US20130020423A1 - Shredding machine - Google Patents
Shredding machine Download PDFInfo
- Publication number
- US20130020423A1 US20130020423A1 US13/623,342 US201213623342A US2013020423A1 US 20130020423 A1 US20130020423 A1 US 20130020423A1 US 201213623342 A US201213623342 A US 201213623342A US 2013020423 A1 US2013020423 A1 US 2013020423A1
- Authority
- US
- United States
- Prior art keywords
- thickness
- motor
- shredder
- shredded
- article
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000007246 mechanism Effects 0.000 claims abstract description 50
- 239000000463 material Substances 0.000 claims description 37
- 230000003287 optical effect Effects 0.000 claims description 17
- 238000006073 displacement reaction Methods 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 15
- 230000033001 locomotion Effects 0.000 claims description 10
- 238000012544 monitoring process Methods 0.000 claims description 3
- 239000003550 marker Substances 0.000 claims 2
- 238000005520 cutting process Methods 0.000 abstract description 40
- 239000000523 sample Substances 0.000 description 14
- 238000010586 diagram Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 230000003245 working effect Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 238000001579 optical reflectometry Methods 0.000 description 1
- 230000036346 tooth eruption Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C18/00—Disintegrating by knives or other cutting or tearing members which chop material into fragments
- B02C18/0007—Disintegrating by knives or other cutting or tearing members which chop material into fragments specially adapted for disintegrating documents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C18/00—Disintegrating by knives or other cutting or tearing members which chop material into fragments
- B02C18/06—Disintegrating by knives or other cutting or tearing members which chop material into fragments with rotating knives
- B02C18/16—Details
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C18/00—Disintegrating by knives or other cutting or tearing members which chop material into fragments
- B02C18/06—Disintegrating by knives or other cutting or tearing members which chop material into fragments with rotating knives
- B02C18/16—Details
- B02C18/22—Feed or discharge means
- B02C18/2225—Feed means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B21/00—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
- G01B21/02—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
- G01B21/08—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness for measuring thickness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C18/00—Disintegrating by knives or other cutting or tearing members which chop material into fragments
- B02C18/0007—Disintegrating by knives or other cutting or tearing members which chop material into fragments specially adapted for disintegrating documents
- B02C2018/0023—Switching devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C18/00—Disintegrating by knives or other cutting or tearing members which chop material into fragments
- B02C18/06—Disintegrating by knives or other cutting or tearing members which chop material into fragments with rotating knives
- B02C18/16—Details
- B02C2018/164—Prevention of jamming and/or overload
Definitions
- THE PRESENT INVENTION relates to a shredding machine for shredding sheet material.
- the present invention relates particularly, but not exclusively, to a shredding machine in the form of a paper-shredder suitable for home or office use.
- Conventional paper shredders of the type mentioned above are provided with a paper feed-aperture, particularly in the form of a feed-slot of elongate form, through which a plurality of paper sheets or the like can be fed towards a pair or rotating cutters located below the feed-slot which serve to shred the paper sheets into a plurality of strips having a width of only a few millimetres, the resulting strips of paper being collected in a basket or bin located below the cutters.
- the cutting mechanisms used in conventional paper shredders of this type are only effective in shredding stacks of paper or card up to a relatively small predetermined thickness.
- the shredding machine of PCT/GB06/004286 comprises a feed passage extending from a feed aperture and further comprises a cutting mechanism driven by an electric motor, the feed aperture and feed passage being configured to receive multiple sheets and to direct said sheets towards the cutting mechanism for shredding.
- This machine is provided with an actuating element part of which extends into the feed passage and which is movable from a first position in which the actuating element permits energisation of the cutting mechanism, past a second position beyond which the actuating element prevents energisation of the cutting mechanism.
- the actuating element is biased towards its first position and is arranged to actuate a switch when moved past said second position, to break the electrical circuit providing power to the cutting mechanism.
- the shredding machine of PCT/GB06/004286 thus has a threshold thickness of superimposed sheets such that the machine will not attempt to shred a stack of superimposed sheets if the stack has a thickness above that threshold, herein referred to as the anti-jam threshold.
- the temperature of the electric motor driving the shredder rises during use, causing the motor to be less efficient after a period of use, producing a drop in output power and hence a drop in sheet capacity.
- the cutting unit and transmission system wear and become less efficient, the cutting mechanism clogs with paper dust and lubrication dries out or wears off, all of which place a greater load on the motor, again resulting in a drop in sheet capacity.
- the present invention provides an improved shredding machine in which the above difficulty is avoided.
- a shredding machine for shredding sheet material, the machine comprising a feed aperture and a cutting mechanism powered by an electric motor, the feed aperture being arranged to receive sheets for shredding and to direct such sheets to the cutting mechanism for shredding, the machine having means for measuring the thickness of sheet material passed into said feed aperture for shredding which sheet material may comprise a plurality of superimposed sheets which together provide such thickness, said measuring means controlling said cutting mechanism so as to permit energisation of the cutting mechanism where the thickness of sheet material measured thereby is below a controlling threshold, (herein referred to as the optimal sheet capacity threshold), and to prevent such energisation where the thickness of sheet material measured is above said controlling threshold, characterised in that the machine includes at least one sensor sensing a variable parameter relevant to such shredding and means operable to adjust said controlling threshold automatically in dependence upon the value of the parameter sensed.
- a controlling threshold herein referred to as the optimal sheet capacity threshold
- a machine for processing sheet material fed through a feed passage
- the machine being characterised by means for measuring the thickness of sheet material fed through said passage, said measuring means including an actuating element which is movable from a first limiting position, engaging or relatively close to, one major wall of said passage, away from said major wall, against a biasing force acting on said element, and means for measuring displacement of said actuating element from said limiting position.
- said means for measuring displacement of said actuating element comprises a member provided with a series of markers of alternately high and low light transmissivity or of alternatively high and low light reflectivity and optical sensing means sensitive to the passage of said markers through a measuring zone, said member being part of, or mechanically coupled with, said element so that the displacement of said actuating element will cause said markers to traverse said measuring zone, the apparatus including counting means operable to count displacement of said markers through said measuring zone.
- a shredding machine incorporates a microprocessor receiving signals from various sensors, the microprocessor being arranged to vary the optimal sheet capacity threshold setting according to the signals from the various sensors, which may include a mains supply voltage sensor, whereby the system microprocessor will adjust the optimal sheet capacity threshold so as to allow larger quantities of paper to be shredded per pass than when the mains supply voltage is low and a temperature sensor fitted to the electric motor powering the shredder to monitor motor temperature, whereby the system processor can vary the threshold setting depending on motor temperature so that when the motor is cold, the system will allow a greater thickness of paper to be passed at the same time through the shredding mechanism than when the motor is hot.
- a microprocessor receiving signals from various sensors, the microprocessor being arranged to vary the optimal sheet capacity threshold setting according to the signals from the various sensors, which may include a mains supply voltage sensor, whereby the system microprocessor will adjust the optimal sheet capacity threshold so as to allow larger quantities of paper to be shredded per pass than when the mains supply voltage is low and a temperature sensor
- a current sensor is incorporated in the electric motor circuit, to monitor increase in the motor current drawn by the motor as the shredder wears and to lower the optimal sheet capacity threshold setting as the motor current drawn increases, so that the shredder will allow a greater thickness of paper to pass through the cutting mechanism when the machine is new than when the cutting mechanism has worn and the average motor current drawn has increased.
- the movement of the actuator in the feed passage due to deflection by the thickness of a stack of paper for shredding, must be measured quantitatively.
- such movement is converted into an electronic digital count, using infrared sensors and a slotted disc operating in a manner similar to the sensing arrangement conventionally employed in a tracker-ball computer mouse.
- the actuator will measure the actual thickness of paper presented and the system microprocessor will calculate whether the cutting head will be capable of shredding that thickness, taking into account the voltage, temperature and current sensed by the respective sensors.
- the system will either start the shredder in a forward direction allowing the inserted paper to be shredded or, if the thickness of paper inserted is too great for the shredder to deal with, then the shredder will not start and a warning signal will be given to the operator.
- the shredding machine comprises at least one pair of rollers positioned in between the feed aperture and the cutting mechanism such that sheets being directed towards the cutting mechanism pass between the rollers, upstream of the cutting mechanism.
- a pair of said rollers is located adjacent the feed aperture.
- the shredding machine is further provided with indicating means to provide a visual indication to a user of the machine that energisation of the cutting mechanism is prevented by the optimal sheet capacity facility.
- the shredding machine is provided in the form of a paper-shredder suitable for home or office use.
- FIG. 1 is a perspective view from above of a shredding machine in accordance with the present invention, taking the form of a paper-shredder for home or office use;
- FIG. 2 is a perspective view from above of the paper-shredder of FIG. 1 , illustrating the arrangement with a top cover of the machine removed;
- FIG. 3 is a transverse cross-sectional view taken through the middle of the paper-shredder illustrated in FIG. 1 , viewed from the right-hand end of the machine as illustrated in FIG. 1 ;
- FIG. 4 is a sectional view which shows to a larger scale and somewhat schematically part of FIG. 3 including a device for measuring the thickness of a bundle of papers passed into the shredder for shredding,
- FIG. 5 is a perspective view from above of an alternative form of thickness measuring device
- FIG. 6 is a perspective view corresponding to FIG. 5 but with part of the casing of the device removed,
- FIG. 7 is a perspective view from below of the device of FIGS. 5 and 6 , but with the whole of the casing removed for purposes of illustration, and
- FIGS. 8 a through 8 c are a logic diagram related to the shredder of the present invention.
- FIG. 1 there is illustrated a shredding machine in accordance with the present invention, provided in the form of a domestic or office paper-shredder.
- FIG. 1 illustrates the paper-shredder from above.
- the shredding machine comprises a relatively large plastic container or bin 1 , on top of which sits a housing 2 inside which the operative parts of the paper shredder are located, as will be described in more detail hereinafter.
- the housing 2 is provided with a feed slot or passage 3 which provides an elongate entrance aperture having a length sufficient to accommodate sheets of appropriate size to be shredded by the machine.
- sheet material to be shredded such as sheets of paper or card or the like, is inserted into the paper feed slot to pass into the feed passage or chute, where the sheets are drawn into the shredding mechanism in a manner known per se and shredded into a plurality of strips which then exit the shredding mechanism from the bottom of the housing 2 so as to fall from the housing and be collected in the bin 1 located therebelow.
- FIG. 1 also illustrates an operating switch 4 which, in the embodiment illustrated, takes the form of a simple sliding switch.
- the switch 4 is operable by a person using the shredding machine in order to switch the machine on and off.
- FIG. 2 illustrates the internal workings of the shredding machine in more detail, with the upper part of the housing 2 having been removed.
- the feed slot or feed passage 3 is defined, in the absence of the top part of the housing 2 , by a pair of substantially parallel upstanding feed walls 5 , 6 .
- the upper edge of the front feed wall 5 is located below the level of the upper edge of the rear feed wall 6 .
- the two feed walls 5 , 6 are spaced apart from one another by a distance slightly greater than the maximum thickness of sheet material which the shredding machine is capable of shredding, as will be described in more detail hereinafter.
- the region of the housing 2 defining the opening to the feed slot 3 is aligned with and overlies the space defined between the feed walls 5 , 6 .
- this region of the upper housing 2 is preferably moulded from the plastics material in such a manner that inwardly-directed lips 7 , 8 extend part-way down the inwardly-directed face of respective feed walls 5 , 6 so as to define a smooth and uninterrupted opening into the feed slot. This is also illustrated more clearly in FIG. 3 .
- FIG. 2 also illustrates part of an electric motor 9 which is mounted to the rear of the feed slot 3 .
- the motor 9 is connected, via a gear arrangement, to a pair of elongate rotatable cutters 10 , 11 which are arranged for counter-rotation relative to one another in a region below the feed slot 3 , as illustrated most clearly in FIG. 3 .
- Each cutter 10 , 11 is generally cylindrical in form and is provided with a plurality of spaced-apart cutting discs 12 along its length, the cutting discs of one cutter being interposed between those of the other cutter.
- FIG. 3 which is a sectional view taken through the central region of the shredding machine, only one cutting disc 12 is visible. However, it will be seen that this cutting disc is provided with a number of cutting teeth 13 at spaced apart positions around its periphery.
- the two cutters 10 , 11 Upon energisation of the electric motor 9 , the two cutters 10 , 11 are caused to rotate, such that the forwardmost cutter 10 rotates in a clockwise sense as viewed in FIG. 3 , whilst the rearmost cutter 11 rotates in a counter-clockwise sense as viewed in FIG. 3 . In this manner, the two cutters 10 , 11 are arranged to pull sheet material passing through the feed slot 3 , through the nip 14 defined between the two cutters 10 , 11 .
- a thickness gauging device 15 which includes a member having an actuating element in the form of an arm 17 , which extends into the feed passage 3 and has an upper surface 18 which, in the orientation of the actuating arm 17 illustrated in FIG. 3 , slopes forwardly and downwardly.
- the arm 17 extends through a vertically-oriented slot 22 through the rear feed wall 6 and into the feed slot 3 defined between the rear feed wall 6 and the front feed wall 5 .
- the actuating arm 17 is spring biased into the feed passage 3 and is free to extend, under the spring bias, so far into the feed passage 3 as to engage the opposing wall 5 of the feed passage in the absence of any paper sheets to be shredded. This makes possible a self-calibrating function as described below.
- the shredding machine is also provided with a pair of photo-sensors, indicated generally at 38 and 39 in FIG. 2 , which are arranged on either side of the actuating arm 17 so as to direct a beam of light such as infra-red light across the feed slot from one side and detect its arrival on the other side.
- the first photo-sensor 38 is arranged so as to be operative across the feed slot at a level below the vertical slot 22 through which the actuating arm 17 projects into the feed slot 3 .
- the other photo-sensor 39 is arranged so as to be operative across the feed slot at a level above the vertical slot 22 through which the actuating arm projects into the feed slot.
- the function of the two photo-sensors 38 , 39 can be varied at the manufacturing stage of the paper shredder, depending upon the desired functionality of the shredder.
- the higher level photo-sensor 39 is arranged so as to simply detect the presence of paper in the feed slot, whilst the lower level photo-sensor provides a signal on the basis of which the electric motor 9 may be energised to set the cutting mechanism in motion as the leading edge of a sheet of paper or stack of papers passes the photo sensor, and to detect the passage of the trailing edge of the sheet or stack upon shredding.
- the machine is arranged to stop the electric motor after a predetermined time has elapsed following movement of such trailing edge past the lower level sensor 38 .
- the shredding machine incorporates a microprocessor which controls energisation of the electric motor driving the cutting mechanism and the feed mechanism and which, on the basis of various sensors (see below) establishes, as an optimal sheet capacity threshold, a maximum thickness of a stack or bundle of paper sheets or the like which, for prevailing conditions, the machine can comfortably deal with. Measuring the thickness of a stack of paper sheets inserted is effected by the device 15 and associated circuitry which provides corresponding information to the microprocessor.
- a stack of paper sheets or the like can be inserted into the feed slot to pass between the walls 5 and 6 for engagement by the cutting mechanism therebelow, the cutting mechanism being switched on and off in response to signals from the lower level photo sensor 38 , (which signals are also sent to the microprocessor). If the thickness of the stack of papers inserted into the feed slot is less than the currently determined optimal sheet capacity threshold, then the cutting mechanism will be switched on and the stack of sheets shredded.
- the microprocessor will terminate supply of electricity to the motor driving the cutting mechanism and will activate an alarm signal to alert the operator to the fact that too thick a stack of paper sheets had been inserted.
- the stack of paper sheets inserted into the feed slot will pass between the wall 5 and the surface 18 of the actuating arm 17 thereby urging the actuating arm to move against its spring and so to generate signals to the microprocessor from which the latter can determine how far the actuating arm has moved and thus determine the thickness of the stack of sheets inserted.
- the microprocessor thus prevents operation of the cutting mechanism located below the feed slot, even when the leading edge of the stack passes the lower level photo sensor 38 which would, if the stack of papers was not of excessive thickness, trigger operation of the cutting mechanism.
- the actuating arm 17 is part of an element 200 including a gear segment 202 .
- the element 200 is mounted in a casing 210 indicated in broken lines, for rotation about the axis of a shaft 220 .
- the element 200 is biased, e.g. by a spring (not shown), in a clockwise sense in FIG. 4 so as to extend the arm 17 through the slot 22 and across the passage 3 to abut the wall 5 of the passage 3 of the shredder in the absence of any sheet in the passage 3 to be shredded.
- the upper surface 18 of the arm 17 extends at an angle downwardly from the slot 22 so as to be readily displaceable anti-clockwise in FIG.
- the gear segment 202 meshes with a pinion 226 of relatively small radius which is fixed to a sensing wheel or disc 228 coaxial with pinion 226 and rotatable in housing 210 about an axis parallel with that of the shaft 220 .
- the disc 228 lies in a plane slightly behind that of the element 200 furthest from the viewer in FIG. 4 , so that the element 200 overlaps the disc 228 which extends behind the element 200 in FIG. 4 .
- the disc 228 is provided with an annular track comprising a plurality of equally spaced radially extending slots around the disc.
- Two optical signal sensors 230 , 232 straddle the disc to detect passage of the slots as the disc 228 rotates.
- Each sensor 230 , 232 comprises a light source such as a LED and a photo detector such as a photodiode, on opposite sides of the disc so that as the disc rotates light passes periodically through the slots in the disc from the respective LED to the respective photo detector.
- the arrangement used is similar to that used in a conventional tracker ball computer mouse and, as in such a mouse, the sensors 230 , 232 are positioned relative to one another and to the disc in such a way that, as the disc rotates, the signals from one sensor due to sensing the passage of the slots are somewhat out of phase with the signals from the other sensor, whereby the processor can determine the direction of rotation of the disc as well as the extent of rotation (by counting the signals).
- FIGS. 5 , 6 and 7 show an alternative, and currently preferred, form of thickness measuring device 15 for the shredder.
- the pivotable element 200 of FIG. 4 is replaced by an actuating element in the form of a probe member 300 which is guided in a casing 302 for longitudinal rectilinear displacement.
- the member 300 is urged longitudinally outwards from the casing 302 , through the slot 22 and into the passage 3 by a light spring 304 , (see FIG. 7 ).
- the spring biased probe member 300 carries at its outer end a roller 301 for engagement with paper fed through the feed passage 3 or for engagement with the opposing passage wall 5 when no paper is present.
- Part of the probe member 300 is formed as a rack providing a series of gear teeth 306 along one side of the member 300 which mesh with gear teeth of a pinion 308 .
- the pinion 308 is fixed to a co-axial gearwheel 310 of much larger diameter than pinion 308 , which gearwheel 310 overlaps a slotted disc 314 , corresponding to the disc 228 in FIG. 4 , and meshes with a small diameter pinion 312 fixed to that disc and co-axial therewith, the gearwheel 310 and disc 314 being rotatable about their respective parallel axes in the casing 302 .
- the disc 314 is provided with a series or track of equally spaced radial slots therearound and two optical sensors 230 , 232 are provided straddling the annular track of slots around the disc 314 , each sensor comprising a respective photo detector on one side of the disc and a respective LED on the opposite side of the disc, the optical detectors again being positioned somewhat out of phase with each other in the same manner as described with respect to FIG. 4 so that the shredder microprocessor, or ancillary circuitry dedicated to the sensor disc 314 , can determine not only the extent of rotation of the disc but can determine the direction of displacement of the probe 300 in addition to the extent of such displacement.
- the thickness gauging devices described with reference to FIG. 4 and FIGS. 5 to 7 allow the thickness measuring facility in the shredder to be self-zeroing.
- the microprocessor can be arranged, when the shredder is switched on and before any paper or the like is inserted for shredding, to take the rest position of the thickness measuring mechanism, in which the arm 17 or the probe 300 is in engagement with the opposing wall 5 of the shredder passageway 3 , as corresponding to the zero thickness position.
- the aforementioned self-zeroing function is performed as a continual process throughout the life of the product, each time that the arm 17 or the probe 300 engages with the opposing wall 5 of the shredder passageway 3 , (i.e. whenever there is no paper sheets or the like present within the feed-slot).
- Providing this self-zeroing function as a continual process in this manner allows the machine to re-calculate the zero thickness position for the arm 17 or probe 300 in order to account for wear to certain parts of the mechanism, such as the arm 17 or the probe 300 itself, the opposing walls of the feed-slot, or any of the trigger gears.
- This continual self-zeroing function also accounts for changes in ambient temperature and possible distortion of the opposing walls of the feed-slot.
- This arrangement thus allows the zero thickness position of the arm 17 or the probe 300 to be continuously re-calibrated to suit the current conditions during the life of the product, and also offers a significant advantage in that it eliminates the need for accurate setting of the option sheet capacity threshold during assembly of the product at the manufacturing stage.
- the shredder microprocessor will prevent energisation of the cutter motor and thus prevent operation of the cutting mechanism located below the feed slot, even when the leading edge of the stack passes the lower level photo-sensor 38 .
- the microprocessor will also light a warning lamp to signal that the paper bundle inserted is too thick.
- FIGS. 8 a through 8 c show a logic diagram or flow chart for the shredder microprocessor.
- the processor is initialised and, assuming that the shredder has been set to shred automatically sheets fed into passage 3 , the microprocessor at 402 checks that motor temperature (signalled from stage 404 ) is not excessive, that the shredder is properly closed and that the bin for shredded material is not full. If any of these conditions is present, a warning light is illuminated at 404 and the shredder will not proceed further until the deficiency is remedied. If none of these conditions is present, the processor proceeds via stage 406 to stage 408 where the optimal capacity mode of operation is enabled.
- the processor then, at stage 410 , calibrates the thickness-sensing mechanism to zero, illuminates (at 412 ) a light to signal that the optimal capacity feature is operational, then checks (stage 413 ) the sensed motor current (stored at 415 from the previous use of the shredder), the mains voltage (box 414 , 416 ) and motor temperature (boxes 418 , 419 ) and determines at stage 422 , (using a predetermined scheme or algorithm which takes into account the sensed motor current from store 415 , the sensed mains voltage, and the sensed motor temperature), the appropriate optimal sheet capacity thickness threshold.
- the shredder motor runs, feeding the inserted sheets past the sensing arm 17 or probe 300 .
- the processor determines whether the thickness actually sensed is below or at or above the optimal capacity threshold and if the sensed thickness is below or at the threshold allows shredding to proceed (stages 428 , 430 ). If the processor determines (stages 432 , 434 ) that the thickness of the paper bundle fed into passage 3 is excessive, the processor does not energise the shredder motor but actuates a warning light at 435 to inform the operator that too much paper has been inserted and once the paper has been removed from the passage 3 , the processor returns to stage 410 .
- the inserted paper is shredded (stage 430 ), whilst the motor current is monitored at 440 and stored at 415 .
- the optimal sheet capacity thickness-measuring facility is deactivated (stage 441 ) during shredding until the inserted paper clears the sensor 38 (stage 443 ). The reason for this is that when paper is shredded it ripples and flaps within the feed passage 3 , which can cause the arm 17 or probe 300 to be constantly moved and can cause false readings as to the amount of paper inserted.
- stage 443 the processor returns to stage 408 once again, re-activating the optimal sheet capacity thickness-measuring facility.
- stage 452 a warning light is lit (stage 452 ) and the shredder motor and hence the shredder mechanism is reversed, either automatically or by operation of a manual switch (stage 454 ), to free the jam.
- the processor then returns to the initial stage 400 .
- the preferred embodiment of the invention is also operable to break up CDs, or credit cards.
- the thickness measuring optimal sheet capacity facility is by-passed (stages 401 , 403 , 405 ) whilst the CD or credit card is being broken up.
- a manual switch or optical detector may be used to inform the processor that the optimal capacity facility is to be by-passed.
Landscapes
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Crushing And Pulverization Processes (AREA)
Abstract
A shredding machine for domestic or office use having a feed passage 3 leading to a cutting mechanism 10, 11 powered by an electric motor, has a thickness measuring device 15 for measuring the thickness of bundles of paper fed through the feed passage and the machine is controlled by a microprocessor which receives signals from the thickness measuring device and prevents the cutting mechanism from being energised if the thickness measured is above a threshold determined by the microprocessor. The microprocessor varies the threshold in accordance with electrical supply voltage, the electric motor temperature and the electric current drawn by the motor during a previous shredding operation, so that the maximum thickness the shredder will accept can be reduced automatically when motor temperature increases or as the effectiveness of the machine deteriorates throughout its working life.
Description
- This application is a continuation of U.S. patent application Ser. No. 13/438,572, filed on Apr. 3, 2012, which is a continuation of U.S. patent application Ser. No. 13/082,657, filed on Apr. 8, 2011, which is a continuation of U.S. patent application Ser. No. 12/182,488, filed on Jul. 30, 2008, which claims the benefit of priority of UK Patent Application No. GB 0715074.1, filed Aug. 2, 2007. The entire contents of each of these prior applications are hereby incorporated by reference.
- THE PRESENT INVENTION relates to a shredding machine for shredding sheet material. The present invention relates particularly, but not exclusively, to a shredding machine in the form of a paper-shredder suitable for home or office use.
- Over recent years it has been customary to provide shredding machines in domestic homes or work places such as offices, in order to provide a convenient method of securely disposing of confidential documentation or other sensitive papers.
- Conventional paper shredders of the type mentioned above are provided with a paper feed-aperture, particularly in the form of a feed-slot of elongate form, through which a plurality of paper sheets or the like can be fed towards a pair or rotating cutters located below the feed-slot which serve to shred the paper sheets into a plurality of strips having a width of only a few millimetres, the resulting strips of paper being collected in a basket or bin located below the cutters. For reasons of space and economy, the cutting mechanisms used in conventional paper shredders of this type are only effective in shredding stacks of paper or card up to a relatively small predetermined thickness. If a stack of papers or cards exceeding this predetermined thickness is inserted into the feed-slot, for example by being force-fed into the slot by an over-enthusiastic user, it is possible to present the shredding mechanism with such a bulk of material so as to overload the mechanism and stall the driving motor or otherwise jam the mechanism. Not only can paper-jams of this type represent an annoyance to a person using the paper shredder, but they can serve to damage the cutting mechanism, for example by distorting the shafts of the cutters or damaging the cutting blades.
- In co-pending International Patent Application PCT/GB06/004286, the applicants have disclosed an anti-jam mechanism to prevent overloading of a paper shredder by inserting sheet material of too great a thickness in the manner described above. The shredding machine of PCT/GB06/004286 comprises a feed passage extending from a feed aperture and further comprises a cutting mechanism driven by an electric motor, the feed aperture and feed passage being configured to receive multiple sheets and to direct said sheets towards the cutting mechanism for shredding. This machine is provided with an actuating element part of which extends into the feed passage and which is movable from a first position in which the actuating element permits energisation of the cutting mechanism, past a second position beyond which the actuating element prevents energisation of the cutting mechanism. The actuating element is biased towards its first position and is arranged to actuate a switch when moved past said second position, to break the electrical circuit providing power to the cutting mechanism. The shredding machine of PCT/GB06/004286 thus has a threshold thickness of superimposed sheets such that the machine will not attempt to shred a stack of superimposed sheets if the stack has a thickness above that threshold, herein referred to as the anti-jam threshold.
- The applicants have found, however, that the machine of PCT/GB06/004286 suffers from the following problems, in common with prior art shredders without the anti-jam system of PCT/GB06/004286, namely:
- Where the shredder is powered from a main supply, there is the difficulty that mains supply voltage is variable, within a certain tolerance, with the result that the maximum sheet capacity, in practice, of the mains driven electrical shredder will be less when the mains voltage is at the lower end of its tolerance range than when the voltage is at the higher end of that range.
- The temperature of the electric motor driving the shredder rises during use, causing the motor to be less efficient after a period of use, producing a drop in output power and hence a drop in sheet capacity.
- During the life of the shredder, the cutting unit and transmission system wear and become less efficient, the cutting mechanism clogs with paper dust and lubrication dries out or wears off, all of which place a greater load on the motor, again resulting in a drop in sheet capacity.
- In view of the above factors, the applicants found it necessary to set the anti-jam threshold, i.e. the thickness threshold at which the actuating mechanism operated to prevent energisation of the cutting mechanism, at a “worst-case” level and thus significantly below the actual cutting capacity of the cutting mechanism under conditions better than the “worst case” set of conditions.
- The present invention provides an improved shredding machine in which the above difficulty is avoided.
- According to one aspect of the invention there is provided a shredding machine for shredding sheet material, the machine comprising a feed aperture and a cutting mechanism powered by an electric motor, the feed aperture being arranged to receive sheets for shredding and to direct such sheets to the cutting mechanism for shredding, the machine having means for measuring the thickness of sheet material passed into said feed aperture for shredding which sheet material may comprise a plurality of superimposed sheets which together provide such thickness, said measuring means controlling said cutting mechanism so as to permit energisation of the cutting mechanism where the thickness of sheet material measured thereby is below a controlling threshold, (herein referred to as the optimal sheet capacity threshold), and to prevent such energisation where the thickness of sheet material measured is above said controlling threshold, characterised in that the machine includes at least one sensor sensing a variable parameter relevant to such shredding and means operable to adjust said controlling threshold automatically in dependence upon the value of the parameter sensed.
- According to a further aspect of the invention there is provided a machine for processing sheet material, fed through a feed passage, the machine being characterised by means for measuring the thickness of sheet material fed through said passage, said measuring means including an actuating element which is movable from a first limiting position, engaging or relatively close to, one major wall of said passage, away from said major wall, against a biasing force acting on said element, and means for measuring displacement of said actuating element from said limiting position.
- Preferably, said means for measuring displacement of said actuating element comprises a member provided with a series of markers of alternately high and low light transmissivity or of alternatively high and low light reflectivity and optical sensing means sensitive to the passage of said markers through a measuring zone, said member being part of, or mechanically coupled with, said element so that the displacement of said actuating element will cause said markers to traverse said measuring zone, the apparatus including counting means operable to count displacement of said markers through said measuring zone.
- In a preferred embodiment of the present invention, a shredding machine incorporates a microprocessor receiving signals from various sensors, the microprocessor being arranged to vary the optimal sheet capacity threshold setting according to the signals from the various sensors, which may include a mains supply voltage sensor, whereby the system microprocessor will adjust the optimal sheet capacity threshold so as to allow larger quantities of paper to be shredded per pass than when the mains supply voltage is low and a temperature sensor fitted to the electric motor powering the shredder to monitor motor temperature, whereby the system processor can vary the threshold setting depending on motor temperature so that when the motor is cold, the system will allow a greater thickness of paper to be passed at the same time through the shredding mechanism than when the motor is hot. Furthermore, in the preferred embodiment, a current sensor is incorporated in the electric motor circuit, to monitor increase in the motor current drawn by the motor as the shredder wears and to lower the optimal sheet capacity threshold setting as the motor current drawn increases, so that the shredder will allow a greater thickness of paper to pass through the cutting mechanism when the machine is new than when the cutting mechanism has worn and the average motor current drawn has increased.
- In order to deal with a variable “optimal sheet capacity” thickness threshold or trigger point for the optimal sheet capacity mechanism, the movement of the actuator in the feed passage, due to deflection by the thickness of a stack of paper for shredding, must be measured quantitatively. In the preferred embodiment of the present invention, such movement is converted into an electronic digital count, using infrared sensors and a slotted disc operating in a manner similar to the sensing arrangement conventionally employed in a tracker-ball computer mouse. Thus, the actuator will measure the actual thickness of paper presented and the system microprocessor will calculate whether the cutting head will be capable of shredding that thickness, taking into account the voltage, temperature and current sensed by the respective sensors. Based on this calculation, the system will either start the shredder in a forward direction allowing the inserted paper to be shredded or, if the thickness of paper inserted is too great for the shredder to deal with, then the shredder will not start and a warning signal will be given to the operator.
- Conveniently, the shredding machine comprises at least one pair of rollers positioned in between the feed aperture and the cutting mechanism such that sheets being directed towards the cutting mechanism pass between the rollers, upstream of the cutting mechanism.
- Conveniently, a pair of said rollers is located adjacent the feed aperture.
- Conveniently, the shredding machine is further provided with indicating means to provide a visual indication to a user of the machine that energisation of the cutting mechanism is prevented by the optimal sheet capacity facility.
- Preferably, the shredding machine is provided in the form of a paper-shredder suitable for home or office use.
- So that the invention may be more readily understood, and so that further features thereof may be appreciated, embodiments of the present invention will now be described, by way of example, with reference to the accompanying drawings, in which:
-
FIG. 1 is a perspective view from above of a shredding machine in accordance with the present invention, taking the form of a paper-shredder for home or office use; -
FIG. 2 is a perspective view from above of the paper-shredder ofFIG. 1 , illustrating the arrangement with a top cover of the machine removed; -
FIG. 3 is a transverse cross-sectional view taken through the middle of the paper-shredder illustrated inFIG. 1 , viewed from the right-hand end of the machine as illustrated inFIG. 1 ; -
FIG. 4 is a sectional view which shows to a larger scale and somewhat schematically part ofFIG. 3 including a device for measuring the thickness of a bundle of papers passed into the shredder for shredding, -
FIG. 5 is a perspective view from above of an alternative form of thickness measuring device, -
FIG. 6 is a perspective view corresponding toFIG. 5 but with part of the casing of the device removed, -
FIG. 7 is a perspective view from below of the device ofFIGS. 5 and 6 , but with the whole of the casing removed for purposes of illustration, and -
FIGS. 8 a through 8 c are a logic diagram related to the shredder of the present invention, - Referring initially to
FIG. 1 , there is illustrated a shredding machine in accordance with the present invention, provided in the form of a domestic or office paper-shredder.FIG. 1 illustrates the paper-shredder from above. - The shredding machine comprises a relatively large plastic container or
bin 1, on top of which sits ahousing 2 inside which the operative parts of the paper shredder are located, as will be described in more detail hereinafter. Thehousing 2 is provided with a feed slot orpassage 3 which provides an elongate entrance aperture having a length sufficient to accommodate sheets of appropriate size to be shredded by the machine. During operation, sheet material to be shredded, such as sheets of paper or card or the like, is inserted into the paper feed slot to pass into the feed passage or chute, where the sheets are drawn into the shredding mechanism in a manner known per se and shredded into a plurality of strips which then exit the shredding mechanism from the bottom of thehousing 2 so as to fall from the housing and be collected in thebin 1 located therebelow. -
FIG. 1 also illustrates an operating switch 4 which, in the embodiment illustrated, takes the form of a simple sliding switch. The switch 4 is operable by a person using the shredding machine in order to switch the machine on and off. - The features of the shredding machine described above with reference to
FIG. 1 are conventional. -
FIG. 2 illustrates the internal workings of the shredding machine in more detail, with the upper part of thehousing 2 having been removed. - The feed slot or
feed passage 3 is defined, in the absence of the top part of thehousing 2, by a pair of substantially parallelupstanding feed walls FIG. 2 , in the embodiment illustrated, the upper edge of thefront feed wall 5 is located below the level of the upper edge of therear feed wall 6. The twofeed walls - As will be appreciated from a comparison of
FIGS. 1 and 2 , when the top part of thehousing 2 is placed over the inner workings of the shredding machine, the region of thehousing 2 defining the opening to thefeed slot 3 is aligned with and overlies the space defined between thefeed walls upper housing 2 is preferably moulded from the plastics material in such a manner that inwardly-directedlips respective feed walls FIG. 3 . -
FIG. 2 also illustrates part of anelectric motor 9 which is mounted to the rear of thefeed slot 3. Themotor 9 is connected, via a gear arrangement, to a pair of elongaterotatable cutters 10, 11 which are arranged for counter-rotation relative to one another in a region below thefeed slot 3, as illustrated most clearly inFIG. 3 . Eachcutter 10,11 is generally cylindrical in form and is provided with a plurality of spaced-apart cuttingdiscs 12 along its length, the cutting discs of one cutter being interposed between those of the other cutter. Hence, inFIG. 3 , which is a sectional view taken through the central region of the shredding machine, only onecutting disc 12 is visible. However, it will be seen that this cutting disc is provided with a number of cuttingteeth 13 at spaced apart positions around its periphery. - Upon energisation of the
electric motor 9, the twocutters 10, 11 are caused to rotate, such that theforwardmost cutter 10 rotates in a clockwise sense as viewed inFIG. 3 , whilst the rearmost cutter 11 rotates in a counter-clockwise sense as viewed inFIG. 3 . In this manner, the twocutters 10, 11 are arranged to pull sheet material passing through thefeed slot 3, through the nip 14 defined between the twocutters 10, 11. - As also illustrated in
FIGS. 2 and 3 , athickness gauging device 15 is provided which includes a member having an actuating element in the form of anarm 17, which extends into thefeed passage 3 and has anupper surface 18 which, in the orientation of theactuating arm 17 illustrated inFIG. 3 , slopes forwardly and downwardly. Thearm 17 extends through a vertically-orientedslot 22 through therear feed wall 6 and into thefeed slot 3 defined between therear feed wall 6 and thefront feed wall 5. - The
actuating arm 17 is spring biased into thefeed passage 3 and is free to extend, under the spring bias, so far into thefeed passage 3 as to engage the opposingwall 5 of the feed passage in the absence of any paper sheets to be shredded. This makes possible a self-calibrating function as described below. - Although not essential to the operation of the present invention, it will be seen from the accompanying drawings that the shredding machine is also provided with a pair of photo-sensors, indicated generally at 38 and 39 in
FIG. 2 , which are arranged on either side of theactuating arm 17 so as to direct a beam of light such as infra-red light across the feed slot from one side and detect its arrival on the other side. In the arrangement illustrated, the first photo-sensor 38 is arranged so as to be operative across the feed slot at a level below thevertical slot 22 through which theactuating arm 17 projects into thefeed slot 3. The other photo-sensor 39 is arranged so as to be operative across the feed slot at a level above thevertical slot 22 through which the actuating arm projects into the feed slot. The function of the two photo-sensors sensor 39 is arranged so as to simply detect the presence of paper in the feed slot, whilst the lower level photo-sensor provides a signal on the basis of which theelectric motor 9 may be energised to set the cutting mechanism in motion as the leading edge of a sheet of paper or stack of papers passes the photo sensor, and to detect the passage of the trailing edge of the sheet or stack upon shredding. (The machine is arranged to stop the electric motor after a predetermined time has elapsed following movement of such trailing edge past thelower level sensor 38. - In the embodiment of the present invention under discussion, the shredding machine incorporates a microprocessor which controls energisation of the electric motor driving the cutting mechanism and the feed mechanism and which, on the basis of various sensors (see below) establishes, as an optimal sheet capacity threshold, a maximum thickness of a stack or bundle of paper sheets or the like which, for prevailing conditions, the machine can comfortably deal with. Measuring the thickness of a stack of paper sheets inserted is effected by the
device 15 and associated circuitry which provides corresponding information to the microprocessor. - A stack of paper sheets or the like can be inserted into the feed slot to pass between the
walls level photo sensor 38, (which signals are also sent to the microprocessor). If the thickness of the stack of papers inserted into the feed slot is less than the currently determined optimal sheet capacity threshold, then the cutting mechanism will be switched on and the stack of sheets shredded. However, should a stack of papers be inserted into the feed slot which stack has a thickness greater than the currently determined optimal sheet capacity threshold, as determined by displacement of theactuating arm 17, then the microprocessor will terminate supply of electricity to the motor driving the cutting mechanism and will activate an alarm signal to alert the operator to the fact that too thick a stack of paper sheets had been inserted. - The stack of paper sheets inserted into the feed slot will pass between the
wall 5 and thesurface 18 of theactuating arm 17 thereby urging the actuating arm to move against its spring and so to generate signals to the microprocessor from which the latter can determine how far the actuating arm has moved and thus determine the thickness of the stack of sheets inserted. As noted above, the microprocessor thus prevents operation of the cutting mechanism located below the feed slot, even when the leading edge of the stack passes the lowerlevel photo sensor 38 which would, if the stack of papers was not of excessive thickness, trigger operation of the cutting mechanism. - In one form of the
thickness measuring device 15 shown schematically inFIG. 4 , theactuating arm 17 is part of anelement 200 including agear segment 202. Theelement 200 is mounted in acasing 210 indicated in broken lines, for rotation about the axis of ashaft 220. Theelement 200 is biased, e.g. by a spring (not shown), in a clockwise sense inFIG. 4 so as to extend thearm 17 through theslot 22 and across thepassage 3 to abut thewall 5 of thepassage 3 of the shredder in the absence of any sheet in thepassage 3 to be shredded. In this position, theupper surface 18 of thearm 17 extends at an angle downwardly from theslot 22 so as to be readily displaceable anti-clockwise inFIG. 4 by paper sheets P passed into the passage between thewall 5 andarm 17. Thegear segment 202 meshes with apinion 226 of relatively small radius which is fixed to a sensing wheel ordisc 228 coaxial withpinion 226 and rotatable inhousing 210 about an axis parallel with that of theshaft 220. It will be understood that thedisc 228 lies in a plane slightly behind that of theelement 200 furthest from the viewer inFIG. 4 , so that theelement 200 overlaps thedisc 228 which extends behind theelement 200 inFIG. 4 . - With the arrangement illustrated in
FIG. 4 , a relatively slight angular rotational movement ofelement 200 about the axis ofshaft 220 will produce a significant rotational movement of thedisc 228. Thedisc 228 is provided with an annular track comprising a plurality of equally spaced radially extending slots around the disc. Twooptical signal sensors disc 228 rotates. Eachsensor sensors -
FIGS. 5 , 6 and 7 show an alternative, and currently preferred, form ofthickness measuring device 15 for the shredder. In this device, thepivotable element 200 ofFIG. 4 is replaced by an actuating element in the form of aprobe member 300 which is guided in a casing 302 for longitudinal rectilinear displacement. Themember 300 is urged longitudinally outwards from the casing 302, through theslot 22 and into thepassage 3 by alight spring 304, (seeFIG. 7 ). The springbiased probe member 300 carries at its outer end aroller 301 for engagement with paper fed through thefeed passage 3 or for engagement with the opposingpassage wall 5 when no paper is present. Part of theprobe member 300 is formed as a rack providing a series ofgear teeth 306 along one side of themember 300 which mesh with gear teeth of apinion 308. Thepinion 308 is fixed to aco-axial gearwheel 310 of much larger diameter thanpinion 308, which gearwheel 310 overlaps a slotteddisc 314, corresponding to thedisc 228 inFIG. 4 , and meshes with asmall diameter pinion 312 fixed to that disc and co-axial therewith, thegearwheel 310 anddisc 314 being rotatable about their respective parallel axes in the casing 302. As with the arrangement ofFIG. 4 , thedisc 314 is provided with a series or track of equally spaced radial slots therearound and twooptical sensors disc 314, each sensor comprising a respective photo detector on one side of the disc and a respective LED on the opposite side of the disc, the optical detectors again being positioned somewhat out of phase with each other in the same manner as described with respect toFIG. 4 so that the shredder microprocessor, or ancillary circuitry dedicated to thesensor disc 314, can determine not only the extent of rotation of the disc but can determine the direction of displacement of theprobe 300 in addition to the extent of such displacement. - The thickness gauging devices described with reference to
FIG. 4 andFIGS. 5 to 7 allow the thickness measuring facility in the shredder to be self-zeroing. Thus, for example, the microprocessor can be arranged, when the shredder is switched on and before any paper or the like is inserted for shredding, to take the rest position of the thickness measuring mechanism, in which thearm 17 or theprobe 300 is in engagement with the opposingwall 5 of theshredder passageway 3, as corresponding to the zero thickness position. In a currently preferred embodiment of the shredding machine, the aforementioned self-zeroing function is performed as a continual process throughout the life of the product, each time that thearm 17 or theprobe 300 engages with the opposingwall 5 of theshredder passageway 3, (i.e. whenever there is no paper sheets or the like present within the feed-slot). Providing this self-zeroing function as a continual process in this manner allows the machine to re-calculate the zero thickness position for thearm 17 orprobe 300 in order to account for wear to certain parts of the mechanism, such as thearm 17 or theprobe 300 itself, the opposing walls of the feed-slot, or any of the trigger gears. This continual self-zeroing function also accounts for changes in ambient temperature and possible distortion of the opposing walls of the feed-slot. This arrangement thus allows the zero thickness position of thearm 17 or theprobe 300 to be continuously re-calibrated to suit the current conditions during the life of the product, and also offers a significant advantage in that it eliminates the need for accurate setting of the option sheet capacity threshold during assembly of the product at the manufacturing stage. - If a stack of paper sheets or the like is inserted into the
feed slot 3 so as to pass between thewall 5 and thearm 17 orprobe roller 301 and that stack of papers has a thickness, (sensed by displacement of thearm 17 or probe roller 301), less than the optimal sheet capacity threshold thickness determined for the time being by the shredder processor, then the electric motor powering the cutting mechanism will be switched on in response to signals from the lower level photo-sensor 38 and the paper will be shredded, with the motor being switched off again once the paper has cleared thesensor 38. However, should a stack of papers be inserted into the feed slot which has a thickness, (sensed by displacement of thearm 17 or probe roller 301), greater than the optional sheet capacity threshold thickness, the shredder microprocessor will prevent energisation of the cutter motor and thus prevent operation of the cutting mechanism located below the feed slot, even when the leading edge of the stack passes the lower level photo-sensor 38. The microprocessor will also light a warning lamp to signal that the paper bundle inserted is too thick. -
FIGS. 8 a through 8 c show a logic diagram or flow chart for the shredder microprocessor. Considering the portion of the diagram which is of relevance to the present invention, atstage 400, the processor is initialised and, assuming that the shredder has been set to shred automatically sheets fed intopassage 3, the microprocessor at 402 checks that motor temperature (signalled from stage 404) is not excessive, that the shredder is properly closed and that the bin for shredded material is not full. If any of these conditions is present, a warning light is illuminated at 404 and the shredder will not proceed further until the deficiency is remedied. If none of these conditions is present, the processor proceeds viastage 406 to stage 408 where the optimal capacity mode of operation is enabled. The processor then, atstage 410, calibrates the thickness-sensing mechanism to zero, illuminates (at 412) a light to signal that the optimal capacity feature is operational, then checks (stage 413) the sensed motor current (stored at 415 from the previous use of the shredder), the mains voltage (box 414, 416) and motor temperature (boxes 418, 419) and determines atstage 422, (using a predetermined scheme or algorithm which takes into account the sensed motor current fromstore 415, the sensed mains voltage, and the sensed motor temperature), the appropriate optimal sheet capacity thickness threshold. - When paper is inserted, as sensed by
sensor 38, (see above), the shredder motor runs, feeding the inserted sheets past thesensing arm 17 orprobe 300. Atstage 426, the processor determines whether the thickness actually sensed is below or at or above the optimal capacity threshold and if the sensed thickness is below or at the threshold allows shredding to proceed (stages 428, 430). If the processor determines (stages 432, 434) that the thickness of the paper bundle fed intopassage 3 is excessive, the processor does not energise the shredder motor but actuates a warning light at 435 to inform the operator that too much paper has been inserted and once the paper has been removed from thepassage 3, the processor returns to stage 410. If the optimal capacity threshold is not reached or exceeded, the inserted paper is shredded (stage 430), whilst the motor current is monitored at 440 and stored at 415. The optimal sheet capacity thickness-measuring facility is deactivated (stage 441) during shredding until the inserted paper clears the sensor 38 (stage 443). The reason for this is that when paper is shredded it ripples and flaps within thefeed passage 3, which can cause thearm 17 or probe 300 to be constantly moved and can cause false readings as to the amount of paper inserted. - Once the inserted paper has been shredded and has passed the sensor 38 (stage 443), the processor returns to stage 408 once again, re-activating the optimal sheet capacity thickness-measuring facility.
- If, during shredding, the shredder jams, despite the thickness monitoring, this condition is sensed at 450, a warning light is lit (stage 452) and the shredder motor and hence the shredder mechanism is reversed, either automatically or by operation of a manual switch (stage 454), to free the jam. The processor then returns to the
initial stage 400. - The preferred embodiment of the invention is also operable to break up CDs, or credit cards. When used for this purpose, the thickness measuring optimal sheet capacity facility is by-passed (
stages 401,403,405) whilst the CD or credit card is being broken up. A manual switch or optical detector may be used to inform the processor that the optimal capacity facility is to be by-passed. - When used in this specification and claims, the terms “comprises” and “comprising” and variations thereof mean that the specified features, steps or integers are included. The terms are not to be interpreted to exclude the presence of other features, steps or components.
- The features disclosed in the foregoing description, or the following claims, or the accompanying drawings, expressed in their specific forms or in terms of a means for performing the disclosed function, or a method or process for attaining the disclosed result, as appropriate, may, separately, or in any combination of such features, be utilised for realising the invention in diverse forms thereof.
Claims (28)
1. A shredder comprising:
a housing having a throat for receiving at least one article to be shredded;
a shredder mechanism received in the housing and including an electrically powered motor and cutter elements, the shredder mechanism enabling the at least one article to be shredded to be fed into the cutter elements and the motor being operable in a shredding direction to drive the cutter elements to shred the articles fed therein;
a thickness detector configured to detect a thickness of the at least one article to be shredded being received by the throat; and
a controller coupled to the motor and the thickness detector, the controller being configured to determine, prior to operation of the motor, whether the thickness detector detects that the thickness of the at least one article to be shredded being received by the throat is below or at or above a predetermined maximum thickness threshold, and in response:
(a) prevent operation of the motor if the thickness detector detects that the at least one article to be shredded being received by the throat is at or above predetermined maximum thickness threshold, and
(b) operate the motor in the shredding direction to drive the cutter elements to shred the at least one article being received by the throat if the thickness detector detects that the at least one article is below the predetermined maximum thickness threshold, without preventing the operation of the motor in the shredding direction in response to the thickness detector detecting during the operation of the motor that the thickness of the at least one article is at or above the predetermined maximum thickness threshold to thereby prevent unnecessary motor shut-off due to fluttering of the at least one article being shredded.
2. A shredder according to claim 1 , wherein the thickness detector is a variable thickness detector for detecting and outputting varying amounts of detected thicknesses.
3. A shredder according to claim 2 , wherein said thickness detector includes a contact member in the throat movable by engagement of the article being received in the throat, and a sensor for measuring an amount of displacement of the contact member.
4. A shredder according to claim 3 , wherein said sensor is an optical sensor.
5. A shredder according to claim 4 , wherein said thickness detector comprises a marker member provided with a series of markers movable with the contact member, said optical sensor detecting the markers moving past the optical sensor to measure the amount of displacement of the contact member.
6. A shredder according to claim 5 wherein said optical sensor comprises two optical sensors disposed at different positions to allow said controller to determine the direction of displacement of the marker member as well as the extent of such movement.
7. A shredder according to claim 2 , further comprising a presence sensor, separate from the thickness detector, in the throat for determining whether the at least one article has been inserted into the throat.
8. A shredder according to claim 1 , wherein the controller comprises a microcontroller.
9. A shredder according to claim 1 , wherein the controller is configured to monitor a motor operating condition during the operation of the motor in the shredding direction to determine whether to prevent operation of the motor in the shredding direction.
10. A shredder according to claim 1 , wherein said thickness detector includes a contact member in the throat movable by engagement of the at least one article being received in the throat, and a sensor for detecting movement of the contact member.
11. A shredder according 10, wherein said sensor is an optical sensor.
12. A method for operating a shredder comprising a housing having a throat for receiving at least one article to be shredded, a thickness detector for detecting a thickness of the at least one article to be shredded inserted in the throat, and a shredder mechanism received in the housing and including an electrically powered motor and cutter elements, the shredder mechanism enabling the at least one article to be shredded to be fed into the cutter elements and the motor being operable in a shredding direction to drive the cutter elements to shred the articles fed therein; the method comprising:
prior to operation of the motor, determining whether the thickness detector detects that the thickness of the at least one article to be shredded being received by the throat is below or at or above a predetermined maximum thickness threshold; and
operating the motor in the shredding direction to drive the cutter elements to shred the at least one article being received by the throat if the thickness detector detects that the at least one article is below the predetermined maximum thickness threshold, without preventing the operation of the motor in the shredding direction in response to the thickness detector detecting during the operation of the motor that the thickness of the at least one article is at or above the predetermined maximum thickness threshold to thereby prevent unnecessary motor shut-off due to fluttering of the at least one article being shredded.
13. A method according to claim 12 , wherein the shredder further comprises a controller coupled to the motor and the thickness detector, and the method is performed by the controller.
14. A method according to claim 13 , further comprising monitoring a motor operating condition during the operation of the motor in the shredding direction to determine whether to prevent operation of the motor in the shredding direction.
15. A shredder comprising:
a housing having a feed passage for receiving material to be shredded;
a shredding machine received in the housing and including an electrically powered motor and cutters, the shredding machine enabling the material to be shredded to be fed into the cutters and the motor being operable in a shredding direction to drive the cutters to shred the material fed therein;
a thickness gauging device configured to detect a thickness of the material to be shredded received by the feed passage; and
a processor coupled to the motor and the thickness gauging device, the processor being configured to determine, prior to operation of the motor, whether the thickness gauging device detects that the thickness of the material to be shredded received by the feed passage is less than or greater than a capacity threshold thickness, and in response,
(a) prevent operation of the motor if the thickness gauging device detects that the material to be shredded received by the feed passage is greater than the capacity threshold thickness; and
(b) operate the motor in the shredding direction to drive the cutters to shred the material received by the feed passage if the thickness of the material is less than the capacity threshold thickness, without preventing the operation of the motor in the shredding direction in response to the thickness gauging device detecting during the operation of the motor that the thickness of the material is greater than the capacity threshold thickness to thereby prevent unnecessary motor shut-off due to flapping of the material being shredded.
16. A shredder according to claim 15 , wherein the thickness gauging device is a variable thickness gauging device for detecting and outputting varying amounts of detected thicknesses.
17. A shredder according to claim 16 , wherein said thickness gauging device includes a actuating arm in the throat movable by engagement of the material being received in the feed passage, and a sensor for measuring an amount of displacement of the actuating arm.
18. A shredder according to claim 17 , wherein said sensor is an optical sensor.
19. A shredder according to claim 18 , wherein said actuating arm comprises a disc provided with a series of slots movable with the actuating arm, said optical sensor detecting the slots moving past the optical sensor to measure the amount of displacement of the actuating arm.
20. A shredder according to claim 19 wherein said optical sensor comprises two optical sensors disposed at different positions to allow said processor to determine the direction of displacement of the disc as well as the extent of such movement.
21. A shredder according to claim 16 , further comprising a presence sensor, separate from the thickness gauging device, in the feed passage for determining whether the material has been inserted into the feed passage.
22. A shredder according to claim 15 , wherein the processor comprises a microprocessor.
23. A shredder according to claim 15 , wherein the processor is configured to monitor for a jam during the operation of the motor in the shredding direction to determine whether to prevent operation of the motor in the shredding direction.
24. A shredder according to claim 15 , wherein said thickness gauging device includes an actuating arm in the feed passage movable by engagement of the material being received in the feed passage, and a sensor for detecting movement of the actuating arm.
25. A shredder according 24, wherein said sensor is an optical sensor.
26. A method for operating a shredder comprising a housing having a feed passage for receiving material to be shredded, a thickness gauging device for detecting a thickness of the material to be shredded inserted in the feed passage, and a shredding machine received in the housing and including an electrically powered motor and cutters, the shredding machine enabling the material to be shredded to be fed into the cutters and the motor being operable in a shredding direction to drive the cutters to shred the material fed therein; the method comprising:
prior to operation of the motor, determining whether the thickness gauging device detects that the thickness of the material to be shredded received by the feed passage is less than or greater than a capacity threshold thickness; and
operating the motor in the shredding direction to drive the cutters to shred the material received by the feed passage if the thickness gauging device detects that the material is less than the capacity threshold thickness, without preventing the operation of the motor in the shredding direction in response to the thickness gauging device detecting during the operation of the motor that the thickness of the material is greater than the capacity threshold thickness to thereby prevent unnecessary motor shut-off due to flapping of the material being shredded.
27. A method according to claim 26 , wherein the shredder further comprises a processor coupled to the motor and the thickness gauging device, and the method is performed by the processor.
28. A method according to claim 27 , further comprising monitoring for a jam during the operation of the motor in the shredding direction to determine whether to prevent operation of the motor in the shredding direction.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/623,342 US20130020423A1 (en) | 2007-08-02 | 2012-09-20 | Shredding machine |
US13/956,759 US9669410B2 (en) | 2007-08-02 | 2013-08-01 | Shredding machine |
US14/696,778 US20150224513A1 (en) | 2007-08-02 | 2015-04-27 | Shredding machine |
US15/586,338 US10576476B2 (en) | 2007-08-02 | 2017-05-04 | Shredding machine |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB0715074.1 | 2007-08-02 | ||
GB0715074.1A GB2451513B (en) | 2007-08-02 | 2007-08-02 | A shredding machine |
US12/182,488 US8162244B2 (en) | 2007-08-02 | 2008-07-30 | Shredding machine |
US13/082,657 US20110180641A1 (en) | 2007-08-02 | 2011-04-08 | Shredding machine |
US13/438,572 US20120187230A1 (en) | 2007-08-02 | 2012-04-03 | Shredding machine |
US13/623,342 US20130020423A1 (en) | 2007-08-02 | 2012-09-20 | Shredding machine |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/438,572 Continuation US20120187230A1 (en) | 2007-08-02 | 2012-04-03 | Shredding machine |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/956,759 Continuation US9669410B2 (en) | 2007-08-02 | 2013-08-01 | Shredding machine |
Publications (1)
Publication Number | Publication Date |
---|---|
US20130020423A1 true US20130020423A1 (en) | 2013-01-24 |
Family
ID=38529186
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/182,488 Active 2029-08-31 US8162244B2 (en) | 2007-08-02 | 2008-07-30 | Shredding machine |
US13/082,657 Abandoned US20110180641A1 (en) | 2007-08-02 | 2011-04-08 | Shredding machine |
US13/438,572 Abandoned US20120187230A1 (en) | 2007-08-02 | 2012-04-03 | Shredding machine |
US13/623,342 Abandoned US20130020423A1 (en) | 2007-08-02 | 2012-09-20 | Shredding machine |
US13/956,759 Active 2030-07-06 US9669410B2 (en) | 2007-08-02 | 2013-08-01 | Shredding machine |
US15/586,338 Active 2029-07-05 US10576476B2 (en) | 2007-08-02 | 2017-05-04 | Shredding machine |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/182,488 Active 2029-08-31 US8162244B2 (en) | 2007-08-02 | 2008-07-30 | Shredding machine |
US13/082,657 Abandoned US20110180641A1 (en) | 2007-08-02 | 2011-04-08 | Shredding machine |
US13/438,572 Abandoned US20120187230A1 (en) | 2007-08-02 | 2012-04-03 | Shredding machine |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/956,759 Active 2030-07-06 US9669410B2 (en) | 2007-08-02 | 2013-08-01 | Shredding machine |
US15/586,338 Active 2029-07-05 US10576476B2 (en) | 2007-08-02 | 2017-05-04 | Shredding machine |
Country Status (3)
Country | Link |
---|---|
US (6) | US8162244B2 (en) |
EP (2) | EP2180290B1 (en) |
GB (1) | GB2451513B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9981268B2 (en) | 2013-01-15 | 2018-05-29 | Aurora Office Equipment Co., Ltd. Shanghai | Safety shredder with mechanical bin-full device |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7631822B2 (en) | 2004-09-10 | 2009-12-15 | Fellowes Inc. | Shredder with thickness detector |
US7661614B2 (en) | 2004-09-10 | 2010-02-16 | Fellowes Inc. | Shredder throat safety system |
US7954737B2 (en) | 2007-10-04 | 2011-06-07 | Fellowes, Inc. | Shredder thickness with anti-jitter feature |
US7798435B2 (en) | 2006-03-22 | 2010-09-21 | Fellowes, Inc. | Shredder with oiling mechanism |
US8870106B2 (en) | 2004-09-10 | 2014-10-28 | Fellowes, Inc. | Shredder with thickness detector |
US8672247B2 (en) | 2005-07-11 | 2014-03-18 | Fellowes, Inc. | Shredder with thickness detector |
TWI325790B (en) * | 2007-07-27 | 2010-06-11 | Primax Electronics Ltd | Floating detection device for measuring the thickness of a sheet-like article |
GB2451513B (en) * | 2007-08-02 | 2012-04-18 | Acco Uk Ltd | A shredding machine |
TWI324550B (en) * | 2008-09-05 | 2010-05-11 | Primax Electronics Ltd | Laminator |
TWI346002B (en) * | 2008-12-01 | 2011-08-01 | Primax Electronics Ltd | Shredder with detecting mechanism for width and thickness of shredded object |
US8201761B2 (en) | 2009-01-05 | 2012-06-19 | Fellowes, Inc. | Thickness sensor based motor controller |
US8430347B2 (en) | 2009-01-05 | 2013-04-30 | Fellowes, Inc. | Thickness adjusted motor controller |
CN101811084B (en) * | 2009-02-23 | 2012-10-03 | 阿龙·阿布拉姆松 | Crushing machine head with thickness measurer |
US8091809B2 (en) | 2009-03-24 | 2012-01-10 | Fellowes, Inc. | Shredder with jam proof system |
CN101543800A (en) * | 2009-05-07 | 2009-09-30 | 上海震旦办公设备有限公司 | Paper jamming prevention protective device of paper shredder |
US8205815B2 (en) | 2009-05-15 | 2012-06-26 | Fellowes, Inc. | Paper alignment sensor arrangement |
US8550387B2 (en) | 2009-06-18 | 2013-10-08 | Tai Hoon K. Matlin | Restrictive throat mechanism for paper shredders |
US8678305B2 (en) | 2009-06-18 | 2014-03-25 | Fellowes, Inc. | Restrictive throat mechanism for paper shredders |
US8382019B2 (en) * | 2010-05-03 | 2013-02-26 | Fellowes, Inc. | In-rush current jam proof sensor control |
US8511593B2 (en) | 2010-05-28 | 2013-08-20 | Fellowes, Inc. | Differential jam proof sensor for a shredder |
EP2399674A3 (en) * | 2010-06-03 | 2012-03-07 | Aurora Office Equipment, Co. Ltd. | Thickness detecting safety shredder |
US20120267464A1 (en) * | 2011-04-22 | 2012-10-25 | Michilin Prosperity Co., Ltd. | Shredder with adjustable paper feeding opening |
US9440238B2 (en) | 2012-05-16 | 2016-09-13 | Staples The Office Superstore, Llc | Shredder with media detector |
JP6433239B2 (en) * | 2014-10-29 | 2018-12-05 | 合資会社オリエンタル | Shredder slot mechanism and shredder |
US10639642B2 (en) * | 2015-03-19 | 2020-05-05 | Aurora Office Equipment Co., Ltd. Shanghai | Shredder jam clear apparatus |
US10537896B2 (en) * | 2016-07-05 | 2020-01-21 | Aurora Office Equipment Co., Ltd. Shanghai | Autofeed paper shredder with clip and staple removal |
WO2019100387A1 (en) * | 2017-11-27 | 2019-05-31 | 齐心商用设备(深圳)有限公司 | Paper shredder and paper shredding control method therefor |
DE102019126015A1 (en) * | 2019-09-26 | 2021-04-01 | Acco Uk Ltd. | paper shredder |
US11458479B2 (en) | 2020-07-21 | 2022-10-04 | Layne McKee | Home cardboard shredder |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3518430A (en) * | 1967-10-24 | 1970-06-30 | Leeds & Northrup Co | Apparatus for measuring average thickness or density of strip material |
US20060054725A1 (en) * | 2004-09-10 | 2006-03-16 | Fellowes, Inc. | Shredder throat safety system |
JP2009020754A (en) * | 2007-07-12 | 2009-01-29 | Oki Electric Ind Co Ltd | Paper money processor |
US7611083B2 (en) * | 2006-06-06 | 2009-11-03 | Jian Zhang | Safety device for feeder of shredder |
US7665679B2 (en) * | 2005-10-12 | 2010-02-23 | Fuji Xerox Co., Ltd. | Document management system and document destruction apparatus |
US8297544B2 (en) * | 2001-12-26 | 2012-10-30 | Castronovo Charles A | Screenless disintegrators |
Family Cites Families (276)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2221516A (en) | 1937-04-01 | 1940-11-12 | Gen Electric | Continuous thickness gauge |
GB1199903A (en) * | 1969-01-10 | 1970-07-22 | Acral Ltd | Shredding Machine |
US3619537A (en) | 1970-10-12 | 1971-11-09 | Matsushita Electric Ind Co Ltd | High-frequency heating device |
CH548698A (en) | 1971-03-16 | 1974-04-30 | Mueller Harro | CIRCUIT ARRANGEMENT FOR EMISSION OF AN APPROXIMATION SIGNAL WHEN APPROACHING A HUMAN BODY PART. |
US3724766A (en) | 1971-05-14 | 1973-04-03 | Ketcham & Mcdougall | Shredder |
US3829850A (en) | 1971-12-17 | 1974-08-13 | Tyco Laboratories Inc | Proximity detector |
US3829580A (en) * | 1972-04-24 | 1974-08-13 | Rohm & Haas | Fungicidal dithiomalonamides and their congeners |
US3785230A (en) | 1972-11-08 | 1974-01-15 | Lokey Tool Inc | Automatic safety brake for rotary blade equipment |
US3882770A (en) | 1973-08-31 | 1975-05-13 | Edwin Mills & Son Limited | Combined shredder and baler |
JPS5548053B2 (en) | 1973-12-13 | 1980-12-03 | ||
US3947734A (en) | 1974-09-06 | 1976-03-30 | The Stanley Works | Electronic personnel safety sensor |
JPS5211691A (en) | 1976-07-14 | 1977-01-28 | Torouperu Inc | Optical device for refraction measuring device for objective lens examination |
JPS5311911A (en) | 1976-07-20 | 1978-02-02 | Matsushita Electric Ind Co Ltd | Production of thin film |
US4166700A (en) * | 1977-06-24 | 1979-09-04 | Research Technology, Inc. | Film thickness detector |
DE2833829C2 (en) | 1978-08-02 | 1986-11-27 | L. Schuler GmbH, 7320 Göppingen | Circuit arrangement for an actuator of a slide adjustment |
JPS55140982A (en) | 1979-04-20 | 1980-11-04 | Laurel Bank Mach Co Ltd | Soundproof device for paper counting machine |
JPS5770445U (en) | 1980-10-16 | 1982-04-28 | ||
JPS5770445A (en) | 1980-10-22 | 1982-04-30 | Ngk Spark Plug Co Ltd | Gas sensitive element |
JPS5776734A (en) | 1980-10-31 | 1982-05-13 | Toshiba Corp | Manufacture of input surface for picture multiplier tube |
US4793561A (en) | 1982-05-24 | 1988-12-27 | Mac Corporation Of America | Speed-responsive reversing hydraulic drive for rotary shredder |
US4560110A (en) | 1982-06-17 | 1985-12-24 | Mac Corporation Of America | Current draw-actuated hydraulic drive arrangement for rotary shredder |
JPS6034900B2 (en) | 1982-06-21 | 1985-08-12 | マックス株式会社 | Auto-reverse device for document shredding machine |
DE3234746A1 (en) | 1982-09-20 | 1984-03-22 | Agfa-Gevaert Ag, 5090 Leverkusen | SORTING COPY TRAY |
US4495456A (en) | 1982-09-23 | 1985-01-22 | General Binding Corporation | Automatic reversing system for shredder |
US5186398A (en) | 1982-09-30 | 1993-02-16 | Paul E. Vigneaux, Jr. | Paper shredder |
JPS59150554A (en) | 1983-02-18 | 1984-08-28 | 富士ゼロックス株式会社 | Paper shredding apparatus |
US4489897A (en) | 1983-03-02 | 1984-12-25 | General Binding Corporation | Apparatus for shredding documents |
DE3312991C2 (en) | 1983-04-12 | 1987-04-23 | Feinwerktechnik Schleicher & Co, 7778 Markdorf | Device for shredding materials such as documents etc. |
DE3313232A1 (en) | 1983-04-13 | 1984-10-18 | Geha-Werke Gmbh, 3000 Hannover | Cover flap for the paper inlet of an office machine |
US4757949A (en) | 1983-08-04 | 1988-07-19 | Horton Norman P | Apparatus for shredding rubber tires |
FR2553299A1 (en) | 1983-10-14 | 1985-04-19 | Bonnet Ets | APPARATUS FOR FOOD INDUSTRIES WITH ACCESS CONTROLLED BY A DEVICE CREATING A VARIATION IN ELECTRIC IMPEDANCE |
US4589598A (en) * | 1984-10-12 | 1986-05-20 | Beloit Corporation | Apparatus for controlling a variable speed gearmotor |
DE3505074C2 (en) | 1985-02-14 | 1987-04-16 | Alois Zettler Elektrotechnische Fabrik GmbH, 8000 München | Housing for device for destroying sheet material |
US4609155A (en) | 1985-04-09 | 1986-09-02 | Shredding Systems, Inc. | Shredding apparatus including overload protection of drive line |
JPH0678849B2 (en) | 1985-09-28 | 1994-10-05 | 新明和工業株式会社 | Refrigeration equipment |
JPS62183555A (en) | 1986-02-07 | 1987-08-11 | Nec Corp | Semiconductor device |
US4707704A (en) | 1986-05-09 | 1987-11-17 | Advanced Color Technology, Inc. | Control system and method for handling sheet materials |
US4709197A (en) | 1986-07-08 | 1987-11-24 | Feinwerktechnik Schleicher & Co. | Control device for driving e.g. a shredding machine or a similar machine |
DE8619856U1 (en) | 1986-07-24 | 1988-09-08 | Feinwerktechnik Schleicher & Co, 7778 Markdorf | Safety device on waste disposal machines |
US4863037A (en) | 1986-09-05 | 1989-09-05 | Opex Corporation | Apparatus for the automated processing of bulk mail and the like |
JPS6365961A (en) | 1986-09-08 | 1988-03-24 | シャープ株式会社 | Document shredder |
EP0268244B1 (en) | 1986-11-20 | 1991-05-15 | Ernst Peiniger GmbH Unternehmen für Bautenschutz | Safety device |
JPS63173342A (en) | 1987-01-12 | 1988-07-16 | Mitsubishi Electric Corp | Semiconductor device |
DE3780024T2 (en) | 1987-01-13 | 1992-12-24 | Sharp Kk | TORNING MACHINE. |
DE3863657D1 (en) | 1987-03-04 | 1991-08-22 | Sharp Kk | SHREDDER. |
JPS63221856A (en) | 1987-03-09 | 1988-09-14 | シャープ株式会社 | Automatic paper feeder for document shredder |
KR910003227B1 (en) * | 1987-03-16 | 1991-05-24 | 쯔다고마 고오교오 가부시끼가이샤 | Method for judging replacemnet of bobbin |
US5320335A (en) | 1987-08-07 | 1994-06-14 | Canon Kabushiki Kaisha | Control method for sheet discharger with stapler method of stapling a group a discharged sheets into sub-groups having up to n sheets |
GB8722063D0 (en) | 1987-09-18 | 1987-10-28 | De La Rue Syst | Shredding sheets |
JPH01168358A (en) | 1987-12-23 | 1989-07-03 | Sharp Corp | Shredding apparatus for paper shredder |
JPH01297155A (en) | 1988-05-25 | 1989-11-30 | Sharp Corp | Document shredder |
JPH0787903B2 (en) | 1989-01-18 | 1995-09-27 | シャープ株式会社 | Document shredding device |
US5042232A (en) | 1989-04-14 | 1991-08-27 | Bell & Howell Phillipsburg Co. | In-line rotary inserter |
JPH0685883B2 (en) | 1989-05-16 | 1994-11-02 | 株式会社明光商会 | Shredder |
JPH02303550A (en) | 1989-05-16 | 1990-12-17 | Meiko Shokai:Kk | Shredder |
US5198777A (en) | 1990-02-14 | 1993-03-30 | Murata Mfg. Co., Ltd. | Paper thickness detecting apparatus having a resonator with a resonance point set by a capacitance detecting unit |
US5017972A (en) | 1990-05-30 | 1991-05-21 | Xerox Corporation | Elevator tray position control apparatus |
US5081406A (en) | 1990-06-26 | 1992-01-14 | Saf-T-Margin, Inc. | Proximity responsive capacitance sensitive method, system, and associated electrical circuitry for use in controlling mechanical and electro-mechanical equipment |
JP2610542B2 (en) | 1990-07-16 | 1997-05-14 | 日本信号株式会社 | Work safety system configuration method |
US5207390A (en) | 1990-08-30 | 1993-05-04 | Mitsubishi Jukogyo Kabushiki Kaisha | Operation control system for a shredder |
JPH04157093A (en) | 1990-10-17 | 1992-05-29 | Toho:Kk | Device for automatically stopping roller type pressurizing machine |
JPH04180852A (en) | 1990-11-13 | 1992-06-29 | Nissan Altia Co Ltd | Crusher |
JPH04186862A (en) | 1990-11-21 | 1992-07-03 | Tokyo Electron Sagami Ltd | Equipment for detecting substrate |
DE4103950C1 (en) | 1991-02-09 | 1992-04-23 | Geha-Werke Gmbh, 3000 Hannover, De | |
JPH0568907A (en) | 1991-03-13 | 1993-03-23 | Riso Kagaku Corp | Paper sheet data disposal treatment apparatus |
US5102057A (en) | 1991-05-20 | 1992-04-07 | Ellis Iii William H | Automatic plastic crusher apparatus |
US5166679A (en) | 1991-06-06 | 1992-11-24 | The United States Of America As Represented By The Administrator Of The National Aeronautics & Space Administration | Driven shielding capacitive proximity sensor |
DE4121330A1 (en) | 1991-06-28 | 1993-01-14 | Schleicher & Co Int | Document shredding machine - has intake side and conveyor with openings to accept goods with limiting gap and safety device to protect against damage. |
US5139205A (en) | 1991-07-12 | 1992-08-18 | Denis Gallagher | Segregated waste disposal system |
DE9109120U1 (en) | 1991-07-24 | 1992-11-19 | Ideal-Werk Krug & Priester GmbH & Co KG, 7460 Balingen | paper shredder |
JP3264955B2 (en) | 1991-09-30 | 2002-03-11 | 株式会社明光商会 | Paper shredder |
JPH0596198A (en) | 1991-10-02 | 1993-04-20 | Matsushita Electric Ind Co Ltd | Document shredder |
DE4134016C1 (en) | 1991-10-14 | 1993-04-15 | ||
EP0524708B1 (en) | 1991-10-17 | 1997-01-02 | Koninklijke Philips Electronics N.V. | Personal-care apparatus comprising a capacitive on/off switch |
EP0537845B1 (en) | 1991-10-17 | 1996-06-19 | Koninklijke Philips Electronics N.V. | Suction tube handgrip comprising a capacitive sensor remote control circuit |
GB2258922A (en) | 1991-10-17 | 1993-02-24 | Philips Nv | Power supply circuit for personal-care apparatus. |
US5397890A (en) | 1991-12-20 | 1995-03-14 | Schueler; Robert A. | Non-contact switch for detecting the presence of operator on power machinery |
DE4212151A1 (en) | 1992-04-10 | 1993-10-14 | Gao Ges Automation Org | Process for monitoring the function of mechanical paper shredders |
JP3091320B2 (en) | 1992-05-26 | 2000-09-25 | リコーエレメックス株式会社 | Paper feeder for shredder |
DE4237861A1 (en) | 1992-11-10 | 1994-05-11 | Schleicher & Co Int | Circuit for an electric motor, in particular for a drive motor of material crushing or pressing systems |
DE4408470C2 (en) | 1993-03-22 | 1995-07-20 | Hermann Schwelling | Document shredder with cabinet-like base and hood-like attachment |
JPH06277548A (en) | 1993-03-23 | 1994-10-04 | Ricoh Elemex Corp | Paper feed device of shredder |
CA2095398C (en) | 1993-05-03 | 2001-06-12 | Kalyan Ghosh | System for detecting human presence in hazardous situations |
EP0650100B1 (en) * | 1993-10-22 | 1999-04-28 | Canon Kabushiki Kaisha | Sheet thickness detecting device in image forming apparatus |
JP3202482B2 (en) | 1994-05-10 | 2001-08-27 | リコーエレメックス株式会社 | Shredder paper feeder |
JP3294719B2 (en) | 1994-08-04 | 2002-06-24 | 株式会社小松製作所 | Crusher drive |
US5494229A (en) | 1994-08-19 | 1996-02-27 | Cummins-Allison Corp. | Paper shredder with an improved lubrication system and method of lubricating |
JP3095114B2 (en) | 1994-08-31 | 2000-10-03 | リコーエレメックス株式会社 | Paper feeder for shredder and paper feed method using the same |
US5539322A (en) | 1994-09-20 | 1996-07-23 | Wave Metric, Inc. | Calibrated microwave dielectric coating thickness gauge |
JP3478507B2 (en) | 1994-10-13 | 2003-12-15 | リコーエレメックス株式会社 | Shredder paper feeder |
DE4437348C2 (en) | 1994-10-19 | 2003-11-06 | Schleicher & Co Int Ag | Document shredder with a cutter and a light barrier |
JP3343173B2 (en) | 1994-11-15 | 2002-11-11 | リコーエレメックス株式会社 | Shredder paper feeder |
JP3343174B2 (en) | 1994-11-15 | 2002-11-11 | リコーエレメックス株式会社 | Shredder paper feeder |
JPH08164343A (en) | 1994-12-14 | 1996-06-25 | Ricoh Elemex Corp | Paper feeder of shredder |
JP3326048B2 (en) | 1995-05-29 | 2002-09-17 | リコーエレメックス株式会社 | Shredder paper feeder |
US5691703A (en) | 1995-06-07 | 1997-11-25 | Hughes Associates, Inc. | Multi-signature fire detector |
DE19525027A1 (en) | 1995-07-10 | 1997-01-30 | Geha Werke Gmbh | Printed material shredder - has output torque of capacitance motor increased by use of parallel capacitance when motor overload is detected. |
JPH0938513A (en) | 1995-08-02 | 1997-02-10 | Canon Inc | Document shredder |
JPH0975763A (en) | 1995-09-14 | 1997-03-25 | Matsushita Electric Ind Co Ltd | Document shredder |
JPH11512803A (en) | 1995-09-25 | 1999-11-02 | セレンセン,イェルン | Method and apparatus for detecting the distance between a first object and a second object |
US5823529A (en) | 1995-10-05 | 1998-10-20 | Xerox Corporation | Single stack height sensor for plural sheet stacking bins system |
JPH09150069A (en) | 1995-12-01 | 1997-06-10 | Matsushita Electric Ind Co Ltd | Shredder |
JPH09262491A (en) | 1996-03-27 | 1997-10-07 | Tec Corp | Shredder |
DE19627599A1 (en) | 1996-07-09 | 1998-01-15 | Schleicher & Co Int | Document shredder |
JPH1048344A (en) | 1996-08-05 | 1998-02-20 | Sumitomo Chem Co Ltd | Sensor and safety unit |
US5850342A (en) | 1996-09-24 | 1998-12-15 | Nakamura; Kaoru | Machine tool control system |
US5924637A (en) | 1997-04-16 | 1999-07-20 | Niederholtmeyer; Werner | Oversize tire and rubber debris shredder |
EP0855221B1 (en) | 1997-01-23 | 2002-10-09 | Esselte N.V. | Device for measuring the thickness of a plural sheet comprising document stack |
DE19703844A1 (en) | 1997-02-01 | 1998-08-06 | Arcon Flachglasveredlungsgesel | Proximity sensor or touch switch or break switch or the like |
TW320997U (en) | 1997-04-09 | 1997-11-21 | Shao-Nong Tsai | Switch of shredder |
DE19717918C2 (en) | 1997-04-28 | 2000-04-27 | Hermann Schwelling | Safety switch for shredders |
DE19835093A1 (en) | 1997-07-25 | 1999-02-25 | Fellowes Mfg Co | Paper shredder with DC motor |
JPH1168358A (en) | 1997-08-21 | 1999-03-09 | Hitachi Telecom Technol Ltd | Guide rail device of housing frame |
DE19746847A1 (en) | 1997-10-23 | 1999-04-29 | Schleicher & Co Int | Cutting mechanism for document shredder, especially with torsion cut |
JPH11216383A (en) | 1998-02-02 | 1999-08-10 | Taiheiyo Cement Corp | Shredder with alternating current type metal detector |
JP3456412B2 (en) | 1998-04-15 | 2003-10-14 | ぺんてる株式会社 | Conductor approach and proximity position detection device |
US5988542A (en) | 1998-05-18 | 1999-11-23 | General Binding Corporation | Document shredding devices |
USD414198S (en) | 1998-05-29 | 1999-09-21 | Iwataryo Co., Ltd. | Manual shredder |
USD412716S (en) | 1998-06-30 | 1999-08-10 | Fellowes Manufacturing Company | Paper shredder |
US6141883A (en) | 1998-08-26 | 2000-11-07 | Opex Corporation | Apparatus for detecting the thickness of documents |
US6079645A (en) | 1998-09-15 | 2000-06-27 | General Binding Corporation | Desktop shredders |
USD426805S (en) | 1998-09-30 | 2000-06-20 | Iwataryo Co., Ltd. | Manual shredder |
KR100292502B1 (en) | 1998-11-07 | 2001-07-12 | 구자홍 | Touch switch and method for fabricating electrified layer therof |
AUPP743998A0 (en) | 1998-12-02 | 1998-12-24 | Gust, Mark William | Wood chipper safety system |
TW424582U (en) | 1998-12-31 | 2001-03-01 | Tsai Shau Nung | Paper shredder with dual functions |
CA2362790A1 (en) * | 1999-02-16 | 2000-08-24 | Tomofumi Takahashi | Shredder drive control device and method of drivingly controlling the shredder |
JP3972064B2 (en) | 1999-04-02 | 2007-09-05 | 独立行政法人労働安全衛生総合研究所 | Sensor device and safety device |
US6250574B1 (en) | 1999-04-07 | 2001-06-26 | Li-Ming Wu Huang | Device for monitoring paper shredding action of paper shredder |
US6536536B1 (en) | 1999-04-29 | 2003-03-25 | Stephen F. Gass | Power tools |
GB9919439D0 (en) | 1999-08-18 | 1999-10-20 | Acco Rexel Group Serv Ltd | Shredding machine |
EP1086918B1 (en) | 1999-09-27 | 2004-03-17 | Heidelberger Druckmaschinen Aktiengesellschaft | Method and device for detecting a true product jam in a folding apparatus |
CA2712351C (en) | 1999-09-30 | 2013-04-23 | Gregory J. Peterson | Artificial firelog and firestarter chip producing apparatus and method and products produced therefrom |
US20020017179A1 (en) | 2000-08-14 | 2002-02-14 | Gass Stephen F. | Miter saw with improved safety system |
US20040040426A1 (en) | 2002-08-27 | 2004-03-04 | Gass Stephen F. | Miter saw with improved safety system |
US7077039B2 (en) | 2001-11-13 | 2006-07-18 | Sd3, Llc | Detection system for power equipment |
US9927796B2 (en) | 2001-05-17 | 2018-03-27 | Sawstop Holding Llc | Band saw with improved safety system |
US7210383B2 (en) | 2000-08-14 | 2007-05-01 | Sd3, Llc | Detection system for power equipment |
US7712403B2 (en) | 2001-07-03 | 2010-05-11 | Sd3, Llc | Actuators for use in fast-acting safety systems |
US6880440B2 (en) | 2000-09-29 | 2005-04-19 | Sd3, Llc | Miter saw with improved safety system |
US7098800B2 (en) | 2003-03-05 | 2006-08-29 | Sd3, Llc | Retraction system and motor position for use with safety systems for power equipment |
US20030037651A1 (en) | 2001-08-13 | 2003-02-27 | Gass Stephen F. | Safety systems for power equipment |
US8061245B2 (en) | 2000-09-29 | 2011-11-22 | Sd3, Llc | Safety methods for use in power equipment |
US7377199B2 (en) | 2000-09-29 | 2008-05-27 | Sd3, Llc | Contact detection system for power equipment |
US20020056349A1 (en) | 2000-09-29 | 2002-05-16 | Gass Stephen F. | Miter saw with improved safety system |
US7284467B2 (en) | 2000-08-14 | 2007-10-23 | Sd3, Llc | Apparatus and method for detecting dangerous conditions in power equipment |
US8459157B2 (en) | 2003-12-31 | 2013-06-11 | Sd3, Llc | Brake cartridges and mounting systems for brake cartridges |
US7600455B2 (en) | 2000-08-14 | 2009-10-13 | Sd3, Llc | Logic control for fast-acting safety system |
US20050041359A1 (en) | 2003-08-20 | 2005-02-24 | Gass Stephen F. | Motion detecting system for use in a safety system for power equipment |
US20050139056A1 (en) | 2003-12-31 | 2005-06-30 | Gass Stephen F. | Fences for table saws |
US7610836B2 (en) | 2000-08-14 | 2009-11-03 | Sd3, Llc | Replaceable brake mechanism for power equipment |
US7137326B2 (en) | 2000-08-14 | 2006-11-21 | Sd3, Llc | Translation stop for use in power equipment |
US7308843B2 (en) | 2000-08-14 | 2007-12-18 | Sd3, Llc | Spring-biased brake mechanism for power equipment |
US20050139459A1 (en) | 2003-12-31 | 2005-06-30 | Gass Stephen F. | Switch box for power tools with safety systems |
US7197969B2 (en) | 2001-09-24 | 2007-04-03 | Sd3, Llc | Logic control with test mode for fast-acting safety system |
US7350445B2 (en) | 2003-08-20 | 2008-04-01 | Sd3, Llc | Brake cartridge for power equipment |
US7509899B2 (en) | 2000-08-14 | 2009-03-31 | Sd3, Llc | Retraction system for use in power equipment |
US6857345B2 (en) | 2000-08-14 | 2005-02-22 | Sd3, Llc | Brake positioning system |
US6945149B2 (en) | 2001-07-25 | 2005-09-20 | Sd3, Llc | Actuators for use in fast-acting safety systems |
US6994004B2 (en) | 2000-09-29 | 2006-02-07 | Sd3, Llc | Table saw with improved safety system |
US7024975B2 (en) | 2000-08-14 | 2006-04-11 | Sd3, Llc | Brake mechanism for power equipment |
US7100483B2 (en) | 2000-08-14 | 2006-09-05 | Sd3, Llc | Firing subsystem for use in a fast-acting safety system |
US7536238B2 (en) | 2003-12-31 | 2009-05-19 | Sd3, Llc | Detection systems for power equipment |
US7827890B2 (en) | 2004-01-29 | 2010-11-09 | Sd3, Llc | Table saws with safety systems and systems to mount and index attachments |
US6920814B2 (en) | 2000-08-14 | 2005-07-26 | Sd3, Llc | Cutting tool safety system |
US6957601B2 (en) | 2000-08-14 | 2005-10-25 | Sd3, Llc | Translation stop for use in power equipment |
US7350444B2 (en) | 2000-08-14 | 2008-04-01 | Sd3, Llc | Table saw with improved safety system |
US20030131703A1 (en) | 2002-01-16 | 2003-07-17 | Gass Stephen F. | Apparatus and method for detecting dangerous conditions in power equipment |
US6945148B2 (en) | 2000-09-29 | 2005-09-20 | Sd3, Llc | Miter saw with improved safety system |
US7472634B2 (en) | 2003-08-20 | 2009-01-06 | Sd3, Llc | Woodworking machines with overmolded arbors |
US20030140749A1 (en) | 2002-01-25 | 2003-07-31 | Gass Stephen F. | Brake Pawls for power equipment |
US7707920B2 (en) | 2003-12-31 | 2010-05-04 | Sd3, Llc | Table saws with safety systems |
US20030056853A1 (en) | 2001-09-21 | 2003-03-27 | Gass Stephen F. | Router with improved safety system |
US7000514B2 (en) | 2001-07-27 | 2006-02-21 | Sd3, Llc | Safety systems for band saws |
US20030015253A1 (en) | 2001-07-18 | 2003-01-23 | Gass Stephen F. | Router with improved safety system |
US7171879B2 (en) | 2001-07-02 | 2007-02-06 | Sd3, Llc | Discrete proximity detection system |
US6877410B2 (en) | 2000-09-29 | 2005-04-12 | Sd3, Llc | Miter saw with improved safety system |
US7225712B2 (en) | 2000-08-14 | 2007-06-05 | Sd3, Llc | Motion detecting system for use in a safety system for power equipment |
US7231856B2 (en) | 2001-06-13 | 2007-06-19 | Sd3, Llc | Apparatus and method for detecting dangerous conditions in power equipment |
US9724840B2 (en) | 1999-10-01 | 2017-08-08 | Sd3, Llc | Safety systems for power equipment |
US6630059B1 (en) | 2000-01-14 | 2003-10-07 | Nutool, Inc. | Workpeice proximity plating apparatus |
US6752165B2 (en) * | 2000-03-08 | 2004-06-22 | J & L Fiber Services, Inc. | Refiner control method and system |
CN1210154C (en) | 2000-05-24 | 2005-07-13 | 西尔弗布鲁克研究有限公司 | Paper thickness sensor in printer |
JP4644973B2 (en) | 2000-06-01 | 2011-03-09 | マックス株式会社 | Electric stapler |
US6724324B1 (en) | 2000-08-21 | 2004-04-20 | Delphi Technologies, Inc. | Capacitive proximity sensor |
US6601787B1 (en) | 2000-08-31 | 2003-08-05 | Bertwin Langenecker | Method and an apparatus for managing contaminated material |
DE10047992A1 (en) | 2000-09-28 | 2002-04-11 | Schleicher & Co Int Ag | Data shredder with a cutting unit driven by an electric drive |
US6826988B2 (en) | 2000-09-29 | 2004-12-07 | Sd3, Llc | Miter saw with improved safety system |
US6813983B2 (en) | 2000-09-29 | 2004-11-09 | Sd3, Llc | Power saw with improved safety system |
US6819242B2 (en) | 2000-10-02 | 2004-11-16 | Invisa, Inc. | Apparatus for use with capacitive presence detection systems |
US6550701B1 (en) | 2000-10-10 | 2003-04-22 | Frank Chang | Dual-functional medium shredding machine structure |
WO2002037410A1 (en) * | 2000-11-06 | 2002-05-10 | Koninklijke Philips Electronics N.V. | Method of measuring the movement of an input device. |
JP4836332B2 (en) | 2001-01-16 | 2011-12-14 | 三菱電機株式会社 | Motor control circuit for document shredder |
JP2002239405A (en) * | 2001-02-22 | 2002-08-27 | Nakabayashi Co Ltd | Charging port for material to be shredded in shredder |
US6676460B1 (en) | 2001-07-05 | 2004-01-13 | Maruta Electric Boatworks Llc | Electronic propeller guard |
US6979813B2 (en) | 2001-11-21 | 2005-12-27 | Avril John G | Safety-shutoff device for a manually fed processing machine |
US7607598B2 (en) | 2001-12-26 | 2009-10-27 | Castronovo Charles A | Self-healing cutting apparatus and other self-healing machinery |
US7520452B2 (en) | 2002-01-15 | 2009-04-21 | Nakabayashi Co., Ltd. | Motor control circuit for paper shredders |
WO2003102751A2 (en) | 2002-06-04 | 2003-12-11 | Koninklijke Philips Electronics N.V. | Method of measuring the movement of an input device |
JP4180852B2 (en) | 2002-07-10 | 2008-11-12 | Juki株式会社 | Component mounting apparatus and component mounting method |
CN101043951B (en) | 2002-07-22 | 2010-06-23 | Mba聚合物公司 | Transportable plastics recovery system |
JP2004141854A (en) | 2002-08-28 | 2004-05-20 | Fuji Xerox Co Ltd | Shredder apparatus and shredding method |
US6983903B2 (en) | 2003-01-22 | 2006-01-10 | Fellowes, Inc. | Multi-functional shredder |
US20040194594A1 (en) | 2003-01-31 | 2004-10-07 | Dils Jeffrey M. | Machine safety protection system |
US7698975B2 (en) | 2003-01-31 | 2010-04-20 | Techtronic Power Tools Technology Limited | Table saw with cutting tool retraction system |
JP2004321840A (en) | 2003-04-21 | 2004-11-18 | Toshiba Corp | Disposer |
JP2004321993A (en) | 2003-04-25 | 2004-11-18 | Ishizawa Seisakusho:Kk | Feeding port for document to be shredded in document shredder |
US6922153B2 (en) | 2003-05-13 | 2005-07-26 | Credo Technology Corporation | Safety detection and protection system for power tools |
AU2004247704B2 (en) | 2003-06-09 | 2010-03-04 | Big Belly Solar Llc | Solar powered compaction apparatus |
CN2702778Y (en) | 2003-08-16 | 2005-06-01 | 郑鹏程 | Controller for automatic breaking paper machine |
US7052125B2 (en) | 2003-08-28 | 2006-05-30 | Lexmark International, Inc. | Apparatus and method for ink-jet printing onto an intermediate drum in a helical pattern |
JP4208673B2 (en) * | 2003-08-29 | 2009-01-14 | キヤノン株式会社 | Recording device |
US7166561B2 (en) | 2003-10-23 | 2007-01-23 | Buttercup Legacy, Llc | Lubricant-carrying substrate for maintenance of paper shredders |
US8109455B2 (en) | 2003-10-23 | 2012-02-07 | Buttercup Legacy, Llc | Delivery of agents to the cutting mechanism of paper shredders |
US7902129B2 (en) | 2003-10-23 | 2011-03-08 | Buttercup Legacy, Llc | Delivery of agents to the cutting mechanism of paper shredders |
DE202004000907U1 (en) | 2004-01-22 | 2005-05-25 | Krug & Priester Gmbh & Co. Kg. | Crushing device, in particular shredder |
US7226010B2 (en) | 2004-02-27 | 2007-06-05 | Abb Inc. | Method and apparatus for solid fuel pulverizing operation and maintenance optimization |
US7040559B2 (en) | 2004-04-02 | 2006-05-09 | Fellowes Inc. | Shredder with lock for on/off switch |
US7025293B2 (en) | 2004-04-21 | 2006-04-11 | Fellows Inc. | Shredder with pivoting housing for the shredder mechanism |
EP1778405A4 (en) | 2004-07-26 | 2010-01-13 | Charles A Castronovo | Feeding mechanism auto-adjusting to load for use in automatic high-security destruction of a mixed load, and other feeding systems |
US7311276B2 (en) | 2004-09-10 | 2007-12-25 | Fellowes Inc. | Shredder with proximity sensing system |
US7954737B2 (en) | 2007-10-04 | 2011-06-07 | Fellowes, Inc. | Shredder thickness with anti-jitter feature |
US7798435B2 (en) | 2006-03-22 | 2010-09-21 | Fellowes, Inc. | Shredder with oiling mechanism |
US8870106B2 (en) | 2004-09-10 | 2014-10-28 | Fellowes, Inc. | Shredder with thickness detector |
US7631822B2 (en) | 2004-09-10 | 2009-12-15 | Fellowes Inc. | Shredder with thickness detector |
JP2008516744A (en) | 2004-09-27 | 2008-05-22 | ピアース デビッド | Shredder lubrication system |
US7195185B2 (en) | 2004-11-02 | 2007-03-27 | Fellowes, Inc. | Shredder with separate waste opening |
JP4157093B2 (en) | 2004-12-21 | 2008-09-24 | 株式会社ハタノ製作所 | Piping connector for bathtub and its construction method |
WO2006074122A1 (en) | 2005-01-04 | 2006-07-13 | Fellowes, Inc. | Shredder with stack thickness gauge |
KR100699600B1 (en) | 2005-02-17 | 2007-03-23 | 로얄소브린 주식회사 | Shredder |
US20060243631A1 (en) | 2005-04-20 | 2006-11-02 | Duke Derek A | Method and apparatus for lubricating a shredding device |
US8672247B2 (en) | 2005-07-11 | 2014-03-18 | Fellowes, Inc. | Shredder with thickness detector |
US7483424B2 (en) | 2005-07-28 | 2009-01-27 | International Business Machines Corporation | Method, for securely maintaining communications network connection data |
US20070080252A1 (en) | 2005-08-19 | 2007-04-12 | Seanet Development, Inc. | Shredder maintenance material delivery system |
US20070063082A1 (en) | 2005-09-19 | 2007-03-22 | Coleman Brian B | Method, device, system, and program for the implementation of shredding |
CN2907896Y (en) | 2005-12-02 | 2007-06-06 | 上海震旦办公设备有限公司 | Paper broken machine |
CN100389883C (en) | 2006-01-17 | 2008-05-28 | 钟奋强 | Intelligent gearshift paper shredder and its automatic gearshifting method |
GB2437594B (en) | 2006-04-24 | 2010-08-11 | Acco Uk Ltd | A shredding machine |
DE102007020159A1 (en) | 2006-04-27 | 2007-12-27 | Hirschmann Automotive Gmbh | Hall-based sensor assembly designed to measure linear motion |
DE202006012363U1 (en) | 2006-06-01 | 2007-10-04 | Dahle Bürotechnik Gmbh | Shredders |
WO2007137761A1 (en) | 2006-06-01 | 2007-12-06 | Dahle Bürotechnik Gmbh | Document shredder |
DE102006036136A1 (en) | 2006-07-28 | 2008-01-31 | Martin Yale International Gmbh | Paper shredder i.e. document annihilator, for cutting e.g. paper, has thickness measuring device arranged in area of inlet for measuring thickness of flat material and designed in contactless working manner as capacitive measuring device |
TWI302479B (en) * | 2006-10-20 | 2008-11-01 | Primax Electronics Ltd | Shredder |
GB2445543B (en) | 2007-01-15 | 2011-08-24 | Acco Uk Ltd | A shredder arrangement |
US7828235B2 (en) | 2007-07-13 | 2010-11-09 | Fellowes, Inc. | Shredder auto feed system |
US8167223B2 (en) | 2007-07-13 | 2012-05-01 | Fellowes, Inc. | Shredder and auto feed system |
TWI325790B (en) | 2007-07-27 | 2010-06-11 | Primax Electronics Ltd | Floating detection device for measuring the thickness of a sheet-like article |
GB2451513B (en) * | 2007-08-02 | 2012-04-18 | Acco Uk Ltd | A shredding machine |
EP2042937A3 (en) | 2007-09-27 | 2011-04-13 | Kabushiki Kaisha Toshiba | Sheet thickness measuring device and image forming apparatus |
JP5092144B2 (en) | 2008-05-29 | 2012-12-05 | 株式会社ケナテックス | Sound absorbing material and manufacturing method thereof |
US7731112B2 (en) | 2008-07-01 | 2010-06-08 | Fellowes, Inc. | Underside particle flap for shredder |
US7850106B2 (en) | 2008-07-15 | 2010-12-14 | Fellowes, Inc. | Shredder with secondary waste container |
JP5311911B2 (en) | 2008-07-26 | 2013-10-09 | 京楽産業.株式会社 | Game machine |
US8028942B2 (en) | 2008-08-01 | 2011-10-04 | Fellowes, Inc. | Bin full detection with light intensity sensing |
US7823815B2 (en) | 2008-10-15 | 2010-11-02 | Fellowes, Inc. | Shredder with self adjusting sensor |
US7823816B2 (en) | 2008-10-15 | 2010-11-02 | Fellowes, Inc. | Shredder with light emitting diode (LED) sensors |
TWI346002B (en) | 2008-12-01 | 2011-08-01 | Primax Electronics Ltd | Shredder with detecting mechanism for width and thickness of shredded object |
US7942352B2 (en) | 2008-12-05 | 2011-05-17 | Fellowes, Inc. | Shredder with rotatable device for moving shredded materials adjacent the outlet |
US8430347B2 (en) | 2009-01-05 | 2013-04-30 | Fellowes, Inc. | Thickness adjusted motor controller |
US8201761B2 (en) | 2009-01-05 | 2012-06-19 | Fellowes, Inc. | Thickness sensor based motor controller |
US7909273B2 (en) | 2009-01-07 | 2011-03-22 | Fellowes, Inc. | Shredder with gas detection system |
US7938347B2 (en) | 2009-01-07 | 2011-05-10 | Fellowes, Inc. | Shredder having a dual stage cutting mechanism |
US8505841B2 (en) | 2009-01-11 | 2013-08-13 | Techtronic Floor Care Technology Limited | Anti-jamming assembly for shredders of sheet like material |
US8777138B2 (en) | 2009-01-18 | 2014-07-15 | Techtronic Floor Care Technology Limited | Overload fault condition detection system for article destruction device |
US8061634B2 (en) | 2009-02-23 | 2011-11-22 | Charles Sued | Shredder head with thickness detector |
US8020795B2 (en) | 2009-02-23 | 2011-09-20 | Charles Sued | Shredder head adapted to vary power by thickness of material |
CN101543799B (en) | 2009-04-28 | 2012-10-10 | 上海震旦办公设备有限公司 | Novel protector for paper crusher |
CN101543800A (en) | 2009-05-07 | 2009-09-30 | 上海震旦办公设备有限公司 | Paper jamming prevention protective device of paper shredder |
US8205815B2 (en) | 2009-05-15 | 2012-06-26 | Fellowes, Inc. | Paper alignment sensor arrangement |
US8678305B2 (en) | 2009-06-18 | 2014-03-25 | Fellowes, Inc. | Restrictive throat mechanism for paper shredders |
US8550387B2 (en) | 2009-06-18 | 2013-10-08 | Tai Hoon K. Matlin | Restrictive throat mechanism for paper shredders |
US20100327092A1 (en) | 2009-06-29 | 2010-12-30 | Fellowes, Inc. | Active stripper elements for shredder assembly |
TWI367784B (en) | 2009-09-11 | 2012-07-11 | Primax Electronics Ltd | Variable-frequency controlling system of shredder and controlling method thereof |
DE202010001577U1 (en) | 2010-01-29 | 2010-09-30 | Schwelling, Hermann | paper shredder |
JP5014462B2 (en) | 2010-05-11 | 2012-08-29 | キヤノン株式会社 | Printing apparatus and sheet processing apparatus |
CN201832697U (en) | 2010-10-08 | 2011-05-18 | 上海震旦办公设备有限公司 | Inlet-paper thickness detecting device of paper shredder |
JP6277548B2 (en) | 2014-03-07 | 2018-02-14 | パナソニックIpマネジメント株式会社 | Illumination light communication device |
-
2007
- 2007-08-02 GB GB0715074.1A patent/GB2451513B/en active Active
-
2008
- 2008-07-24 EP EP10152221A patent/EP2180290B1/en active Active
- 2008-07-24 EP EP08161058A patent/EP2022566B8/en active Active
- 2008-07-30 US US12/182,488 patent/US8162244B2/en active Active
-
2011
- 2011-04-08 US US13/082,657 patent/US20110180641A1/en not_active Abandoned
-
2012
- 2012-04-03 US US13/438,572 patent/US20120187230A1/en not_active Abandoned
- 2012-09-20 US US13/623,342 patent/US20130020423A1/en not_active Abandoned
-
2013
- 2013-08-01 US US13/956,759 patent/US9669410B2/en active Active
-
2017
- 2017-05-04 US US15/586,338 patent/US10576476B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3518430A (en) * | 1967-10-24 | 1970-06-30 | Leeds & Northrup Co | Apparatus for measuring average thickness or density of strip material |
US8297544B2 (en) * | 2001-12-26 | 2012-10-30 | Castronovo Charles A | Screenless disintegrators |
US20060054725A1 (en) * | 2004-09-10 | 2006-03-16 | Fellowes, Inc. | Shredder throat safety system |
US7665679B2 (en) * | 2005-10-12 | 2010-02-23 | Fuji Xerox Co., Ltd. | Document management system and document destruction apparatus |
US7611083B2 (en) * | 2006-06-06 | 2009-11-03 | Jian Zhang | Safety device for feeder of shredder |
JP2009020754A (en) * | 2007-07-12 | 2009-01-29 | Oki Electric Ind Co Ltd | Paper money processor |
Non-Patent Citations (1)
Title |
---|
Definition for "capacity", Merriam-Webster Online Dictionary, 2013, www.m-w.com. * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180311677A1 (en) * | 2013-01-13 | 2018-11-01 | Aurora Office Equipment Co., Ltd. Shanghai | Safety shredder with mechanical bin-full device |
US10695770B2 (en) * | 2013-01-13 | 2020-06-30 | Aurora Office Equipment Co., Ltd. Shanghai | Safety shredder with mechanical bin-full device |
US9981268B2 (en) | 2013-01-15 | 2018-05-29 | Aurora Office Equipment Co., Ltd. Shanghai | Safety shredder with mechanical bin-full device |
Also Published As
Publication number | Publication date |
---|---|
US20110180641A1 (en) | 2011-07-28 |
GB2451513A (en) | 2009-02-04 |
US20120187230A1 (en) | 2012-07-26 |
GB2451513B (en) | 2012-04-18 |
US10576476B2 (en) | 2020-03-03 |
EP2022566A3 (en) | 2009-03-04 |
US9669410B2 (en) | 2017-06-06 |
US20090032629A1 (en) | 2009-02-05 |
GB0715074D0 (en) | 2007-09-12 |
US20130313346A1 (en) | 2013-11-28 |
US8162244B2 (en) | 2012-04-24 |
EP2022566B8 (en) | 2012-08-08 |
EP2180290A1 (en) | 2010-04-28 |
US20170232443A1 (en) | 2017-08-17 |
EP2180290B1 (en) | 2012-12-12 |
EP2022566B1 (en) | 2012-07-04 |
EP2022566A2 (en) | 2009-02-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10576476B2 (en) | Shredding machine | |
US7624938B2 (en) | Shredding machine | |
US7954737B2 (en) | Shredder thickness with anti-jitter feature | |
GB2486990A (en) | Sheet processing machine having thickness and displacement measuring means | |
US9561509B2 (en) | Anti-jamming assembly for shredders of sheet like material | |
US8967509B2 (en) | Torque-customized shredder load calibration | |
US8382019B2 (en) | In-rush current jam proof sensor control | |
US20150224513A1 (en) | Shredding machine | |
GB2492008A (en) | Shredder and thickness gauging device control means | |
CN108372022B (en) | Shredder with thickness detection device | |
US8870106B2 (en) | Shredder with thickness detector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ACCO UK LIMITED, UNITED KINGDOM Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ARIES, PAUL A.;SAWFORD, MICHAEL D.;REEL/FRAME:028996/0335 Effective date: 20080813 |
|
AS | Assignment |
Owner name: ACCO BRANDS CORPORATION, ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ACCO UK LIMITED;REEL/FRAME:029669/0320 Effective date: 20130122 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |