US20130106922A1 - Transparent Display Device and Display Method Thereof - Google Patents

Transparent Display Device and Display Method Thereof Download PDF

Info

Publication number
US20130106922A1
US20130106922A1 US13/661,421 US201213661421A US2013106922A1 US 20130106922 A1 US20130106922 A1 US 20130106922A1 US 201213661421 A US201213661421 A US 201213661421A US 2013106922 A1 US2013106922 A1 US 2013106922A1
Authority
US
United States
Prior art keywords
light
color
layer
modulation module
liquid crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/661,421
Other languages
English (en)
Inventor
Kuo-Tsung Chen
Cho-Yan Chen
Chin-Haun Lin
Chu-Yu Liu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AU Optronics Corp
Original Assignee
AU Optronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AU Optronics Corp filed Critical AU Optronics Corp
Assigned to AU OPTRONICS CORPORATION reassignment AU OPTRONICS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHEN, CHO-YAN, LIN, CHING-HAUN, LIU, CHU-YU, CHEN, KUO-TSUNG
Publication of US20130106922A1 publication Critical patent/US20130106922A1/en
Priority to US15/191,620 priority Critical patent/US9829757B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • G02F1/13471Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells in which all the liquid crystal cells or layers remain transparent, e.g. FLC, ECB, DAP, HAN, TN, STN, SBE-LC cells
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0026Wavelength selective element, sheet or layer, e.g. filter or grating
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/13362Illuminating devices providing polarized light, e.g. by converting a polarisation component into another one
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0056Means for improving the coupling-out of light from the light guide for producing polarisation effects, e.g. by a surface with polarizing properties or by an additional polarizing elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0063Means for improving the coupling-out of light from the light guide for extracting light out both the major surfaces of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light

Definitions

  • the present invention generally relates to a display device.
  • the present invention relates to a display device that can simultaneously display images as well transparently view the background and an image display method thereof
  • flat panel display devices have been widely used in various fields as simply display devices or may also be implemented into electronic devices to be used as devices for the display of data.
  • flat panel display devices wherein liquid crystal display devices are currently the most commonly seen flat panel displays.
  • FIG. 1 illustrates a schematic diagram of a conventional liquid crystal display device.
  • the conventional liquid crystal display device includes a backlight module 10 , a liquid crystal panel 30 , and a color filter film 50 .
  • the backlight module 10 generates backlight 11 and emits the backlight 11 towards the liquid crystal panel 30 .
  • An upper polarizer film 31 and a lower polarizer film 33 are separately disposed on two sides of the liquid crystal panel 30 .
  • the lower polarizer film 33 polarizes the backlight 11 such that the backlight 11 has the same polarization direction as the lower polarizer film 33 .
  • the backlight 11 then enters the liquid crystal panel 30 and undergoes polarization modulation by the arrangement of liquid crystal molecules of each pixel within the liquid crystal panel 30 .
  • the backlight 11 then passes through the color filter film 50 to be filtered of unwanted color spectrums.
  • the upper polarizer film 31 controls amount of light of each pixel by only allowing the part of the backlight 11 that has the same polarization direction as the upper polarizer film 31 to pass through while blocking the part of the backlight 11 that has a polarization direction perpendicular to the polarization direction of the upper polarizer film 31 .
  • the conventional liquid crystal display device may only display images. They are themselves not transparent to allow the background behind the device to be seen through the device from the front.
  • the conventional liquid crystal display device is unable to satisfy these types of requirements.
  • the display device includes a light source module, a first light modulation module, a first polarizer layer, and a first color modulation layer.
  • the light source module generates a first color light, emitting the first color light to the first light modulation module, wherein the first color light is a polarized light with a specific polarization direction or polarity.
  • the first light modulation module is disposed on the light source module to receive the first color light exiting the light source module.
  • the first modulation module may selectively modulate or not modulate the polarization direction of the first color light according to the input of an image signal.
  • the first polarizer layer is disposed on the first light modulation module facing away from the light source module, and receives the first color light passing through the first light modulation module.
  • the first polarizer layer according to the polarization direction of the first color light passing through the first light modulation module, selectively blocks, partially blocks, or does not block the first color light.
  • the first color modulation layer has light transparency properties and is disposed on a surface of the first light modulation module facing away from the first polarizer layer. A second color light is generated after the first color light passing through the first polarizer layer enters the first color modulation layer.
  • the first color light generated by the light source module may control the light levels of the transparent view for the first polarizer layer after being modulated by the first light modulation module, such that images to be displayed may be generated.
  • light from the background entering the display device from the backside of the light source module may also pass through the first light modulation module, the first polarizer layer, and the first color modulation layer to produce a transparent viewing effect.
  • users may see images display by the display device while also simultaneously view background objects behind the display device.
  • the image display method mainly includes two parts of displaying the image and transparently viewing the background. From the stand point of displaying images, the first color light generated by the light source module is made to be radiated onto the first light modulation module. The first light modulation module is then controlled to selectively modulate or not modulate the polarization direction of the first color light. The first polarizer layer is used to selectively block, partially block, or not block the passage of the first color light in accordance to the polarization direction of the first color light passed through the first modulation module. The first color light that passed through the first modulation module is then made to pass through the first color modulation layer in order to generate the second color light. In terms of transparently viewing the background, background light entering from the backside of the light source module passes through the first light modulation module, since it has no specific polarization, to accomplish the transparent viewing effect.
  • the display device may display images while simultaneously allow transparent viewing of the background.
  • FIG. 1 is a schematic view of the conventional display device
  • FIG. 2 is an exploded view of an embodiment of the display device of the present invention
  • FIG. 3 is a cross-sectional view of an embodiment of the display device of the present invention.
  • FIG. 4 is a diagram of the relationship between light transmittance and light wavelength of the first polarizer layer of the present invention.
  • FIG. 5 is a cross-sectional view of another embodiment of the display device of the present invention.
  • FIG. 6 is a schematic view of an embodiment of the first control circuit layer
  • FIG. 7 is a cross-sectional view of another embodiment of the present invention.
  • FIG. 8 is a diagram of the relationship between light transmittance and light wavelength of the second polarizer layer of the present invention.
  • FIGS. 9A and 9B are diagrams of modulating the polarization direction of the background light
  • FIG. 10 is a cross-sectional view of another embodiment of the present invention.
  • FIGS. 11 and 12 are flow chart diagrams of the image display method of the present invention.
  • the present invention provides a transparent display device and a display method thereof.
  • the display device of the present invention is a liquid crystal display, wherein the light source is preferably light emitting diodes (LED).
  • LED light emitting diodes
  • other light modulation devices of non-liquid crystal modules, or other types of display devices not using light-emitting diodes as light sources may be utilized.
  • the display device includes a light source module 100 , a first light modulation module 300 , a first polarizer layer 510 , and a first color modulation layer 710 .
  • the light source module 100 generates a first color light 210 , emitting the first color light 210 to the first light modulation module 300 , wherein the first color light 210 is a polarized light.
  • the first color light 210 is a blue light or an ultraviolet light that preferably has a wavelength lower than 410 ⁇ m. By setting the wavelength to being lower than 410 ⁇ m, the first color light 210 may be distinguished from a background light entering from behind the light source module 100 . This portion will be further explained in detail afterwards.
  • the light source module 100 includes a light guide plate 110 and a polarized light source 130 .
  • the transparency of the light guide plate 110 is preferably higher than 90% in order to allow the background light 250 entering from behind to generate an effect of transparent viewing.
  • the light guide plate 110 has a first light-emitting surface 111 facing the first light modulation module 300 and a light entrance surface 113 that is located on a side of the light guide plate 110 .
  • the polarized light source 130 is disposed corresponding to the light entrance surface 113 and generates the first color light 210 entering into the light guide plate 110 from the light entrance surface 113 .
  • the first color light 210 after being guided by the light guide plate 110 , is emitted from the light guide plate 110 from the first light-emitting surface 113 .
  • the first color light 210 is preferably a circular polarized light so that circumstances of the first color light 210 changing polarization directions after transmission in the light guide plate 110 may be decreased.
  • the first color light 210 may also be a linear polarized light.
  • corresponding microstructures are preferably disposed on a bottom surface of the light guide plate 110 to decrease the circumstance of the polarization directions changing.
  • the polarized light source 130 preferably includes a light source 131 and a polarizer film 133 .
  • the light source 131 may be blue light-emitting diodes generating non-polarized light.
  • the polarizer film 133 is disposed between the light source 131 and the light entrance surface 113 of the light guide plate 110 so that the light generated by the light source 131 may be polarized.
  • the polarized light source 130 may also be modularized light-emitting diodes that produce polarized light so that the process of assembling may be simplified.
  • the first light modulation module 300 is disposed on the light source module 100 .
  • the first light modulation module 300 is disposed corresponding to the first light-emitting surface 111 of the light guide plate 110 in order to receive the first color light 210 emitted from the first light-emitting surface 111 .
  • the first light modulation module 300 may selectively modulate or not modulate the original polarity or polarization direction of the first color light 210 .
  • the modulation referred to herein means the original polarization direction of the first color light 210 may be changed to a direction that is not the same as the original direction, wherein the angle of modulation may be anywhere from 0 to 90 degrees.
  • the first light modulation module includes a first liquid crystal layer 310 and a first control circuit layer 330 .
  • the first control circuit layer 330 accepts external image control signals such that electrodes in the first control circuit layer 330 may generate voltage to control the orientation and arrangement of liquid crystal molecules of the first liquid crystal layer 310 .
  • TN twisted nematic
  • the liquid crystal molecules form screw-like arrangement. In this form, the liquid crystal molecules will guide the first color light 210 to change in the polarization direction.
  • the rotational angle of the liquid crystal molecules will become smaller or the liquid crystal molecules may change to a vertical alignment. In this form, the change in polarization direction of the first color light 210 will decrease or will not change.
  • the first polarizer layer 510 is disposed on a side of the first light modulation module 300 facing away from the light source module 100 .
  • the first polarizer layer 510 receives the first color light 210 that passed through the first light modulation module 300 .
  • the first color light 210 arriving at the first polarizer layer 510 has already been modulated in polarity by the first light modulation module 300 , wherein the polarization direction may or may not be the same as its original polarization direction before entering the first light modulation module 300 in accordance with the image control signal.
  • the first polarizer layer 510 selectively completely blocks, partially blocks, or does not block the first color light 210 according to the polarization direction of the first color light 210 after it has passed through the first light modulation module 300 .
  • the first polarizer layer 510 has a first polarization direction, wherein the first polarization direction is preferably the same or is perpendicular to the original polarization direction of the first color light 210 .
  • the first polarization direction is perpendicular to the polarization direction of the first color light 210 that has just left the light source module 100 .
  • the first light modulation module 300 rotates the polarization direction of the first color light 210 by 90 degrees to be the same direction as the first polarization direction such that after the first color light 210 has been rotated, the first color light 210 may pass through the first polarizer layer 510 .
  • the first light modulation module 300 does not change the original polarization direction of the first color light 210 , the first color light 210 will be blocked by the first polarizer layer 510 and will not be able to pass through.
  • the first polarizer layer 510 has a light transmittance of greater than 40% for light having a wavelength of 410 ⁇ m and a polarization direction the same as the first polarization direction.
  • FIG. 4 illustrates a preferred embodiment of the relationship between the wavelength of incident light and the light transmittance of the first polarizer layer 510 .
  • the first polarizer layer 510 has better light transmittance for incident light that has longer wavelengths.
  • the first polarizer layer 510 when the wavelength of the incident light is around 410 ⁇ m, there is sufficient light transmittance.
  • the first polarizer layer 510 allows the first color light 210 to pass through at a higher light transmittance.
  • the first color modulation layer 710 is disposed on a surface of the first light modulation module 300 facing away from the first polarizer layer 510 .
  • the first color light 210 enters the first color modulation layer 710 after passing through the first polarizer layer 510 to generate a second color light 220 .
  • the second color light 220 may be green light or red light.
  • yellow light or white light composed of mixed lights may be utilized.
  • a portion of the first color light 210 may also directly pass through and emit out of a specific portion of the first color modulation layer 710 without generating the second color light 220 .
  • the first color modulation layer 710 preferably includes a photoluminescent material 711 , such as green or red phosphors that can be excited by blue or ultraviolet light, to generate different colored light through light excitation in order to decrease the loss of light due to light filtering for color adjustments.
  • Photoluminescent material 711 preferably is excited correspondingly to blue or ultraviolet light with light wavelengths not greater than 410 ⁇ m. Since the background light 250 formed from the environment light has fewer amounts of light with wavelengths not greater than 410 ⁇ m, the circumstance of the photoluminescent material 711 being excited to generate the second color light 220 by the background light 250 when the background light 250 passes through the first color modulation layer 710 may be decreased such that the image quality of the display device may be maintained.
  • the first color modulation layer 710 has light transmittance properties. In a preferred embodiment, the first color modulation layer 710 has light transmittance greater than 80%.
  • the first color light 210 generated by the light source module 100 passes through the first polarizer layer 510 , wherein the amount of light that passes through is controlled by the first polarizer layer 510 .
  • the light then enters the first color modulation layer 710 to excite different color phosphors, generating different color light, to generate the desired display images.
  • background light 250 entering the display device from behind the light source module 100 is a non-polarized light. Therefore, the background light 250 may also pass through the first light modulation module 300 , the first polarizer layer 510 , and the first color modulation layer 710 to generate the effect of transparent viewing. In other words, users may see the images displayed by the display device while also simultaneously see objects in the background behind the display device.
  • the first light modulation module 300 includes a plurality of first pixel units 301 distributed on the first light modulation module 300 , wherein the first pixel unit 301 consists of the liquid crystal layer 310 and the first control circuit layer 330 .
  • a plurality of first color modulation units 713 may be formed on the first color modulation layer 710 corresponding to the plurality of first pixel units 301 , wherein both the first pixel units 301 and the first color modulation units 713 are preferably aligned on the traveling path.
  • the first color light 210 is modulated by different first pixel units 301 such that the first color light 210 may have different polarization directions at different locations on the first light modulation module 300 .
  • the first color light 210 having different polarization directions then separately enter the first polarizer layer 510 . Since different first pixel units 301 emit first color light 210 of different polarization directions, the amount of light passing through the first polarizer layer 510 will also be different.
  • the lights emitted from different first color modulation units 713 each have defined brightness such that their composition forms an image.
  • the first control circuit layer 330 includes a metallic circuit path 331 and a shielding unit 333 .
  • the metallic circuit path 331 is distributed on the substrate 350 and may include electronic components such as thin film transistors, as well as signal circuits for transmission of signals.
  • the shielding unit 333 shields a side of the first polarizer film 510 on top of the metallic circuit path 331 in order to decrease light reflections so that the visual quality may be increased.
  • the shielding unit 333 is preferably a light absorbance material of dark color that is formed on an upper substrate 380 corresponding to the substrate 350 and covers in a projection manner on top of the metallic circuit path 331 .
  • the display device further includes a second light modulation module 400 and a second polarizer layer 520 .
  • the second light modulation module 400 is disposed on a side of the light source module 100 facing away from the first light modulation module 300 .
  • the light modulation module 400 is disposed on a side of the light guide plate 110 facing away form the first light-emitting surface 113 .
  • the second light modulation module 400 includes a second liquid crystal layer 410 and a second control circuit layer 430 that controls the second liquid crystal layer 410 .
  • a plurality of second pixel units 401 are distributed on the second light modulation module 400 .
  • the second pixel units 401 are separately aligned or correspond to the first pixel units 301 .
  • the second control circuit layer 430 receives external control signals to produce voltage at the electrodes in the second control circuit layer 430 such that the orientation of the liquid crystal molecules within the second liquid crystal layer 410 may be controlled. For instance, in twisted nematic types of driving liquid crystals, when the second control circuit layer 430 does not generate voltage, the liquid crystal molecules form a screw-like alignment. When the second control circuit layer 430 decreases the voltage or generates no voltage, the angle of rotation of the liquid crystal molecules becomes smaller or is perpendicularly aligned.
  • the second polarizer layer 520 is disposed on a side of the second light modulation module 400 facing away from the light source module 100 .
  • the background light 250 enters the display device through the second polarizer layer 520 from behind the display device.
  • the second polarizer layer 520 has a second polarization direction that may have the same polarization direction or have a polarization direction perpendicular to the polarization direction of the first polarization direction.
  • the background light 250 is polarized as it passes through the second polarizer layer 520 such that it has the same polarization direction as the second polarization direction.
  • the second polarizer layer 520 has a light transmittance of 40% for light with wavelength of 410 ⁇ m and polarization direction the same as the second polarization direction.
  • the embodiment shown in FIG. 8 illustrates the relationship between the wavelength and light transmittance of incident of light entering the second polarizer layer 520 .
  • the curve of the second polarizer layer 520 is more rightly shifted relative to the curve shown in FIG. 4 of the first polarizer layer 510 .
  • the excitation of phosphors to produce different colored lights after the background light 250 enters the first color modulation layer 710 may be reduced so that the image quality of the display device will not be affected.
  • the purpose of the present embodiment is to provide users control over the display device as to whether the display device can be transparently viewed or not.
  • the display device allows users to see or block the background behind the display device.
  • the second control circuit layer 430 controls the orientation of the second liquid crystal layer 410 within each of the second pixel units 401 in accordance to the orientation of the first liquid crystal layer 310 within each of the first pixel units 301 controlled by the first control circuit layer 330 .
  • the background light 250 After being polarized through the second polarizer layer 520 , the background light 250 passes through and is selectively modulated by the second liquid crystal layer 410 and the first liquid crystal layer 310 before arriving at the first polarizer layer 510 .
  • the first polarizer layer 510 then blocks, partially blocks, or does not block the background light 250 from passing through in accordance to the polarization of the background light 250 after passing through the first light modulation module 300 . If the background light 250 is allowed to pass through the first polarizer layer 510 , the display device is transparent or can be transparently viewed through device. On the other hand, if the background light 250 is not allowed to pass through, the display device is a non-transparent device. Since the orientation of the liquid crystal molecules of the first liquid crystal layer 310 is mainly based on the images to be displayed, they are therefore mainly controlled by the image control signal.
  • the display device would only need the second control circuit layer 430 to control the orientations of the second liquid crystal layer 410 to accomplish the goal of controlling whether the background light 250 may pass through or not.
  • the amount of background light 250 passing through may also be controlled such that between fully transparent and non-transparent, the transparency level of the display device may be adjusted.
  • the twist angle of the liquid crystal molecules of the second liquid crystal layer 410 are also correspondingly controlled to be 90 degrees such that the polarization direction of background light 250 is parallel to the polarization direction of the first polarizer layer 510 after being rotated 90 degrees twice. This allows the background light 250 to pass through the first polarizer layer 510 and produce a transparent viewing effect for the display device. Conversely, as shown in FIG. 9A , when the polarization direction of the second polarizer layer 520 is parallel to the polarization direction of the first polarizer layer 510 and the twist angle of the liquid crystal molecules of the first liquid crystal layer 310 is 90 degrees, the twist angle of the liquid crystal molecules of the second liquid crystal layer 410 are also correspondingly controlled to be 90 degrees such that the polarization direction of background light 250 is parallel to the polarization direction of the first polarizer layer 510 after being rotated 90 degrees twice. This allows the background light 250 to pass through the first polarizer layer 510 and produce a transparent viewing effect for the display device. Conversely, as shown in FIG
  • the alignment of the liquid crystal molecules of the second liquid crystal layer 410 may be controlled to be perpendicular to substrate such that the polarization direction of the background light 250 is not changed after passing through the second liquid crystal layer 410 .
  • the polarization direction of the background light 250 is only rotated 90 degrees and is perpendicular to the polarization direction of the first polarizer layer 510 . Therefore, the background light 250 will be blocked by the first polarizer layer 510 to produce a non-transparent effect for the display device.
  • the display device further includes a second color modulation layer 720 .
  • the second color modulation layer 720 is disposed on a side of the second polarizer layer 520 facing the second light modulation module 400 .
  • images can be displayed on the two sides of the display device.
  • the second color modulation layer 720 is preferably disposed similarly to the way the first color modulation layer 710 is disposed, wherein the second color modulation layer 720 receives the first color light 210 from the light source module 100 to generate the same effect as the first color modulation layer 710 .
  • the second light modulation module 400 and the second polarizer layer 520 are also disposed similarly to the first light modulation module 300 and the first polarizer layer 510 such that the two sides of the display device may display the same or different images.
  • the second color modulation layer 720 has a plurality of second color modulation units 723 corresponding to different second pixel units 401 .
  • Each second color modulation unit 723 includes photoluminescent material to be excited by the first color light 210 that has passed through the second light modulation module 400 and the second polarizer layer 520 in order to generate the second color light 220 or the third color light 230 .
  • the image display method of the present invention preferably includes the following steps.
  • Step 1110 includes allowing the first color light 210 generated by the light source module 110 to enter the first light modulation module 300 .
  • Step 1120 includes controlling the first light modulation module 300 to selectively modulate or not modulate the polarization direction of the first color light 210 .
  • the first control circuit layer 330 of the first light modulation module 300 control the orientation of the liquid crystal molecules of the first liquid crystal layer 310 in each of the first pixel units 301 such that the polarization of the first color light 210 at each first pixel unit 301 may be selectively modulated.
  • Step 1130 includes using the first polarizer layer 510 to selectively block, partially block, or not block the the first color light 210 in accordance to the polarization of the first color light 210 passed through the first modulation module 300 .
  • the first color light 210 at a particular first pixel unit 301 has the same polarization direction as the first polarizer layer 510 , this portion of the first color light 210 is allowed to pass through.
  • the first color light 210 at a particular first pixel unit 301 has a polarization direction perpendicular to the first polarizer layer 510 , this portion of the first color light 210 is blocked by the first polarizer layer 510 .
  • Step 1140 includes making the first color light 210 that has passed through the first polarizer layer 510 to pass through the first color modulation layer 710 in order to generate the second color light 220 .
  • the first color light 210 preferably excites the photoluminescent material in the first color modulation layer 710 to generate the second color light 220 .
  • the second color light 220 is preferably a green or red light.
  • the second color light 220 may be a yellow light or a combination of lights that form white light.
  • the first color light 210 may also directly pass through specific positions of the first polarizer layer 510 such that the first color light 210 may remain the same.
  • Step 1150 includes allowing the background light 250 to partially pass through the first polarizer layer 510 .
  • the background light 250 enters from behind the light source module 100 and passes through the first light modulation module to be selectively modulated with respect to its polarization direction.
  • the portion of the background light 250 having the same polarization direction as the polarization direction of the first polarizer layer 510 will not be blocked by the first polarizer layer 510 .
  • that portion of the background light 250 may pass through the first polarizer layer 510 .
  • the display device may display images while simultaneously also be transparently viewed through to see the background behind the display device.
  • the portion of the background light 250 having polarization direction perpendicular to the polarization direction of first polarizer layer 510 will be blocked by the first polarizer layer 510 , the display device can still maintain the effect of transparent viewing.
  • step 1150 may include two different portions of step 1210 and step 1220 .
  • Step 1210 includes using the first control circuit layer 330 to control the orientation of the first liquid crystal layer 310 in each first pixel unit 301 and using the second control circuit layer 430 to control the orientation of the second liquid crystal layer 410 in each second pixel unit 401 in order to selectively modulate the polarization of background light 250 .
  • Step 1220 includes selectively modulating the polarization direction of the background light 250 by controlling the alignment of the liquid crystal modules of the first liquid crystal layer 310 . The alignment of the liquid crystal molecules of the first liquid crystal layer 310 is driven by the image control signal that controls the formation of images on the display device.
  • Steps 1210 and 1220 proceed at the same time such that the orientations in the first liquid crystal layer 310 and the second liquid crystal layer 410 may be switched simultaneously in order to effectively control the on/off status of the transparent viewing effect of the background light.
  • the first liquid crystal layer 310 is used to modulate light coming from the polarized light source 130 in order to display images.
  • the second liquid crystal layer 410 modulates the background light 250 in accordance to the first liquid crystal layer 310 to control the transparency effect of the background.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
US13/661,421 2011-10-28 2012-10-26 Transparent Display Device and Display Method Thereof Abandoned US20130106922A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/191,620 US9829757B2 (en) 2011-10-28 2016-06-24 Transparent display device and display method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW100139270 2011-10-28
TW100139270 2011-10-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/191,620 Continuation US9829757B2 (en) 2011-10-28 2016-06-24 Transparent display device and display method thereof

Publications (1)

Publication Number Publication Date
US20130106922A1 true US20130106922A1 (en) 2013-05-02

Family

ID=46187332

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/661,421 Abandoned US20130106922A1 (en) 2011-10-28 2012-10-26 Transparent Display Device and Display Method Thereof
US15/191,620 Active US9829757B2 (en) 2011-10-28 2016-06-24 Transparent display device and display method thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/191,620 Active US9829757B2 (en) 2011-10-28 2016-06-24 Transparent display device and display method thereof

Country Status (3)

Country Link
US (2) US20130106922A1 (zh)
CN (1) CN102495495B (zh)
TW (1) TWI472840B (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016021360A1 (ja) * 2014-08-04 2016-02-11 シャープ株式会社 画像表示装置
US9322977B2 (en) 2014-01-06 2016-04-26 Au Optronics Corporation Display apparatus
WO2016094139A1 (en) * 2014-12-08 2016-06-16 Corning Incorporated Transparent display with improved contrast and transmission
US20160200256A1 (en) * 2015-01-14 2016-07-14 Nitto Denko Corporation Image display mirror for a vehicle
US20160247319A1 (en) * 2015-02-20 2016-08-25 Andreas G. Nowatzyk Selective occlusion system for augmented reality devices
US20160327788A1 (en) * 2014-05-26 2016-11-10 Denso Corporation Head-up display device
US9666118B2 (en) * 2015-10-01 2017-05-30 Chunghwa Picture Tubes, Ltd. Transparent display apparatus
US20180188552A1 (en) * 2016-03-31 2018-07-05 Boe Technology Group Co., Ltd. Polarized light source and display apparatus
KR101929997B1 (ko) 2017-01-31 2018-12-18 주식회사 디스플레이앤라이프 액정표시장치
US20190049801A1 (en) * 2017-08-10 2019-02-14 Shenzhen China Star Optoeletronics Semiconductor Display Technology Co., Ltd. Transflective liquid crystal display device
US11347053B2 (en) 2017-10-27 2022-05-31 Leia Inc. Backlit transparent display, transparent display system, and method
US12189239B2 (en) 2020-04-29 2025-01-07 Hefei Boe Display Technology Co., Ltd. Backlight module and liquid crystal display apparatus

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102914899B (zh) * 2012-10-12 2015-02-04 京东方科技集团股份有限公司 一种双面显示装置
TWI502251B (zh) * 2013-10-03 2015-10-01 Au Optronics Corp 顯示裝置
TW201704176A (zh) * 2015-06-02 2017-02-01 康寧公司 積層結構及包括光導板的車用玻璃
CN104950491A (zh) * 2015-07-09 2015-09-30 梁金水 一种使用液晶显示技术的汽车挡风玻璃
US10209520B2 (en) * 2016-12-30 2019-02-19 Microsoft Technology Licensing, Llc Near eye display multi-component dimming system
CN106950698A (zh) * 2017-05-02 2017-07-14 深圳市可可卓科科技有限公司 支持亮度自适应自学习的汽车hud方法及终端
US11086150B2 (en) * 2017-07-06 2021-08-10 Boe Technology Group Co., Ltd. Peep-proof apparatus for switching a viewing angle of display panel, display apparatus, method of operating display apparatus, and method of fabricating peep-proof apparatus
JP6862330B2 (ja) * 2017-10-25 2021-04-21 パナソニック液晶ディスプレイ株式会社 液晶表示装置
TWI632540B (zh) * 2018-01-15 2018-08-11 友達光電股份有限公司 顯示裝置及其切換顯示視角的方法
CN108535911A (zh) 2018-05-21 2018-09-14 京东方科技集团股份有限公司 一种透明液晶显示装置
CN108803126B (zh) * 2018-06-29 2021-01-15 京东方科技集团股份有限公司 显示面板及其制造方法、显示装置
CN110531549B (zh) * 2019-08-30 2022-04-12 武汉天马微电子有限公司 双面显示面板和显示装置

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5087985A (en) * 1988-07-12 1992-02-11 Toray Industries, Inc. Polarizer for visible light
US5608554A (en) * 1994-07-26 1997-03-04 Samsung Display Devices Co., Ltd. LCD having a phosphor layer and a backlight source with a main emitting peak in the region of 380-420nm
US6445431B2 (en) * 1997-07-31 2002-09-03 Nec Corporation Liquid crystal display with polarization layer interior to substrates
US6844903B2 (en) * 2001-04-04 2005-01-18 Lumileds Lighting U.S., Llc Blue backlight and phosphor layer for a color LCD
US7079207B2 (en) * 2001-11-06 2006-07-18 Dai Nippon Printing Co., Ltd. Liquid crystal display
US20060238671A1 (en) * 2005-04-20 2006-10-26 Samsung Electronics Co., Ltd. Photo-luminescence liquid crystal display
US20070058107A1 (en) * 2005-09-10 2007-03-15 Im Seoung-Jae Photoluminescent liquid crystal display
EP1793261A1 (en) * 2005-12-01 2007-06-06 C.R.F. Societa Consortile per Azioni Transparent display based on photoluminescent material
US7630028B2 (en) * 2006-04-04 2009-12-08 Wintek Corporation Color liquid crystal display having a blue light source and fluorescent wavelength conversion areas
US7671529B2 (en) * 2004-12-10 2010-03-02 Philips Lumileds Lighting Company, Llc Phosphor converted light emitting device
US7746423B2 (en) * 2005-06-02 2010-06-29 Samsung Electronics Co., Ltd. Photo-luminescent liquid crystal display including a blue dichroic mirror layer
US20110013123A1 (en) * 2009-07-15 2011-01-20 Se-Hong Park Transparent display device
US20110050551A1 (en) * 2009-09-02 2011-03-03 Sony Corporation Liquid crystal display panel
WO2011077949A1 (ja) * 2009-12-22 2011-06-30 株式会社村田製作所 被測定物の特性を測定する方法および測定装置
US20110261291A1 (en) * 2010-04-23 2011-10-27 Se-Hong Park Transparent display device
US20110299010A1 (en) * 2009-12-08 2011-12-08 Se-Hong Park Transparent liquid crystal display device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW383508B (en) 1996-07-29 2000-03-01 Nichia Kagaku Kogyo Kk Light emitting device and display
JPH11316372A (ja) * 1998-04-30 1999-11-16 Seiko Epson Corp 液晶装置および電子機器
CN100504535C (zh) * 2002-10-17 2009-06-24 夏普株式会社 显示器件和显示器件装载设备
TW200410009A (en) 2002-12-12 2004-06-16 Solidlite Corp LCD display
JP4243477B2 (ja) 2002-12-17 2009-03-25 奇美電子股▲ふん▼有限公司 不良配線を補修したアレイ基板および補修方法
TWI285282B (en) 2003-10-14 2007-08-11 Au Optronics Corp Display
TWM285714U (en) 2005-05-12 2006-01-11 Ultra Bright Leds Co Ltd Combination device of side type light source module and liquid crystal panel
TWI282024B (en) 2005-06-06 2007-06-01 Radiant Opto Electronics Corp Backlight module with short wavelength light source
JP5226935B2 (ja) 2005-12-28 2013-07-03 エルジー ディスプレイ カンパニー リミテッド 液晶表示装置
JP4498286B2 (ja) 2006-02-02 2010-07-07 三菱電機株式会社 面状光源装置およびこの面状光源装置を用いた表示装置
US20080074583A1 (en) * 2006-07-06 2008-03-27 Intematix Corporation Photo-luminescence color liquid crystal display
TWI405005B (zh) 2009-01-23 2013-08-11 Au Optronics Corp 顯示裝置、其製造方法及光線色彩調變方法

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5087985A (en) * 1988-07-12 1992-02-11 Toray Industries, Inc. Polarizer for visible light
US5608554A (en) * 1994-07-26 1997-03-04 Samsung Display Devices Co., Ltd. LCD having a phosphor layer and a backlight source with a main emitting peak in the region of 380-420nm
US6445431B2 (en) * 1997-07-31 2002-09-03 Nec Corporation Liquid crystal display with polarization layer interior to substrates
US6844903B2 (en) * 2001-04-04 2005-01-18 Lumileds Lighting U.S., Llc Blue backlight and phosphor layer for a color LCD
US7079207B2 (en) * 2001-11-06 2006-07-18 Dai Nippon Printing Co., Ltd. Liquid crystal display
US7671529B2 (en) * 2004-12-10 2010-03-02 Philips Lumileds Lighting Company, Llc Phosphor converted light emitting device
US20060238671A1 (en) * 2005-04-20 2006-10-26 Samsung Electronics Co., Ltd. Photo-luminescence liquid crystal display
US7746423B2 (en) * 2005-06-02 2010-06-29 Samsung Electronics Co., Ltd. Photo-luminescent liquid crystal display including a blue dichroic mirror layer
US20070058107A1 (en) * 2005-09-10 2007-03-15 Im Seoung-Jae Photoluminescent liquid crystal display
EP1793261A1 (en) * 2005-12-01 2007-06-06 C.R.F. Societa Consortile per Azioni Transparent display based on photoluminescent material
US7630028B2 (en) * 2006-04-04 2009-12-08 Wintek Corporation Color liquid crystal display having a blue light source and fluorescent wavelength conversion areas
US20110013123A1 (en) * 2009-07-15 2011-01-20 Se-Hong Park Transparent display device
US20110050551A1 (en) * 2009-09-02 2011-03-03 Sony Corporation Liquid crystal display panel
US20110299010A1 (en) * 2009-12-08 2011-12-08 Se-Hong Park Transparent liquid crystal display device
WO2011077949A1 (ja) * 2009-12-22 2011-06-30 株式会社村田製作所 被測定物の特性を測定する方法および測定装置
US20120262190A1 (en) * 2009-12-22 2012-10-18 Murata Manufacturing Co., Ltd. Method and Apparatus for Measuring Characteristics of Object
US20110261291A1 (en) * 2010-04-23 2011-10-27 Se-Hong Park Transparent display device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Thorlabs Product Catalog, Copyright 1999-2015 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9322977B2 (en) 2014-01-06 2016-04-26 Au Optronics Corporation Display apparatus
US10036890B2 (en) * 2014-05-26 2018-07-31 Denso Corporation Head-up display device
US20160327788A1 (en) * 2014-05-26 2016-11-10 Denso Corporation Head-up display device
DE112015002474B4 (de) * 2014-05-26 2021-01-14 Denso Corporation Head-up-Display-Vorrichtung
WO2016021360A1 (ja) * 2014-08-04 2016-02-11 シャープ株式会社 画像表示装置
US9946128B2 (en) 2014-08-04 2018-04-17 Sharp Kabushiki Kaisha Image display device
WO2016094139A1 (en) * 2014-12-08 2016-06-16 Corning Incorporated Transparent display with improved contrast and transmission
US20160200256A1 (en) * 2015-01-14 2016-07-14 Nitto Denko Corporation Image display mirror for a vehicle
US10377312B2 (en) * 2015-01-14 2019-08-13 Nitto Denko Corporation Image display mirror for a vehicle
US20160247319A1 (en) * 2015-02-20 2016-08-25 Andreas G. Nowatzyk Selective occlusion system for augmented reality devices
US11468639B2 (en) * 2015-02-20 2022-10-11 Microsoft Technology Licensing, Llc Selective occlusion system for augmented reality devices
US9666118B2 (en) * 2015-10-01 2017-05-30 Chunghwa Picture Tubes, Ltd. Transparent display apparatus
US20180188552A1 (en) * 2016-03-31 2018-07-05 Boe Technology Group Co., Ltd. Polarized light source and display apparatus
US10444529B2 (en) * 2016-03-31 2019-10-15 Boe Technology Group Co., Ltd. Polarized light source and display apparatus
KR101929997B1 (ko) 2017-01-31 2018-12-18 주식회사 디스플레이앤라이프 액정표시장치
US20190049801A1 (en) * 2017-08-10 2019-02-14 Shenzhen China Star Optoeletronics Semiconductor Display Technology Co., Ltd. Transflective liquid crystal display device
US11347053B2 (en) 2017-10-27 2022-05-31 Leia Inc. Backlit transparent display, transparent display system, and method
US11635619B2 (en) 2017-10-27 2023-04-25 Leia Inc. Backlit transparent display, transparent display system, and method
US12189239B2 (en) 2020-04-29 2025-01-07 Hefei Boe Display Technology Co., Ltd. Backlight module and liquid crystal display apparatus

Also Published As

Publication number Publication date
US9829757B2 (en) 2017-11-28
US20160306215A1 (en) 2016-10-20
CN102495495A (zh) 2012-06-13
CN102495495B (zh) 2015-03-11
TWI472840B (zh) 2015-02-11
TW201317672A (zh) 2013-05-01

Similar Documents

Publication Publication Date Title
US9829757B2 (en) Transparent display device and display method thereof
US10571762B2 (en) High dynamic range displays using filterless LCD(s) for increasing contrast and resolution
JP6259791B2 (ja) クロスbefコリメータおよび偏光保存拡散器を備えるデュアルパネルディスプレイ
US9772530B2 (en) High dynamic range displays using filterless LCD(s) for increasing contrast and resolution
JP5304992B2 (ja) 表示装置
CN103250090B (zh) 照明单元、显示器和三维显示器
JP2014517931A5 (zh)
CN106444150B (zh) 一种背光模组和显示装置
US20160093252A1 (en) Display device
US20190187356A1 (en) Display device
US20200050048A1 (en) Display device
EP3104220B1 (en) Liquid crystal display device for a two-sided display
US20140355307A1 (en) Display apparatus
US11194090B2 (en) Display device
JP2010122435A (ja) 液晶表示装置、バックライトユニットおよび光学フィルタ
KR102436409B1 (ko) 광 제어시트와, 그 제조방법 및 이를 구비한 액정표시장치
EP4188746A1 (en) A backlight unit for a vehicle component
JP2009080321A (ja) 表示装置、偏光制御方法
WO2015040775A1 (ja) 画像表示素子
JP2010152375A (ja) 面照明装置及びそれを備えた液晶表示装置
US20200111400A1 (en) Display device
JP2017054088A (ja) 液晶表示装置
US9829744B2 (en) High performance seamless light emitting diode illuminated display
Buckley Pixtronix DMSTM technology for head-up displays
CN118151433A (zh) 背光单元和包括该背光单元的显示装置

Legal Events

Date Code Title Description
AS Assignment

Owner name: AU OPTRONICS CORPORATION, TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHEN, KUO-TSUNG;CHEN, CHO-YAN;LIN, CHING-HAUN;AND OTHERS;SIGNING DATES FROM 20121004 TO 20121016;REEL/FRAME:029424/0383

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION