M285714 八、新型說明: 【新型所屬之技術領域】 本創作係在提供-種側光型光源模組與液晶面板組合 裝置,特指液晶面板的白光背光源的演 【先前技術】 ^ 按液晶面板與背光源模組組合,典型結構如台灣新型 證書號第M 2 4 5 4 4 8號「液晶顯示器之光源模組」專 利案,其光源所使用的發光二極體係由紫外光v ) l ED及紅、藍、綠(R、B、G)螢光物質所構成。其缺 點為紫外光會對目前所泛用之環氧樹脂結構造成破壞,致 使最後之白光會產生光衰減之問題,白光亮度不強,尤其 該案之包覆層係由紅、、綠、藍三種顏色螢光粉混合而成:、 三種顏料之比值、製程難以控制又是其缺點之_。又該案 申請專利範圍第5項主張其發光二極體為藍光Led f螢 光粉為紅、綠螢光物質,然查紅色螢絲與綠色螢光粉混 的比值及製程難以控制使混合光(即白光)的均勻性難以 控制,終使液晶面板所顯現之白光的演色性不佳。 、台灣新型證書號第M 2 5 1 1 4 3號「液晶銀幕之光 源裝置」’其光源使用了波長介於2 〇 2nm〜5 〇。⑽之 H光或u v光’做為單一光源’惟該光源缺乏了紅光 光譜部份,因此所激發螢光板所混合之白光(即混合光) 的决色性及均句性不佳,被人眼定義之白光不純。 本發明人所發明的台灣發明專利公告號第丨2 2 8 8 3 7號「發光裝置 係為一白光發光二極體,它利用了藍 ‘M285714 光及紅光二顆發光晶粒(L E D )做為二光源,螢光層膠 合覆接於藍光晶粒及紅光晶粒上,螢光層被藍光光源激發 出一綠色的光’該綠光與藍、紅光混合,以形成白光,該 案有效克服了前述專利案不同顏色螢光粉混合所產生比值 及製程難以控制的問題,即利用紅色發光二極體取代了習 知之紅色螢光粉,進一步使致光的螢光層材料為單一顏色 材料,這樣的設計,可將不同顏色混合比值及製程難以控 制之問題解決,進一步可控制致光的單一激發光波長(即 綠光波長),再者,該案利用了紅光]L E D所發出之紅光 與A發光及監光專二色光的混合,所得之白光演色性較 佳。惟查該案之實施例係限於白光發光二極體的新設計, 對於使用於液晶面板與背光源模組的組合裝置尚無擴大的 組合實施。 【新型内容】 本創作之主要_,係在提供一種側光型㈣模組與 液晶面板組合裝置’發揮所透射出的背光源白光其演色性 與均勻性易於控制,以及演色性與均勻性佳。 本創作之再-目的,即在提供一種側光型光源模組與 液晶面板組合裝置,背光源模組所使用的螢光層為—致光 的材料’使激發光波長易於控制,以達液晶面板其背光源 白光之演色性與均勻性易於控制。 Λ' 本創作之再—目的,即在提供一種側光型光源模組盘 液晶面板組合裝置,藉著塗覆有螢光層的光擴散片之 易更換,達致可汰舊換新者。 9 M285714 如圖一及圖九所示,本創作係在提供一種侧光型光源 模組與液晶面板組合裝置,乃包含: 液晶面板1 〇 ; 導光板2 0位於液晶面板1 〇下方; 光反射片3 0位於導光板2 0下方; 光擴散片1 5位於導光板2 0之上方; 光源模組4 0係設於導光板2 0之側邊,其包括·· 電路板4 2上,焊接有至少一個以上的藍光晶粒5 5做為 藍光B發光光源及一個以上的紅光晶粒6 5做為紅光尺發 光光源,藍光晶粒5 5與紅光晶粒6 5互為相鄰,· 致光螢光層7 0位置於藍光晶粒5 5及紅色晶粒6 5上, 其中主要以藍光B來激發螢光層7 0,螢光層7 〇被激發 出波長介於5 0 〇〜5 7 Onm間的激發光G,該激發光G 與藍光B及紅光R相混合的混合光透射出螢光層7 〇外, 以形成白光W的光源經導光板2 〇之導光,光反射片3〇 之折射而由光擴散片1 5及液晶面板1 〇透射出。 如圖一、九所示’其中螢光層7 〇封裝於相鄰的藍光 晶粒5 5與紅光晶粒6 5上。 如圖二、八所示,其中螢光層70均勻的塗覆於光擴 散片1 5之上表面上; 電路板4 2上所焊接的藍光晶粒5 5及紅光晶粒6 5上覆 接有透明膠層7 5。 如圖三、八所示,其中螢光層7 〇均勻的塗覆於光擴 政片15之下表面; M285714 電路板4 2上所焊接的藍光晶粒5 5及紅光晶粒6 5上覆 接有透明膠層7 5。 如圖五、八所示,其中光擴散片1 5中材質中被混入 均勻的螢光粉,光擴散片15同時形成致光螢光層; 電路板4 2上所焊接的藍光晶粒5 5及紅光晶粒6 5上覆 接有透明膠層7 5。 如圖一〜四所示,其中塗覆於光擴散片1 5的螢光層 7 〇其平均厚度被控制於〇· 〇1匪〜〇· 2丽; 透明的光擴散片1 5平均厚度被控制於〇· imm〜1〇mm。 如圖十一所示,其中藍光晶粒5 5與紅光晶粒6 5裝 置於同一個光反射蓋6 〇的凹槽6 1中,光反射蓋6 〇的 二電極接腳62、64焊接於電路板4 2上; 透明膠層7 5填充於凹槽6 1。 如圖八所示,其中藍光晶粒5 5與紅光晶粒6 5分別 各自獨立裝置於光反射蓋6〇、 (6〇)的凹槽61中, 二個光反射蓋60、 (60)的電極接腳62、64分別 焊接於電路板4 2上,二個光反射蓋6 0之間距L控制在 1 mm以内; 透明膠層75填充於二個光反射蓋60、 (60)的凹槽 6 1及電路板4 2的表面上。 如圖十二所示,其中藍光晶粒5 5所發出的藍光B其 波長介於3 6 0〜4 8 0 nm間,紅光晶粒6 5所發出的紅 光R波長介於5 8 5〜7 8 Onm。 如圖一、二、三、四、五、七、九所示,其中螢光層 •M285714 ^(^中的螢光粉可為鋁石榴石系^七七“⑽^·^^· Garnet)或矽酸鹽類(Sm〇n4-)或硼酸鹽類(Bx〇y3〇材質 構成。 如圖九所示,其中藍光晶粒5 5及紅光晶粒6 5可連 接於同一反射蓋6 0的凹槽6 1中,凹槽6 1中可填充螢 光層7 〇 ’其二電極接脚62、6 4係焊接於電路板4 2 上。 如圖十四所示,其中藍光晶粒5 5及紅光晶粒6 5可 連接於主導線架80上方預設的凹槽82中,螢光層70 填充於凹槽8 2中,一燈泡型的透明膠層7 5可將螢光層 70及主導線架8〇上端一體包覆,其二電極接腳83、 8 4焊接於電路板4 2上。 如圖一、二、三、四、五、七、九所示,其中螢光層 7 0中的螢光粉的材質可由下列組合物之一種或二種或三 種的組合來選用: 螢光粉由錦元素致活且含γ與A1的鋁石榴石系(yag : Ce3+ ); 螢光粉由銪元素致活的石榴系(YAG : EU2+/3+); 螢光粉由铽(Terbium)元素致活的石榴系(YAG:Tb3+)。 如圖七所示,其中藍光晶粒5 5及紅光晶粒6 5分別 連接於互為獨立的光反射蓋60、(60)的凹槽β工、 (6 1 )中,其中一藍光晶粒5 5所屬的凹槽6 1中可填 充螢光層7 0,另一紅光晶粒6 5所屬之凹槽6 1填充透 明膠層7 5,其二電極接脚6 2、( 6 2 ) 、6 4、( r •M285714 4)係焊接於電路板4 2上。 如圖六所示,其中介於液晶面板工〇與光擴散片工5 之間’增設—透明之增光膜1 2 5或用於增光的稜鏡片。 如圖十二、十三所示,其中複數且互為相鄰的藍光晶 粒5 5與紅光晶粒6 5係至少一排以上,以—維直線陣列 式焊接排列於電路板4 2上。 如圖十五所示,其中光擴散片1 5之下表面設有夾角 0小於9 〇。的稜鏡面1 5 6。 【實施方式】 ⑴.如圖十二所示,液晶面板1〇、光擴散片1 5及光源 权組4 0為較小面積的長方形狀,適用於小型的液晶 銀幕使用;圖十三所示的液晶面板1 〇、光擴散片工 5及光源模組4 〇為較大面積的長四方形狀,適用較 大尺寸的液晶銀幕使用。 請參閱圖一、九所示,螢光層7 〇係封裝於光源模組 4 0的監光晶粒5 5 (chip)及紅光晶粒6 5 (chip )上,尤其每相鄰的藍光晶粒5 5及紅光晶粒6 5做 為一對,焊接於一光反射蓋6 〇的凹槽61中,當電 極接腳6 2、6 4受電極作用時,乃驅動藍光晶粒5 5及紅光晶粒6 5分別同步發出藍光B及紅光R,其 中主要以監光B去激發螢光層7 〇,使螢光層7〇發 出激發光G,該激發光g波長介於5Q〇〜57Qnffl 之間’被疋義為綠光,因此如圖一所示藍光B、紅光 R及激發光G所混合之混合光,被定義為白光w乃經 M285714 由導光板2 0之導光,以及光反射片3 〇之反射入光 擴散片1 5及液晶面板1 〇,白光w由液晶面板1 〇 透射出,以形成液晶面板1 〇的背光源,這個實施例 主要定義出螢光層7 0係直接包覆於藍光晶粒、紅光 晶粒6 5上。 請荼閱圖二、十二所示,這個實施例主要定義出螢光 層7 0可裝設於不同位置,非限制封裝於藍、紅光晶 粒55、65上,螢光層70塗覆於光擴散片1 5之 上表面上,光源模組4 〇上的藍、紅光晶粒5 5、6 5是不覆接螢光層7 〇,藉此藍、紅光晶粒5 5、β 5被電路驅動同步發出藍、紅光β、r,藍、紅光β 、尺經導光板20之導光、光反射片3〇之反射及光 擴散片1 5的均勻擴張後,藍光β激發螢光層7 〇以 被/放發出激發光G ’並與藍光Β、紅光R相混合形成 白光W由液晶面板1 〇透射出。 圖二所示’係指螢光層7 〇可塗覆於光擴散片1 5之 下表面,同樣地光源模組4 〇内部的藍、紅光晶粒5 5、6 5是不覆接螢光層7 〇,藍光Β激發螢光層7 〇使螢光層7 0產生激發光G並從光擴散片1 5透射 出,使監光Β、紅光R及激發光g相混合形成白光w 並由液晶面板1 〇透射出。 如圖四所示,螢光層7 〇亦可同時塗覆於光擴散片工 5的上表面及下表面上,此亦為本案一較佳可行的實 施例。 11 M285714 第五圖所示,係指在光擴散片1 5的材質中,均勻混 入^:光粉使光擴散片1 5同時形成一致光的螢光層7 〇,此時光源模組4 0是不覆接有螢光層7 〇,故光 源發出藍光B及紅光r通過導光板2 〇、光反射片3 〇、光擴散片1 5,其中光擴散片1 5形成螢光層被 監光B激發為激發光g,使藍、紅、激發光(b、r 、G)所混合之白光w由液晶面板丄〇向外透射出。 如圖六所示,係指可在光擴散片1 5之上表面增設一 增光膜1 2 5或稜鏡片以達增光之目的,此實施例, 光源模組4 0中係建構有螢光層7 〇者。 圖七所示,係指藍光晶粒5 5裝設於獨立的光反射蓋 6 0之凹槽6 1中,紅光晶粒6 5裝設於另一獨立的 光反射盍6 0之凹槽6 1中,二者之間距L最好控制 在1〜2丽之間,藍光晶粒5 5所屬之凹槽6 i可增充 螢光層7 0,紅光晶粒6 5所屬之凹槽6 1被填充透 明膠層7 5,此時光擴散片2 5係如圖一所示,並無 塗覆任何螢光層7 0,因此由光源模組4 〇所發出之 藍、紅、激發光(B、R、G)之混合光(即白光贾 )乃由液晶面板1〇透射出。 第八圖所示,係指藍光晶粒5 5及紅光晶粒6 5分別 被建構於二個獨立的光反射蓋6 〇、( 6 〇)的凹槽 61、 (61)中,其中二個凹槽61、 (61)分 別填入透明膠層75、(7 5),此實施例係定義出 光源模組4 0並無螢光層7 〇之設計,該螢光層7 〇 12 M285714 係建構在如圖二、三、四、五光擴散片15表面上, 藉此從光源模組4 0發出藍光B及紅光R,其中藍光 B激發如圖二、三、四、五中光擴散片i 5表面上塗 覆的螢光層7 0,以發出激發光G,進一步使白光w 透射出液晶面板1 Q外。 第九圖所示,係指藍光晶粒5 5及紅光晶粒6 5裝置 於同一個光反射蓋6 〇之凹槽6 1中,螢光層7 〇填 充於凹槽6 1中,而將藍光晶粒5 5及紅光晶粒6 5 包覆,如圖一所示,光擴散片丄5係無塗覆螢光層7 0,因此從光源模組4 〇發出的光係為藍、紅及激發 光(B、R、G)所混合的白光w,以形成液晶面板 1 0的背光源。 第十圖所示,係指藍、紅光晶粒5 5、6 5直接焊接 在電路板4 2上,螢光層7 0可直接填充封裝於藍、 紅光晶粒5 5、6 5上,或者透明膠層7 5可填充封 裝於藍、紅光晶粒5 5、6 5上,當藍、紅光晶粒5 5、6 5被封裝有螢光層7 〇時,則如圖一所示,光 擴散片1 5是不塗覆有螢光層,然當藍、紅光晶粒5 5、6 5被封裝有透明膠層7 5時,則光擴散片工5 是被建構有螢光層7〇 (如圖二、三、四、五所示) 〇 弟十圖所示’係指一光反射蓋6 0之凹槽6 1中裝 置有監、紅光晶粒5 5、6 5,透明膠層7 5封裝於 凹槽6 1中,此實施例的光源模組4 〇並無建構螢光 13 M285714 層7 〇,螢光層7 0係設於光擴散片1 5表面上(如 圖二、三、四、五所示)。 如圖十所示,光擴散片1 5設有凹、凸狀的稜鏡面1 56 ’以達增光之目的。 (2)♦本創作的主要特色,光源模組4 〇係應用了藍光晶粒 5 5、紅光晶粒6 5等發光二極體,配合螢光層7 〇 的不同塗覆位置,使藍光Β、紅光R及激發光G混合 的均勻性及演色性較佳。而且螢光層7 〇係為單一致 光顏色的材料製成,不需與其他不同顏色的螢光物質 混合’而達致不需考慮不同螢光粉的混合比值的問題 ’而且製程易於控制;尤有甚者光源中的紅光晶粒6 5係為發光二極體,其發出的紅光r波長及強度易於 控制。 綜上’本創作在側光光源作用的液晶面板領域中,可 達成/、月光光源 白光W的演色性及均勻性更佳,具備 有相虽的新穎性與進步性及產業上之可利用性,已符新型 專利之要件,申請人爰依法提呈申請。 M285714 【圖式簡單說明】 第一圖為本創作之斷面示意圖。 第二圖為本創作再一實施例之斷面示意圖。 第二圖為本創作再一實施例之斷面示意圖。 第四圖為本創作再一實施例之斷面示意圖。 第五圖為本創作再一實施例之斷面示意圖。 第六圖為本創作再一實施例之斷面示意圖。 苐七圖為本創作光源模組的一局部斷面圖。 第八圖為本創作光源模組的一實施例局部斷面圖。 第九圖為本創作光源模組的一實施例局部斷面圖。 弟十圖為本創作光源模組的一實施例局部斷面圖。 第十圖為本創作光源模組的一實施例局部斷面圖。 第十二圖為本創作光源模組的立體圖。 第十三圖為本創作光源模組的再一實施例立體圖。 第十四圖為本創作光源模組的再一實施例立體圖。 第十五圖為本創作光擴散片再_實施例斷面圖。 【主要元件符號說明】 液晶面板---1〇 光擴散片---15 棱鏡面----1 5 Θ 增光膜----12 5 導光板 2 0 光反射片 30 15 M285714 光源模組---4 0 電路板----4 2 藍光晶粒---5 5 光反射蓋---60 凹槽-----6 1、8 2 電極接腳---6 2、6 4、8 3、8 4 紅光晶粒---65 螢光層----7 0 透明膠層---7 5 主導線架---80M285714 VIII. New description: [New technical field] This creation is to provide a kind of side light type light source module and liquid crystal panel combination device, especially the white light backlight of liquid crystal panel. [Previous technology] ^ Press LCD panel In combination with a backlight module, the typical structure is the new patent certificate No. M 2 4 5 4 4 8 "Liquid light source module for liquid crystal display" patent. The light-emitting diode system used in the light source is made of ultraviolet light v ) l ED And red, blue, green (R, B, G) fluorescent substances. The disadvantage is that the ultraviolet light will cause damage to the epoxy resin structure which is currently used, so that the last white light will have a problem of light attenuation, and the brightness of the white light is not strong, especially the coating layer of the case is red, green and blue. The mixing of three colors of fluorescent powder: the ratio of the three pigments, the difficulty in controlling the process and its disadvantages. In addition, the fifth application of the patent application scope claims that the light-emitting diode is blue light Led f fluorescent powder is red and green fluorescent material, and the ratio of red fluorescent powder to green fluorescent powder is mixed, and the process is difficult to control to make mixed light. The uniformity of the white light (i.e., white light) is difficult to control, and the color rendering of the white light appearing on the liquid crystal panel is not good. Taiwan's new certificate number No. M 2 5 1 1 4 3 "Light source device for liquid crystal screen" uses a wavelength of 2 〇 2 nm to 5 〇. (10) H light or uv light 'as a single light source', but the light source lacks the red light spectrum portion, so the white light (ie, mixed light) mixed by the excited fluorescent plate is inferior in color and uniformity. The white light defined by the human eye is not pure. The inventor of the present invention invented the invention patent No. 2 2 8 8 3 7 "The light-emitting device is a white light-emitting diode, which utilizes blue 'M285714 light and red light two light-emitting crystal chips (LED) As the two light sources, the phosphor layer is glued to the blue crystal grains and the red crystal grains, and the fluorescent layer is excited by the blue light source to emit a green light, which is mixed with the blue and red light to form white light. The problem effectively overcomes the problem that the ratio of the different color phosphor powders in the aforementioned patents and the process are difficult to control, that is, the red phosphor is used to replace the conventional red phosphor, and the light-emitting phosphor layer material is further simplified. The color material, such a design, can solve the problem that the mixing ratio of different colors and the process are difficult to control, and further control the wavelength of the single excitation light (ie, the wavelength of green light) of the light, and further, the case utilizes the red light] LED The red light emitted is mixed with the A-light and the light-adjusting two-color light, and the obtained white light color is better. However, the embodiment of the case is limited to the new design of the white light emitting diode, and is used for the liquid crystal panel and The combination of the backlight module has not been expanded. [New content] The main purpose of this creation is to provide a side-light type (four) module and liquid crystal panel combination device to play the color of the backlight white light. Sexuality and uniformity are easy to control, and color rendering and uniformity are good. The purpose of this creation is to provide a side light type light source module and a liquid crystal panel combination device, and the fluorescent layer used in the backlight module is - The light-emitting material makes the wavelength of the excitation light easy to control, so that the color rendering and uniformity of the backlight of the liquid crystal panel can be easily controlled. Λ' The purpose of this creation is to provide a side-light type light source module disk liquid crystal. The panel assembly device can be replaced by a light diffuser coated with a fluorescent layer to achieve replacement. 9 M285714 As shown in Fig. 1 and Fig. 9, the creation system provides a side light source. The combination of the module and the liquid crystal panel comprises: a liquid crystal panel 1 〇; the light guide plate 20 is located below the liquid crystal panel 1 ;; the light reflection sheet 30 is located below the light guide plate 20; the light diffusion sheet 15 is located at the light guide plate 20 The light source module 40 is disposed on the side of the light guide plate 20, and includes a circuit board 42. At least one of the blue crystal grains 5 5 is soldered as a blue light source and more than one. The red light crystal 6 5 is used as a red light illuminating light source, and the blue light crystal 5 5 and the red light crystal 65 are adjacent to each other. The photoluminescence layer 70 is located at the blue light crystal 5 5 and the red crystal grain. 6 5, wherein the phosphor layer 70 is mainly excited by the blue light B, and the phosphor layer 7 is excited by the excitation light G having a wavelength between 50 and 5 7 Onm, and the excitation light G and the blue light B and red The mixed light of the light R phase is transmitted out of the phosphor layer 7 to form a light source of the white light W through the light guide plate 2, and the light reflection sheet 3 is refracted by the light diffusion sheet 15 and the liquid crystal panel 1 Transmitted out. As shown in Figures 1 and 9, the phosphor layer 7 is encapsulated on the adjacent blue crystal grains 5 5 and the red crystal grains 65. As shown in FIGS. 2 and 8, the phosphor layer 70 is uniformly coated on the upper surface of the light diffusion sheet 15; the blue crystal grains 5 5 and the red crystal grains 6 5 soldered on the circuit board 42 are overlaid. A transparent adhesive layer 7 5 is attached. As shown in FIGS. 3 and 8, the phosphor layer 7 〇 is uniformly applied to the lower surface of the optical expansion sheet 15; the blue light crystal 5 5 and the red crystal grains 6 5 soldered on the M285714 circuit board 42 A transparent adhesive layer 75 is attached. As shown in FIG. 5 and FIG. 8 , in the material of the light diffusion sheet 15 , a uniform phosphor powder is mixed, and the light diffusion sheet 15 simultaneously forms a photoluminescence layer; the blue crystal grains 5 5 are soldered on the circuit board 4 5 . And the red light crystal film 6 5 is covered with a transparent adhesive layer 75. As shown in Figures 1 to 4, the average thickness of the phosphor layer 7 applied to the light-diffusing sheet 15 is controlled to 〇·〇1匪~〇·2 Li; the average thickness of the transparent light-diffusing sheet 15 is Controlled in 〇·imm~1〇mm. As shown in FIG. 11 , the blue light crystal 5 5 and the red light crystal 65 are disposed in the recess 61 of the same light reflecting cover 6 ,, and the two electrode pins 62 , 64 of the light reflecting cover 6 焊接 are soldered. On the circuit board 4 2; a transparent adhesive layer 7.5 is filled in the recess 61. As shown in FIG. 8, the blue light crystal 5 5 and the red light crystal 65 are respectively disposed in the recesses 61 of the light reflecting cover 6〇, (6〇), respectively, and the two light reflecting covers 60, (60) The electrode pins 62, 64 are respectively soldered on the circuit board 4 2, and the distance L between the two light reflecting covers 60 is controlled within 1 mm; the transparent adhesive layer 75 is filled in the concave of the two light reflecting covers 60, (60) The groove 6 1 and the surface of the circuit board 42 are on the surface. As shown in Fig. 12, the blue light B emitted by the blue light crystal 5 has a wavelength between 3 600 and 4 80 nm, and the red light R 6 emitted by the red light crystal 65 has a wavelength of 5 8 5 . ~7 8 Onm. As shown in Figure 1, 2, 3, 4, 5, 7 and 9, the fluorescent layer • M285714 ^ (the fluorescent powder in ^ can be aluminum garnet system ^ seven seven "(10) ^ · ^ ^ Garnet) Or a bismuth silicate (Sm〇n4-) or a borate (Bx〇y3 〇 material composition. As shown in FIG. 9, wherein the blue light crystal 5 5 and the red light crystal 65 can be connected to the same reflective cover 60 In the recess 6 1 , the recess 6 1 can be filled with the phosphor layer 7 〇 'the two electrode pins 62 , 6 4 are soldered on the circuit board 4 2 . As shown in FIG. 14 , the blue crystal grain 5 5 and the red light crystal film 6 5 can be connected to the preset groove 82 above the main wire frame 80, the fluorescent layer 70 is filled in the groove 8 2 , and a bulb type transparent adhesive layer 7 5 can be used for the fluorescent layer 70 and the upper end of the main wire frame 8〇 are integrally covered, and the two electrode pins 83, 8 4 are soldered on the circuit board 42. As shown in Fig. 1, 2, 3, 4, 5, 7 and 9, the fluorescent light is The material of the phosphor powder in the layer 70 may be selected from one or a combination of two or three of the following compositions: a phosphor powder yag: Ce3+ which is activated by the brocade element and contains γ and A1; Fluorescent powder pomegranate Department (YAG: EU2+/3+); Phosphorus powder (YAG: Tb3+) activated by Terbium element. As shown in Figure 7, blue light crystal 5 5 and red light crystal 6 5 respectively Connected to the mutually independent light reflecting cover 60, (60), in the groove β, (6 1 ), a recess 6 1 to which a blue crystal grain 5 belongs may be filled with the fluorescent layer 70, and the other The groove 6 1 to which the red crystal grain 6 5 belongs is filled with the transparent adhesive layer 7 5 , and the two electrode pins 6 2 , ( 6 2 ), 6 4 , ( r • M285714 4) are soldered on the circuit board 42. As shown in Figure 6, between the liquid crystal panel process and the light diffuser 5, a transparent-transparent brightness enhancement film 152 or a enamel for brightness is added. As shown in Figures 12 and 13, The plurality of mutually adjacent blue light crystal grains 5 5 and the red light crystal grains 65 are at least one row or more, and are arranged on the circuit board 42 by a linear array soldering. As shown in FIG. The lower surface of the sheet 1 5 is provided with a face surface 1 5 6 having an angle of less than 9 。. [Embodiment] (1) As shown in FIG. 12, the liquid crystal panel 1 , the light diffusion sheet 15 and the light source weight group 40 Rectangular for smaller areas The utility model is suitable for use in a small liquid crystal screen; the liquid crystal panel 1 〇, the light diffusing sheet 5 and the light source module 4 图 shown in FIG. 13 are long square shapes of a large area, and are suitable for use of a larger size liquid crystal screen. Referring to FIG. 1 and FIG. 9, the phosphor layer 7 is packaged on the light-emitting die 5 5 (chip) and the red light-emitting chip 6 5 (chip ) of the light source module 40, especially each adjacent blue light. The crystal grains 5 5 and the red light crystal grains 65 are paired and soldered in the recess 61 of the light reflecting cover 6 ,. When the electrode pins 6 2, 6 4 are acted by the electrodes, the blue crystal grains 5 are driven. 5 and the red light crystal film 6 5 respectively emit blue light B and red light R, wherein the phosphor layer 7 is mainly excited by the light beam B, so that the phosphor layer 7 emits the excitation light G, and the excitation light g wavelength is between Between 5Q〇~57Qnffl, 'is ambiguously green light, so the mixed light of blue light B, red light R and excitation light G as shown in Fig. 1 is defined as white light w is M285714 by light guide plate 20 The light guide, and the light reflection sheet 3 are reflected into the light diffusion sheet 15 and the liquid crystal panel 1 , and the white light w is transmitted through the liquid crystal panel 1 to form the liquid crystal panel 1 Backlight, this embodiment mainly defines the phosphor layer 70 is directly coated on the blue-based grains, the grains 65 red. Please refer to FIG. 2 and FIG. 12, this embodiment mainly defines that the phosphor layer 70 can be installed at different positions, and is unrestrictedly packaged on the blue and red crystal grains 55 and 65, and the phosphor layer 70 is coated. On the upper surface of the light diffusing film 15, the blue and red crystal grains 5 5 and 6 5 on the light source module 4 are not covered with the phosphor layer 7 , whereby the blue and red crystal grains 5 5 β 5 is synchronously emitted by the circuit to emit blue, red light β, r, blue, red light β, light guided by the light guide plate 20, reflection of the light reflection sheet 3〇, and uniform expansion of the light diffusion sheet 15, blue light β The phosphor layer 7 is excited to emit/exhale the excitation light G′ and is mixed with the blue light and the red light R to form white light W which is transmitted by the liquid crystal panel 1 . Figure 2 shows that the fluorescent layer 7 can be applied to the lower surface of the light diffusing film 15. Similarly, the blue and red crystal grains 5 5 and 65 in the light source module 4 are not covered with the fluorescent light. The light layer 7 〇, the blue light Β excites the fluorescent layer 7 〇 causes the fluorescent layer 70 to generate the excitation light G and is transmitted from the light diffusion sheet 15 to mix the illuminating light, the red light R and the excitation light g to form white light w It is transmitted by the liquid crystal panel 1 〇. As shown in Fig. 4, the phosphor layer 7 can also be applied to both the upper surface and the lower surface of the light diffusing sheet 5, which is also a preferred embodiment of the present invention. 11 M285714 In the fifth figure, the light-diffusing sheet 15 is uniformly mixed with the light-emitting layer to form a uniform light-emitting layer 7 〇 at the same time. The fluorescent layer 7 is not covered, so the light source emits blue light B and red light r through the light guide plate 2, the light reflection sheet 3 〇, and the light diffusion sheet 15 , wherein the light diffusion sheet 15 forms a fluorescent layer and is supervised. The light B is excited as the excitation light g, and the white light w mixed with the blue, red, and excitation light (b, r, G) is transmitted outward from the liquid crystal panel. As shown in FIG. 6 , a light-increasing film 1 2 5 or a blip film may be added on the upper surface of the light-diffusing sheet 15 to enhance the light. In this embodiment, a light-emitting layer is constructed in the light source module 40. 7 〇 。. As shown in FIG. 7, it means that the blue light crystal 5 5 is installed in the recess 6 1 of the independent light reflecting cover 60, and the red light crystal 65 is installed in the groove of another independent light reflecting light 60. In 6 1 , the distance L between the two is preferably controlled between 1 and 2 丽, and the groove 6 i to which the blue crystal grain 5 5 belongs can be added to the groove of the fluorescent layer 70 and the red light crystal 6 5 . 6 1 is filled with a transparent adhesive layer 7 5 , at this time, the light diffusion sheet 25 is not shown with any fluorescent layer 70 as shown in FIG. 1 , so the blue, red and excitation light emitted by the light source module 4 〇 The mixed light of (B, R, G) (ie, white light) is transmitted by the liquid crystal panel 1 . In the eighth figure, it is meant that the blue light crystal 5 5 and the red light crystal 65 are respectively constructed in two independent light reflecting covers 6 〇, (6 〇) grooves 61, (61), of which two The recesses 61 and (61) are respectively filled with the transparent adhesive layer 75, (75). This embodiment defines that the light source module 40 has no fluorescent layer 7 〇 design, and the fluorescent layer 7 〇12 M285714 The structure is constructed on the surface of the second, third, fourth and fifth light diffusing sheets 15, thereby emitting blue light B and red light R from the light source module 40, wherein the blue light B is excited as shown in the second, third, fourth and fifth light. The phosphor layer 70 coated on the surface of the diffusion sheet i 5 emits excitation light G to further transmit the white light w out of the liquid crystal panel 1 Q. The ninth figure shows that the blue light crystal 5 5 and the red light crystal 65 are disposed in the recess 6 1 of the same light reflecting cover 6 , and the fluorescent layer 7 is filled in the recess 61 . The blue light crystal 5 5 and the red light crystal 6 5 are coated. As shown in FIG. 1 , the light diffusing sheet 5 is not coated with the fluorescent layer 70 , so the light emitted from the light source module 4 is blue. White light w mixed with red and excitation light (B, R, G) to form a backlight of the liquid crystal panel 10 . As shown in the tenth figure, the blue and red crystal grains 5 5 and 6 5 are directly soldered on the circuit board 4 2 , and the phosphor layer 70 can be directly filled and packaged on the blue and red crystal grains 5 5 , 6 5 . Or the transparent adhesive layer 7 5 can be filled and packaged on the blue and red light crystal grains 5 5 , 6 5 , when the blue and red light crystal grains 5 5 , 6 5 are encapsulated with the fluorescent layer 7 ,, then As shown, the light diffusing sheet 15 is not coated with a fluorescent layer, but when the blue and red crystal grains 5 5, 6 5 are encapsulated with the transparent adhesive layer 75, the light diffusing sheet 5 is constructed. The fluorescent layer 7〇 (shown in Figures 2, 3, 4, and 5) is shown in Figure 10, which means that the device has a light-reflecting cover 60 and a red light crystal 5 5 . 6 5, the transparent adhesive layer 7 5 is encapsulated in the recess 61, the light source module 4 of this embodiment is not constructed with a fluorescent 13 M285714 layer 7 〇, and the fluorescent layer 70 is disposed on the surface of the light diffusing sheet 15 Upper (as shown in Figures 2, 3, 4, and 5). As shown in Fig. 10, the light diffusing sheet 15 is provided with a concave and convex flank surface 1 56 ' for the purpose of enhancing light. (2) ♦ The main feature of this creation, the light source module 4 〇 system uses blue light crystal 5 5, red light crystal 6 5 and other light-emitting diodes, with different coating positions of the fluorescent layer 7 ,, making blue light The uniformity and color rendering properties of the mixture of Β, red light R and excitation light G are preferred. Moreover, the phosphor layer 7 is made of a material having a single uniform light color, and does not need to be mixed with other fluorescent materials of different colors to achieve the problem of not considering the mixing ratio of different phosphors' and the process is easy to control; In particular, the red light crystals 6 5 in the light source are light-emitting diodes, and the red light wavelength and intensity emitted by the red light are easily controlled. In summary, in the field of liquid crystal panels in which the side light source functions, the color rendering and uniformity of the moonlight source white light W can be achieved, and the novelty and progress of the phase and the industrial availability can be achieved. The requirements of the new patent have been met, and the applicant has submitted an application in accordance with the law. M285714 [Simple description of the diagram] The first picture is a schematic cross-section of the creation. The second figure is a schematic cross-sectional view of still another embodiment of the creation. The second figure is a schematic cross-sectional view of still another embodiment of the creation. The fourth figure is a schematic cross-sectional view of still another embodiment of the creation. The fifth figure is a schematic cross-sectional view of still another embodiment of the creation. Figure 6 is a schematic cross-sectional view showing still another embodiment of the creation. Figure VII shows a partial cross-sectional view of the creative light source module. The eighth figure is a partial cross-sectional view of an embodiment of the creative light source module. The ninth drawing is a partial cross-sectional view of an embodiment of the creative light source module. Figure 10 is a partial cross-sectional view of an embodiment of the creative light source module. The tenth figure is a partial cross-sectional view of an embodiment of the creative light source module. The twelfth figure is a perspective view of the creative light source module. A thirteenth view is a perspective view of still another embodiment of the creative light source module. Figure 14 is a perspective view of still another embodiment of the creative light source module. The fifteenth figure is a cross-sectional view of the embodiment of the present light diffusing sheet. [Main component symbol description] LCD panel---1 扩散 light diffusing film---15 prism surface----1 5 增 brightness enhancement film----12 5 light guide plate 2 0 light reflection sheet 30 15 M285714 light source module ---4 0 Circuit board --- 4 2 Blue light crystal ---5 Light reflective cover --- 60 groove --- -6 1,8 2 electrode pin ---6 2 4,8 3,8 4 Red light crystal ---65 fluorescent layer ----7 0 transparent adhesive layer ---7 5 main lead frame --80
藍光-----BBlu-ray----B
紅光-----RRed light-----R
激發光----GExcitation light----G
白光-----WWhite light-----W
間距-----L 夾角-----Θ 16Spacing-----L Angle-----Θ 16