US20120204521A1 - Medical device package vacuum sealer and burst tester - Google Patents

Medical device package vacuum sealer and burst tester Download PDF

Info

Publication number
US20120204521A1
US20120204521A1 US13/029,003 US201113029003A US2012204521A1 US 20120204521 A1 US20120204521 A1 US 20120204521A1 US 201113029003 A US201113029003 A US 201113029003A US 2012204521 A1 US2012204521 A1 US 2012204521A1
Authority
US
United States
Prior art keywords
medical device
device package
air
nozzle
sealer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/029,003
Inventor
Charlie Webb
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Van der Stahl Scientific Inc
Original Assignee
Van der Stahl Scientific Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Van der Stahl Scientific Inc filed Critical Van der Stahl Scientific Inc
Priority to US13/029,003 priority Critical patent/US20120204521A1/en
Assigned to VAN DER STAHL SCIENTIFIC, INC. reassignment VAN DER STAHL SCIENTIFIC, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WEBB, CHARLIE
Publication of US20120204521A1 publication Critical patent/US20120204521A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B31/00Packaging articles or materials under special atmospheric or gaseous conditions; Adding propellants to aerosol containers
    • B65B31/04Evacuating, pressurising or gasifying filled containers or wrappers by means of nozzles through which air or other gas, e.g. an inert gas, is withdrawn or supplied
    • B65B31/06Evacuating, pressurising or gasifying filled containers or wrappers by means of nozzles through which air or other gas, e.g. an inert gas, is withdrawn or supplied the nozzle being arranged for insertion into, and withdrawal from, the mouth of a filled container and operating in conjunction with means for sealing the container mouth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/82Testing the joint
    • B29C65/8207Testing the joint by mechanical methods
    • B29C65/8246Pressure tests, e.g. hydrostatic pressure tests
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/345Progressively making the joint, e.g. starting from the middle
    • B29C66/3452Making complete joints by combining partial joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • B29C66/431Joining the articles to themselves
    • B29C66/4312Joining the articles to themselves for making flat seams in tubular or hollow articles, e.g. transversal seams
    • B29C66/43121Closing the ends of tubular or hollow single articles, e.g. closing the ends of bags
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/532Joining single elements to the wall of tubular articles, hollow articles or bars
    • B29C66/5326Joining single elements to the wall of tubular articles, hollow articles or bars said single elements being substantially flat
    • B29C66/53261Enclosing tubular articles between substantially flat elements
    • B29C66/53262Enclosing spouts between the walls of bags, e.g. of medical bags
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/10Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces generated by pneumatic or hydraulic pressure
    • G01N3/12Pressure testing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/38Impulse heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/004Preventing sticking together, e.g. of some areas of the parts to be joined
    • B29C66/0042Preventing sticking together, e.g. of some areas of the parts to be joined of the joining tool and the parts to be joined
    • B29C66/0044Preventing sticking together, e.g. of some areas of the parts to be joined of the joining tool and the parts to be joined using a separating sheet, e.g. fixed on the joining tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91421Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature of the joining tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91431Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature the temperature being kept constant over time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • B29L2031/7128Bags, sacks, sachets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • B29L2031/7148Blood bags, medical bags

Abstract

One example embodiment includes a system for sealing and burst testing a medical device package. The system includes a nozzle, where the nozzle is configured to be inserted into a medical device package. The system also includes an air pump, where the air pump is configured to remove air from the medical device package through the nozzle and insert air into the medical device package through the nozzle for burst testing. The system further includes a sealer, where the sealer is configured to seal the medical device package.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • Not applicable.
  • BACKGROUND OF THE INVENTION
  • Packages sealed by medical sealers must meet government standards; therefore, the seal integrity of packages must be routinely tested during production to assure there will be no loss of device sterility. There are different tests for evaluating seal strength and integrity, the most common being peel testing, burst testing and visual testing. Peel testing is a common way to determine seal strength utilizing destructive methodology. Burst testing is another common test methodology for whole pouch testing to understand package limits by sacrificing pouch through air inflation to the point of burst.
  • These test modalities are used when developing the preliminary Design of Experiments for the validation processes, as well as for routine testing for the process of quality assurance. The visual process is used most often as an in-process system of seal inspection as it is non-destructive. Peel testing measures the strength of seal in pounds, or newtons, while visual testing analyzes seal integrity for anomalies such as pleating, cracking, bubbling, etc. Burst testing provides feedback as to the total package value, as seals and material are pushed to discover the weakest point of the pouch.
  • However, basic medical pouch sealers used in the art today do not include a mechanism for thorough evaluation of whole package total strength. Currently, when a medical packager seals a pouch using a medical sealer, he or she must occasionally pull a pouch out of production to test the seal. Testing the seal usually involve taking the pouch to a lab where the material is cut into a one-inch strip and pulling the material apart using, for example, an industrial ASTM F-88 seal strength test to determine the integrity of the seal. This can lead to a lag time in discovering problems in medical device package integrity. In particular, problems may not become apparent for some time which means more medical devices that have to be repackaged and a loss of production time.
  • Accordingly, there is a need in the art for a system that is capable of completing medical device package testing for the whole medical device package. Additionally, there is a need in the art for the system to test the medical device package at the site of sealing. Further, there is a need in the art for the system to discover problems quickly.
  • BRIEF SUMMARY OF SOME EXAMPLE EMBODIMENTS
  • This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential characteristics of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
  • One example embodiment includes a system for sealing and burst testing a medical device package. The system includes a nozzle, where the nozzle is configured to be inserted into a medical device package. The system also includes an air pump, where the air pump is configured to remove air from the medical device package through the nozzle and insert air into the medical device package through the nozzle for burst testing. The system further includes a sealer, where the sealer is configured to seal the medical device package.
  • Another example embodiment includes a system for sealing and burst testing a medical device package. The system includes a nozzle, where the nozzle is configured to be inserted into a medical device package. The system also includes an air pump, where the air pump is configured to remove air from the medical device package through the nozzle and insert air into the medical device package through the nozzle. The system further includes a sealer, where the sealer is configured to seal the medical device package, and a logic device, where the logic device is configured to control the operation to of the air pump and the sealer.
  • Another example embodiment includes a system for sealing and burst testing a medical device package. The system includes a system housing and a sealer supported by the system housing, the sealer forming a seal on a medical device package by localized heating to a temperature that melts at least a portion of the medical device package. The system includes a nozzle supported by the system housing, where the nozzle is configured to be inserted into the medical device package, and an air pump supported by the system housing. The air pump is configured to remove air from the medical device package through the nozzle and insert air into the medical device package through the nozzle. The system also includes a logic device supported by the system housing and coordinating with both the sealer and the air pump. During a sealing operation, the logic device instructs the air pump to remove air from the medical device package. During a burst testing operation, the logic device instructs the air pump to reverse air flow and insert air into the medical device package. The logic device measures the maximum air pressure which is attained within the medical device package during the burst testing operation and compares the maximum air pressure to a predetermined threshold.
  • These and other objects and features of the present invention will become more fully apparent from the following description and appended claims, or may be learned by the practice of the invention as set forth hereinafter.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • To further clarify various aspects of some example embodiments of the present invention, a more particular description of the invention will be rendered by reference to specific embodiments thereof which are illustrated in the appended drawings. It is appreciated that these drawings depict only illustrated embodiments of the invention and are therefore not to be considered limiting of its scope. The invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
  • FIG. 1 illustrates an example of a system for sealing a medical device package;
  • FIG. 2 illustrates a block diagram of the components of the system for sealing a medical device package;
  • FIG. 3 illustrates an example of a medical device package in the process of being sealed;
  • FIG. 4 illustrates an example of a medical device package in the process of being tested; and
  • FIG. 5 is a flow chart illustrating a method of sealing and testing a medical device package.
  • DETAILED DESCRIPTION OF SOME EXAMPLE EMBODIMENTS
  • Reference will now be made to the figures wherein like structures will be provided with like reference designations. It is understood that the figures are diagrammatic and schematic representations of some embodiments of the invention, and are not limiting of the present invention, nor are they necessarily drawn to scale.
  • FIG. 1 illustrates an example of a system 100 for sealing a medical device package. In at least one implementation, the system 100 can be used to seal a medical device package such that the medical device remains sterile until needed in a medical procedure. In particular, the sterilized medical device can be vacuum sealed in a medical device package such that the medical device cannot come in contact with outside contaminates, such as air, bacteria, biological fluids or other contaminates.
  • FIG. 1 shows that the system 100 can include a housing 105. In at least one implementation, the housing 105 is configured to surround the other elements of the system 100. For example, the housing 105 can ensure that electrical elements are properly insulated from one another and from outside electrical signals or from other debris such as dust. Additionally or alternatively, the housing 105 can serve to ensure that the other elements of the system 100 are oriented correctly relative to one another. One of skill in the art will appreciate that the housing 105 can cover all of the other components of the system 100 or only a portion thereof and that the housing 105 need not be exterior to the other components of the system 100.
  • FIG. 1 also shows that the system 100 can include a sealer 110. In at least one implementation, the sealer 110 is configured to seal the medical device package. In particular, the sealer 110 can melt a portion of the medical device package to provide a seal that is air tight and water resistant. As used in the specification and the claims the term air tight shall mean that the seal does not allow air to pass through the seal. I.e., the seal allows the medical device package to maintain vacuum pressure, or other non-ambient air pressure within the medical device package.
  • FIG. 1 shows that the sealer 110 can include a jaw mechanism 115. In at least one implementation, the jaw mechanism 115 can include an upper jaw and a lower jaw. A solenoid, pneumatic piston or other device can engage the jaw mechanism 115 to pull the upper jaw down onto the lower jaw, or vice versa, in order to apply the necessary pressure to the flexible package or pouch. The pressure exerted by the jaw mechanism 115 can be controlled by a control knob, controlled electronically or controlled in some other manner to ensure that the pressure is consistent.
  • In at least one implementation, the sealer 110 can also include a heating element. The heating element can flash heat to a predetermined temperature to melt at least a portion of the packaging material. The heating element can maintain the temperature for a specific time to create a bond among the two sides of the medical device package. Pieces of Teflon, Sarcon, and glass cloth can be disposed on either side of the jaw mechanism 115 to prevent the medical device packaging materials from sticking to the jaw mechanism 115.
  • FIG. 1 further shows that the system 100 can include a nozzle 120. In at least one implementation, the nozzle 120 is configured to be inserted into a medical device package. The nozzle 120 can then be used to remove air from the medical device package or insert air into the medical device package, as described below. In particular, the medical device package can be substantially sealed then the nozzle 120 can be inserted into the unsealed portion of the medical device package. The air can then be removed during a sealing operation or inserted during a burst testing operation, as described below.
  • FIG. 1 also shows that the system 100 can include a data port 125. In at least one implementation, the data port 125 can be used to transmit data between the system 100 and an external system. For example, the data port 125 can be used to transmit burst testing results. Additionally or alternatively, the data port 125 can be used to receive software updates or to change settings of the system 100.
  • FIG. 1 further shows that the system 100 can include a display 130. In at least one implementation, the display 130 can provide status updates to a user. For example, the display 130 can display the results of recent burst testing operations. Additionally or alternatively, the display 130 can be used to change settings of the system 100. For example, the display 130 can include a touch screen display that is allows a user to look up and modify settings of the system 100.
  • FIG. 2 illustrates a block diagram of the components of the system 100 for sealing a medical device package. In at least one implementation, the components of the system 100 can be used to seal a medical device package, as described above. One of skill in the art will appreciate that the components can be combined, separated or connected in alternative schemes without restriction, unless otherwise stated in the specification or the claims.
  • FIG. 2 shows that the system 100 can include a logic device 205. In at least one implementation, a logic device 205 can include any device capable of performing logic functions. For example, the logic device 205 can perform Boolean logic or can produce a pre-determined output based on input. The logic device 205 can include ROM memory, programmable logic device (PLD), programmable array logic (PAL), generic array logic (GAL), complex programmable logic device (CPLD), field programmable gate arrays (FPGA), logic gates, processors or any other device capable of performing logic functions.
  • In at least one implementation, the logic device 205 can control the functions of the other components of the system 100. In particular, the logic device 205 can ensure that the components of the system 100 perform their desired function at the appropriate time and in the appropriate manner. The timing of functions can be critical to ensure that the medical device package is sealed properly to keep the medical device stored in a sanitary condition.
  • FIG. 2 shows that the logic device 205 is connected to the sealer 110. In at least one implementation, the sealer 110 is configured to seal the medical device packaging, as described above. For example, the medical device packaging can be partially or completely sealed prior to insertion of the medical device. The sealer 110 can then be used to complete the seal of the medical device packaging after the medical device has been inserted.
  • In at least one implementation, the logic device 205 can control the operation of the sealer 110. In particular, after the air is removed from the medical device package, the logic device 205 can control the jaw mechanism 115 to hold the medical device package closed. The logic device 205 can then turn on the heating element 210 to complete the seal. After the seal has set, the logic device 205 can open the jaw mechanism 115 to release the medical device package. The logic device 205 can use a sensor to determine when to move from one step to the next or can time each step to occur at the appropriate time.
  • FIG. 2 also shows that the system 100 can include a nozzle insertion device 215. In at least one implementation, the nozzle insertion device 215 can move the nozzle 120 into and out of the medical device package. One of skill in the art will appreciate that the nozzle 120 insertion or removal can be accomplished by moving the nozzle or the medical device package or in any other manner. For example, the nozzle 120 can be moved while the medical device package is held stationary by the jaw mechanism 115. Alternatively, the jaw mechanism 110 or an operator can move the medical device package onto the nozzle 120.
  • FIG. 2 shows that the logic device 205 can be connected to the nozzle insertion device 215. In at least one implementation, the logic device 205 can control the insertion or removal of the nozzle 120 into or out of the medical device package respectively. For example, when the medical device package is in place, the logic device 205 can move the nozzle 120 using the nozzle insertion device 215 such that a portion of the nozzle 120 is within the medical device package and capable of allowing air to be removed from the medical device package, as described below. Alternatively, when the air has been removed from the medical device package, the logic device 205 can instruct the nozzle insertion device 215 to remove the nozzle 120 from the medical device package so that the sealer 110 can seal the medical device package.
  • FIG. 2 further shows that the system 100 can include an air pump 220. In at least one implementation, the air pump 220 can be connected to the nozzle 120 for removing air from the medical device packaging. For example, the air pump 220 can remove air from the medical device package before the medical device package is sealed. Additionally or alternatively, the air pump 220 can insert air into the medical device package in order to determine if the seal meets the required safety standards.
  • In at least one implementation, the logic device 205 can be capable of controlling the air pump 220. In particular, the logic device 205 can pump air from the medical device package during a sealing operation. Alternatively, the logic device 205 can reverse the air flow through the nozzle 120 such that the air pump 220 is inserting air into the medical device package during a burst testing operation.
  • FIG. 2 shows that the air pump 220 can include an air pressure sensor 225. In at least one implementation, the air pressure sensor 225 can measure the air pressure within the medical device package. For example, if the air pump 220 is removing air form the medical device package during a sealing operation the air pressure sensor 225 can determine when an acceptable amount of air has been removed. Additionally or alternatively, the air pressure sensor 225 can determine the maximum air pressure attained within the medical device package before the package bursts during a testing operation.
  • In at least one implementation, the logic device 205 can compare the maximum air pressure attained within the medical device package to determine if the seal conforms to the required standards. For example, the air pressure required to burst the package can be compared to the ASTM F1140 requirements for Internal Pressurization Failure Resistance of Unrestrained Packages and or the ISO 11607 standard for packaging for terminally sterilized medical devices which references are incorporated herein by reference in their entirety. If the maximum air pressure indicates that the seal was inadequate, the logic device 205 can stop operation of the system 100 and alert a user so that the user can determine if the seals are being created adequately or if changes or repairs need to be made.
  • FIG. 2 further shows that the system 100 can include a memory 230. In at least one implementation, the memory 230 can include any device capable of storing data in computer readable form. The memory 230 can include volatile memory and non-volatile memory. Volatile memory can include dynamic random access memory (DRAM), static random access memory (SRAM), thyristor random access memory (T-RAM), zero capacitor random access memory (Z-RAM), twin transistor random access memory (TTRAM), delay line memory, selectron tube and williams tube. Non-volatile memory can include read-only memory (ROM), programmable read only memory (PROM), erasable programmable read only memory (EPROM), electrically erasable programmable read only memory (EEPROM), flash memory, ferroelectric random access memory (FeRAM), magnetoresistive random access memory (MRAM), phase change random access memory (PRAM, aka PCM, PRAM, PCRAM, ovonic unified Memory, chalcogenide random access memory and C-RAM), conductive-bridging random access memory (CBRAM aka. programmable metallization cell or PMC), silicon-oxide-nitride-oxide-silicon (SONOS), resistive random-access memory (RRAM), racetrack memory, nano random access memory (NRAM), millipede, drum memory, magnetic core memory, plated wire memory, bubble memory and twistor memory.
  • In at least one implementation, the memory 230 can be used to store results of the comparisons done by the logic device 205. I.e., the memory 230 can store the results of recent tests to be accessed as desired by a user. Additionally or alternatively, the memory 230 can store the required standards, against which the measured air pressure will be compared by the logic device 205.
  • FIG. 3 illustrates an example of a medical device package 305 in the process of being sealed. In at least one implementation, the medical device package 305 is configured to allow a medical device 310 to be stored in a sterile environment. In particular, the sterilized medical device 310 can be vacuum sealed in the medical device package 305 such that the medical device 310 cannot come in contact with outside contaminates, such as air, bacteria, biological fluids or other contaminates.
  • FIG. 3 shows that the medical device package 305 can include presealed portions 315. In at least one implementation, the presealed portions 315 can be sealed prior to the insertion of the medical device 310 into the medical device package 305. Additionally or alternatively, the presealed portions 315 can be sealed after the medical device 310 has been inserted into the medical device package 305.
  • FIG. 3 also shows that the medical device package 305 can be placed with the nozzle 120 within the medical device package 305. In particular, the nozzle 120 can be placed within the medical device package 305 to remove the air from the medical device package 305 during a sealing operation. The nozzle 120 can be flat or substantially flat in order to allow the medical device package 305 to be sealed, as described above.
  • FIG. 3 further shows that the jaw mechanism 115 can be closed around a portion of the medical device package 305. In at least one implementation, the jaw mechanism 115 can hold the unsealed portion of the medical device package 305 during air removal and sealing. This can allow the air within the medical device package 305 to be removed through the nozzle 120. I.e., the nozzle 120 remains the only open area through which air can enter or exit the medical device package 305. The unsealed portion of the medical device package 305 can then be sealed using a heating mechanism, as described above.
  • FIG. 4 illustrates an example of a medical device package 305 in the process of being tested. In at least one implementation, the test determines the pressure at which any portion of the seals in the medical device package 305 burst or fail. I.e., the pressure at which any portion of the seals burst is determined and compared against applicable standards to ensure that the seals are sufficient to protect the medical device 310 against contaminates. One of skill in the art will appreciate that the burst testing operation can be completed immediately after the sealing operation. That is, the same system can be used to seal the medical device package 305 and test the seals.
  • FIG. 4 shows that the medical device package 305 can remain with the nozzle 120 within the medical device package 305. In at least one implementation, the nozzle 120 can remain within the medical device package 305 to insert air into the medical device package 305 during a burst testing operation. I.e., the nozzle 120 can be used to insert air into the medical device package 305, until the medical device package 305 bursts and the maximum air pressure attained can be measured and compared to the applicable standards for a burst testing operation.
  • FIG. 4 further shows that the jaw mechanism 115 can be opened during the testing operation. In at least one implementation, the jaw mechanism 115 can be opened to ensure that any resistance of the seals to bursting is not enhanced by the closed jaw mechanism 115. I.e., the burst testing operation can be performed with the jaw mechanism 115 open to ensure that the seals alone are tested.
  • In at least one implementation, the air pressure can be monitored during insertion of the air into the medical device package 305. The maximum pressure attained can then be compared to a minimum acceptable threshold. If the maximum pressure meets or exceeds the minimum acceptable threshold, the seal is deemed to be acceptable. If the maximum pressure is lower than the minimum acceptable threshold, the seal is deemed unacceptable and the operator is alerted to the failure.
  • FIG. 5 is a flow chart illustrating a method 500 of sealing and testing a medical device package. In at least one implementation, the medical device package can be tested to ensure that it conforms to governmental regulations or other packaging requirements. The testing can be done at regular intervals or when there is need for immediate testing. One of skill in the art will appreciate that the method 500 can be used with the system 100 of FIG. 1; however, the method 500 can be used with a system other than the system 100 of FIG. 1.
  • FIG. 5 shows that the method 500 can include sealing a medical device package 505. In at least one implementation, the medical device package can have the air removed before the sealing operation. Removing the air can help thwart the possible decay of imbedded drugs on the medical device by removing the ambient air that would contact the medical device placed within the medical device package. In particular, the lack of air can prevent unwanted bursting or popping of the medical device package. Additionally or alternatively, the lack of air can prevent pathogens from growing within the medical device package.
  • FIG. 5 also shows that the method 500 can include inflating the medical device package 510. In at least one implementation, the medical device package can be inflated until it bursts. The medical device package can be inflated using a nozzle left in place when the medical device package is sealed. Additionally or alternatively, a nozzle can be inserted into the medical device package for the purpose of inflating the package.
  • FIG. 5 further shows that the method 500 can include determining whether the burst pressure exceeds the maximum allowable threshold 515. In at least one implementation, the air pressure within the medical device package can be monitored while air is being added to the medical device package with the burst pressure indicating the maximum air pressure attained within the medical device package.
  • FIG. 5 also shows that the method 500 can include deeming the test successful if the burst pressure is equal to or exceeds the maximum allowable threshold 520. In contrast, the method 500 can include deeming the test a failure if the burst pressure does not exceed the maximum allowable threshold 525. In at least one implementation, if the test is a failure, a user can be notified or other corrective action can be taken to ensure that the medical device packaging is being properly sealed.
  • One of skill in the art will appreciate that, for this and other processes and methods disclosed herein, the functions performed in the processes and methods may be implemented in differing order. Furthermore, the outlined steps and operations are only provided as examples, and some of the steps and operations may be optional, combined into fewer steps and operations, or expanded into additional steps and operations without detracting from the essence of the disclosed embodiments.
  • The present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.

Claims (20)

1. A system for sealing and burst testing a medical device package, the system comprising:
a nozzle, wherein the nozzle is configured to be inserted into a medical device package;
an air pump, wherein the air pump is configured to:
remove air from the medical device package through the nozzle; and
insert air into the medical device package through the nozzle for burst testing; and
a sealer, wherein the sealer is configured to seal the medical device package.
2. The system of claim 1 further comprising a sensor, wherein the sensor is configured to measure the air pressure within the medical device package.
3. The system of claim 2, wherein the sensor instructs the sealer to seal the medical device package when the air pressure goes below a threshold pressure.
4. The system of claim 2, wherein the sensor is configured to measure the air pressure at which the medical device package bursts.
5. The system of claim 1, wherein the nozzle is configured to be retracted from the medical device package prior to the sealer sealing at least a portion of the medical device package.
6. The system of claim 1, wherein the air pump is further configured to reverse the direction of air flow.
7. The system of claim 1, wherein the air pump is configured to insert air into the medical device package until the medical device package bursts.
8. The system of claim 1, wherein the sealer is configured to melt at least a portion of the medical device package.
9. The system of claim 1 further comprising an insertion device, wherein the insertion device is configured to insert the nozzle into the unsealed medical device package.
10. The system of claim 9, wherein the insertion device is configured to insert the nozzle into the sealed medical device package.
11. A system for sealing and burst testing a medical device package, the system comprising:
a nozzle, wherein the nozzle is configured to be inserted into a medical device package,
an air pump, wherein the air pump is configured to:
remove air from the medical device package through the nozzle; and
insert air into the medical device package through the nozzle;
a sealer, wherein the sealer is configured to seal the medical device package; and
a logic device, wherein the logic device is configured to control the operation to of the air pump and the sealer.
12. The system of claim 11, wherein the logic device includes a processor.
13. The system of claim 11, wherein the logic device instructs the air pump to remove air from the medical device package during a sealing operation.
14. The system of claim 13, wherein the air pump continues to remove air from the medical device package until the air pressure drops below a predetermined threshold.
15. The system of claim 11, wherein the logic device is configured to notify an operator if the air pressure fails to drop below the predetermined threshold after a certain period of time.
16. A system for sealing and burst testing a medical device package, the system comprising:
a system housing;
a sealer supported by the system housing, the sealer forming a seal on a medical device package by localized heating to a temperature that melts at least a portion of the medical device package;
a nozzle supported by the system housing, wherein the nozzle is configured to be inserted into the medical device package,
an air pump supported by the system housing, wherein the air pump is configured to:
remove air from the medical device package through the nozzle; and
insert air into the medical device package through the nozzle; and
a logic device supported by the system housing and coordinating with both the sealer and the air pump;
wherein, during a sealing operation, the logic device instructs the air pump to remove air from the medical device package;
wherein, during a burst testing operation, the logic device instructs the air pump to reverse air flow and insert air into the medical device package;
wherein the logic device measures the maximum air pressure which is attained within the medical device package during the burst testing operation; and
wherein the logic device compares the maximum air pressure to a predetermined threshold.
17. The system of claim 16, wherein the logic device stops operation and notifies an operator if the maximum air pressure is below the predetermined threshold.
18. The system of claim 16, wherein the logic device is configured to perform a burst testing operation after the system has performed a predetermined number of sealing operations without a burst testing operation.
19. The system of claim 16 further comprising a memory, wherein the memory is configured to record the results of prior burst testing operations.
20. The system of claim 16 further comprising an output port, wherein the output port is configured to transmit the result of the comparison by the logic device of the maximum air pressure to the predetermined threshold.
US13/029,003 2011-02-16 2011-02-16 Medical device package vacuum sealer and burst tester Abandoned US20120204521A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/029,003 US20120204521A1 (en) 2011-02-16 2011-02-16 Medical device package vacuum sealer and burst tester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/029,003 US20120204521A1 (en) 2011-02-16 2011-02-16 Medical device package vacuum sealer and burst tester

Publications (1)

Publication Number Publication Date
US20120204521A1 true US20120204521A1 (en) 2012-08-16

Family

ID=46635813

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/029,003 Abandoned US20120204521A1 (en) 2011-02-16 2011-02-16 Medical device package vacuum sealer and burst tester

Country Status (1)

Country Link
US (1) US20120204521A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170360566A1 (en) * 2016-02-28 2017-12-21 Arthrosurface, Inc. Devices, Apparatuses, Kits, and Methods for Anchoring a Suture to a Bone
US20180327124A1 (en) * 2016-01-25 2018-11-15 Boe Technology Group Co., Ltd. External pumping vacuum packaging machine and operation method thereof
FR3112985A1 (en) * 2020-08-03 2022-02-04 Maco Pharma Apparatus for welding a pocket
CN115009579A (en) * 2022-05-25 2022-09-06 东莞市华美食品有限公司 Food safety intelligent detection system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4205551A (en) * 1979-04-02 1980-06-03 The Aro Corporation Seal tester
US4930344A (en) * 1989-03-30 1990-06-05 Philip Morris Incorporated Instrument for measuring package seals
US6308556B1 (en) * 1999-12-17 2001-10-30 Atc, Inc. Method and apparatus of nondestructive testing a sealed product for leaks
US6763728B1 (en) * 2000-10-26 2004-07-20 Arizant Healthcare Inc. Evaluation of burst test results
US7036287B1 (en) * 2002-07-02 2006-05-02 Van Der Stahl Scientific, Inc. Method and device for inspecting and monitoring the seal integrity of sterile packages
US20070060791A1 (en) * 2005-05-06 2007-03-15 Melissa Kubach Computer systems and software for operating an endoscope integrity tester
US20080247682A1 (en) * 2007-04-03 2008-10-09 Pouch Pac Innovations, Llc Stand-up flexible pouch and method of forming
US20090095369A1 (en) * 2005-06-16 2009-04-16 Murray R Charles Apparatus and method of filling a flexible pouch with extended shelf life
US7624623B2 (en) * 2005-01-10 2009-12-01 Mocon, Inc. Instrument and method for detecting leaks in hermetically sealed packaging
US8196454B2 (en) * 2009-12-11 2012-06-12 Hamilton Associates, Inc. Portable multi-function system for testing protective devices

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4205551A (en) * 1979-04-02 1980-06-03 The Aro Corporation Seal tester
US4930344A (en) * 1989-03-30 1990-06-05 Philip Morris Incorporated Instrument for measuring package seals
US6308556B1 (en) * 1999-12-17 2001-10-30 Atc, Inc. Method and apparatus of nondestructive testing a sealed product for leaks
US6763728B1 (en) * 2000-10-26 2004-07-20 Arizant Healthcare Inc. Evaluation of burst test results
US7036287B1 (en) * 2002-07-02 2006-05-02 Van Der Stahl Scientific, Inc. Method and device for inspecting and monitoring the seal integrity of sterile packages
US7624623B2 (en) * 2005-01-10 2009-12-01 Mocon, Inc. Instrument and method for detecting leaks in hermetically sealed packaging
US20070060791A1 (en) * 2005-05-06 2007-03-15 Melissa Kubach Computer systems and software for operating an endoscope integrity tester
US20090095369A1 (en) * 2005-06-16 2009-04-16 Murray R Charles Apparatus and method of filling a flexible pouch with extended shelf life
US20080247682A1 (en) * 2007-04-03 2008-10-09 Pouch Pac Innovations, Llc Stand-up flexible pouch and method of forming
US8196454B2 (en) * 2009-12-11 2012-06-12 Hamilton Associates, Inc. Portable multi-function system for testing protective devices

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"ASTM-F1140 STANDARD TEST METHODS FOR INTERNAL PRESSURIZATION FAILURE RESISTANCE OF UNRESTRAINED PAAGES OVERVIEW:", 2010, Life Science Outsourcing, Inc., Pages 1-3. *
Brochure for Watson Marlow Flexicon diving nozzle model DN20, published 06/19/2009 *
Daphne Allen "Validating Heat Sealers", June 8, 1998, Pharmaceutical & Medical Packaging News.com, Pages 1-3. *
Nishibe brochure, downloaded 05/21/2014 *
Stephen Franks,"SEAL STRENGH AND PACKAGE INTEGRITY- The Basics of Medical Package Testing", 2006, TM Electrinics INC., 1-10. *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180327124A1 (en) * 2016-01-25 2018-11-15 Boe Technology Group Co., Ltd. External pumping vacuum packaging machine and operation method thereof
US20170360566A1 (en) * 2016-02-28 2017-12-21 Arthrosurface, Inc. Devices, Apparatuses, Kits, and Methods for Anchoring a Suture to a Bone
US10709562B2 (en) * 2016-02-28 2020-07-14 Arthrosurface, Inc. Devices, apparatuses, kits, and methods for anchoring a suture to a bone
FR3112985A1 (en) * 2020-08-03 2022-02-04 Maco Pharma Apparatus for welding a pocket
WO2022029040A1 (en) 2020-08-03 2022-02-10 Maco Pharma Device for welding a pouch
CN115009579A (en) * 2022-05-25 2022-09-06 东莞市华美食品有限公司 Food safety intelligent detection system

Similar Documents

Publication Publication Date Title
US20120204521A1 (en) Medical device package vacuum sealer and burst tester
JPH0835906A (en) Method and equipment for testing hollow container
US9528905B2 (en) Test system and method for flexible containers
US5488811A (en) On-line air filter integrity testing apparatus
CN104568347B (en) Testing device and testing method for testing leakage of small cigarette case
KR102574722B1 (en) Dynamic vacuum decay leak detection method and apparatus
US4205551A (en) Seal tester
JP2007047119A (en) Leak inspection method and leak inspection device of bag with spout
JP5049199B2 (en) External pressure detection type leak inspection device and leak inspection method using the same
US9697757B2 (en) Method and system of determining a location of a line fault of a panel
WO2021113664A1 (en) Apparatus and method for testing package integrity
BR112018016698B1 (en) TEST METHODOLOGY TO REDUCE FALSE REJECTIONS AND INCREASE THE NUMBER OF CONTAINERS TESTED FOR WARMTHING
CN204269323U (en) A kind of proving installation tested box cigarette small packaging and leak
JP3854284B2 (en) Bag-making seal inspection device
CN212674388U (en) Test equipment
WO2022138971A1 (en) Leak test condition design method, leak test condition design device, leak testing method, and leak testing device
JP7445439B2 (en) air leak test equipment
JP2006053068A (en) Leak test method for inlet sealed section of bag container
US20180328813A1 (en) Method And Device For Sealing Medical Packages With Integrated Real-Time Seal Integrity Vacuum Pressure Decay Testing
EP3827240A1 (en) Device and method for automated tightness testing and inertisation of containers or similar receptacles having a cover and/or valve
CN218765864U (en) Sealing detection equipment
US20130200769A1 (en) Washer machine
KR101416620B1 (en) Leakage test apparatus using ultrasonic and air pressure
JPH07294366A (en) Leak test device for bag shape goods and its usage
BE1025397B1 (en) METHOD AND DEVICE FOR PRESSURE VALVE PACKING OF COFFEE PRODUCTS AND TEST PROTOCOL FOR INTERGRATION OF THE PRESSURE VALVE IN THE PACK

Legal Events

Date Code Title Description
AS Assignment

Owner name: VAN DER STAHL SCIENTIFIC, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WEBB, CHARLIE;REEL/FRAME:025820/0325

Effective date: 20110216

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION