JPH0678849B2 - Refrigeration equipment - Google Patents

Refrigeration equipment

Info

Publication number
JPH0678849B2
JPH0678849B2 JP60215289A JP21528985A JPH0678849B2 JP H0678849 B2 JPH0678849 B2 JP H0678849B2 JP 60215289 A JP60215289 A JP 60215289A JP 21528985 A JP21528985 A JP 21528985A JP H0678849 B2 JPH0678849 B2 JP H0678849B2
Authority
JP
Japan
Prior art keywords
condenser
compressor
valve
expansion valve
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60215289A
Other languages
Japanese (ja)
Other versions
JPS6277548A (en
Inventor
武利 望月
章 友澤
泰寛 大西
芳樹 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinmaywa Industries Ltd
Original Assignee
Shin Meiva Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Meiva Industry Ltd filed Critical Shin Meiva Industry Ltd
Priority to JP60215289A priority Critical patent/JPH0678849B2/en
Publication of JPS6277548A publication Critical patent/JPS6277548A/en
Publication of JPH0678849B2 publication Critical patent/JPH0678849B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、1台の圧縮機と非共沸混合冷媒を用いて超低
温を得る冷凍装置に関する。
TECHNICAL FIELD The present invention relates to a refrigerating apparatus for obtaining an ultralow temperature by using one compressor and a non-azeotropic mixed refrigerant.

〔従来の技術〕[Conventional technology]

従来、非共沸混合冷媒を用いて超低温を得る冷凍装置と
して、第1図に示す構成のものは既に公知である。この
システムは、圧縮機1から吐出した非共沸混合冷媒ガス
を第1凝縮器2で一部凝縮し、次いで気液分離器3でよ
り高沸点成分の液とより低沸点成分のガスとに分離し
て、液は分流経路を第2膨張弁8で減圧後、二重管形カ
スケード熱交換器4の内管部の第2蒸発器4″を通り圧
縮機1の吸入管路に達する。一方、ガスは主冷媒回路を
該二重管形カスケード熱交換器4を形成する第2凝縮器
4′を経て、第1膨張弁6で減圧、第1蒸発器7で超低
温を発生した後、前記高沸点成分と合流、次いで圧縮機
1に吸入し冷凍サイクルを形成している。このような冷
凍装置では、常温で凝縮する冷媒以外に、沸点が低く常
温で凝縮しない冷媒を多量に含む混合冷媒が使用される
ため、冷媒回路内の圧力が上昇し、特に起動時には実使
用できない程、吐出圧力が異常高圧になる欠点があっ
た。異常高圧の主原因は、停止時のバランス圧力が高
く、したがって起動直後の圧縮機吐出量が非常に大きく
なるためである。さらに、起動直後は第2蒸発器4″が
部材の熱容量などによって冷却力が十分得られないこと
や、低沸点冷媒成分が主冷媒回路に十分滞留していない
ため、ことさら圧力上昇を助長している。
Conventionally, as a refrigerating apparatus for obtaining an ultralow temperature by using a non-azeotropic mixed refrigerant, a refrigerating apparatus having a structure shown in FIG. In this system, the non-azeotropic mixed refrigerant gas discharged from the compressor 1 is partially condensed in the first condenser 2 and then in the gas-liquid separator 3 into a liquid having a higher boiling point component and a gas having a lower boiling point component. After being separated, the liquid is decompressed in the diversion path by the second expansion valve 8, and then reaches the suction pipe line of the compressor 1 through the second evaporator 4 ″ of the inner pipe portion of the double pipe type cascade heat exchanger 4. On the other hand, the gas passes through the main refrigerant circuit through the second condenser 4 ′ forming the double-tube cascade heat exchanger 4, after decompressing at the first expansion valve 6 and generating ultra-low temperature at the first evaporator 7, A refrigeration cycle is formed by merging with the high boiling point component and then sucking it into the compressor 1. In such a refrigerating device, a mixture containing a large amount of a refrigerant that has a low boiling point and does not condense at room temperature, in addition to a refrigerant that condenses at room temperature. Since the refrigerant is used, the pressure in the refrigerant circuit rises, especially when starting up, so that it cannot be actually used, There is a drawback that the output pressure becomes abnormally high.The main cause of the abnormally high pressure is that the balance pressure at the time of stop is high, and therefore the compressor discharge amount immediately after start-up becomes very large. Since the 2 evaporator 4 ″ cannot obtain a sufficient cooling power due to the heat capacity of the members and the low boiling point refrigerant components do not stay sufficiently in the main refrigerant circuit, the pressure increase is further promoted.

〔解決しようとする問題点〕[Problems to be solved]

本発明の目的は、起動時における圧力上昇を抑えて安全
なプルダウン運転が行える超低温冷凍装置を提供するこ
とにある。
An object of the present invention is to provide an ultra-low temperature refrigeration system which can suppress a pressure increase at the time of starting and can perform a safe pull-down operation.

〔問題点を解決するための手段および作用〕[Means and Actions for Solving Problems]

本発明は、特にこの種の冷凍装置において、第2凝縮器
と第1膨張弁の間に開閉弁を介設し、圧縮機の起動に際
し該開閉弁を閉止して第1膨張弁を通しての流れを停止
し、分流経路の第2膨張弁だけを絞り装置として使用す
ることにより速かに圧縮機の吸入圧力を低下させ、さら
に第2蒸発器内の温度も所定の低温に下がった時点で、
該開閉弁を開放する構成としたものである。このため、
起動時、圧縮機の吸入ガス量は、第1蒸発器に滞留して
いたものと第2膨張弁を通して流入するものに限定され
るため、起動直後の圧力上昇を小さく抑えることができ
る。つづいて第2蒸発器内の温度が下がって低沸点成分
冷媒が第2凝縮器内に凝縮液化して溜まりだすと、循環
冷媒が高沸点成分側に濃度変化し、高圧圧力はますます
低下して安全運転に入ることができ、所期の目的を達成
することができる。
The present invention particularly relates to a refrigerating apparatus of this type, in which an opening / closing valve is provided between the second condenser and the first expansion valve, and the opening / closing valve is closed at the time of starting the compressor to flow through the first expansion valve. Is stopped, and the suction pressure of the compressor is rapidly reduced by using only the second expansion valve in the diversion path as the expansion device, and when the temperature in the second evaporator also drops to a predetermined low temperature,
The opening / closing valve is opened. For this reason,
At startup, the amount of gas sucked into the compressor is limited to that retained in the first evaporator and that flowing in through the second expansion valve, so the pressure rise immediately after startup can be suppressed to a small level. Then, when the temperature in the second evaporator drops and the low boiling point component refrigerant condenses and liquefies into the second condenser, the circulating refrigerant changes its concentration to the high boiling point component side, and the high pressure decreases further. Can drive safely and achieve the intended purpose.

〔実施例〕〔Example〕

以下、本発明の一実施例を第2図により説明する。圧縮
機1、第1凝縮器2、気液分離器3、第2凝縮器4′、
第1膨張弁6、第1蒸発器7、第2膨張弁8、第2蒸発
器4″を要素とした構成は、第1図の従来装置と同一で
あり、本発明では更に主冷媒回路の気液分離器3、第2
凝縮器4′間に逆止弁9を、第2凝縮器4′、第1膨張
弁6間に開閉弁、例えば電磁弁5を介設している。
An embodiment of the present invention will be described below with reference to FIG. Compressor 1, first condenser 2, gas-liquid separator 3, second condenser 4 ',
The configuration including the first expansion valve 6, the first evaporator 7, the second expansion valve 8, and the second evaporator 4 ″ is the same as that of the conventional device of FIG. 1, and in the present invention, the main refrigerant circuit further includes Gas-liquid separator 3, second
A check valve 9 is provided between the condensers 4 ', and an opening / closing valve, for example, an electromagnetic valve 5 is provided between the second condenser 4'and the first expansion valve 6.

この冷媒回路の運転は、次のように行われる。まず装置
の起動に際して、電磁弁5を閉止しておく。この状態
で、圧縮機1から吐出された冷媒は、一部凝縮器2で液
化し、気液分離器3で高沸点成分の液と低沸点成分のガ
スとに分離される。液は第2膨張弁8を経て第2蒸発器
4″に到り、そこで冷却作用の後、圧縮機1の吸入側に
戻る。以下同様の循環が繰返される。一方、低沸点成分
のガスは、第2蒸発器4″の冷却作用の進展にともな
い、逆止弁9を経て第2凝縮器4′内に液化、貯留され
ていく。ここで、起動時、圧縮機1に吸入される冷媒
は、第1蒸発器7内滞留分と第2膨張弁8通過分に限定
されるため、起動直後の高圧圧力上昇を小さく抑えるこ
とができる。さらに、回路内を循環する冷媒が、低沸点
成分の第2凝縮器滞留によって急速に高沸点成分を多く
含むようになるため高圧圧力の低下を助長し、速かに安
全運転に移ることができる。その後、高圧圧力が十分低
下し、第2蒸発器4″出口温度も所定温度に下がったこ
とを、別途センサ(図示せず)により検知し電磁弁5を
開くことにより、定常運転に入ることができる。なお、
ここで定常運転後、圧縮機1の停止と同時にまたはそれ
より多少早く電磁弁5を閉止するように構成すると、逆
止弁9と電磁弁5の作用で定常運転時に第2凝縮器4′
に滞留していた低沸点冷媒成分をそのまま封止込むこと
ができ、起動時の高圧圧力上昇をより効果的に抑制する
ことができる。こうすることで、従来一般に運転停止時
のバランス圧力低下を狙った膨張タンクを設置不要にす
ることもできる。また、起動運転やON−OFF運転した場
合の冷凍サイクル内冷媒濃度分布の安定化を早めること
もできる。
The operation of this refrigerant circuit is performed as follows. First, when the apparatus is activated, the solenoid valve 5 is closed. In this state, the refrigerant discharged from the compressor 1 is partially liquefied in the condenser 2 and separated in the gas-liquid separator 3 into a liquid having a high boiling point component and a gas having a low boiling point component. The liquid reaches the second evaporator 4 ″ through the second expansion valve 8 where it is cooled and then returned to the suction side of the compressor 1. The same circulation is repeated thereafter. As the cooling action of the second evaporator 4 ″ progresses, it is liquefied and stored in the second condenser 4 ′ through the check valve 9. Here, at the time of start-up, the refrigerant sucked into the compressor 1 is limited to the amount accumulated in the first evaporator 7 and the amount passed through the second expansion valve 8. Therefore, the high pressure increase immediately after the start can be suppressed to be small. . Further, the refrigerant circulating in the circuit rapidly contains a large amount of high-boiling components due to the retention of the low-boiling components in the second condenser, which facilitates the reduction of the high-pressure pressure and enables quick safe operation. . After that, the high pressure is sufficiently lowered and the outlet temperature of the second evaporator 4 ″ is also lowered to a predetermined temperature by a separate sensor (not shown), and the solenoid valve 5 is opened to start the steady operation. You can.
Here, after the steady operation, the solenoid valve 5 is closed at the same time as the compressor 1 is stopped or a little earlier than that, so that the check valve 9 and the solenoid valve 5 act to make the second condenser 4'in the steady operation.
The low-boiling-point refrigerant component retained in the can be sealed as it is, and the increase in high-pressure pressure at startup can be more effectively suppressed. By doing so, it is also possible to eliminate the need for installing an expansion tank, which is generally aimed at reducing the balance pressure when the operation is stopped. In addition, it is possible to speed up stabilization of the refrigerant concentration distribution in the refrigeration cycle during startup operation or ON-OFF operation.

以上、本実施例によれば、第1膨張弁の作用を停止させ
ることで、起動時の高圧圧力上昇を小さく抑えることが
できる、さらに低沸点冷媒成分を第2凝縮器に液として
貯留することにより、高圧圧力の低下を助長することが
できる。また、第2凝縮器入口に逆止弁を設けることに
より停止時のバランス圧力を下げるための膨張タンクを
不要にすることもできるなどの効果がある。
As described above, according to the present embodiment, by stopping the operation of the first expansion valve, it is possible to suppress the increase in the high-pressure pressure at the time of startup, and further to store the low-boiling-point refrigerant component as a liquid in the second condenser. Thus, it is possible to promote the reduction of the high pressure. Further, by providing a check valve at the inlet of the second condenser, it is possible to eliminate the need for an expansion tank for lowering the balance pressure at the time of stop.

〔発明の効果〕〔The invention's effect〕

本発明によれば、起動時の高圧圧力上昇を小さく抑え、
速かに安全運転を行わせるようにすることができる。
According to the present invention, the high pressure increase at startup is suppressed to a small level,
It can be made to drive safely quickly.

【図面の簡単な説明】[Brief description of drawings]

第1図は従来の冷凍装置回路図。第2図は本発明の冷凍
装置回路図である。 図面において、1:圧縮機、2:第1凝縮器、3:気液分離
器、4:二重管形カスケード熱交換器、4′:第2凝縮
器、4″:第2蒸発器、5:電磁弁、6:第1膨張弁、7:第
1蒸発器、8:第2膨張弁、9:逆止弁。
FIG. 1 is a circuit diagram of a conventional refrigeration system. FIG. 2 is a circuit diagram of the refrigerating apparatus of the present invention. In the drawings, 1: compressor, 2: first condenser, 3: gas-liquid separator, 4: double-pipe cascade heat exchanger, 4 ′: second condenser, 4 ″: second evaporator, 5 : Solenoid valve, 6: First expansion valve, 7: First evaporator, 8: Second expansion valve, 9: Check valve.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−208355(JP,A) ─────────────────────────────────────────────────── --Continued from the front page (56) References JP-A-59-208355 (JP, A)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】非共沸混合冷媒を用い、圧縮機、第1凝縮
器、気液分離器、第2凝縮器、第1膨張弁、第1蒸発器
を順次環状に配管接続する主冷媒回路と、前記気液分離
器と前記圧縮機の吸入管路の間を第2膨張弁、および前
記第2凝縮器と熱交換可能な状態にある第2蒸発器を接
続する分流経路とを有するものにおいて、前記第2凝縮
器と第1膨張弁を連絡する管路に開閉弁を介設し、前記
圧縮機起動後、所定の時間該開閉弁を閉止して前記第1
膨張弁から前記圧縮機へ向かう冷媒の流れを止めるべく
したことを特徴とする冷凍装置。
1. A main refrigerant circuit in which a non-azeotropic mixed refrigerant is used and a compressor, a first condenser, a gas-liquid separator, a second condenser, a first expansion valve, and a first evaporator are sequentially connected in an annular pipe. A second expansion valve between the gas-liquid separator and the suction pipe line of the compressor, and a diversion path connecting the second evaporator in a heat exchangeable state with the second condenser. In the above, an on-off valve is provided in a pipe line connecting the second condenser and the first expansion valve, and the on-off valve is closed for a predetermined time after the compressor is activated to close the first
A refrigeration system characterized in that a flow of a refrigerant from an expansion valve toward the compressor is stopped.
【請求項2】前記気液分離器と第2凝縮器を連絡する管
路に、逆止弁を介設した特許請求の範囲第1項記載の冷
凍装置。
2. The refrigerating apparatus according to claim 1, wherein a check valve is provided in a pipe line connecting the gas-liquid separator and the second condenser.
【請求項3】前記圧縮機の停止と同時またはそれより多
少早くに前記開閉弁を閉止するようにした特許請求の範
囲第2項記載の冷凍装置。
3. The refrigerating apparatus according to claim 2, wherein the on-off valve is closed at the same time as or slightly earlier than the stop of the compressor.
JP60215289A 1985-09-28 1985-09-28 Refrigeration equipment Expired - Lifetime JPH0678849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60215289A JPH0678849B2 (en) 1985-09-28 1985-09-28 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60215289A JPH0678849B2 (en) 1985-09-28 1985-09-28 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JPS6277548A JPS6277548A (en) 1987-04-09
JPH0678849B2 true JPH0678849B2 (en) 1994-10-05

Family

ID=16669853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60215289A Expired - Lifetime JPH0678849B2 (en) 1985-09-28 1985-09-28 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JPH0678849B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2451513B (en) 2007-08-02 2012-04-18 Acco Uk Ltd A shredding machine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59208355A (en) * 1983-05-11 1984-11-26 ダイキン工業株式会社 Refrigerator

Also Published As

Publication number Publication date
JPS6277548A (en) 1987-04-09

Similar Documents

Publication Publication Date Title
US3698202A (en) Control system for low temperature refrigeration system
JPH0678849B2 (en) Refrigeration equipment
JP3154043B2 (en) Absorption refrigerator
JPH05302763A (en) Method and device for operating binary refrigerating apparatus
JPH0718608B2 (en) Refrigeration equipment
JP3084650B2 (en) Absorption chiller / heater and its control method
JPS6277550A (en) Refrigerator
JPS6230693Y2 (en)
JPH062992A (en) Refrigerating unit
JPH02195156A (en) Low temperature refrigerator
JPH01107053A (en) Heat pump device
JPS5818061A (en) Refrigerator
JPH06313636A (en) Refrigerating equipment
JPS588953A (en) Refrigerator
JPS60118037A (en) Cooler of motor in refrigerator
JPH0428967A (en) Freezer device
JPS5974465A (en) Cascade type refrigerator
JPH0678850B2 (en) Refrigeration equipment
JPS5833068A (en) Two-stage compression refrigerating cycle
JPH04281164A (en) Refrigerating device
JPH07104058B2 (en) Refrigeration cycle equipment
JPH0539964A (en) Oil-returning circuit for screw compressor in refrigerator
JPS61192873A (en) Enclosed compressor
JPS62158948A (en) Heat pump device
JPH04324071A (en) Refrigerating plant