US20130096075A1 - Composition for prevention, amelioration or treatment of metabolic syndrome - Google Patents

Composition for prevention, amelioration or treatment of metabolic syndrome Download PDF

Info

Publication number
US20130096075A1
US20130096075A1 US13/261,527 US201113261527A US2013096075A1 US 20130096075 A1 US20130096075 A1 US 20130096075A1 US 201113261527 A US201113261527 A US 201113261527A US 2013096075 A1 US2013096075 A1 US 2013096075A1
Authority
US
United States
Prior art keywords
composition
caffeine
hesperidin
mass
feed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/261,527
Inventor
Tatsuya Ohara
Koutarou Muroyama
Shinji Murosaki
Yoshihiro Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
House Wellness Foods Corp
Original Assignee
House Wellness Foods Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by House Wellness Foods Corp filed Critical House Wellness Foods Corp
Assigned to HOUSE WELLNESS FOODS CORPORATION reassignment HOUSE WELLNESS FOODS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MUROSAKI, SHINJI, MUROYAMA, KOUTAROU, OHARA, TATSUYA, YAMAMOTO, YOSHIHIRO
Publication of US20130096075A1 publication Critical patent/US20130096075A1/en
Priority to US14/733,592 priority Critical patent/US9993493B2/en
Priority to US15/975,729 priority patent/US20180264020A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • A61K31/3533,4-Dihydrobenzopyrans, e.g. chroman, catechin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7048Compounds having saccharide radicals and heterocyclic rings having oxygen as a ring hetero atom, e.g. leucoglucosan, hesperidin, erythromycin, nystatin, digitoxin or digoxin
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/30Dietetic or nutritional methods, e.g. for losing weight
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/365Lactones
    • A61K31/375Ascorbic acid, i.e. vitamin C; Salts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • A61K31/52Purines, e.g. adenine
    • A61K31/522Purines, e.g. adenine having oxo groups directly attached to the heterocyclic ring, e.g. hypoxanthine, guanine, acyclovir
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/74Synthetic polymeric materials
    • A61K31/765Polymers containing oxygen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2013Organic compounds, e.g. phospholipids, fats
    • A61K9/2018Sugars, or sugar alcohols, e.g. lactose, mannitol; Derivatives thereof, e.g. polysorbates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/205Polysaccharides, e.g. alginate, gums; Cyclodextrin
    • A61K9/2054Cellulose; Cellulose derivatives, e.g. hydroxypropyl methylcellulose

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Diabetes (AREA)
  • Mycology (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Nutrition Science (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Obesity (AREA)
  • Hematology (AREA)
  • Child & Adolescent Psychology (AREA)
  • Endocrinology (AREA)
  • Emergency Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Plant Substances (AREA)

Abstract

A composition comprising (a) and (b), and a food or drink or a medicine comprising the composition, wherein
  • (a) is at least a kind of polyphenols selected from the group consisting of a polyphenol containing 15 mass % or more of proanthocyanidin having a polymerization degree of 1 to 3, hesperidin, a hesperidin derivative, and hesperetin; and
  • (b) is at least a kind of xanthine derivatives,
    the mass ratio of (a):(b) in the composition being 1:(0.001 to 5), are useful for the prevention, amelioration, or treatment of metabolic syndrome, disorders of lipid metabolism (for example, fatty liver, hyperlipidemia), obesity (for example, visceral fat accumulation, subcutaneous fat accumulation), or the like.

Description

    TECHNICAL FIELD
  • The present invention relates to a composition for the prevention, amelioration, or treatment of metabolic syndrome. More specifically, the present invention relates to a composition comprising a polyphenol and a xanthine derivative, for the prevention, amelioration, or treatment of metabolic syndrome.
  • BACKGROUND ART
  • In recent years, with steadily increasing obesity, the World Health Organization (WHO) is warning countries around the world of an increased risk of lifestyle-related diseases, which are associated with obesity and include diabetes, hyperlipidemia, hypertension, arteriosclerosis, and fatty liver. Metabolic syndrome is a condition with, in addition to visceral fat accumulation, a combination of risk factors for arteriosclerosis, such as disorders of carbohydrate metabolism (abnormal glucose tolerance, diabetes), disorders of lipid metabolism (hypertriglyceridemia, hypercholesterolemia, and low levels of HDL cholesterol), and hypertension. Even if each of abnormalities (for example, in blood sugar or blood pressure) is mild and at the level of “Care Required” as a result of medical examination or the like, overlapping of such abnormalities tends to cause cardiovascular diseases. It is said that a human having 2 risk factors selected from obesity, hypertension, hyperglycemia, hypertriglyceridemia, and hypercholesterolemia is at the risk of cardiovascular diseases 10 times higher, and a human having 3 to 4 of such risk factors is at the risk 31 times higher than that of a human not having any of such risk factors.
  • The co-occurrence of obesity, diabetes, hypertension, and hyperlipidemia increases the risk of developing myocardial infarction or cerebral infarction, and therefore is called “Deadly Quartet”. Accumulation of visceral fat is considered to be the underlying cause eventually resulting in cardiovascular diseases, such as myocardial infarction and cerebral infarction. Therefore, for the prevention or amelioration of metabolic syndrome and also cardiovascular diseases, decreasing the accumulated visceral fat is important. Since obesity is caused by an imbalance between energy intake and expenditure, it is important, for the purpose of inhibiting obesity, to not only decrease energy intake but also increase energy consumption in basal metabolism or activity metabolism. For decreasing energy intake, low-energy replacements for fat and sugar are provided, but the taste or processability thereof in terms of food is not necessarily satisfactory.
  • Various measures have been proposed for the prevention of obesity. In recent years, in different kinds of food we regularly take, components having an effect of improving lipid metabolism, or preventing or ameliorating obesity have been found, and are expected to be useful for the prevention of obesity. The inventors focused attention on, among food components having such an effect, hesperidin, a low-molecular proanthocyanidin, and caffeine, which are known to have different working mechanisms with each other. Hesperidin is considered to have an effect of suppressing gene expression of fatty acid synthetase, an effect of increasing gene expression of carnitine palmitoyltransferases I and II, or the like, and thus to promote lipid metabolism (Non Patent Literature 1). Furthermore, it is reported that hesperidin and glucosyl hesperidin have an effect of reducing visceral fat or a waist size (Patent Literature 1). Low-molecular proanthocyanidins are known to have an effect of preventing or improving dysregulated production of adipocytokine and a thermogenic effect by inducing gene expression of uncoupling protein 1 (UCP1) (Non Patent Literature 2). Furthermore, they are known to have an effect of reducing body weight, abdominal circumference, visceral fat, and the like (Non Patent Literature 3). Caffeine is known to have an antagonist effect on adenosine receptors (Non Patent Literature 4), an effect of increasing circulating catecholamine level, and an effect of inhibiting phosphodiesterase activity, which activities facilitate lipid metabolism (Non Patent Literature 5), to inhibit hepatic lipogenesis, and to increase resting metabolic rate and energy consumption, resulting in decrease in body fat and body weight (Non Patent Literature 6). Thus, it is publicly known that each component by itself acts on lipid metabolism. However, there has been no report with regard to combining the components.
  • CITATION LIST Patent Literature
    • Patent Literature 1: JP 2008-156341 A
    Non Patent Literature Non Patent Literature 1:
    • Proceedings of the 63rd of the Annual Meeting of the Japanese Society of Nutrition and Food Science, 2005, 205
    Non Patent Literature 2:
    • Sakurai et al., Bioscience, Biotechnology, and Biochemistry, 2008, Vol. 72, 463-476
    Non Patent Literature 3:
    • Nishihira et al., J. Functional Foods, Vol. 1, 2009, 341-348
    Non Patent Literature 4:
    • Dodd et al., Sports Med., 1993, Vol. 15, 14-23
    Non Patent Literature 5:
    • Dullo et al., Am. J. Clin. Nutr., 1989, Vol. 49, 44-50
    Non Patent Literature 6:
    • Hollands et al., Am. J. Clin. Nutr., 1981, Vol. 34, 2291-2294
    SUMMARY OF INVENTION Technical Problem
  • In order to prevent or decrease obesity, dietary therapy based on restricted calorie intake, exercise therapy, and medicinal therapy by use of an anorexiant, etc. are carried out. However, dietary therapy, which often involves excessively restricted diet, requires complicated calorie calculation and strong will, and therefore is difficult for an individual to manage for a long period of time. Also, exercise therapy, which is associated with mental and physical pain, is very difficult to continue for a long period of time in this busy modern society. It is effective to try to consume as much body fat as possible as energy source during exercise, but people with a tendency to become obese have slow fat metabolism, and it is difficult for them to decrease body fat by exercise. Accordingly, development of a composition that can contribute to the prevention or amelioration of obesity by inhibiting hepatic lipogenesis, facilitating resolution of fat accumulated in fat cells, and effectively burning fat, and so has development of a food or drink or a medicine comprising the composition.
  • The present invention was made in the light of the above-mentioned problems, and an objective of the invention is to provide a composition for the prevention, amelioration, or treatment of metabolic syndrome, disorders of lipid metabolism (for example, fatty liver, hyperlipidemia), obesity (for example, visceral fat accumulation, subcutaneous fat accumulation), or the like, and a food or drink or a medicine comprising the composition.
  • Solution to Problem
  • After intensive investigations into compositions which effectively decrease body fat, the present inventors found that a composition comprising hesperidin or a derivative thereof and caffeine, or a composition comprising a low-molecular proanthocyanidin and caffeine has an anti-obesity effect which is surprisingly stronger than the effect exhibited when each of the components is used alone. The inventors have carried out further investigations and completed the present invention.
  • That is, the present invention relates to the following.
    • [1] A composition for the prevention, amelioration, or treatment of metabolic syndrome, the composition comprising (a) and (b):
    • (a) at least a kind of polyphenols selected from the group consisting of a polyphenol containing 15 mass % or more of proanthocyanidin having a polymerization degree of 1 to 3, hesperidin, a hesperidin derivative, and hesperetin; and
    • (b) at least a kind of xanthine derivatives, the mass ratio of (a):(b) in the composition being 1:(0.001 to 5).
    • [2] The composition according to the above [1], wherein the mass ratio of (a):(b) is 1:(0.01 to 0.5).
    • [3] The composition according to the above [1] or [2], wherein the xanthine derivative is caffeine, theophylline, or theobromine.
    • [4] A medicine, a food or drink, or a feed comprising the composition according to any of the above [1] to [3].
    • [5] A food or drink comprising the composition according to any of the above [1] to [3], the food or drink being labeled as at least one selected from the group consisting of improving lipid metabolism; promoting basal metabolism; reducing body weight; reducing visceral fat or subcutaneous fat; having a slimming effect; preventing or treating obesity, or ameliorating a symptom thereof; and preventing or treating metabolic syndrome, or ameliorating a symptom thereof.
    • [6] A method for the prevention, amelioration, or treatment of metabolic syndrome, the method comprising the step of administering an effective amount of a composition comprising (a) and (b):
    • (a) at least a kind of polyphenols selected from the group consisting of a polyphenol containing 15 mass % or more of proanthocyanidin having a polymerization degree of 1 to 3, hesperidin, a hesperidin derivative, and hesperetin; and
    • (b) at least a kind of xanthine derivatives, the mass ratio of (a):(b) in the composition being 1:(0.001 to 5).
    • [7] A composition for use for the prevention, amelioration, or treatment of metabolic syndrome, the composition comprising (a) and (b):
    • (a) at least a kind of polyphenols selected from the group consisting of a polyphenol containing 15 mass % or more of proanthocyanidin having a polymerization degree of 1 to 3, hesperidin, a hesperidin derivative, and hesperetin; and
    • (b) at least a kind of xanthine derivatives, the mass ratio of (a):(b) in the composition being 1:(0.001 to 5).
    • [8] Use of a composition comprising (a) and (b):
    • (a) at least a kind of polyphenols selected from the group consisting of a polyphenol containing 15 mass % or more of proanthocyanidin having a polymerization degree of 1 to 3, hesperidin, a hesperidin derivative, and hesperetin; and
    • (b) at least a kind of xanthine derivatives, for the production of a medicine for the prevention, amelioration, or treatment of metabolic syndrome, the mass ratio of (a):(b) in the composition being 1:(0.001 to 5).
    Advantageous Effects of Invention
  • The composition of the present invention has an effect of inhibiting body weight increase, visceral fat accumulation, subcutaneous fat accumulation, and increase in plasma triglyceride level, and therefore is useful as a medicine, a food or drink, or a feed for weight loss; prevention or amelioration of obesity; and also prevention, amelioration, or treatment of metabolic syndrome, such as diabetes, hypertriglyceridemia, hypercholesterolemia, and arteriosclerosis, which are considered to result from visceral fat accumulation.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 is a graph showing the changes in body weight before and after the test period in Test Example 1.
  • FIG. 2 is a graph showing the feed intake during the first 10 days of the test period in Test Example 1.
  • FIG. 3 is a graph showing the weight of mesenteric fat tissue per 100 g of body weight in Test Example 1.
  • FIG. 4 is a graph showing the changes in body weight before and after the test period in Test Example 2.
  • FIG. 5 is a graph showing the feed intake during the first 10 days of the test period in Test Example 2.
  • FIG. 6 is a graph showing the weight of subcutaneous fat tissue per 100 g of body weight in Test Example 2.
  • FIG. 7 is a graph showing the weight of mesenteric fat tissue per 100 g of body weight in Test Example 2.
  • FIG. 8 is a graph showing the changes in body weight before and after the test period in Test Example 3.
  • FIG. 9 is a graph showing the feed intake during the first 10 days of the test period in Test Example 3.
  • FIG. 10 is a graph showing the total weight of subcutaneous, epididymal, and mesenteric fat tissues per 100 g of body weight in Test Example 3.
  • FIG. 11 is a graph showing the changes in plasma triglyceride level before and after the test period.
  • DESCRIPTION OF EMBODIMENTS
  • The present invention provides a composition for the prevention, amelioration, or treatment of metabolic syndrome, the composition comprising (a) and (b), wherein
    • (a) is at least a kind of polyphenols selected from the group consisting of a polyphenol containing 15 mass % or more of proanthocyanidin having a polymerization degree of 1 to 3, hesperidin, a hesperidin derivative, and hesperetin; and
    • (b) is at least a kind of xanthine derivatives, the mass ratio of (b) to 1 part of (a) being 0.001 to 5 parts.
  • Hesperidin is a kind of polyphenol found abundantly in the skin of citrus fruits, such as mandarin oranges, and is also called vitamin P. Hesperidin is a hesperetin glycoside, and hesperetin is an aglycon of hesperidin. Examples of hesperidin derivatives include those prepared by addition of a methyl group, an ethyl group, a saccharide, or the like to hesperidin. Examples of hesperidin derivatives having a saccharide include, for example, a glucosyl hesperidin prepared by adding, to hesperidin, one or more kinds of saccharides, such as glucose, fructose, galactose, and xylose, in an equimolar or excess amount with use of a glycosyltransferase. Glucosyl hesperidins can be preferably used in the composition of the present invention because they are excellent in water solubility, processability into food or the like, bioabsorbability, etc. Among glucosyl hesperidins, alpha-glycosyl hesperidin, in which D-glucose residues in an equimolar or excess amount are bound to hesperidin by alpha bonds, is preferred.
  • Proanthocyanidin means a group of polyphenol compounds that produce anthocyanidin when treated with an acid, and is a generic term that includes flavan-3-ols (also referred to as catechins); and polymeric procyanidins, prodelphinidins, propelargonidins, and the like which are dimers, trimers, tetramers, and decamers or higher order polymers of flavan-3-ol esterified with gallic acid; and stereoisomers thereof. Proanthocyanidin is known to exist in various plants. Examples of plants containing proanthocyanidin include fruit vegetables, such as astringent persimmons, bananas, apples, pears, grapes, strawberries, avocados, cowberries, hawthorn apples, lotus roots, buckwheat, litchee nuts, and Myrica rubra; herbs and spices; wood; cinnamon; and pine bark.
  • In the composition of the present invention, the polyphenol containing 15 mass % or more of proanthocyanidin having a polymerization degree of 1 to 3, which is used as the component (a), needs to contain 15 mass % or more of proanthocyanidin having a polymerization degree of 1 to 3, and preferably 20 mass % or more, more preferably 25 mass % or more, further more preferably 30 mass % or more, and particularly preferably 35 mass % or more of such a proanthocyanidin.
  • The more proanthocyanidin having a polymerization degree of 1 to 3 is contained, the more preferable the polyphenol is because of its higher bioabsorbability.
  • The content of proanthocyanidin having a polymerization degree of 1 to 3 in the polyphenol can be determined by a publicly known measuring method, such as HPLC. As a method for increasing the content of proanthocyanidin having a polymerization degree of 1 to 3 in the polyphenol, for example, a method of discarding polyphenol portions other than proanthocyanidin having a polymerization degree of 1 to 3, or a method of decomposing proanthocyanidin having a polymerization degree of 4 or more into low molecules (see, for example, WO 2006/090830) can preferably be used.
  • A composition containing a polyphenol containing 15% or more of proanthocyanidin having a polymerization degree of 1 to 3 is commercially available (for example, Oligonol (trade name), AMINO UP CHEMICAL Co. , Ltd.), and such a product can also be preferably used as the component (a) of the present invention.
  • The component (a) may be any one kind, or a combination of two or more kinds selected from a polyphenol containing 15 mass % or more of proanthocyanidin having a polymerization degree of 1 to 3, hesperidin, a hesperidin derivative, and hesperetin.
  • Examples of the xanthine derivatives include xanthin, aminophylline, theophylline, cholinetheophylline, caffeine, theobromine, 1,7-dimethylxanthin, oxtriphylline, diprophylline, and proxyphylline. Inter alia, caffeine, theophylline, and theobromine are preferred.
  • The component (b) may be any one kind, or a combination of two or more kinds in combination of the xanthine derivatives exemplified above.
  • The blending ratio (mass ratio) of the component (a) and component (b) in the composition of the present invention is not particularly limited as long as the desired effects of the present invention can be achieved, but the mass ratio of (a):(b) is preferably about 1:(0.001 to 5), more preferably about 1:(0.01 to 0.5), and still more preferably about 1:(0.02 to 0.3).
  • The composition of the present invention has been confirmed to have an effect of inhibiting body weight increase, visceral fat accumulation, subcutaneous fat accumulation, and increase in plasma triglyceride level (see Test Examples 1 to 3), and therefore can be preferably used for the prevention, amelioration, or treatment of metabolic syndrome. The components (a) and (b) in the composition of the present invention, which are each already known to be useful when used alone for improving lipid metabolism or the like, are very useful when used in combination with each other, in that they exhibit a much stronger effect than in the cases where they are used alone, and that they produce a prominent effect even at low doses at which they separately cannot work (see Test Examples 1 to 3).
  • The composition of the present invention can be used as a medicine, a food or drink, a feed, a food additive, a feed additive, or the like. The composition is particularly preferable for use in a medicine, a food or drink, or a feed.
  • A medicine comprising the composition of the present invention may be orally or parenterally administered to a mammal. Examples of oral preparations include a granule, a powder, a tablet (including a sugar-coated tablet), a pill, a capsule, a syrup, an emulsion, and a suspension. Examples of parenteral preparations include injections (for example, a subcutaneous injection, an intravenous injection, an intramuscular injection, and an intraperitoneal injection), an intravenous fluid, external preparations (for example, an intranasal preparation, a transdermal preparation, and an ointment), and suppositories (for example, an intrarectal suppository and an intravaginal suppository). These preparations can be formulated with use of a pharmaceutically acceptable carrier by a method conventionally used in the art. Examples of the pharmaceutically acceptable carrier include an excipient, a binder, a diluent, an additive, a flavor, a buffer, a thickener, a colorant, a stabilizer, an emulsifier, a dispersant, a suspending agent, a preservative, and the like. For example, magnesium carbonate, magnesium stearate, talc, sugar, lactose, pectin, dextrin, starch, gelatin, tragacanth, methylcellulose, sodium carboxymethylcellulose, low-melting-point wax, cacao butter, or the like can be used as the carrier.
  • Oral solid preparations (a tablet, a pill, a capsule, a powder, a granule, or the like) can be formulated by conventional means including mixing an active ingredient with an excipient (lactose, mannitol, glucose, microcrystalline cellulose, starch, or the like), a binder (hydroxypropylcellulose, polyvinyl pyrrolidone, magnesium aluminometasilicate, or the like), a disintegrant (calcium cellulose glycolate, or the like), a lubricant (magnesium stearate, or the like), a stabilizer, a solubilizer (glutamic acid, aspartic acid, or the like), or the like. As needed, such preparations may be coated with a coating agent (saccharose, gelatin, hydroxypropylcellulose, hydroxypropyl methylcellulose phthalate, or the like), and the coating may consists of 2 or more layers.
  • Oral liquid preparations (a potus, a suspension, an emulsion, a syrup, an elixir, or the like) are formulated by dissolving, suspending, or emulsifying an active ingredient in a generally used diluent (purified water, ethanol, or the mixture thereof, or the like). The liquid preparation may further comprise a wetting agent, a suspending agent, an emulsifier, a sweetener, a flavor, an essence, a preservative, a buffer, or the like.
  • Injections include a solution, a suspension, an emulsion, and a solid injection to be dissolved or suspended in a solvent before use. Injections are formulated by dissolving, suspending, or emulsifying an active ingredient in a solvent. As the solvent, for example, distilled water for injection; physiological saline; a vegetable oil; alcohols, such as propylene glycol, polyethylene glycol, and ethanol; and a combination thereof may be used. The injection may further comprise a stabilizer, a solubilizer (glutamic acid, aspartic acid, Polysorbate 80 (registered trademark), or the like), a suspending agent, an emulsifier, a soothing agent, a buffer, a preservative, or the like. These injections are sterilized in the final step or produced by aseptic manipulation. The injection may be produced in a form of a sterile solid preparation, for example a lyophilized product, which can be dissolved in sterilized or sterile distilled water for injection or in another sterilized or sterile solvent just before use.
  • To a food or drink comprising the composition of the present invention, food additives generally used in a food or drink may be added, and the examples thereof include a sweetener, a colorant, a preservative, a thickener, an antioxidant, a color improver, a decolorant, an antifungal agent, a gum base, a bittering agent, an enzyme, a brightener, an acidulant, a seasoning, an emulsifier, a fortifier, a processing aid, a flavor, a spice extract, etc. The food or drink includes a health food, a functional food, a food for specified health use, and a food for the sick.
  • The food or drink suitable for the present invention is not particularly limited. Specific examples thereof include so-called dietary supplements, such as a tablet, a granule, a powder, and a health drink. Other examples include drinks, such as tea drink, refreshing drink, soda, nutritional drink, fruit juice, and lactic drink; noodles, such as buckwheat noodle, wheat noodle, Chinese noodle, and instant noodle; sweets and bakery products, such as candy, candy, gum, chocolate, snack, biscuit, jelly, jam, cream, baked goods, and bread; fishery or livestock products, such as fish sausage, ham, and sausage; dairy products, such as processed milk and fermented milk; fats, oils, and processed foods thereof, such as salad oil, oil for frying, margarine, mayonnaise, shortening, whipped cream, and dressing; seasonings, such as sauce and dipping sauce; retort pouch foods, such as curry, stew, sauce for rice-bowl cuisine, porridge, and rice soup; and frozen desserts, such as ice cream, sherbet, and shaved ice.
  • In light of the effects of the composition of the present invention, a food or drink prepared with use of the composition may be labeled as improving lipid metabolism; promoting basal metabolism; reducing body weight; reducing visceral fat or subcutaneous fat; having a slimming effect; preventing or treating obesity, or ameliorating a symptom thereof; and/or preventing or treating metabolic syndrome, or ameliorating a symptom thereof.
  • Examples of the feed comprising the composition of the present invention include a feed for livestock such as a cow, a horse, and a pig; a feed for poultry such as a chicken; and a feed for pet animals, such as a dog and a cat. The production of the feed of the present invention needs addition of the composition of the present invention, but other than that, the feed can be produced by an ordinary feed production method.
  • The amount of administration or intake of the medicine or the food or drink of the present invention may be determined depending on the age and body weight of the patient or ingester, symptoms, the administration time, the dosage form, the administration method, the combination of medicines, or the like. For example, preferred is that administration or intake is performed so that 0.05 to 3.0 g, preferably 0.2 to 1.0 g of the component (a) and 0.01 to 0.5 g, preferably 0.05 to 0.3 g of the component (b) are daily given to an adult human. Such a daily amount may be given in a single dose or in several divided doses.
  • EXAMPLES
  • Hereinafter, the present invention will be illustrated in more detail by Examples and Test Examples, but the present invention is not limited thereto.
  • Example 1 Powder
  • Powder ingredients, namely, glucosyl hesperidin (0.2 g), caffeine (0.02 g), vitamin C (0.28 g), synthetic aluminum silicate (10 g), potassium hydrogenphosphate (5 g), and lactose (84.5 g) were mixed uniformly to give a powder.
  • Example 2 Granule
  • Powder ingredients, namely, glucosyl hesperidin (0.2 g), caffeine (0.02 g), vitamin C (0.28 g), crystalline cellulose (40.0 g), lactose (35.0 g), starch (19.5 g), and polyvinyl alcohol (5.0 g), and water (30.0 g) were kneaded uniformly, ground and granulated, and then dried to give a granule.
  • Example 3 Tablet
  • With 99 g of the granule obtained in Example 2, 1 g of calcium stearate was mixed, and the mixture was compressed with use of a tableting machine to give tablets 6.0 mm in diameter.
  • Example 4 Blended Tea
  • Extraction from 1 g of a blend of 7 kinds of dried tea leaves, namely, green tea leaves, Job's tears, barley, brown rice, oolong tea leaves, Houttuynia cordata leaves, and Eucommia ulmoides leaves was performed with 100 mL of water. With the extract, glucosyl hesperidin (100 mg), caffeine (10 mg including 2 mg of ingredient-derived caffeine) and vitamin C (15 mg) were blended to give a blended tea.
  • Example 5 Powdered Tea
  • Brown rice tea extract (1800 mg), lactose (500 mg), citric acid (500 mg), glucosyl hesperidin (550 mg), and caffeine (55 mg including 20 mg of ingredient-derived caffeine) were blended to give a powdered tea.
  • Example 6 Candy
  • Glucosyl hesperidin (200 mg), caffeine (20 mg), citric acid (100 mg), vitamin C (15 mg), starch syrup (65 g), sucrose (10 g), maleic acid (300 mg), succinic acid (200 mg), malic acid (150 mg), a flavor (0.3 g), and a small amount of water were mixed, and then heated and cooled in a conventional method to produce candies.
  • Test Example 1
  • When diet-induced obese mice were placed in a situation where caloric intake is controlled and they need to decompose and use body fat, decomposition and use of body fat is promoted, ameliorating obesity. In such a situation, the effect of the composition of the present invention comprising glucosyl hesperidin and caffeine was investigated. As the glucosyl hesperidin and caffeine, “Hayashibara Hesperidin S (trade name)” (distributor: Hayashibara Co., Ltd.) and “Chanomoto (trade name)” (purity of caffeine: 98.5, made by Shiratori Pharmaceutical Co., Ltd.) were used, respectively.
  • Five-week-old male KK mice were fed with water and a powder feed for breeding (CE-2 (trade name), made by CLEA Japan, Inc.) for one week, and then fed with the high-calorie feed (4.70 kcal/g) in Table 1 shown below for 3 weeks for induction of obesity. The mice were divided into 4 groups (a control group, a caffeine administration group, a glucosyl hesperidin administration group, and a present invention administration group (caffeine+glucosyl hesperidin), 5 to 8 mice per group) and fed with the low-calorie feed (3.16 kcal/g) in Table 1 shown below or the low-calorie feed supplemented with the corresponding test sample for 2 weeks, in expectation of using body fat. The feeds given to the test groups are as follows.
    • (1) Control group; low-calorie feed
    • (2) Caffeine administration group; low-calorie feed+0.025 mass % of caffeine
    • (3) Glucosyl hesperidin administration group; low-calorie feed+0.25 mass % of glucosyl hesperidin
    • (4) Present invention (mixture of glucosyl hesperidin and caffeine (10:1)) administration group; low-calorie feed+(0.25 mass % of glucosyl hesperidin+0.025 mass % of caffeine)
  • TABLE 1
    Compositions of high-calorie feed and low-calorie feed
    (Unit: mass %)
    Composition High-calorie feed Low-calorie feed
    Cornstarch 53.25 53.25
    Casein 18.00 18.00
    Corn oil 20.00 2.50
    Cellulose 2.50 20.00
    AIN93G Mineral Mix1) 5.00 5.00
    AIN93 Vitamin Mix1) 1.00 1.00
    Choline bitartrate 0.25 0.25
    Calorie (kcal/g) 4.73 3.16
    1)Made by Oriental Yeast Co., Ltd.
  • During the test period (2 weeks from the start of low-calorie feeding), body weight and feed intake were periodically measured. After the end of the test, the mice were euthanized, and mesenteric (visceral) fat tissue was removed and weighed.
  • The changes in body weight before and after the test period is shown in FIG. 1, the feed intake during the first 10 days of the test period is shown in FIG. 2, and the weight of mesenteric fat tissue per 100 g of body weight is shown in FIG. 3. The results are shown as Mean±SD of each group. The ** and * in the figures indicate a significant difference with a risk less than 1% and a risk less than 5% from the control, respectively.
  • These results show the following. Regarding the weight of mesenteric (visceral) fat tissue, while the caffeine administration group and the glucosyl hesperidin administration group did not show any significant difference as compared with the control group, the present invention administration group showed significantly lower values, i.e., a clear synergistic effect. Also, regarding the changes in body weight, as compared with the control group, the caffeine administration group showed significantly lower values, but the glucosyl hesperidin administration group showed equivalent values. Meanwhile, the present invention administration group showed significantly lower values, which were even lower than those of the caffeine administration group, i.e., a clear synergistic effect. These results showed that the composition of the present invention comprising glucosyl hesperidin and caffeine, due to the clear synergistic effect of reducing body weight and visceral fat, is useful for the prevention or amelioration of metabolic syndrome.
  • Test Example 2
  • Under the same conditions as in Test Example 1, the effect of the composition of the present invention comprising glucosyl hesperidin and caffeine was investigated. The glucosyl hesperidin and caffeine used here were the same as in Test Example 1.
  • Five-week-old male KK mice were fed with water and a powder feed for breeding (CE-2 (trade name), made by CLEA Japan, Inc.) for one week, and then fed with the high-calorie feed (4.70 kcal/g) in Table 1 for 3 weeks for induction of obesity. The mice were divided into 6 groups (a control group, a caffeine administration group, a glucosyl hesperidin administration group, and mixture of caffeine and glucosyl hesperidin (present invention) administration groups, 6 to 7 mice per group) and fed with the low-calorie feed (3.16 kcal/g) in Table 1 or the low-calorie feed supplemented with the corresponding test sample for 2 weeks, in expectation of using body fat. The feeds given to the test groups are as follows.
    • (1) Control group; low-calorie feed
    • (2) Caffeine administration group; low-calorie feed+0.0125 mass % of caffeine
    • (3) Glucosyl hesperidin administration group; low-calorie feed+0.25 mass % of glucosyl hesperidin
    • (4) Mixture of glucosyl hesperidin and caffeine (10:1) administration group; low-calorie feed+(0.25 mass % of glucosyl hesperidin+0.025 mass % of caffeine)
    • (5) Mixture of glucosyl hesperidin and caffeine (20:1) administration group; low-calorie feed+(0.25 mass % of glucosyl hesperidin+0.0125 mass % of caffeine)
    • (6) Mixture of glucosyl hesperidin and caffeine (40:1) administration group; low-calorie feed+(0.25 mass % of glucosyl hesperidin+0.00625 mass % of caffeine)
  • During the test period (2 weeks from the start of low-calorie feeding), body weight and feed intake were periodically measured. After the end of the test, the mice were euthanized, and subcutaneous fat tissue and mesenteric (visceral) fat tissue were removed and separately weighed.
  • The changes in body weight before and after the test period is shown in FIG. 4, the feed intake during the first 10 days of the test period is shown in FIG. 5, the weight of subcutaneous fat tissue per 100 g of body weight is shown in FIG. 6, and the weight of mesenteric fat tissue per 100 g of body weight is shown in FIG. 7. The results are shown as Mean±SD of each group. The $, **, and * in the figures indicate a significant difference with a risk less than 10%, a risk less than 1%, and a risk less than 5% from the control, respectively.
  • These results show the following. Regarding the weight of mesenteric (visceral) fat tissue and the weight of subcutaneous fat tissue, while the caffeine administration group and the glucosyl hesperidin administration group did not show any significant difference as compared with the control group, the present invention (mixture of glucosyl hesperidin and caffeine) administration groups showed significantly lower values, i.e., a clear synergistic effect. Also, regarding the changes in body weight, the caffeine administration group and the glucosyl hesperidin administration group showed values equivalent to those of the control group. Meanwhile, the present invention (mixture of glucosyl hesperidin and caffeine) administration groups showed lower values, i.e., a clear synergistic effect. These results showed that the composition of the present invention comprising glucosyl hesperidin and caffeine, due to the clear synergistic effect of reducing body weight, visceral fat accumulation, and subcutaneous fat accumulation, is useful for the prevention or amelioration of metabolic syndrome.
  • Test Example 3
  • Under the same conditions as in Test Example 1, the effect of the composition of the present invention comprising a polyphenol containing 15 mass % or more of proanthocyanidin having a polymerization degree of 1 to 3 and caffeine was investigated. As the polyphenol containing 15 mass % or more of proanthocyanidin having a polymerization degree of 1 to 3 and caffeine, “Oligonol (trade name)” (distributor: AMINO UP CHEMICAL Co., Ltd.) and “Chanomoto (trade name)” (purity of caffeine: 98.5%, made by Shiratori Pharmaceutical Co., Ltd.) were used, respectively.
  • Five-week-old male KK mice were fed with water and a powder feed for breeding (CE-2 (trade name), made by CLEA Japan, Inc.)
  • for one week, and then fed with the high-calorie feed (4.70 kcal/g) in Table 1 for 3 weeks for induction of obesity. The mice were divided into 4 groups (a control group, a caffeine administration group, an Oligonol administration group, and a present invention administration group (Oligonol+caffeine), 5 to 8 mice per group) and fed with the low-calorie feed (3.16 kcal/g) in Table 1 or the low-calorie feed supplemented with the corresponding test sample for 2 weeks, in expectation of using body fat. The feeds given to the test groups are as follows.
    • (1) Control group; low-calorie feed
    • (2) Caffeine administration group; low-calorie feed+0.025 mass % of caffeine
    • (3) Oligonol administration group; low-calorie feed+0.1 mass of Oligonol
    • (4) Present invention (mixture of Oligonol and caffeine (4:1)) administration group; low-calorie feed+(0.1 mass % of Oligonol+0.025 mass % of caffeine)
  • During the test period (2 weeks from the start of low-calorie feeding), body weight and feed intake were periodically measured. After the end of the test, the mice were euthanized, and subcutaneous fat tissue, epididymal fat tissue, and mesenteric (visceral) fat tissue were removed and separately weighed. Also, at the start of the test period (the start of low-calorie feeding) and the end of the test period, plasma triglyceride level was measured.
  • The changes in body weight before and after the test period is shown in FIG. 8, the feed intake during the first 10 days of the test period is shown in FIG. 9, the total weight of subcutaneous, epididymal, and mesenteric fat tissues per 100 g of body weight is shown in FIG. 10, and the changes in plasma triglyceride level before and after the test period is shown in FIG. 11. The results are shown as Mean±SD of each group. The ** and * in the figures indicate a significant difference with a risk less than 1% and a risk less than 5% from the control, respectively.
  • These results show the following. Regarding the total weight of fat tissues, while the caffeine administration group and the Oligonol administration group did not show any significant difference as compared with the control group, the present invention administration group showed significantly lower values, i.e., a clear synergistic effect. Regarding the changes in body weight, while the caffeine administration group and the Oligonol administration group showed lower values as compared with the control group, the present invention administration group showed even lower values, i.e., a clear synergistic effect. Further, regarding the values of plasma triglyceride level measured on the 14th day, while the caffeine administration group and the Oligonol administration group did not show any significant difference as compared with the control group, the present invention administration group showed significantly lower values, i.e., a clear synergistic effect. These results showed that the composition of the present invention comprising Oligonol and caffeine, due to the clear synergistic effect of reducing body weight, visceral fat accumulation, and subcutaneous fat accumulation, and of inhibiting increase in plasma triglyceride level, is useful for the prevention, amelioration, or treatment of metabolic syndrome.

Claims (5)

1. A composition for the prevention, amelioration, or treatment of metabolic syndrome, the composition comprising (a) and (b):
(a) at least a kind of polyphenols selected from the group consisting of a polyphenol containing 15 mass % or more of proanthocyanidin having a polymerization degree of 1 to 3, hesperidin, a hesperidin derivative, and hesperetin; and
(b) at least a kind of xanthine derivatives, the mass ratio of (a):(b) in the composition being 1:(0.001 to 5).
2. The composition according to claim 1, wherein the mass ratio of (a):(b) is 1:(0.01 to 0.5).
3. The composition according to claim 1, wherein the xanthine derivative is caffeine, theophylline, or theobromine.
4. A medicine, a food or drink, or a feed comprising the composition according to claim 1.
5. A food or drink comprising the composition according to claim 1, the food or drink being labeled as at least one selected from the group consisting of improving lipid metabolism; promoting basal metabolism; reducing body weight; reducing visceral fat or subcutaneous fat; having a slimming effect; preventing or treating obesity, or ameliorating a symptom thereof; and preventing or treating metabolic syndrome, or ameliorating a symptom thereof.
US13/261,527 2010-05-24 2011-01-14 Composition for prevention, amelioration or treatment of metabolic syndrome Abandoned US20130096075A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/733,592 US9993493B2 (en) 2010-05-24 2015-06-08 Composition for prevention, amelioration or treatment of metabolic syndrome
US15/975,729 US20180264020A1 (en) 2010-05-24 2018-05-09 Composition for prevention, amelioration or treatment of metabolic syndrome

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010118051A JP5564330B2 (en) 2010-05-24 2010-05-24 Composition for prevention, amelioration or treatment of metabolic syndrome
JP2010-118051 2010-05-24
PCT/JP2011/050495 WO2011148657A1 (en) 2010-05-24 2011-01-14 Composition for prevention, amelioration or treatment of metabolic syndrome

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050495 A-371-Of-International WO2011148657A1 (en) 2010-05-24 2011-01-14 Composition for prevention, amelioration or treatment of metabolic syndrome

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/733,592 Continuation US9993493B2 (en) 2010-05-24 2015-06-08 Composition for prevention, amelioration or treatment of metabolic syndrome

Publications (1)

Publication Number Publication Date
US20130096075A1 true US20130096075A1 (en) 2013-04-18

Family

ID=45003652

Family Applications (3)

Application Number Title Priority Date Filing Date
US13/261,527 Abandoned US20130096075A1 (en) 2010-05-24 2011-01-14 Composition for prevention, amelioration or treatment of metabolic syndrome
US14/733,592 Active 2031-08-20 US9993493B2 (en) 2010-05-24 2015-06-08 Composition for prevention, amelioration or treatment of metabolic syndrome
US15/975,729 Abandoned US20180264020A1 (en) 2010-05-24 2018-05-09 Composition for prevention, amelioration or treatment of metabolic syndrome

Family Applications After (2)

Application Number Title Priority Date Filing Date
US14/733,592 Active 2031-08-20 US9993493B2 (en) 2010-05-24 2015-06-08 Composition for prevention, amelioration or treatment of metabolic syndrome
US15/975,729 Abandoned US20180264020A1 (en) 2010-05-24 2018-05-09 Composition for prevention, amelioration or treatment of metabolic syndrome

Country Status (4)

Country Link
US (3) US20130096075A1 (en)
JP (1) JP5564330B2 (en)
KR (1) KR101490730B1 (en)
WO (1) WO2011148657A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6034107B2 (en) * 2012-09-25 2016-11-30 日本メナード化粧品株式会社 Differentiation promoter from stem cells to brown adipocytes
JP6453534B2 (en) * 2012-09-28 2019-01-16 小林製薬株式会社 Lipid metabolism promoter
TWI705132B (en) 2015-10-08 2020-09-21 日商三菱瓦斯化學股份有限公司 Liquid composition for cleaning semiconductor element, cleaning method of semiconductor element, and manufacturing method of semiconductor element
WO2018074929A2 (en) 2016-10-20 2018-04-26 Rijksuniversiteit Groningen Drugs mimicking calorie restriction and tools and methods for identifying the same
JP6667773B1 (en) * 2018-12-20 2020-03-18 公益財団法人 佐賀県地域産業支援センター Composition for suppressing inflammatory cytokine production
JP7350304B2 (en) * 2019-10-18 2023-09-26 国立大学法人徳島大学 Allergic rhinitis symptom suppressant
JP7224008B1 (en) 2022-08-30 2023-02-17 株式会社東洋新薬 oral composition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005047839A (en) * 2003-07-31 2005-02-24 Toyo Shinyaku:Kk Proanthocyanidin-containing composition

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4676040B2 (en) * 1997-07-31 2011-04-27 株式会社林原生物化学研究所 Composition
JP4179765B2 (en) * 2001-07-19 2008-11-12 花王株式会社 Lipid metabolism improver
JP2004035417A (en) * 2002-06-28 2004-02-05 Kao Corp Elevating drug for blood total ketone substance level
WO2006067866A1 (en) * 2004-12-24 2006-06-29 Toyo Shinyaku Co., Ltd. Proanthocyanidin-containing composition
JP2008156341A (en) * 2006-12-01 2008-07-10 Daiichi Sankyo Healthcare Co Ltd Agent for reducing waist size
US20100166851A1 (en) * 2007-05-04 2010-07-01 Nutraceutic Et Business Consulting Composition having lipolytic activity, production method thereof and use of the composition
EP2163252A4 (en) * 2007-05-17 2012-01-11 Kaneka Corp Composition containing licorice-derived polyphenol
JP5121308B2 (en) * 2007-05-28 2013-01-16 ハウスウェルネスフーズ株式会社 Composition for preventing, improving or treating metabolic syndrome
JP5517421B2 (en) * 2007-08-03 2014-06-11 花王株式会社 Container drink
US20100273727A1 (en) * 2007-12-28 2010-10-28 Unitika Ltd. Oral administration composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005047839A (en) * 2003-07-31 2005-02-24 Toyo Shinyaku:Kk Proanthocyanidin-containing composition

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Definition of "prevention" from the Institute for International Medical Education [online], [Retrieved on 24 March 2011]. Retrieved from the internet . Published February 2002, p. 1, 2, 26, 27 and 39. *
Machine translation of JP2005-47839 (2005) [online] [Retrieved 4 February 2015] Retrieved from the internet *
Maureen Rouhi, A. (2004) Metabolic Syndrome. Chemical & Engineering News, vol. 82, no. 47, p. 83-99. *

Also Published As

Publication number Publication date
KR20130029415A (en) 2013-03-22
WO2011148657A1 (en) 2011-12-01
JP2011246355A (en) 2011-12-08
US9993493B2 (en) 2018-06-12
JP5564330B2 (en) 2014-07-30
US20150265645A1 (en) 2015-09-24
KR101490730B1 (en) 2015-02-06
US20180264020A1 (en) 2018-09-20

Similar Documents

Publication Publication Date Title
US9993493B2 (en) Composition for prevention, amelioration or treatment of metabolic syndrome
JP5121308B2 (en) Composition for preventing, improving or treating metabolic syndrome
US9492424B2 (en) Muscle atrophy inhibitor
US9669063B2 (en) Composition for prevention, amelioration or treatment of metabolic syndrome
JPWO2004083179A1 (en) Diabetes treatment
JP4022350B2 (en) Composition having an inhibitory effect on cholesterol elevation and an inhibitory effect on HDL-cholesterol lowering
AU2013367872B2 (en) Igf-1 production-promoting agent
US20210177874A1 (en) Composition for preventing or alleviating nonalcoholic fatty liver disease
KR101890853B1 (en) A composition for prevention or treatment of obesity comprising protamine and chitooligosaccharide
JP7156639B2 (en) New applications of resveratrol derivatives
JP5048258B2 (en) Rebound inhibitor
JP2004292325A (en) Anabolic steroid, and prophylactic or therapeutic agent for muscle attenuation
EP2815756B1 (en) Composition for preventing, ameliorating or treating metabolic syndrome
KR101830480B1 (en) Pharmaceutical composition for preventing or treating hypertriglyceridemia comprising methyl linolenate
KR101699123B1 (en) Composition for decreasing corticosterone
JP2023103165A (en) Atp production promoter, anti-inflammatory agent, and food/drink product
KR20050113251A (en) Lipid metabolism improving agent
JP2014024804A (en) Lipid metabolism-improving agent containing decomposition product of ovalbumin

Legal Events

Date Code Title Description
AS Assignment

Owner name: HOUSE WELLNESS FOODS CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OHARA, TATSUYA;MUROYAMA, KOUTAROU;MUROSAKI, SHINJI;AND OTHERS;REEL/FRAME:029532/0282

Effective date: 20121121

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION