 40° C. (e.g., 27° C.).
- the feedstock which may also be the inducer for enzyme production, is preferably a lignocellulosic material, although the processes described herein may also be used with cellulosic materials, e.g., paper, paper products, paper pulp, cotton, and mixtures of any of these, and other types of biomass.
- the processes described herein are particularly useful with lignocellulosic materials, because these processes are particularly effective in reducing the recalcitrance of lignocellulosic materials and allowing such materials to be processed into products and intermediates in an economically viable manner.
- biomass materials includes lignocellulosic, cellulosic, starchy, and microbial materials.
- the enzyme-inducing biomass materials are agricultural waste such as corn cobs, more preferably corn stover.
- the enzyme-inducing biomass material comprises grasses.
- Lignocellulosic materials include, but are not limited to, wood, particle board, forestry wastes (e.g., sawdust, aspen wood, wood chips), grasses, (e.g., switchgrass, miscanthus, cord grass, reed canary grass), grain residues, (e.g., rice hulls, oat hulls, wheat chaff, barley hulls), agricultural waste (e.g., silage, canola straw, wheat straw, barley straw, oat straw, rice straw, jute, hemp, flax, bamboo, sisal, abaca, corn cobs, corn stover, soybean stover, corn fiber, alfalfa, hay, coconut hair), sugar processing residues (e.g., bagasse, beet pulp, agave bagasse), algae, seaweed, manure, sewage, and mixtures of any of these.
- forestry wastes e.g., sawdust, aspen wood, wood chips
- grasses
- the lignocellulosic material includes corncobs.
- Ground or hammermilled corncobs can be spread in a layer of relatively uniform thickness for irradiation, and after irradiation are easy to disperse in the medium for further processing.
- the entire corn plant is used, including the corn stalk, corn kernels, and in some cases even the root system of the plant.
- no additional nutrients are required during fermentation of corncobs or cellulosic or lignocellulosic materials containing significant amounts of corncobs.
- Corncobs, before and after comminution, are also easier to convey and disperse, and have a lesser tendency to form explosive mixtures in air than other cellulosic or lignocellulosic materials such as hay and grasses.
- Cellulosic materials include, for example, paper, paper products, paper waste, paper pulp, pigmented papers, loaded papers, coated papers, filled papers, magazines, printed matter (e.g., books, catalogs, manuals, labels, calendars, greeting cards, brochures, prospectuses, newsprint), printer paper, polycoated paper, card stock, cardboard, paperboard, materials having a high alpha-cellulose content such as cotton, and mixtures of any of these.
- printed matter e.g., books, catalogs, manuals, labels, calendars, greeting cards, brochures, prospectuses, newsprint
- printer paper polycoated paper, card stock, cardboard, paperboard, materials having a high alpha-cellulose content such as cotton, and mixtures of any of these.
- Cellulosic materials can also include lignocellulosic materials which have been de-lignified.
- Starchy materials include starch itself, e.g., corn starch, wheat starch, potato starch or rice starch, a derivative of starch, or a material that includes starch, such as an edible food product or a crop.
- the starchy material can be arracacha, buckwheat, banana, barley, cassava, kudzu, oca, sago, sorghum, regular household potatoes, sweet potato, taro, yams, or one or more beans, such as favas, lentils or peas.
- Blends of any two or more starchy materials are also starchy materials. Mixtures of starchy, cellulosic and or lignocellulosic materials can also be used.
- a biomass can be an entire plant, a part of a plant or different parts of a plant, e.g., a wheat plant, cotton plant, a corn plant, rice plant or a tree.
- the starchy materials can be treated by any of the methods described herein.
- Microbial materials include, but are not limited to, any naturally occurring or genetically modified microorganism or organism that contains or is capable of providing a source of carbohydrates (e.g., cellulose), for example, protists, e.g., animal protists (e.g., protozoa such as flagellates, amoeboids, ciliates, and sporozoa) and plant protists (e.g., algae such alveolates, chlorarachniophytes, cryptomonads, euglenids, glaucophytes, haptophytes, red algae, stramenopiles, and viridaeplantae).
- protists e.g., animal protists (e.g., protozoa such as flagellates, amoeboids, ciliates, and sporozoa)
- plant protists e.g., algae such alveolates, chlorarachniophytes, cryptomonads
- microbial biomass can be obtained from natural sources, e.g., the ocean, lakes, bodies of water, e.g., salt water or fresh water, or on land.
- microbial biomass can be obtained from culture systems, e.g., large scale dry and wet culture and fermentation systems.
- the biomass material can also include offal, and similar sources of material.
- the biomass materials such as cellulosic, starchy and lignocellulosic feedstock materials
- the biomass materials can be obtained from transgenic microorganisms and plants that have been modified with respect to a wild type variety. Such modifications may be, for example, through the iterative steps of selection and breeding to obtain desired traits in a plant.
- the plants can have had genetic material removed, modified, silenced and/or added with respect to the wild type variety.
- genetically modified plants can be produced by recombinant DNA methods, where genetic modifications include introducing or modifying specific genes from parental varieties, or, for example, by using transgenic breeding wherein a specific gene or genes are introduced to a plant from a different species of plant and/or bacteria.
- the artificial genes can be created by a variety of ways including treating the plant or seeds with, for example, chemical mutagens (e.g., using alkylating agents, epoxides, alkaloids, peroxides, formaldehyde), irradiation (e.g., X-rays, gamma rays, neutrons, beta particles, alpha particles, protons, deuterons, UV radiation) and temperature shocking or other external stressing and subsequent selection techniques.
- chemical mutagens e.g., using alkylating agents, epoxides, alkaloids, peroxides, formaldehyde
- irradiation e.g., X-rays, gamma rays, neutrons, beta particles, alpha particles, protons, deuterons, UV radiation
- temperature shocking or other external stressing and subsequent selection techniques e.g., temperature shocking or other external stressing and subsequent selection techniques.
- Other methods of providing modified genes is through error prone PCR
- Methods of introducing the desired genetic variation in the seed or plant include, for example, the use of a bacterial carrier, biolistics, calcium phosphate precipitation, electroporation, gene splicing, gene silencing, lipofection, microinjection and viral carriers. Additional genetically modified materials have been described in U.S. application Ser. No 13/396,369 filed Feb. 14, 2012 the full disclosure of which is incorporated herein by reference.
- Mechanical treatments of the feedstock may include, for example, cutting, milling, e.g., hammermilling, wet milling, grinding, pressing, shearing or chopping.
- the initial mechanical treatment step may, in some implementations, include reducing the size of the feedstock.
- loose feedstock e.g., recycled paper or switchgrass
- shredding is initially prepared by cutting, shearing and/or shredding.
- mechanical treatment can also be advantageous for “opening up,” “stressing,” breaking or shattering the feedstock materials, making the cellulose of the materials more susceptible to chain scission and/or disruption of crystalline structure during the structural modification treatment.
- Methods of mechanically treating the feedstock include, for example, milling or grinding. Milling may be performed using, for example, a hammer mill, ball mill, colloid mill, conical or cone mill, disk mill, edge mill, Wiley mill or grist mill. Grinding may be performed using, for example, a cutting/impact type grinder. Specific examples of grinders include stone grinders, pin grinders, coffee grinders, and bun grinders. Grinding or milling may be provided, for example, by a reciprocating pin or other element, as is the case in a pin mill. Other mechanical treatment methods include mechanical ripping or tearing, other methods that apply pressure to the fibers, and air attrition milling. Suitable mechanical treatments further include any other technique that continues the disruption of the internal structure of the material that was initiated by the previous processing steps.
- the feedstock may be treated with electron bombardment to modify its structure and thereby reduce its recalcitrance.
- Such treatment may, for example, reduce the average molecular weight of the feedstock, change the crystalline structure of the feedstock, and/or increase the surface area and/or porosity of the feedstock.
- Electron bombardment via an electron beam is generally preferred, because it provides very high throughput and because the use of a relatively low voltage/high power electron beam device eliminates the need for expensive concrete vault shielding, as such devices are “self-shielded” and provide a safe, efficient process. While the “self-shielded” devices do include shielding (e.g., metal plate shielding), they do not require the construction of a concrete vault, greatly reducing capital expenditure and often allowing an existing manufacturing facility to be used without expensive modification. Electron beam accelerators are available, for example, from IBA (Ion Beam Applications, Louvain-la-Neuve, Belgium), Titan Corporation (San Diego, Calif., USA), and NHV Corporation (Nippon High Voltage, Japan).
- Electron bombardment may be performed using an electron beam device that has a nominal energy of less than 10 MeV, e.g., less than 7 MeV, less than 5 MeV, or less than 2 MeV, e.g., from about 0.5 to 1.5 MeV, from about 0.8 to 1.8 MeV, from about 0.7 to 1 MeV, or from about 1 to about 3 MeV.
- the nominal energy is about 500 to 800 keV.
- the electron beam may have a relatively high total beam power (the combined beam power of all accelerating heads, or, if multiple accelerators are used, of all accelerators and all heads), e.g., at least 25 kW, e.g., at least 30, 40, 50, 60, 65, 70, 80, 100, 125, or 150 kW. In some cases, the power is even as high as 500 kW, 750 kW, or even 1000 kW or more. In some cases the electron beam has a beam power of 1200 kW or more.
- the electron beam device may include two, four, or more accelerating heads.
- the use of multiple heads, each of which has a relatively low beam power, prevents excessive temperature rise in the material, thereby preventing burning of the material, and also increases the uniformity of the dose through the thickness of the layer of material.
- the material can be cooled while it is being conveyed, for example by a screw extruder or other conveying equipment.
- treatment be performed at a dose rate of greater than about 0.25 Mrad per second, e.g., greater than about 0.5, 0.75, 1, 1.5, 2, 5, 7, 10, 12, 15, or even greater than about 20 Mrad per second, e.g., about 0.25 to 2 Mrad per second.
- dose rates generally require higher line speeds, to avoid thermal decomposition of the material.
- the accelerator is set for 3 MeV, 50 mAmp beam current, and the line speed is 24 feet/minute, for a sample thickness of about 20 mm (e.g., comminuted corn cob material with a bulk density of 0.5 g/cm 3 ).
- electron bombardment is performed until the material receives a total dose of at least 0.5 Mrad, e.g., at least 5, 10, 20, 30 or at least 40 Mrad.
- the treatment is performed until the material receives a dose of from about 0.5 Mrad to about 150 Mrad, about 1 Mrad to about 100 Mrad, about 2 Mrad to about 75 Mrad, 10 Mrad to about 50 Mrad, e.g., about 5 Mrad to about 50 Mrad, from about 20 Mrad to about 40 Mrad, about 10 Mrad to about 35 Mrad, or from about 25 Mrad to about 30 Mrad.
- a total dose of 25 to 35 Mrad is preferred, applied ideally over a couple of seconds, e.g., at 5 Mrad/pass with each pass being applied for about one second. Applying a dose of greater than 7 to 8 Mrad/pass can in some cases cause thermal degradation of the feedstock material.
- the material can be treated in multiple passes, for example, two passes at 10 to 20 Mrad/pass, e.g., 12 to 18 Mrad/pass, separated by a few seconds of cool-down, or three passes of 7 to 12 Mrad/pass, e.g., 9 to 11 Mrad/pass.
- treating the material with several relatively low doses, rather than one high dose tends to prevent overheating of the material and also increases dose uniformity through the thickness of the material.
- the material is stirred or otherwise mixed during or after each pass and then smoothed into a uniform layer again before the next pass, to further enhance treatment uniformity.
- electrons are accelerated to, for example, a speed of greater than 75 percent of the speed of light, e.g., greater than 85, 90, 95, or 99 percent of the speed of light.
- any processing described herein occurs on lignocellulosic material that remains dry as acquired or that has been dried, e.g., using heat and/or reduced pressure.
- the cellulosic and/or lignocellulosic material has less than about five percent by weight retained water, measured at 25° C. and at fifty percent relative humidity.
- Electron bombardment can be applied while the cellulosic and/or lignocellulosic material is exposed to air, oxygen-enriched air, or even oxygen itself, or blanketed by an inert gas such as nitrogen, argon, or helium.
- an oxidizing environment is utilized, such as air or oxygen and the distance from the beam source is optimized to maximize reactive gas formation, e.g., ozone and/or oxides of nitrogen.
- Biomass Treatment Sonication, Pyrolysis, Oxidation, Steam Explosion
- one or more sonication, pyrolysis, oxidative, or steam explosion processes can be used in addition to or instead of electron bombardment to reduce the recalcitrance of the feedstock. These processes are described in detail in U.S. Pat. No. 7,932,065 to Medoff, the full disclosure of which is incorporated herein by reference.
- the biomass material e.g., plant biomass, animal biomass, paper, and municipal waste biomass
- useful intermediates and products such as organic acids, salts of organic acids, anhydrides, esters of organic acids and fuels, e.g., fuels for internal combustion engines or feedstocks for fuel cells.
- Systems and processes are described herein that can use as feedstock cellulosic and/or lignocellulosic materials that are readily available, but often can be difficult to process, e.g., municipal waste streams and waste paper streams, such as streams that include newspaper, kraft paper, corrugated paper or mixtures of these.
- the glucan- or xylan-containing cellulose in the feedstock can be hydrolyzed to low molecular weight carbohydrates, such as sugars, by a saccharifying agent, e.g., an enzyme or acid, a process referred to as saccharification.
- a saccharifying agent e.g., an enzyme or acid
- the low molecular weight carbohydrates can then be used, for example, in an existing manufacturing plant, such as a single cell protein plant, an enzyme manufacturing plant, or a fuel plant, e.g., an ethanol manufacturing facility.
- the feedstock can be hydrolyzed using an enzyme, e.g., by combining the materials and the enzyme in a solvent, e.g., in an aqueous solution.
- the enzymes can be made/induced according to the methods described herein.
- the enzymes can be supplied by organisms that are capable of breaking down biomass (such as the cellulose and/or the lignin portions of the biomass), or that contain or manufacture various cellulolytic enzymes (cellulases), ligninases or various small molecule biomass-degrading metabolites. These enzymes may be a complex of enzymes that act synergistically to degrade crystalline cellulose or the lignin portions of biomass. Examples of cellulolytic enzymes include: endoglucanases, cellobiohydrolases, and cellobiases (beta-glucosidases).
- a cellulosic substrate can be initially hydrolyzed by endoglucanases at random locations producing oligomeric intermediates. These intermediates are then substrates for exo-splitting glucanases such as cellobiohydrolase to produce cellobiose from the ends of the cellulose polymer.
- Cellobiose is a water-soluble 1,4-linked dimer of glucose.
- cellobiase cleaves cellobiose to yield glucose. The efficiency (e.g., time to hydrolyze and/or completeness of hydrolysis) of this process depends on the recalcitrance of the cellulosic material.
- the biomass material can be converted to one or more products, such as energy, fuels, foods and materials.
- products include, but are not limited to, hydrogen, sugars (e.g., glucose, xylose, arabinose, mannose, galactose, fructose, disaccharides, oligosaccharides and polysaccharides), alcohols (e.g., monohydric alcohols or dihydric alcohols, such as ethanol, n-propanol, isobutanol, sec-butanol, tert-butanol or n-butanol), hydrated or hydrous alcohols (e.g., containing greater than 10%, 20%, 30% or even greater than 40% water), biodiesel, organic acids, hydrocarbons (e.g., methane, ethane, propane, isobutene, pentane, n-hexane, biodiesel, bio-gasoline and mixtures thereof), co-product
- sugars e.g
- carboxylic acids examples include carboxylic acids, salts of a carboxylic acid, a mixture of carboxylic acids and salts of carboxylic acids and esters of carboxylic acids (e.g., methyl, ethyl and n-propyl esters), ketones (e.g., acetone), aldehydes (e.g., acetaldehyde), alpha and beta unsaturated acids (e.g., acrylic acid) and olefins (e.g., ethylene).
- carboxylic acids salts of a carboxylic acid
- a mixture of carboxylic acids and salts of carboxylic acids and esters of carboxylic acids e.g., methyl, ethyl and n-propyl esters
- ketones e.g., acetone
- aldehydes e.g., acetaldehyde
- alpha and beta unsaturated acids e.g., acrylic acid
- Alcohols and alcohol derivatives include propanol, propylene glycol, 1,4-butanediol, 1,3-propanediol, sugar alcohols and polyols (e.g., glycol, glycerol, erythritol, threitol, arabitol, xylitol, ribitol, mannitol, sorbitol, galactitol, iditol, inositol, volemitol, isomalt, maltitol, lactitol, maltotriitol, maltotetraitol, and polyglycitol and other polyols), and methyl or ethyl esters of any of these alcohols.
- sugar alcohols and polyols e.g., glycol, glycerol, erythritol, threitol, arabitol, xylitol, rib
- Other products include methyl acrylate, methylmethacrylate, lactic acid, citric acid, formic acid, acetic acid, propionic acid, butyric acid, succinic acid, valeric acid, caproic acid, 3-hydroxypropionic acid, palmitic acid, stearic acid, oxalic acid, malonic acid, glutaric acid, oleic acid, linoleic acid, glycolic acid, gamma-hydroxybutyric acid, and mixtures thereof, salts of any of these acids, mixtures of any of the acids and their respective salts.
- any combination of the above products with each other, and/or of the above products with other products, which other products may be made by the processes described herein or otherwise, may be packaged together and sold as products.
- the products may be combined, e.g., mixed, blended or co-dissolved, or may simply be packaged or sold together.
- Any of the products or combinations of products described herein may be sanitized or sterilized prior to selling the products, e.g., after purification or isolation or even after packaging, to neutralize one or more potentially undesirable contaminants that could be present in the product(s).
- Such sanitation can be done with electron bombardment, for example, at a dosage of less than about 20 Mrad, e.g., from about 0.1 to 15 Mrad, from about 0.5 to 7 Mrad, or from about 1 to 3 Mrad.
- the processes described herein can produce various by-product streams useful for generating steam and electricity to be used in other parts of the plant (co-generation) or sold on the open market.
- steam generated from burning by-product streams can be used in a distillation process.
- electricity generated from burning by-product streams can be used to power electron beam generators used in pretreatment.
- the by-products used to generate steam and electricity are derived from a number of sources throughout the process.
- anaerobic digestion of wastewater can produce a biogas high in methane and a small amount of waste biomass (sludge).
- post-saccharification and/or post-distillate solids e.g., unconverted lignin, cellulose, and hemicellulose remaining from the pretreatment and primary processes
- ethanol or n-butanol can be utilized as a fuel for powering cars, trucks, tractors, ships or trains, e.g., as an internal combustion fuel or as a fuel cell feedstock.
- Many of the products obtained can also be utilized to power aircraft, such as planes, e.g., having jet engines or helicopters.
- the products described herein can be utilized for electrical power generation, e.g., in a conventional steam generating plant or in a fuel cell plant.
- the reduced-recalcitrance feedstock is treated with the enzymes discussed above, generally by combining the material and the enzyme in a fluid medium, e.g., an aqueous solution.
- a fluid medium e.g., an aqueous solution.
- the feedstock is boiled, steeped, or cooked in hot water prior to saccharification, as described in U.S. Pat. App. Pub. 2012/0100577 A1 by Medoff and Masterman, published on Apr. 26, 2012, the entire contents of which are incorporated herein.
- the saccharification process can be partially or completely performed in a tank (e.g., a tank having a volume of at least 4000, 40,000, or 500,000 L) in a manufacturing plant, and/or can be partially or completely performed in transit, e.g., in a rail car, tanker truck, or in a supertanker or the hold of a ship.
- a tank e.g., a tank having a volume of at least 4000, 40,000, or 500,000 L
- the time required for complete saccharification will depend on the process conditions and the biomass material and enzyme used. If saccharification is performed in a manufacturing plant under controlled conditions, the cellulose may be substantially entirely converted to sugar, e.g., glucose in about 12-96 hours. If saccharification is performed partially or completely in transit, saccharification may take longer.
- tank contents be mixed during saccharification, e.g., using jet mixing as described in International App. No. PCT/US2010/035331, filed May 18, 2010, which was published in English as WO 2010/135380 and designated the United States, the full disclosure of which is incorporated by reference herein.
- surfactants can enhance the rate of saccharification.
- surfactants include non-ionic surfactants, such as a Tween® 20 or Tween® 80 polyethylene glycol surfactants, ionic surfactants, or amphoteric surfactants.
- the concentration of the sugar solution resulting from saccharification be relatively high, e.g., greater than 40%, or greater than 50, 60, 70, 80, 90 or even greater than 95% by weight.
- Water may be removed, e.g., by evaporation, to increase the concentration of the sugar solution. This reduces the volume to be shipped, and also inhibits microbial growth in the solution.
- sugar solutions of lower concentrations may be used, in which case it may be desirable to add an antimicrobial additive, e.g., a broad spectrum antibiotic, in a low concentration, e.g., 50 to 150 ppm.
- an antimicrobial additive e.g., a broad spectrum antibiotic
- suitable antibiotics include amphotericin B, ampicillin, chloramphenicol, ciprofloxacin, gentamicin, hygromycin B, kanamycin, neomycin, penicillin, puromycin, streptomycin.
- Antibiotics will inhibit growth of microorganisms during transport and storage, and can be used at appropriate concentrations, e.g., between 15 and 1000 ppm by weight, e.g., between 25 and 500 ppm, or between 50 and 150 ppm.
- an antibiotic can be included even if the sugar concentration is relatively high.
- other additives with anti-microbial of preservative properties may be used.
- the antimicrobial additive(s) are
- a relatively high concentration solution can be obtained by limiting the amount of water added to the biomass material with the enzyme.
- the concentration can be controlled, e.g., by controlling how much saccharification takes place.
- concentration can be increased by adding more biomass material to the solution.
- a surfactant can be added, e.g., one of those discussed above.
- Solubility can also be increased by increasing the temperature of the solution. For example, the solution can be maintained at a temperature of 40-50° C., 60-80° C., or even higher.
- Suitable cellulolytic enzymes include cellulases from species in the genera Bacillus, Coprinus, Myceliophthora, Cephalosporium, Scytalidium, Penicillium, Aspergillus, Pseudomonas, Humicola, Fusarium, Thielavia, Acremonium, Chrysosporium and Trichoderma, especially those produced by a strain selected from the species Aspergillus (see, e.g., EP Pub. No. 0 458 162), Humicola insolens (reclassified as Scytalidium thermophilum, see, e.g., U.S. Pat. No.
- Coprinus cinereus Coprinus cinereus, Fusarium oxysporum, Myceliophthora thermophila, Meripilus giganteus, Thielavia terrestris, Acremonium sp. (including, but not limited to, A. persicinum, A. acremonium, A. brachypenium, A. dichromosporum, A. obclavatum, A. pinkertoniae, A. roseogriseum, A. incoloratum, and A. furatum ).
- Preferred strains include Humicola insolens DSM 1800, Fusarium oxysporum DSM 2672, Myceliophthora thermophila CBS 117.65, Cephalosporium sp.
- Cellulolytic enzymes may also be obtained from Chrysosporium, preferably a strain of Chrysosporium lucknowense. Additional strains that can be used include, but are not limited to, Trichoderma (particularly T. viride, T. reesei, and T. koningii ), alkalophilic Bacillus (see, for example, U.S. Pat. No. 3,844,890 and EP Pub. No. 0 458 162), and Streptomyces (see, e.g., EP Pub. No. 0 458 162).
- microorganisms that can be used to saccharify biomass material and produce sugars can also be used to ferment and convert those sugars to useful products.
- sugars e.g., glucose and xylose
- sugars can be isolated by precipitation, crystallization, chromatography (e.g., simulated moving bed chromatography, high pressure chromatography), centrifugation, extraction, any other isolation method known in the art, and combinations thereof.
- the processes described herein can include hydrogenation.
- glucose and xylose can be hydrogenated to sorbitol and xylitol respectively.
- Hydrogenation can be accomplished by use of a catalyst (e.g., Pt/gamma-Al 2 O 3 , Ru/C, Raney Nickel, or other catalysts know in the art) in combination with H 2 under high pressure (e.g., 10 to 12000 psi).
- a catalyst e.g., Pt/gamma-Al 2 O 3 , Ru/C, Raney Nickel, or other catalysts know in the art
- H 2 under high pressure e.g. 10 to 12000 psi
- Other types of chemical transformation of the products from the processes described herein can be used, for example, production of organic sugar derived products such (e.g., furfural and furfural-derived products). Chemical transformations of sugar derived products are described in U.S. Prov. App. No. 61/667,481, filed Jul. 3, 2012
- the sugars produced by saccharification can be isolated as a final product, or can be fermented to produce other products, e.g., alcohols, sugar alcohols, such as erythritol, or organic acids, e.g., lactic, glutamic or citric acids or amino acids.
- Yeast and Zymomonas bacteria can be used for fermentation or conversion of sugar(s) to alcohol(s). Other microorganisms are discussed below.
- the optimum pH for fermentations is about pH 4 to 7.
- the optimum pH for yeast is from about pH 4 to 5
- the optimum pH for Zymomonas is from about pH 5 to 6.
- Typical fermentation times are about 24 to 168 hours (e.g., 24 to 96 hrs) with temperatures in the range of 20° C. to 40° C. (e.g., 26° C. to 40° C.), however thermophilic microorganisms prefer higher temperatures.
- At least a portion of the fermentation is conducted in the absence of oxygen, e.g., under a blanket of an inert gas such as N 2 , Ar, He, CO 2 or mixtures thereof.
- the mixture may have a constant purge of an inert gas flowing through the tank during part of or all of the fermentation.
- anaerobic condition can be achieved or maintained by carbon dioxide production during the fermentation and no additional inert gas is needed.
- all or a portion of the fermentation process can be interrupted before the low molecular weight sugar is completely converted to a product (e.g., ethanol).
- the intermediate fermentation products include sugar and carbohydrates in high concentrations.
- the sugars and carbohydrates can be isolated via any means known in the art.
- These intermediate fermentation products can be used in preparation of food for human or animal consumption. Additionally or alternatively, the intermediate fermentation products can be ground to a fine particle size in a stainless-steel laboratory mill to produce a flour-like substance.
- Jet mixing may be used during fermentation, and in some cases saccharification and fermentation are performed in the same tank.
- Nutrients for the microorganisms may be added during saccharification and/or fermentation, for example the food-based nutrient packages described in U.S. Pat. App. Pub. 2012/0052536, filed Jul. 15, 2011, the complete disclosure of which is incorporated herein by reference.
- “Fermentation” includes the methods and products that are disclosed in U.S. Prov. App. No. 61/579,559, filed Dec. 22, 2012, and U.S. Prov. App. No. 61/579,576, filed Dec. 22, 2012, the contents of both of which are incorporated by reference herein in their entirety.
- Mobile fermenters can be utilized, as described in International App. No. PCT/US2007/074028 (which was filed Jul. 20, 2007, was published in English as WO 2008/011598 and designated the United States), the contents of which is incorporated herein in its entirety.
- the saccharification equipment can be mobile. Further, saccharification and/or fermentation may be performed in part or entirely during transit.
- the microorganism(s) used in fermentation can be naturally-occurring microorganisms and/or engineered microorganisms.
- the microorganism can be a bacterium (including, but not limited to, e.g., a cellulolytic bacterium), a fungus, (including, but not limited to, e.g., a yeast), a plant, a protist, e.g., a protozoa or a fungus-like protest (including, but not limited to, e.g., a slime mold), or an algae.
- a bacterium including, but not limited to, e.g., a cellulolytic bacterium
- a fungus including, but not limited to, e.g., a yeast
- a plant e.g., a protist, e.g., a protozoa or a fungus-like protest (including, but not limited to, e.g.
- Suitable fermenting microorganisms have the ability to convert carbohydrates, such as glucose, fructose, xylose, arabinose, mannose, galactose, oligosaccharides or polysaccharides into fermentation products.
- Fermenting microorganisms include strains of the genus Saccharomyces spp. (including, but not limited to, S. cerevisiae (baker's yeast), S. distaticus, S. uvarum ), the genus Kluyveromyces, (including, but not limited to, K. marxianus, K. fragilis ), the genus Candida (including, but not limited to, C. pseudotropicalis, and C.
- brassicae Pichia stipitis (a relative of Candida shehatae ), the genus Clavispora (including, but not limited to, C. lusitaniae and C. opuntiae ), the genus Pachysolen (including, but not limited to, P. tannophilus ), the genus Bretannomyces (including, but not limited to, e.g., B. clausenii (Philippidis, G. P., 1996, Cellulose bioconversion technology, in Handbook on Bioethanol: Production and Utilization, Wyman, C. E., ed., Taylor & Francis, Washington, D.C., 179- 212) ).
- Suitable microorganisms include, for example, Zymomonas mobilis, Clostridium spp. (including, but not limited to, C. thermocellum (Philippidis, 1996, supra), C. saccharobutylacetonicum, C. saccharobutylicum, C. Puniceum, C. beijernckii, and C. acetobutylicum ), Moniliella pollinis, Moniliella megachiliensis, Lactobacillus spp.
- Yarrowia lipolytica Aureobasidium sp., Trichosporonoides sp., Trigonopsis variabilis, Trichosporon sp., Moniliellaacetoabutans sp., Typhula variabilis, Candida magnoliae, Ustilaginomycetes sp., Pseudozyma tsukubaensis, yeast species of genera Zygosaccharomyces, Debaryomyces, Hansenula and Pichia, and fungi of the dematioid genus Torula.
- Clostridium spp. can be used to produce ethanol, butanol, butyric acid, acetic acid, and acetone. Lactobacillus spp., can be used to produce lactice acid.
- microbial strains are publicly available, either commercially or through depositories such as the ATCC (American Type Culture Collection, Manassas, Va., USA), the NRRL (Agricultural Research Sevice Culture Collection, Peoria, Ill., USA), or the DSMZ (Deutsche Sammlung von Mikroorganismen and Zellkulturen GmbH, Braunschweig, Germany), to name a few.
- ATCC American Type Culture Collection, Manassas, Va., USA
- NRRL Agricultural Research Sevice Culture Collection, Peoria, Ill., USA
- DSMZ Deutsche Sammlung von Mikroorganismen and Zellkulturen GmbH, Braunschweig, Germany
- yeasts include, for example, Red Star®/Lesaffre Ethanol Red (available from Red Star/Lesaffre, USA), FALI® (available from Fleischmann's Yeast, a division of Burns Philip Food Inc., USA), SUPERSTART® (available from Alltech, now Lalemand), GERT STRAND® (available from Gert Strand AB, Sweden) and FERMOL® (available from DSM Specialties).
- microorganisms that can be used to saccharify biomass material and produce sugars can also be used to ferment and convert those sugars to useful products.
- the resulting fluids can be distilled using, for example, a “beer column” to separate ethanol and other alcohols from the majority of water and residual solids.
- the vapor exiting the beer column can be, e.g., 35% by weight ethanol and can be fed to a rectification column.
- a mixture of nearly azeotropic (92.5%) ethanol and water from the rectification column can be purified to pure (99.5%) ethanol using vapor-phase molecular sieves.
- the beer column bottoms can be sent to the first effect of a three-effect evaporator.
- the rectification column reflux condenser can provide heat for this first effect. After the first effect, solids can be separated using a centrifuge and dried in a rotary dryer.
- a portion (25%) of the centrifuge effluent can be recycled to fermentation and the rest sent to the second and third evaporator effects. Most of the evaporator condensate can be returned to the process as fairly clean condensate with a small portion split off to waste water treatment to prevent build-up of low-boiling compounds.
- any numerical range recited herein is intended to include all sub-ranges subsumed therein.
- a range of “1 to 10” is intended to include all sub-ranges between (and including) the recited minimum value of 1 and the recited maximum value of 10, that is, having a minimum value equal to or greater than 1 and a maximum value of equal to or less than 10.
- the terms “one,” “a,” or “an” as used herein are intended to include “at least one” or “one or more,” unless otherwise indicated.
- Trichiderma reesei strains were banked: ATCC 66589, PC3-7; ATCC 56765, RUT-C30; ATCC 56767, NG-14; ATCC 26921, QM 9414.
- Each cell was rehydrated and propagated in potato dextrose (PD) media at 25° C.
- PD potato dextrose
- each strain was rehydrated overnight in 0.5 ml sterile water.
- 40 ul of rehydrated cells were used to inoculate potato dextrose agar (PDA) solid medium.
- PDA potato dextrose agar
- Rehydrated cells were also inoculated into 50 ml of PD liquid medium and incubated at 25° C. and 200 rpm.
- spores were resuspended in sterile NaCl (9g/L), 20% glycerol solution, and stored in ⁇ 80° C. freezer for use as a cell bank.
- Protein concentration was measured by the Bradford method using bovine serum albumin as a standard.
- the reaction product (glucose) was analyzed on a YSI 7100 Multiparameter Bioanalytical System (YSI Life Sciences, Yellow Springs, Ohio, USA) or HPLC.
- the media included corn steep (2 g/L), ammonium sulfate (1.4 g/L), potassium hydroxide (0.8 g/L), Phosphoric acid (85%, 4 mL/L), phthalic acid dipotassium salt (5 g/L), magnesium sulfate heptahydrate (0.3 g/L), calcium chloride (0.3 g/L), ferrous sulfate heptahydrate (5 mg/L), manganese sulfate mono hydrate (1.6 mg/L), zinc sulfate heptahydrate (5 mg/L) and cobalt chloride hexahydrate (2 mg/L).
- the media is described in Herpoel-Gimbert et al., Biotechnology for Biofuels, 2008, 1:18.
- Bio-reactor The freezer stock from the cell banking was used to make the seed culture using the media described above, with 2.5% additional glucose.
- the seed culture was typically made in a flask using an incubator set at 30° C. and 200 rpm for 72 hrs.
- Seed culture broth 50mL was used as an inoculum in the 1L starting medium in a 3L fermenter.
- 35 g/L of lactose was added to the medium.
- the culture conditions were as follows: 27° C., pH 4.8 (with 6M ammonia), air flow 0.5 VVM, stifling 500 rpm, and dissolved oxygen (DO) was maintained above 40% oxygen saturation.
- the desired inducer discussed below was added.
- Antifoam 204 Antifoam 204 (Sigma) was injected into the culture when the foam reached the fermenter head.
- Shake flask In addition to the media described above, for the flask culture, Tris buffer (12.1 g/L), maleic acid (11.06 g/L) and sodium hydroxide (2.08 g/L) were added. A starter culture was prepared in the media with added glucose. After 3 days of growth, the cell mass was harvested by centrifugation. The cell mass was re-suspended in 50 ml of media with the desired inducer. The flasks were placed in a shaker incubator set at an agitation speed of 200 rpm and temperature of 30° C.
- inducers treated biomass (TBM), untreated biomass (UBM), paper (P) and carboxylmethylcellulose (CMC, Aldrich) ) were used to produce enzymes.
- the biomass (TBM and UBM) was milled corn cob collected between mesh sizes of 15 and 40.
- Treatment of the biomass (UBM) to produce the TBM involved electron bombardment with an electron beam to a total dose of 35 Mrad.
- the paper was shredded and screened to have a nominal particle size smaller than 0.16 inch.
- the inducer experiments were conducted using shake flasks and PC3-7 and RUT-C30 strains. After 3 days of the growth culture, the harvested cell mass was added to a series of shake flasks each containing 50 ml of medium and 1 wt. % of one of the inducers.
- the induction experiment was allowed to proceed for 11 days.
- the culture supernatant was then harvested by centrifugation at 14,500 rpm for 5 minutes, and stored at 4° C.
- Protein concentration of culture supernatant Using the cell culture grown in the shake flasks and derived from PC3-7, protein concentrations after 11 days were 1.39, 1.18, 1.06 and 0.26 mg/mL for TBM, UBM, P and CMC respectively. For RUT-C30, the protein concentrations were 1.26, 1.26, 1.00 and 0.26 mg/mL for TBM, P, UBM and CMC, respectively.
- Cellulase activity The cellulase activities were assessed and are listed in the table below.
- Cellobiase Cellobiase FPU activity FPU activity Inducer Cell type (U/mL) (U/mL) (U/mg) (U/mg) TBM PC-3-7 0.57 0.47 1.04 0.86 UBM PC-3-7 0.45 0.39 1.08 0.93 P PC-3-7 0.57 0.39 0.96 0.66 CMC PC-3-7 0.06 0.11 0.55 0.99 TBM RUT-C30 1.02 0.53 1.97 1.03 UBM RUT-C30 0.72 0.42 1.76 1.03 P RUT-C30 0.71 0.40 1.31 0.74 CMC RUT-C30 0.24 0.18 1.77 1.31
- Protein FPU CMC (wt. %) (g/L) (U/mL) (U/mL) 1 0.7 1.4 1.3 2 1.4 3.1 1.7 5 3.4 6.2 2.6 7 2.9 2.5 1.5 9 1.5 0.6 1.0
- Saccharification of biomass with enzymes Saccharification of biomass (TBM) using enzymes produced by addition of 2, 5 and 7 wt. % treated biomass inducer (TBM) versus a commercial enzyme (DuetTM Accellerase, Genencor) was conducted.
- the biomass, 10 wt. % TBM was combined with either 0.25 ml/g of enzyme culture broth or commercial enzyme.
- the saccharification was carried out at 50° C. and 200 rpm in a shaking incubator. After 24 hours the amount of generated glucose was measured by YSI. The amount of glucose produced per L of solution and mg of protein is shown in the table below.
- a bioreactor culture was prepared using the method described above except that the mixing was done at 50 rpm rather than 500 rpm.
- the protein assay showed that 3.4 g/L protein was produced.
- Lane 1 and 5 are molecular weight markers
- Lane 2 is a 30 uL load of the protein
- Lane 3 is a 40 uL load of the protein
- Lane 4 is DuetTM Accelerase enzyme complex (Genencor).
- Example 4 Range of Conditions Tested Parameters Range Working Best Induction Tested Tested Range Range Corn Cob Particle Size 1400- ⁇ 5 mm 1400- ⁇ 5 mm ⁇ 50 mm Amount Added 25-133 g/L 25-133 g/L 100 g/L Timing of Day 0-3 1-3 Day 1-3 Addition Frequency of 1, 2, and 5 1, 2, and 5 1 Addition Presentation wet or dry wet or dry wet or dry Treatment Levels 35 35 35 Lactose Timing of Day 3 Day 3 Day 3 Addition Amount Added 4.7-40 g/L/d 4.7-18.7 g/L/d 18.7 g/L/d Frequency of continuous continuous continuous Addition feed feed feed feed feed feed feed feed feed feed feed feed feed feed feed feed
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Processing Of Solid Wastes (AREA)
- Enzymes And Modification Thereof (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Solid Fuels And Fuel-Associated Substances (AREA)
- Treatment Of Sludge (AREA)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/016,455 US20140011258A1 (en) | 2011-12-22 | 2013-09-03 | Processing biomass |
US15/287,461 US20170022530A1 (en) | 2011-12-22 | 2016-10-06 | Processing biomass |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161579562P | 2011-12-22 | 2011-12-22 | |
US201161579550P | 2011-12-22 | 2011-12-22 | |
PCT/US2012/071091 WO2013096698A1 (en) | 2011-12-22 | 2012-12-20 | Processing of biomass materials |
US14/016,455 US20140011258A1 (en) | 2011-12-22 | 2013-09-03 | Processing biomass |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2012/071091 Continuation WO2013096698A1 (en) | 2011-12-22 | 2012-12-20 | Processing of biomass materials |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/287,461 Continuation US20170022530A1 (en) | 2011-12-22 | 2016-10-06 | Processing biomass |
Publications (1)
Publication Number | Publication Date |
---|---|
US20140011258A1 true US20140011258A1 (en) | 2014-01-09 |
Family
ID=47664407
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/016,455 Abandoned US20140011258A1 (en) | 2011-12-22 | 2013-09-03 | Processing biomass |
US14/016,461 Expired - Fee Related US9683249B2 (en) | 2011-12-22 | 2013-09-03 | Processing biomass |
US15/287,461 Abandoned US20170022530A1 (en) | 2011-12-22 | 2016-10-06 | Processing biomass |
US15/596,658 Expired - Fee Related US9963730B2 (en) | 2011-12-22 | 2017-05-16 | Processing biomass |
US15/946,286 Expired - Fee Related US10294503B2 (en) | 2011-12-22 | 2018-04-05 | Processing biomass |
US16/377,037 Abandoned US20190233863A1 (en) | 2011-12-22 | 2019-04-05 | Processing biomass |
Family Applications After (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/016,461 Expired - Fee Related US9683249B2 (en) | 2011-12-22 | 2013-09-03 | Processing biomass |
US15/287,461 Abandoned US20170022530A1 (en) | 2011-12-22 | 2016-10-06 | Processing biomass |
US15/596,658 Expired - Fee Related US9963730B2 (en) | 2011-12-22 | 2017-05-16 | Processing biomass |
US15/946,286 Expired - Fee Related US10294503B2 (en) | 2011-12-22 | 2018-04-05 | Processing biomass |
US16/377,037 Abandoned US20190233863A1 (en) | 2011-12-22 | 2019-04-05 | Processing biomass |
Country Status (19)
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140127772A1 (en) * | 2012-11-06 | 2014-05-08 | Scott D. Kohl | Advanced cook technology |
US8877472B2 (en) * | 2008-04-30 | 2014-11-04 | Xyleco, Inc. | Electron beam irradiation processing of biomass and saccharification thereof |
US20160053047A1 (en) * | 2013-05-17 | 2016-02-25 | Xyleco, Inc. | Processing biomass |
US20160076014A1 (en) * | 2011-12-22 | 2016-03-17 | Xyleco, Inc. | Processing biomass |
WO2016160956A1 (en) * | 2015-03-31 | 2016-10-06 | Xyleco, Inc. | Compositions for enhanced enzyme production |
WO2016160955A1 (en) * | 2015-03-31 | 2016-10-06 | Xyleco, Inc. | Processing of biomass materials |
US10045552B2 (en) | 2014-09-19 | 2018-08-14 | Xyleco, Inc. | Saccharides and saccharide compositions and mixtures |
US10131894B2 (en) | 2014-08-08 | 2018-11-20 | Xyleco, Inc. | Aglycosylated enzyme and uses thereof |
CN108972822A (zh) * | 2018-09-06 | 2018-12-11 | 南京林业大学 | 一种纤维秸秆刨花人造板的制造方法 |
WO2019084518A1 (en) * | 2017-10-27 | 2019-05-02 | Xyleco, Inc. | TREATMENT OF BIOMASS |
US20230265612A1 (en) * | 2020-07-06 | 2023-08-24 | Amppc Finland Oy | A cooking method |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11064717B2 (en) | 2013-02-20 | 2021-07-20 | Palm Silage, Inc. | Palm-based animal feed |
US12201128B2 (en) | 2013-02-20 | 2025-01-21 | Palm Silage, Inc. | Palm-based animal feed |
MX2015014719A (es) | 2013-04-26 | 2016-06-30 | Xyleco Inc | Procesamiento de biomasa para obtener acidos oxhidrilo-carboxilico s. |
KR20160002752A (ko) | 2013-04-26 | 2016-01-08 | 질레코 인코포레이티드 | 하이드록시-카복실산의 중합체로의 가공처리 |
BR112016003282B8 (pt) * | 2013-08-22 | 2022-04-05 | Toray Industries | Métodos de produção de um líquido de açúcar e de uma substância química |
FR3015311B1 (fr) * | 2013-12-24 | 2016-01-01 | Agronomique Inst Nat Rech | Procede de fractionnement d'un tourteau d'oleagineux et applications de ce procede |
KR101529441B1 (ko) * | 2014-10-28 | 2015-06-25 | 박경원 | 친환경 조류제거제 및 이를 이용한 유해조류 방제방법 |
GB201511218D0 (en) * | 2015-06-25 | 2015-08-12 | Goe Ip As | Reservoir treatments |
US10731191B2 (en) | 2015-11-24 | 2020-08-04 | Poet Research, Inc. | Using dissolved oxygen to inhibit lactic acid production during propagation of yeast and/or hydrolysis of lignocellulosic biomass |
EP3416740B1 (en) | 2016-02-19 | 2021-01-06 | Intercontinental Great Brands LLC | Processes to create multiple value streams from biomass sources |
PL3901246T3 (pl) * | 2016-03-01 | 2024-11-12 | The Fynder Group, Inc. | BIOMATY GRZYBÓW STRZĘPKOWYCH, SPOSOBY ICH WYTWARZANIA i SPOSOBY ICH ZASTOSOWANIA |
CN106755126A (zh) * | 2017-01-20 | 2017-05-31 | 福建农林大学 | 一种利用能源草沼渣制备生物碳的方法 |
FI127576B (en) | 2017-03-02 | 2018-09-14 | Sulapac Oy | New packaging materials |
CN107418943B (zh) * | 2017-04-12 | 2021-05-11 | 上海大学 | 从秸秆中提取纤维素酶生产诱导剂的方法及其在秸秆糖化中的应用 |
FI130445B (en) | 2018-09-01 | 2023-09-01 | Sulapac Oy | Compostable wood composite material |
FI130356B (en) | 2019-07-29 | 2023-07-17 | Sulapac Oy | Flexible wood composite material |
US12397244B1 (en) | 2020-06-17 | 2025-08-26 | Plant Synergies, Llc | System and method for extracting noxious chemicals from naturally-occurring raw materials and creating useful products |
FI131217B1 (en) | 2022-07-11 | 2024-12-10 | Sulapac Oy | Flexible multilayer composite material |
JP2024034389A (ja) * | 2022-08-31 | 2024-03-13 | 株式会社ジェイエスピー | 食品廃棄物処理用微生物担持体 |
WO2024192501A1 (en) * | 2023-03-22 | 2024-09-26 | Crb Innovations Inc. | Fractionation process of lignocellulosic biomass producing rich biogenic carbon products |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050233423A1 (en) * | 2004-03-25 | 2005-10-20 | Novozymes Biotech, Inc. | Methods for degrading or converting plant cell wall polysaccharides |
US20080199908A1 (en) * | 2005-06-30 | 2008-08-21 | Novozymes North America, Inc | Production Of Cellulase |
US20100304440A1 (en) * | 2008-04-30 | 2010-12-02 | Xyleco, Inc. | Processing biomass |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4091116A (en) * | 1973-01-17 | 1978-05-23 | Ronald Alexander Nixon Edwards | Adjusting the proportion of a substance by enzyme treatment |
US5916780A (en) | 1997-06-09 | 1999-06-29 | Iogen Corporation | Pretreatment process for conversion of cellulose to fuel ethanol |
US5973035A (en) | 1997-10-31 | 1999-10-26 | Xyleco, Inc. | Cellulosic fiber composites |
US7193129B2 (en) | 2001-04-18 | 2007-03-20 | Mendel Biotechnology, Inc. | Stress-related polynucleotides and polypeptides in plants |
US7402428B2 (en) | 2004-09-22 | 2008-07-22 | Arborgen, Llc | Modification of plant lignin content |
EP1869157B9 (en) | 2005-04-04 | 2012-08-29 | E.I. Du Pont De Nemours And Company | Flexible culture medium bag containing nutrient concentrate |
EP2545976B1 (en) * | 2006-02-13 | 2016-08-03 | Donaldson Company, Inc. | Web comprising fine fiber and reactive, adsorptive or absorptive particulate |
US9206446B2 (en) * | 2006-05-01 | 2015-12-08 | Board Of Trustees Of Michigan State University | Extraction of solubles from plant biomass for use as microbial growth stimulant and methods related thereto |
US20100124583A1 (en) * | 2008-04-30 | 2010-05-20 | Xyleco, Inc. | Processing biomass |
CA2948688C (en) * | 2006-10-26 | 2018-08-14 | Xyleco, Inc. | Methods of processing biomass comprising electron-beam radiation |
US20080206862A1 (en) * | 2007-02-28 | 2008-08-28 | Cinvention Ag | High surface cultivation system bag |
US8236535B2 (en) | 2008-04-30 | 2012-08-07 | Xyleco, Inc. | Processing biomass |
WO2009155601A2 (en) | 2008-06-20 | 2009-12-23 | Edenspace Systems Corporation | Processing cellulosic biomass |
JP2010245015A (ja) | 2008-07-14 | 2010-10-28 | Sony Corp | 酵素を用いた燃料電池用の燃料改質器、及び該燃料改質器を用いた発電装置 |
EA201790381A3 (ru) * | 2008-11-17 | 2017-11-30 | Ксилеко, Инк. | Переработка биомассы |
US8409845B2 (en) | 2008-12-05 | 2013-04-02 | The United States of America as represented by the Administrator of the National Aeronautics & Space Administration (NASA) | Algae bioreactor using submerged enclosures with semi-permeable membranes |
EP2377917A1 (en) | 2009-01-09 | 2011-10-19 | NTN Corporation | Microinjection apparatus and microinjection method |
MX347016B (es) * | 2009-01-26 | 2017-04-07 | Xyleco Inc | Procesamiento de biomasa. |
KR20110128845A (ko) | 2009-02-11 | 2011-11-30 | 질레코 인코포레이티드 | 바이오매스의 당화 |
CA2754108A1 (en) | 2009-03-05 | 2010-09-10 | Metabolix, Inc. | Propagation of transgenic plants |
JP2011182646A (ja) * | 2010-03-04 | 2011-09-22 | Hamamatsu Photonics Kk | リグノセルロース系バイオマスの処理方法 |
EP2377918A1 (en) * | 2010-04-16 | 2011-10-19 | ETH Zurich | Process for the direct production of fermentation products from biomasses in a biofilm reactor |
CN102234947A (zh) * | 2010-04-20 | 2011-11-09 | 湖南农业大学 | 一种快速降解稻草秸秆的预处理方法 |
EP2471940A1 (en) * | 2010-12-31 | 2012-07-04 | Süd-Chemie AG | Efficient lignocellulose hydrolysis with integrated enzyme production |
SG11201402955TA (en) * | 2011-12-22 | 2014-08-28 | Xyleco Inc | Processing biomass |
-
2012
- 2012-12-20 SG SG11201402955TA patent/SG11201402955TA/en unknown
- 2012-12-20 CN CN201280062852.2A patent/CN103998614A/zh active Pending
- 2012-12-20 MY MYPI2014001858A patent/MY168550A/en unknown
- 2012-12-20 SG SG10201607783XA patent/SG10201607783XA/en unknown
- 2012-12-20 MX MX2014007579A patent/MX365982B/es active IP Right Grant
- 2012-12-20 BR BR112014015292A patent/BR112014015292A8/pt active Search and Examination
- 2012-12-20 BR BR112014015293A patent/BR112014015293A8/pt active Search and Examination
- 2012-12-20 IN IN990MUN2014 patent/IN2014MN00990A/en unknown
- 2012-12-20 CN CN201280062638.7A patent/CN104039972A/zh active Pending
- 2012-12-20 JP JP2014548922A patent/JP6165169B2/ja not_active Expired - Fee Related
- 2012-12-20 AU AU2012358373A patent/AU2012358373A1/en not_active Abandoned
- 2012-12-20 NZ NZ722698A patent/NZ722698A/en not_active IP Right Cessation
- 2012-12-20 MX MX2017008645A patent/MX360474B/es unknown
- 2012-12-20 SG SG10201802778VA patent/SG10201802778VA/en unknown
- 2012-12-20 EA EA201490893A patent/EA031875B1/ru not_active IP Right Cessation
- 2012-12-20 AP AP2014007717A patent/AP2014007717A0/xx unknown
- 2012-12-20 KR KR1020207004138A patent/KR20200020961A/ko not_active Withdrawn
- 2012-12-20 WO PCT/US2012/071092 patent/WO2013096699A1/en active Application Filing
- 2012-12-20 AP AP2014007714A patent/AP2014007714A0/xx unknown
- 2012-12-20 EP EP12821218.0A patent/EP2794895A1/en not_active Withdrawn
- 2012-12-20 KR KR1020147018286A patent/KR20140111662A/ko not_active Abandoned
- 2012-12-20 EA EA201490885A patent/EA201490885A1/ru unknown
- 2012-12-20 JP JP2014548921A patent/JP6173346B2/ja not_active Expired - Fee Related
- 2012-12-20 EP EP12821217.2A patent/EP2794894A1/en not_active Withdrawn
- 2012-12-20 WO PCT/US2012/071091 patent/WO2013096698A1/en active Application Filing
- 2012-12-20 MX MX2014007582A patent/MX348787B/es active IP Right Grant
- 2012-12-20 KR KR1020147017090A patent/KR20140108533A/ko not_active Ceased
- 2012-12-20 IN IN989MUN2014 patent/IN2014MN00989A/en unknown
- 2012-12-20 AU AU2012358374A patent/AU2012358374B2/en not_active Ceased
- 2012-12-20 CA CA2858298A patent/CA2858298A1/en not_active Abandoned
- 2012-12-20 SG SG10201607328UA patent/SG10201607328UA/en unknown
- 2012-12-20 MY MYPI2014001857A patent/MY172517A/en unknown
- 2012-12-20 SG SG11201402953SA patent/SG11201402953SA/en unknown
- 2012-12-20 CA CA2858294A patent/CA2858294A1/en not_active Abandoned
-
2013
- 2013-09-03 US US14/016,455 patent/US20140011258A1/en not_active Abandoned
- 2013-09-03 US US14/016,461 patent/US9683249B2/en not_active Expired - Fee Related
-
2014
- 2014-05-22 PH PH12014501153A patent/PH12014501153B1/en unknown
- 2014-05-22 PH PH12014501152A patent/PH12014501152B1/en unknown
- 2014-06-19 IL IL233253A patent/IL233253A0/en unknown
- 2014-06-19 IL IL233250A patent/IL233250A0/en unknown
- 2014-06-20 MX MX2018013383A patent/MX2018013383A/es unknown
- 2014-06-20 MX MX2019007143A patent/MX2019007143A/es unknown
-
2016
- 2016-07-25 AU AU2016208255A patent/AU2016208255B2/en not_active Ceased
- 2016-09-30 AU AU2016235003A patent/AU2016235003B2/en not_active Ceased
- 2016-10-06 US US15/287,461 patent/US20170022530A1/en not_active Abandoned
-
2017
- 2017-05-16 US US15/596,658 patent/US9963730B2/en not_active Expired - Fee Related
- 2017-06-20 JP JP2017120700A patent/JP6587654B2/ja not_active Expired - Fee Related
- 2017-07-04 JP JP2017130930A patent/JP2018007665A/ja active Pending
- 2017-07-11 ZA ZA2017/04649A patent/ZA201704649B/en unknown
-
2018
- 2018-03-21 PH PH12018500616A patent/PH12018500616A1/en unknown
- 2018-03-21 PH PH12018500615A patent/PH12018500615A1/en unknown
- 2018-03-21 PH PH12018500617A patent/PH12018500617A1/en unknown
- 2018-04-05 US US15/946,286 patent/US10294503B2/en not_active Expired - Fee Related
- 2018-05-31 AU AU2018203843A patent/AU2018203843B2/en not_active Ceased
-
2019
- 2019-02-08 AU AU2019200887A patent/AU2019200887A1/en not_active Abandoned
- 2019-04-05 US US16/377,037 patent/US20190233863A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050233423A1 (en) * | 2004-03-25 | 2005-10-20 | Novozymes Biotech, Inc. | Methods for degrading or converting plant cell wall polysaccharides |
US20080199908A1 (en) * | 2005-06-30 | 2008-08-21 | Novozymes North America, Inc | Production Of Cellulase |
US20100304440A1 (en) * | 2008-04-30 | 2010-12-02 | Xyleco, Inc. | Processing biomass |
Non-Patent Citations (4)
Title |
---|
J.S. KNAPP & M . LEGG, The effect of different cellulosic growth substrates and pH on the production of cellulolytic enzymes by Trichoderrna reesei, 1986, Journal of Applied Bacteriology, Vol.61, pp. 319-329 * |
Nicolai Peitersen, Production of Cellulase and Protein from Barley Straw by Trichoderma viride, 1975, Biotechnology and Bioengineering, Vol. 17, pp. 361-374 * |
NPL pdf document "Guidance memorandum 3-4-2014" accessed 3/27/2014 from http://www.uspto.gov/patents/law/exam/myriad-mayo_guidance.pdf * |
P. VlDYA, S. R. PADWAL-DESAI AND K. K. USSUF, PRETREATMENT OF LIGNOCELLULOSE BY GAMMA RAYS AND ELECTRON BEAM FOR ENHANCED DEGRADATION BY PHANEROCHAETE CHRYSOSPORIUM, 2006, Asian Journal of Microbiology, Biotechnology & Environmental Sciences, Vol 08, Issue 2, pp. 253-258 (Abstract only) * |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8877472B2 (en) * | 2008-04-30 | 2014-11-04 | Xyleco, Inc. | Electron beam irradiation processing of biomass and saccharification thereof |
US20160076014A1 (en) * | 2011-12-22 | 2016-03-17 | Xyleco, Inc. | Processing biomass |
US10294503B2 (en) | 2011-12-22 | 2019-05-21 | Xyleco, Inc. | Processing biomass |
US9683249B2 (en) * | 2011-12-22 | 2017-06-20 | Xyleco, Inc. | Processing biomass |
US9963730B2 (en) | 2011-12-22 | 2018-05-08 | Xyleco, Inc. | Processing biomass |
US10113007B2 (en) * | 2012-11-06 | 2018-10-30 | Icm, Inc. | Advanced cook technology |
US20140127772A1 (en) * | 2012-11-06 | 2014-05-08 | Scott D. Kohl | Advanced cook technology |
US20160053047A1 (en) * | 2013-05-17 | 2016-02-25 | Xyleco, Inc. | Processing biomass |
US10131894B2 (en) | 2014-08-08 | 2018-11-20 | Xyleco, Inc. | Aglycosylated enzyme and uses thereof |
US10342243B2 (en) | 2014-09-19 | 2019-07-09 | Xyleco, Inc. | Saccharides and saccharide compositions and mixtures |
US10045552B2 (en) | 2014-09-19 | 2018-08-14 | Xyleco, Inc. | Saccharides and saccharide compositions and mixtures |
US10412976B2 (en) | 2014-09-19 | 2019-09-17 | Xyleco, Inc. | Saccharides and saccharide compositions and mixtures |
US20180010088A1 (en) * | 2015-03-31 | 2018-01-11 | Xyleco, Inc. | Compositions for enhanced enzyme production |
WO2016160955A1 (en) * | 2015-03-31 | 2016-10-06 | Xyleco, Inc. | Processing of biomass materials |
WO2016160956A1 (en) * | 2015-03-31 | 2016-10-06 | Xyleco, Inc. | Compositions for enhanced enzyme production |
US10611997B2 (en) | 2015-03-31 | 2020-04-07 | Xyleco, Inc. | Compositions for enhanced enzyme production |
WO2019084518A1 (en) * | 2017-10-27 | 2019-05-02 | Xyleco, Inc. | TREATMENT OF BIOMASS |
US10597595B2 (en) | 2017-10-27 | 2020-03-24 | Xyleco, Inc. | Processing biomass |
CN108972822A (zh) * | 2018-09-06 | 2018-12-11 | 南京林业大学 | 一种纤维秸秆刨花人造板的制造方法 |
US20230265612A1 (en) * | 2020-07-06 | 2023-08-24 | Amppc Finland Oy | A cooking method |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2016235003B2 (en) | Processing of Biomass Materials | |
US20200017894A1 (en) | Production of products from biomass | |
EP2794902B1 (en) | Processing biomass for use in fuel cells | |
NZ716079B2 (en) | Processing of Biomass Materials | |
NZ625162B2 (en) | Processing of biomass materials | |
OA16925A (en) | Processing of biomass materials. | |
NZ625335B2 (en) | Production of sugar and alcohol from biomass |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: XYLECO, INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MEDOFF, MARSHALL;MASTERMAN, THOMAS CRAIG;YOSHIDA, AIICHIRO;AND OTHERS;SIGNING DATES FROM 20130925 TO 20130927;REEL/FRAME:031304/0947 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: XYLECO, INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LYNCH, JAMES J.;REEL/FRAME:044855/0562 Effective date: 20130926 |