US20120165349A1 - Phenyl-Substituted Pyrazolopyrimidines - Google Patents

Phenyl-Substituted Pyrazolopyrimidines Download PDF

Info

Publication number
US20120165349A1
US20120165349A1 US13/410,867 US201213410867A US2012165349A1 US 20120165349 A1 US20120165349 A1 US 20120165349A1 US 201213410867 A US201213410867 A US 201213410867A US 2012165349 A1 US2012165349 A1 US 2012165349A1
Authority
US
United States
Prior art keywords
compounds
formula
salts
solvates
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/410,867
Inventor
Martin Hendrix
Frank-Gerhard Böss
Nils Burkhardt
Christina Erb
Adrian Tersteegen
Marja Van Kampen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boehringer Ingelheim International GmbH
Original Assignee
Boehringer Ingelheim International GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boehringer Ingelheim International GmbH filed Critical Boehringer Ingelheim International GmbH
Priority to US13/410,867 priority Critical patent/US20120165349A1/en
Publication of US20120165349A1 publication Critical patent/US20120165349A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia

Definitions

  • the invention relates to novel phenyl-substituted pyrazolopyrimidines, process for their preparation, and their use for producing medicaments for improving perception, concentration, learning and/or memory.
  • adenylate cyclases and guanylate cyclases brings about the cyclization of respectively ATP and GTP to 5′-3′ cyclic adenosine monophosphate (cAMP) and 5′-3′ cyclic guanosine monophosphate (cGMP).
  • cAMP and cGMP are important second messengers and therefore play a central role in cellular signal transduction cascades. Each of them reactivates inter alia, but not exclusively, protein kinases.
  • the protein kinase activated by cAMP is called protein kinase A (PKA), and the protein kinase activated by cGMP is called protein kinase G (PKG).
  • PKA and PKG are able in turn to phosphorylate a number of cellular effector proteins (e.g. ion channels, G-protein-coupled receptors, structural proteins). It is possible in this way for the second messengers cAMP and cGMP to control a wide variety of physiological processes in a wide variety of organs. However, the cyclic nucleotides are also able to act directly on effector molecules.
  • cGMP is able to act directly on ion channels and thus is able to influence the cellular ion concentration (review in: Wei et al., Frog. Neurobiol., 1998, 56: 37-64).
  • the phosphodiesterases (PDE) are a control mechanism for controlling the activity of cAMP and cGMP and thus in turn these physiological processes. PDEs hydrolyze the cyclic monophosphates to the inactive monophosphates AMP and GMP. At least 21 PDE genes have now been described ( Exp. Opin. Investig. Drugs 2000, 9, 1354-3784).
  • PDE1A and PDE1B are differentiated by letters (e.g. PDE1A and PDE1B). If different splice variants within a gene also occur, this is then indicated by an additional numbering after the letter (e.g. PDE1A1).
  • Murine PDE9A was cloned and sequenced in 1998 by Soderling et al. ( J. Biol. Chem., 1998, 273 (19): 1555315558). This has, like the human form, high affinity for cGMP with a Km of 70 nM. Particularly high expression was found in the mouse kidney, brain, lung and heart. Murine PDE9A is not inhibited by IBMX in concentrations below 200 ⁇ M either; the IC 50 for zaprinast is 29 ⁇ M (Soderling et al., J. Biol. Chem., 1998, 273 (19): 15553-15558). It has been found that PDE9A is strongly expressed in some regions of the rat brain.
  • hippocampus hippocampus
  • cortex basal ganglia
  • basal forebrain Basal forebrain
  • PDE9A inhibitors may therefore lead to an increase in the baseline cGMP concentration. This increase in the baseline cGMP concentration surprisingly led to an improvement in learning and memory in the social recognition test.
  • WO 98/40384 discloses pyrazolopyrimidines which are PDE1, 2 and 5 inhibitors and can be employed for the treatment of cardiovascular and cerebrovascular disorders and disorders of the urogenital system.
  • CH 396 924, CH 396 925, CH 396 926, CH 396 927, DE 1 147 234, DE 1 149 013, GB 937,726 describe pyrazolopyrimidines which have a coronary-dilating effect and which can be employed for the treatment of disturbances of myocardial blood flow.
  • DE 2 408 906 describes styrenepyrazolopyrimidines which can be employed as anti-microbial and antiinflammatory agents for the treatment of, for example, edema.
  • the present invention relates to compounds of the formula
  • Compounds of the invention are the compounds of the formula (I) and the salts, solvates and solvates of the salts thereof; the compounds which are encompassed by formula (I) and have the formulae mentioned hereinafter and the salts, solvates and solvates of the salts thereof, and the compounds which are encompassed by formula (I) and are mentioned hereinafter as exemplary embodiments and the salts, solvates and solvates of the salts thereof, where the compounds which are encompassed by formula (I) and are mentioned hereinafter are not already salts, solvates and solvates of the salts.
  • the compounds of the invention may, depending on their structure, exist in stereo-isomeric forms (enantiomers, diastereorners).
  • the invention therefore relates to the enantiomers or diastereomers and respective mixtures thereof.
  • the stereoisomerically pure constituents can be isolated in a known manner from such mixtures of enantiomers and/or diastereorners.
  • Salts which are preferred for the purposes of the invention are physiologically acceptable salts of the compounds of the invention.
  • Physiologically acceptable salts of the compounds (I) include acid addition salts of mineral acids, carboxylic acids and sulfonic acids, e.g. salts of hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, methanesulfonic acid, ethanesulfonic acid, toluenesulfonic acid, benzenesulfonic acid, naphthalenedisulfonic acid, acetic acid, propionic acid, lactic acid, tartaric acid, malic acid, citric acid, fumaric acid, maleic acid and benzoic acid.
  • mineral acids e.g. salts of mineral acids, carboxylic acids and sulfonic acids
  • Physiologically acceptable salts of the compounds (1) also include salts of conventional bases such as, by way of example and preferably, alkali metal salts (e.g. sodium and potassium salts), alkaline earth metal salts (e.g. calcium and magnesium salts) and ammonium salts derived from ammonia or organic amines having 1 to 16 C atoms, such as, by way of example and preferably, ethylamine, diethylamine, triethylamine, ethyldiisopropylamine, monoethanolamine, diethanolamine, triethanolamine, dicyclohexylamine, dimethylaminoethanol, procaine, dibenzylamine, N-methylmorpholine, dehydroabietylamine, arginine, lysine, ethylenediamine and methylpiperidine.
  • alkali metal salts e.g. sodium and potassium salts
  • alkaline earth metal salts e.g. calcium and magnesium salts
  • Solvates refers for the purposes of the invention to those forms of the compounds which form, in the solid or liquid state, a complex by coordination with solvent molecules. Hydrates are a specific form of solvates in which the coordination takes place with water.
  • the present invention also encompasses prodrugs of the compounds of the invention.
  • prodrugs encompasses compounds which themselves may be biologically active or inactive but are converted (for example by metabolism or hydrolysis) into compounds of the invention during their residence time in the body.
  • Halogen is for fluorine, chlorine, bromine and iodine. Fluorine, chlorine, bromine are preferred, and fluorine and chlorine are particularly preferred.
  • radicals in the compounds of the invention are optionally substituted, unless otherwise specified substitution by up to three identical or different substituents is preferred.
  • the compounds of the invention may also be in the form of tautomers as shown by way of example below:
  • a further embodiment of the invention relates to compounds of the formula (I), in which
  • a further embodiment of the invention relates to compounds of the formulae (I) and (Ia),
  • Suitable for the first step of process [A] and of process [C] are inert organic solvents which are not changed under the reaction conditions.
  • These preferably include ethers such as, for example, diethyl ether, dioxane, tetrahydrofuran or glycol dimethyl ether, or toluene or pyridine. It is likewise possible to employ mixtures of the solvents mentioned. Tetrahydrofuran, toluene or pyridine are particularly preferred.
  • Suitable bases are in general alkali metal hydrides such as, for example, sodium hydride, or cyclic amines such as, for example, piperidine, pyridine, dimethylamino-pyridine (DMAP), or C 1 -C 4 -alkylamines such as, for example, triethylamine.
  • alkali metal hydrides such as, for example, sodium hydride
  • cyclic amines such as, for example, piperidine, pyridine, dimethylamino-pyridine (DMAP), or C 1 -C 4 -alkylamines such as, for example, triethylamine.
  • DMAP dimethylamino-pyridine
  • C 1 -C 4 -alkylamines such as, for example, triethylamine.
  • Sodium hydride, pyridine and/or diethylaminopyridine are preferred.
  • the base is generally employed in an amount of from l mol to 4 mol, preferably from 1.2 mol to 3 mol, in each case based on 1 mol of the compounds of the formula (II) or (V).
  • reaction is carried out in pyridine, to which a catalytic amount of DMAP is added. It is also possible where appropriate to add toluene.
  • the reaction temperature can generally be varied within a relatively wide range. It is generally in a range from ⁇ 20° C. to +200° C., preferably from 0° C. to +100° C.
  • Solvents suitable for the cyclization in the second step of processes [A] and [C] are the usual organic solvents. These preferably include alcohols such as methanol, ethanol, propanol, isopropanol, n-butanol or tert-butanol, or ethers such as tetrahydrofuran or dioxane, or dimethylformamide or dimethyl sulfoxide. Alcohols such as methanol, ethanol, propanol, isopropanol or tert-butanol are particularly preferably used. It is likewise possible to employ mixtures of the solvents mentioned.
  • Bases suitable for the cyclization in the second step of processes [A] and [C] are the usual inorganic bases.
  • These preferably include alkali metal hydroxides or alkaline earth metal hydroxides such as, for example, sodium hydroxide, potassium hydroxide or barium hydroxide, or alkali metal carbonates such as sodium or potassium carbonate or sodium bicarbonate, or alkali metal alcoholates such as sodium methanolate, sodium ethanolate, potassium methanolate, potassium ethanolate or potassium tert-butanolate. Potassium carbonate, sodium hydroxide and potassium tert-butanolate are particularly preferred.
  • the base for carrying out the cyclization is generally employed in an amount of from 2 mol to 6 mol, preferably from 3 mol to 5 mol, in each case based on 1 mol of the compounds of the formula (IV) or (VI).
  • Oxidizing agents suitable for the cyclization in the second step of process [C] are, for example, hydrogen peroxide or sodium borate. Hydrogen peroxide is preferred.
  • the cyclization in processes [A], [B] and [C] is generally carried out in a temperature range from 0° C. to +160° C., preferably at the boiling point of the particular solvent.
  • the cyclization is generally carried out under atmosphere pressure. It is, however, also possible to carry out the process under elevated pressure or reduced pressure (e.g. in a range from 0.5 to 5 bar).
  • Solvents suitable for process [B] are the alcohols listed above for the second step of processes [A) and [C], with preference for ethanol.
  • Bases suitable for process [B] are alkali metal hydrides such as, for example, sodium or potassium hydride, or alkali metal alcoholates such as, for example, sodium methanolate, ethanolate, isopropoxide or potassium tert-butoxide.
  • alkali metal hydrides such as, for example, sodium or potassium hydride
  • alkali metal alcoholates such as, for example, sodium methanolate, ethanolate, isopropoxide or potassium tert-butoxide.
  • Sodium hydride is preferred.
  • the base is employed in an amount of from 2 mol to 8 mol, preferably from 3 mol to 6 mol, in each case based on I mol of the compounds of the formula (II).
  • the compounds of the formula (II) are known or can be prepared for example by firstly condensing ethoxymethylenemalononitrile with hydrazine derivatives of the formula
  • the compounds of the invention show a valuable range of pharmacological and pharmacokinetic effects which could not have been predicted.
  • treatment includes prophylaxis.
  • selective PDE9A inhibitors are suitable for producing medicaments for improving perception, concentration, learning or memory.
  • the compounds of the invention can, by reason of their pharmacological and pharmacokinetic properties, be employed alone or in combination with other medicaments for improving perception, concentration, learning and/or memory.
  • a PDE9A inhibitor for the purposes of the invention is a compound which inhibits human PDE9A under the conditions indicated below with an IC 50 of less than 10 ⁇ M, preferably less than 1 ⁇ M.
  • a selective PDE9A inhibitor for the purposes of the invention is a compound which inhibits human PDE9A under the conditions indicated below more strongly than human PDE1C, PDE2A, PDE3B, PDE4B, PDE5A, PDE7B, PDE8A, PDE10A and PDE11.
  • a preferred IC 50 (PDE9A)/IC 50 (PDE1C, PDE2A, PDE3B, PDE4B, PDE5A, PDE7B and PDE10A) ratio is less than 0.2.
  • the selective PDE9A inhibitors are particularly suitable for improving perception, concentration, learning or memory after cognitive impairments like those occurring in particular in situations/diseases/syndromes such as mild cognitive impairment, age-associated learning and memory impairments, age-associated memory losses, vascular dementia, craniocerebral trauma, stroke, dementia occurring after strokes (post stroke dementia), post-traumatic dementia, general concentration impairments, concentration impairments in children with learning and memory problems, Alzheimer's disease, Lewy body dementia, dementia with degeneration of the frontal lobes, including Pick's syndrome, Parkinson's disease, progressive nuclear palsy, dementia with corticobasal degeneration, amyotrophic lateral sclerosis (ALS), Huntington's disease, multiple sclerosis, thalamic degeneration, Creutzfeld-Jacob dementia, HIV dementia, schizophrenia with dementia or Korsakoff's psychosis.
  • mild cognitive impairment like those occurring in particular in situations/diseases/syndromes
  • age-associated learning and memory impairments age-associated memory losses
  • PDE1C GenBank/EMBL Accession Number: NM — 005020, Loughney et al. J. Biol. Chem. 1996 271, 796-806
  • PDE2A GenBank/EMBL Accession Number: NM — 002599, Rosman et al. Gene 1997 191, 89-95
  • PDE3B GenBank/EMBL Accession Number: NM —— 000922, Miki et al. Genomics 1996, 36, 476-485
  • PDE4I3 GenBank/EMBL Accession Number: NM — 002600, Obernolte et al. Gene.
  • PDE5A GenBank/EMBL Accession Number: NM — 001083, Loughney et al. Gene 1998, 216, 139-147
  • PDE7B GenBank/EMBL Accession Number: NM — 018945, Hetman et al. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 472-476
  • PDE8A GenBank/EMBL Accession Number: AF — 056490, Fisher et al. Biochem, Biophys. Res. Commun. 1998 246, 570-577
  • PDE9A Fisher et al., J. Biol.
  • test substances are dissolved in 100% DMSO and serially diluted to determine their in vitro effect on PDE9A.
  • serial dilutions from 200 ⁇ M to 1.6 ⁇ M are prepared (resulting final concentrations in the assay: 4 ⁇ M to 0.032 ⁇ M).
  • portions of the diluted substance solutions are introduced into the wells of microtiter plates (Isoplate; Wallac Inc., Atlanta, Ga.). Then 50 ⁇ L of a dilution of the PDE9A preparation described above are added.
  • the dilution of the PDE9A preparation is chosen so that less than 70% of the substrate is converted during the subsequent incubation (typical dilution: 1:10000; dilution buffer: 50 mM Tris/HCl pH 7.5, 8.3 mM MgCl 2 , 1.7 mM EDTA, 0.2% BSA).
  • the substrate, [8- 3 H] guanosine 3′,5′-cyclic phosphate (1 ⁇ Ci/ ⁇ L; Amersham Pharmacia Biotech., Piscataway, N.J.) is diluted 1:2000 with assay buffer (50 mM Tris/HCl pH 7.5, 8.3 mM MgCl 2 , 1.7 mM EDTA) to a concentration of 0.0005
  • assay buffer 50 mM Tris/HCl pH 7.5, 8.3 mM MgCl 2 , 1.7 mM EDTA
  • the enzyme reaction is finally started by adding 50 ⁇ L (0.025 ⁇ Ci) of the diluted substrate.
  • the assay mixtures are incubated at room temperature for 60 min and the reaction is stopped by adding 25 ⁇ l of a PDE9A inhibitor (e.g. the inhibitor from preparation example 1, final concentration 10 ⁇ M) dissolved in assay buffer.
  • a PDE9A inhibitor e.g. the inhibitor from preparation example 1, final concentration
  • IC 50 values are determined from the graphical plot of the substance concentration versus the percentage inhibition.
  • the protocol is additionally adapted as follows: with PDE1C, additionally 10 ⁇ 7 M calmodulin and 3 mM CaCl 2 are added to the reaction mixture. PDE2A is stimulated in the assay by adding 1 ⁇ M cGMP and is assayed with a BSA concentration of 0.01%.
  • the substrate employed for PDE1C and PDE2A is [5′,8- 3 H] adenosine 3′,5′-cyclic phosphate (1 ⁇ Ci/ ⁇ L; Amersham Pharmacia Biotech., Piscataway, N.J.), and for PDE5A is [8- 3 H] guanosine 3′,5′-cyclic phosphate (1 ⁇ Ci/ ⁇ L; Amersham Pharmacia Biotech., Piscataway, N.J.).
  • PDE9A inhibitors increase the intracellular neuronal cGMP in cultivated primary cortical neurons.
  • the mechanically isolated cortical neurons were cultivated at 150 000 cells/well in 200 ⁇ l Neurobasal medium/well (Neurobasal; B27 Supplement; 2 mM L-glutamine; in the presence of penicillin/streptomycin; all agents from Gibco) in 96-well plates (pretreated with poly-D-lysine 100 ⁇ g/ml for 30 min) under standard conditions (37° C., 5% CO 2 ) for 7 days. After 7 days, the medium was removed and the cells were washed with HBSS buffer (Hank's balanced salt solution, Gibco/BRL).
  • HBSS buffer Horco/BRL
  • ⁇ l of the compound of the invention dissolved in HBSS buffer (previously dissolved in 100% DMSO: 10 mM), are put on the cells. A further 100 ⁇ l of HBSS buffer are then added, so that the final concentration of the compounds of the invention is for example in a range from 20 nM to 10 ⁇ M, and incubated at 37° C. for 20 min. The assay buffer is then completely removed. The cells are then lyzed in 200 ⁇ l of lysis buffer (cGMP Kit code RPN 226; from Amersham Pharmacia Biotech.) and the cGMP concentration is measured as stated by the manufacturer. All measurements are carried out in triplicates. The statistical analysis takes place using Prism Software version 2.0 (GraphPad Software Inc., San Diego, Calif. USA).
  • Long-term potentiation is regarded as a cellular correlate of learning and memory processes. The following method can be used to determine whether PDE9 inhibition has an influence on long-term potentiation:
  • Rat hippocampi are placed at an angle of about 70 degrees to the cutting blade (chopper). 400 ⁇ m-thick slices of the hippocampus are prepared. The slices are removed from the blade using a very soft, thoroughly wetted brush (marten hair) and transferred into a glass vessel with cold nutrient solution (124 mM NaCl, 4.9 mM KCl, 13 mM MgSO 4 ⁇ 7 H 2 O, 2.5 mM CaCl 2 anhydrous, 1.2 mM KH 2 PO 4 , 25.6 mM NaHCO 3 , 10 mM glucose, pH 7A) gassed with 95% O 2 /5% CO 2 .
  • cold nutrient solution 124 mM NaCl, 4.9 mM KCl, 13 mM MgSO 4 ⁇ 7 H 2 O, 2.5 mM CaCl 2 anhydrous, 1.2 mM KH 2 PO 4 , 25.6 mM NaHCO 3 , 10 mM glucose, pH 7A
  • the slices are kept in a temperature-controlled chamber under a 1-3 mm-high liquid level.
  • the flow rate is 2.5 ml/min.
  • the preliminary gassing takes place under a slightly elevated pressure (about 1 atm) and through a microneedle in the prechamber.
  • the slice chamber is connected to the prechamber in such a way that a minicirculation can be maintained.
  • the minicirculation is driven by the 95% O 2 /5% CO 2 flowing out through the microneedle.
  • the freshly prepared hippocampus slices are adapted in the slice chamber at 33° C for at least 1 hour.
  • the stimulus level is chosen so that the focal excitatory postsynaptic potentials (fEPSP) are 30% of e maximum excitatory postsynaptic potential (EPSP).
  • a monopolar stimulation electrode consisting of lacquered stainless steel, and a constant-current biphasic stimulus generator (AM Systems 2100) are used for local stimulation of the Schaffer collaterals (voltage: 1-5 V, pulse width of one polarity 0.1 ms, total pulse 0.2 ms).
  • Glass electrodes borosilicate glass with filament, 1-5 MOhm, diameter: 1.5 mm, tip diameter: 3-20 ⁇ m
  • filled with normal nutrient solution are used to record the excitatory postsynaptic potentials (fEPSP) from the stratum radiatum.
  • the field potentials are measured versus a chlorinated silver reference electrode located at the edge of the slice chamber using a DC voltage amplifier.
  • the field potentials are filtered through a low-pass filter (5 kHz).
  • the slope of the fEPSPs (fEPSP slope) is determined for the statistical analysis of the experiments.
  • the recording, analysis and control of the experiment takes place with the aid of a software program (PWIN) which was developed in the Department of Neurophysiology.
  • PWIN software program
  • the formation of the average fEPSP slopes at the respective time points and construction of the diagrams takes place with the aid of the EXCEL software, with automatic data recording by an appropriate macro.
  • the social recognition test is a learning and memory test. It measures the ability of rats to distinguish between known and unknown members of the same species. This test is therefore suitable for examining the learning- or memory-improving effect of the compounds of the invention.
  • Rat rats housed in groups are placed singly in test cages 30 min before the start of the test. Four min before the start of the test, the test animal is put in an observation box. After this adaptation time, a juvenile animal is put in with the test animal and the absolute time for which the adult animal inspects the young one is measured for 2 min (trial 1). All behaviors clearly directed at the young animal are measured, i.e. anogenital inspection, pursuit and grooming, during which the old animal was no further than 1 cm from the young animal. The juvenile is then removed, and the adult is treated with a compound of the invention or vehicle and subsequently returned to its own cage. The test is repeated after a retention time of 24 hours (trial 2). A diminished social interaction time compared with trial 1 indicates that the adult rat remembers the young animal.
  • the adult animals receive intraperitoneal injections directly following trial 1 either with vehicle (10% ethanol, 20% Solutol, 70% physiological saline) or 0.1 mg/kg, 0.3 mg/kg, 1.0 mg/kg or 3.0 mg/kg compound of the invention dissolved in 10% ethanol, 20% Solutol, 70% physiological saline.
  • Vehicle-treated rats show no reduction in the social interaction time in trial 2 compared with trial 1. They have consequently forgotten that they have already had contact with the young animal.
  • the social interaction time in the second run after treatment with the compounds of the invention is significantly reduced compared with those treated with vehicle. This means that the substance-treated rats have remembered the juvenile animal and thus the compounds of the invention display an improving effect on learning and memory.
  • the present invention further relates to a method for the treatment and/or prophylaxis of disorders, in particular of the aforementioned disorders, using an effective amount of the compounds of the invention.
  • the present invention farther relates to medicaments comprising at least one compound of the invention and one or more other active ingredients, in particular for the treatment and/or prophylaxis of the aforementioned disorders.
  • the compounds of the invention may have systemic and/or local effects. They can for this purpose be administered in a suitable way, such as, for example, by the oral, parenteral, pulmonary, nasal, sublingual, lingual, buccal, rectal, dermal, transdermal, conjunctival or otic route or as implant or stent.
  • the compounds of the invention can be administered in suitable administration forms for these administration routes.
  • Administration forms suitable for oral administration are those which function according to the state of the art and deliver the compounds of the invention in a rapid and/or modified way, and which contain the compounds of the invention in crystalline and/or amorphized and/or dissolved form, such as, for example, tablets (uncoated or coated tablets, for example with coatings which are resistant to gastric juice or dissolve slowly or are insoluble and which control the release of the compound of the invention), tablets which rapidly disintegrate in the mouth, or films/wafers, films/lyophilisates, capsules (for example hard or soft gelatin capsules), sugar-coated tablets, granules, pellets, powders, emulsions, suspensions, aerosols or solutions.
  • tablets uncoated or coated tablets, for example with coatings which are resistant to gastric juice or dissolve slowly or are insoluble and which control the release of the compound of the invention
  • tablets which rapidly disintegrate in the mouth or films/wafers, films/lyophilisates
  • capsules for example hard or soft gelatin capsules
  • Parenteral administration can take place with avoidance of an absorption step (e.g. intravenous, intraarterial, intracardiac, intraspinal or intralumbar) or with inclusion of an absorption (e.g. intramuscular, subcutaneous, intracutaneous, percutaneous or intraperitoneal).
  • Administration forms suitable for parenteral administration are, inter alia, injection and infusion preparations in the form of solutions, suspensions, emulsions, lyophilisates or sterile powders.
  • Examples suitable for other administration routes are medicinal forms for inhalation (inter alia powder inhalators, nebulizers), nasal drops, solutions, sprays; tablets for lingual, sublingual or buccal administration, films/wafers or capsules, suppositories, preparations for the ears or eyes, vaginal capsules, aqueous suspensions (lotions, shaking mixtures), lipophilic suspensions, ointments, creams, transdermal therapeutic systems (such as, for example, patches), milk, pastes, foams, dusting powders, implants or stents.
  • inhalation inter alia powder inhalators, nebulizers
  • nasal drops solutions, sprays
  • tablets for lingual, sublingual or buccal administration films/wafers or capsules, suppositories, preparations for the ears or eyes, vaginal capsules, aqueous suspensions (lotions, shaking mixtures), lipophilic suspensions, ointments, creams, transdermal therapeutic systems (such as, for example
  • the compounds of the invention can be converted into the stated administration forms. This can take place in a manner known per se by mixing with inert, non-toxic, pharmaceutically suitable excipients.
  • excipients include, inter alia, carriers (for example microcrystalline cellulose, lactose, mannitol), solvents (e.g. liquid polyethylene glycols), emulsifiers and dispersants or wetting agents (for example sodium dodecyl sulfate, polyoxysorbitan oleate), binders (for example polyvinylpyrrolidone), synthetic and natural polymers (for example albumin), stabilizers (e.g. antioxidants such as, for example, ascorbic acid), colors (e.g. inorganic pigments such as, for example, iron oxides) and masking tastes and/or odors.
  • carriers for example microcrystalline cellulose, lactose, mannitol
  • solvents e.g. liquid polyethylene glycols
  • the present invention further relates to medicaments which comprise at least one compound of the invention, normally together with one or more inert, non-toxic, pharmaceutically suitable excipients, and to the use thereof for the aforementioned purposes.
  • parenteral administration it has generally proved advantageous on parenteral administration to administer amounts of about 0.001 to 10 mg/kg of body weight per day to achieve effective results.
  • the amount per day on oral administration is about 0.005 to 3 mg/kg of body weight.
  • ethoxymethylenemalononitrile (2.43 g, 19.9 mmol) and then 8 ml of triethylamine are added to a solution of cyclohexylhydrazine hydrochloride (3 g, 19.9 mmol) in 36 ml of ethanol at room temperature.
  • the mixture is refluxed for 20 min and then cooled.
  • the solvent is stripped of in a rotary evaporator, and the residue is taken up in DCM, washed with aqueous sodium bicarbonate solution, dried over sodium sulfate, filtered and concentrated in vacua.
  • the crude product is chromatographed on silica gel (mobile phase: dichloromethane/methanol 0-10%).
  • the product is obtained in analogy to Example 1 starting from 100 mg (0.5 mmol) 5-amino-1-cyclopentyl-1H-pyrazole-4-carboxamide and 260 mg (1.51 mmol) of methyl (2-fluorophenyl)acetate.
  • the product is obtained in analogy to Example 1 starting from 80 mg (0.4 mmol) of 5-amino-1H-cyclopentyl-1H-pyrazole-4-carboxamide and 277 mg (1.21 mmol) of methyl (3-bromophenyl)acetate.
  • the product is obtained in analogy to Example 1 starting from 75 mg (0.38 mmol) of 5-amino-1-cyclopentyl-1H-pyrazole-4-carboxamide and 254 mg (1.14 mmol) of methyl (3,4-dichlorophenyl)acetate.
  • the product is obtained in analogy to Example 1 starting from 150 mg (0.76 mmol) of 5-amino-1-cyclopentyl-1H-pyrazole-4-carboxamide and 507 mg (2.27 mmol) of methyl (3,5-dichlorophenyl)acetate.
  • the product is obtained in analogy to Example 1 starting from 150 mg (0.76 mmol) of 5-amino-1-cyclopentyl-1H-pyrazole-4-carboxamide and 406 mg (1.82 mmol) of methyl (2,3-dichlorophenyl)acetate.
  • the product is obtained in analogy to Example 1 starting from 150 mg (0.76 mmol) of 5-amino-1-(1-ethylpropyl)-1H-pyrazole-4-carboxamide and 484 mg (2.29 mmol) of ethyl (3-chlorophenyl)acetate.
  • the product is obtained in analogy to Example 1 starting from 200 mg (1.01 mmol) of 5-amino-1-cyclopentyl-1H-pyrazole-4-carboxamide and 550 mg (3.03 mmol) of ethyl (3-methylphenyl)acetate.
  • the product is obtained in analogy to Example 1 starting from 200 mg (1.0 mmol) of 5-amino-1-(1-ethylpropyl)-1H-pyrazole-4-carboxamide and 806 mg (3.5 mmol) of methyl (2,5-dichlorophenyl)acetate.
  • the product is obtained in analogy in Example 1 starting from 200 mg (1.0 mmol) of 5-amino-1-(1-ethylpropyl)-1H-pyrazole-4-carboxamide and 534 mg (3.0 mmol) of ethyl (3-methylphenyl)acetate.
  • the product is obtained in analogy to Example 1 starting from 150 mg (0.75 mmol) of 5-amino-1-(1-ethylpropyl-1H-pyrazole-4-carboxamide and 490 mg (2.25 mmol) of methyl (3-trifluoromethylphenyl)acetate.
  • the product is obtained in analogy to Example 1 starting from 668 mg (3.44 mmol) of 5-amino-1-cyclopentyl-1H-pyrazole-4-carboxamide and 3.5 g (117 mmol) of ethyl 3-nitrophenylacetate.
  • the product is obtained in analogy to Example 1 starting from 50 mg (0.26 mmol) of 5-amino-1-cyclopentyl-1H-pyrazole-4-carboxamide and 301 mg (1.29 mmol) of methyl [2-(trifluoromethoxy)phenyl]acetate.

Abstract

The invention relates to novel phenyl-substituted pyrazolopyrimidines, process for their preparation, and their use for producing medicaments for improving perception, concentration, learning and/or memory.

Description

  • The invention relates to novel phenyl-substituted pyrazolopyrimidines, process for their preparation, and their use for producing medicaments for improving perception, concentration, learning and/or memory.
  • Cellular activation of adenylate cyclases and guanylate cyclases brings about the cyclization of respectively ATP and GTP to 5′-3′ cyclic adenosine monophosphate (cAMP) and 5′-3′ cyclic guanosine monophosphate (cGMP). These cyclic nucleotides (cAMP and cGMP) are important second messengers and therefore play a central role in cellular signal transduction cascades. Each of them reactivates inter alia, but not exclusively, protein kinases. The protein kinase activated by cAMP is called protein kinase A (PKA), and the protein kinase activated by cGMP is called protein kinase G (PKG). Activated PKA and PKG are able in turn to phosphorylate a number of cellular effector proteins (e.g. ion channels, G-protein-coupled receptors, structural proteins). It is possible in this way for the second messengers cAMP and cGMP to control a wide variety of physiological processes in a wide variety of organs. However, the cyclic nucleotides are also able to act directly on effector molecules. Thus, it is known, for example, that cGMP is able to act directly on ion channels and thus is able to influence the cellular ion concentration (review in: Wei et al., Frog. Neurobiol., 1998, 56: 37-64). The phosphodiesterases (PDE) are a control mechanism for controlling the activity of cAMP and cGMP and thus in turn these physiological processes. PDEs hydrolyze the cyclic monophosphates to the inactive monophosphates AMP and GMP. At least 21 PDE genes have now been described (Exp. Opin. Investig. Drugs 2000, 9, 1354-3784). These 21 PDE genes can be divided on the basis of their sequence homology into 11 PDE families (for proposed nomenclature, see http://depts.washington.edu/pde/Nomenclature.html.). Individual PDE genes within a family are differentiated by letters (e.g. PDE1A and PDE1B). If different splice variants within a gene also occur, this is then indicated by an additional numbering after the letter (e.g. PDE1A1).
  • Human PDE9A was cloned and sequenced in 1998. The amino acid identity with other PDEs does not exceed 34% (PDE8A) and is never less than 28% (PDE5A). With a Michaelis-Menten constant (Km) of 170 nM, PDE9A has high affinity for cGMP. In addition, PDE9A is selective for cGMP (Km for cAMP=230 μM). PDE9A has no cGMP binding domain, suggesting allosteric enzyme regulation by cGMP. It was shown in a Western blot analysis that PDE9A is expressed in humans inter alia in testes, brain, small intestine, skeletal muscle, heart, lung, thymus and spleen. The highest expression was found in the brain, small intestine, heart and spleen (Fisher et al., J. Biol. Chem., 1998, 273 (25): 15559-15564). The gene for human PDE9A is located on chromosome 21q223 and comprises 21 exons. To date, 4 alternative splice variants of PDE9A have been identified (Guipponi et al., Hum. Genet., 1998, 103: 386-392). Classical PDE inhibitors do not inhibit human PDE9A, Thus, IBMX, dipyridamole, SKF94120, rolipram and vinpocetirie show no inhibition on the isolated enzyme in concentrations of up to 100 μM. An IC50 of 35 μM has been demonstrated for zaprinast (Fisher et al., J. Biol. Chem., 1998, 273 (25): 15559-15564).
  • Murine PDE9A was cloned and sequenced in 1998 by Soderling et al. (J. Biol. Chem., 1998, 273 (19): 1555315558). This has, like the human form, high affinity for cGMP with a Km of 70 nM. Particularly high expression was found in the mouse kidney, brain, lung and heart. Murine PDE9A is not inhibited by IBMX in concentrations below 200 μM either; the IC50 for zaprinast is 29 μM (Soderling et al., J. Biol. Chem., 1998, 273 (19): 15553-15558). It has been found that PDE9A is strongly expressed in some regions of the rat brain. These include olfactory bulb, hippocampus, cortex, basal ganglia and basal forebrain (Andreeva et al., J. Neurosci., 2001, 21 (22): 9068-9076). The hippocampus, cortex and basal forebrain in particular play an important role in learning and memory processes.
  • As already mentioned above, PDE9A is distinguished by having particularly high affinity for cGMP. PDE9A is therefore active even at low physiological concentrations, in contrast to PDE2A (Km=10 μM; Martins et al., J. Biol. Chem., 1982, 257: 1973-1979), PDE5A (Km=4 μM; Francis et al., J. Biol. Chem., 1980, 255: 620-626), PDE6A (Km=17 μM; Gillespie and Beavo, J. Biol. Chem., 1988, 263 (17): 8133-8141) and PDE11A (Km=0.52 μM; Fawcett et al., Proc. Nat. Acad. Sci., 200, 97 (7): 3702-3707). In contrast to PDE2A (Murashima et al., Bio-chemistry, 1990, 29: 5285-5292), the catalytic activity of PDE9A is not increased by cGMP because it has no GAF domain (cGMP-binding domain via which the PDE activity is allosterically increased) (Beavo et al., Current Opinion in Cell Biology, 2000, 12: 174-179). PDE9A inhibitors may therefore lead to an increase in the baseline cGMP concentration. This increase in the baseline cGMP concentration surprisingly led to an improvement in learning and memory in the social recognition test.
  • WO 98/40384 discloses pyrazolopyrimidines which are PDE1, 2 and 5 inhibitors and can be employed for the treatment of cardiovascular and cerebrovascular disorders and disorders of the urogenital system.
  • CH 396 924, CH 396 925, CH 396 926, CH 396 927, DE 1 147 234, DE 1 149 013, GB 937,726 describe pyrazolopyrimidines which have a coronary-dilating effect and which can be employed for the treatment of disturbances of myocardial blood flow.
  • U.S. Pat. No. 3,732,225 describes pyrazolopyrimidines which have an antiinflammatory and blood glucose-lowering effect.
  • DE 2 408 906 describes styrenepyrazolopyrimidines which can be employed as anti-microbial and antiinflammatory agents for the treatment of, for example, edema.
  • The present invention relates to compounds of the formula
  • Figure US20120165349A1-20120628-C00001
  • in which
    • R1 is phenyl which is substituted by 1 to 5 substituents independently of one another selected from the group of halogen, C1-C6-alkyl, trifluoromethyl, trifluoromethoxy, cyano, hydroxy, nitro and C1-C6-alkoxy,
    • R2 is pentan-3-yl, C4-C6-cycloalkyl,
    • X is oxygen or sulfur,
    • and the salts, solvates and/or solvates of the salts thereof.
  • Compounds of the invention are the compounds of the formula (I) and the salts, solvates and solvates of the salts thereof; the compounds which are encompassed by formula (I) and have the formulae mentioned hereinafter and the salts, solvates and solvates of the salts thereof, and the compounds which are encompassed by formula (I) and are mentioned hereinafter as exemplary embodiments and the salts, solvates and solvates of the salts thereof, where the compounds which are encompassed by formula (I) and are mentioned hereinafter are not already salts, solvates and solvates of the salts.
  • The compounds of the invention may, depending on their structure, exist in stereo-isomeric forms (enantiomers, diastereorners). The invention therefore relates to the enantiomers or diastereomers and respective mixtures thereof. The stereoisomerically pure constituents can be isolated in a known manner from such mixtures of enantiomers and/or diastereorners.
  • Salts which are preferred for the purposes of the invention are physiologically acceptable salts of the compounds of the invention.
  • Physiologically acceptable salts of the compounds (I) include acid addition salts of mineral acids, carboxylic acids and sulfonic acids, e.g. salts of hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, methanesulfonic acid, ethanesulfonic acid, toluenesulfonic acid, benzenesulfonic acid, naphthalenedisulfonic acid, acetic acid, propionic acid, lactic acid, tartaric acid, malic acid, citric acid, fumaric acid, maleic acid and benzoic acid.
  • Physiologically acceptable salts of the compounds (1) also include salts of conventional bases such as, by way of example and preferably, alkali metal salts (e.g. sodium and potassium salts), alkaline earth metal salts (e.g. calcium and magnesium salts) and ammonium salts derived from ammonia or organic amines having 1 to 16 C atoms, such as, by way of example and preferably, ethylamine, diethylamine, triethylamine, ethyldiisopropylamine, monoethanolamine, diethanolamine, triethanolamine, dicyclohexylamine, dimethylaminoethanol, procaine, dibenzylamine, N-methylmorpholine, dehydroabietylamine, arginine, lysine, ethylenediamine and methylpiperidine.
  • Solvates refers for the purposes of the invention to those forms of the compounds which form, in the solid or liquid state, a complex by coordination with solvent molecules. Hydrates are a specific form of solvates in which the coordination takes place with water.
  • In addition, the present invention also encompasses prodrugs of the compounds of the invention. The term “prodrugs” encompasses compounds which themselves may be biologically active or inactive but are converted (for example by metabolism or hydrolysis) into compounds of the invention during their residence time in the body.
  • For the purposes of the present invention, the substituents have the following meaning, unless specified otherwise:
    • C1-C6-Alkoxy is a straight-chain or branched alkoxy radical having 1 to 6, preferably 1 to 4, particularly preferably having 1 to 3 carbon atoms. Preferred examples are methoxy, ethoxy, n-propoxy, isopropoxy, tert-butoxy, n-pentoxy and n-hexoxy.
    • C1-C6-Alkyl is a straight-chain or branched alkyl radical having 1 to 6, preferably to 4, particularly preferably 1 to 3, carbon atoms. Preferred examples are methyl, ethyl, n-propyl, isopropyl, tert-butyl, n-pentyl and n-hexyl.
    • C4-C6- and C5-C6-Cycloalkyl are saturated or partially unsaturated cycloalkyl radicals having 4 to 6, preferably 5 to 6, carbon atoms. Preferred examples are cyclobutyl, cyclopentyl and cyclohexyl.
  • Halogen is for fluorine, chlorine, bromine and iodine. Fluorine, chlorine, bromine are preferred, and fluorine and chlorine are particularly preferred.
  • When radicals in the compounds of the invention are optionally substituted, unless otherwise specified substitution by up to three identical or different substituents is preferred.
  • The compounds of the invention may also be in the form of tautomers as shown by way of example below:
  • Figure US20120165349A1-20120628-C00002
  • A further embodiment of the invention relates to compounds of the formula (I), in which
    • R1 is phenyl which is substituted by 1 to 3 substituents independently of one another selected from the group of fluorine, chlorine, bromine, C1-C4-alkyl, trifluoromethyl, trifluoromethoxy, cyano, hydroxy, nitro and C1-C4-alkoxy,
    • R2 is pentan-3-yl, C5-C6-cycloalkyl,
    • X is oxygen or sulfur,
    • and the salts, solvates and/or solvates of the salts thereof.
  • A further embodiment of the invention relates to compounds of the formula
  • Figure US20120165349A1-20120628-C00003
  • in which
    • R3 is hydrogen or chlorine,
    • R4 is fluorine, chlorine, bromine, methyl, trifluoroethyl,
    • R2 is pentan-3-yl, cyclopentyl,
    • X is oxygen or sulfur,
    • and the salts, solvates and or solvates of the salts thereof.
  • A further embodiment of the invention relates to compounds of the formulae (I) and (Ia),
  • in which
    • R3 is hydrogen or chlorine,
    • R4 is fluorine, chlorine, bromine, methyl, trifluoromethyl,
    • R2 is pentan-3-yl, cyclopentyl,
    • X is oxygen,
    • and the salts, solvates and/or solvates of the salts thereof.
  • A process for preparing the compounds of the invention has additionally been found, characterized in that either
  • [A] compounds of the formula
  • Figure US20120165349A1-20120628-C00004
  • in which
    • R2 has the meanings indicated above,
    • are converted by reaction with a compound of the formula

  • R1—CH2—C(O)—Z   (IIIa),
  • in which
    • R1 has the meanings indicated above,
    • and
    • Z is chlorine or bromine,
    • in an inert solvent and in the presence of a base initially into compounds of the formula
  • Figure US20120165349A1-20120628-C00005
  • in which
    • R1 and R2 have the meanings indicated above,
    • then cyclized in an inert solvent in the presence of a base to compounds of the formula
  • Figure US20120165349A1-20120628-C00006
  • in which
    • R1 and R2 have the meanings indicated above,
      or
    • [B] compounds of the formula (II) are reacted with direct cyclization to (Ib) with a compound of the formula

  • R1—CH2—C(O)—OR5   (IIIb),
  • in which
    • R1 has the meanings indicated above,
      and
    • R5 is methyl or ethyl,
    • in an inert solvent and in the presence of a base,
      or
    • [C] compounds of the formula
  • Figure US20120165349A1-20120628-C00007
  • in which
    • R2 has the meanings indicated above,
      are converted initially by reaction with a compound of the formula (IIIa) in an inert solvent and in the presence of a base into compounds of the formula
  • Figure US20120165349A1-20120628-C00008
  • in which
    • R1 and R2 have the meanings indicated above,
      and the latter are cyclized in a second step in an inert solvent and in the presence of a base and of an oxidizing agent to (Ib),
      and the compounds of the formula (Ib) are then converted where appropriate by reaction with a sulfurizing agent such as, for example, diphosphorus pentasulfide into the thiono derivatives of the formula
  • Figure US20120165349A1-20120628-C00009
  • in which
    • R1 and R2 have the meanings indicated above,
      and the resulting compounds of the formula (I) are reacted where appropriate with the appropriate (i) solvents and/or (ii) bases or acids to give the solvates, salts and/or solvates of the salts thereof.
  • Suitable for the first step of process [A] and of process [C] are inert organic solvents which are not changed under the reaction conditions. These preferably include ethers such as, for example, diethyl ether, dioxane, tetrahydrofuran or glycol dimethyl ether, or toluene or pyridine. It is likewise possible to employ mixtures of the solvents mentioned. Tetrahydrofuran, toluene or pyridine are particularly preferred.
  • Suitable bases are in general alkali metal hydrides such as, for example, sodium hydride, or cyclic amines such as, for example, piperidine, pyridine, dimethylamino-pyridine (DMAP), or C1-C4-alkylamines such as, for example, triethylamine. Sodium hydride, pyridine and/or diethylaminopyridine are preferred.
  • The base is generally employed in an amount of from l mol to 4 mol, preferably from 1.2 mol to 3 mol, in each case based on 1 mol of the compounds of the formula (II) or (V).
  • In a variant, the reaction is carried out in pyridine, to which a catalytic amount of DMAP is added. It is also possible where appropriate to add toluene.
  • The reaction temperature can generally be varied within a relatively wide range. It is generally in a range from −20° C. to +200° C., preferably from 0° C. to +100° C.
  • Solvents suitable for the cyclization in the second step of processes [A] and [C] are the usual organic solvents. These preferably include alcohols such as methanol, ethanol, propanol, isopropanol, n-butanol or tert-butanol, or ethers such as tetrahydrofuran or dioxane, or dimethylformamide or dimethyl sulfoxide. Alcohols such as methanol, ethanol, propanol, isopropanol or tert-butanol are particularly preferably used. It is likewise possible to employ mixtures of the solvents mentioned.
  • Bases suitable for the cyclization in the second step of processes [A] and [C] are the usual inorganic bases. These preferably include alkali metal hydroxides or alkaline earth metal hydroxides such as, for example, sodium hydroxide, potassium hydroxide or barium hydroxide, or alkali metal carbonates such as sodium or potassium carbonate or sodium bicarbonate, or alkali metal alcoholates such as sodium methanolate, sodium ethanolate, potassium methanolate, potassium ethanolate or potassium tert-butanolate. Potassium carbonate, sodium hydroxide and potassium tert-butanolate are particularly preferred.
  • The base for carrying out the cyclization is generally employed in an amount of from 2 mol to 6 mol, preferably from 3 mol to 5 mol, in each case based on 1 mol of the compounds of the formula (IV) or (VI).
  • Oxidizing agents suitable for the cyclization in the second step of process [C] are, for example, hydrogen peroxide or sodium borate. Hydrogen peroxide is preferred.
  • The cyclization in processes [A], [B] and [C] is generally carried out in a temperature range from 0° C. to +160° C., preferably at the boiling point of the particular solvent.
  • The cyclization is generally carried out under atmosphere pressure. It is, however, also possible to carry out the process under elevated pressure or reduced pressure (e.g. in a range from 0.5 to 5 bar).
  • Solvents suitable for process [B] are the alcohols listed above for the second step of processes [A) and [C], with preference for ethanol.
  • Bases suitable for process [B] are alkali metal hydrides such as, for example, sodium or potassium hydride, or alkali metal alcoholates such as, for example, sodium methanolate, ethanolate, isopropoxide or potassium tert-butoxide. Sodium hydride is preferred.
  • The base is employed in an amount of from 2 mol to 8 mol, preferably from 3 mol to 6 mol, in each case based on I mol of the compounds of the formula (II).
  • The compounds of the formula (II) are known or can be prepared for example by firstly condensing ethoxymethylenemalononitrile with hydrazine derivatives of the formula

  • R2—NH—NH2   (VII),
  • in which
    • R2 has the meanings indicated above,
      in an inert solvent to give the pyrazolenitriles of the formula (V), and then reacting the latter with one of the oxidizing agents listed above, preferably hydrogen peroxide, in the presence of ammonia [cf. for example, A. Miyashita et al., Heterocycles 1990, 31, 1309ff].
  • The compounds of the formulae (IIIa), (IIIb) and (VII) are commercially available, known from the literature or can be prepared in analogy to processes known from the literature.
  • The process of the invention can be illustrated by way of example by the following formula scheme:
  • Figure US20120165349A1-20120628-C00010
  • Further processes for preparing pyrazolo[3,4-d]pyrimidin-4-ones are known and can likewise be employed to synthesize the compounds of the invention (see, for example: P. Schmidt et al., Helvetica Chimica Acta 1962, 189, 1620ff.).
  • The compounds of the invention show a valuable range of pharmacological and pharmacokinetic effects which could not have been predicted.
  • They are therefore suitable for use as medicaments for the treatment and/or prophylaxis of diseases in humans and animals.
  • For the purposes of the present invention, the term “treatment” includes prophylaxis.
  • It has surprisingly been found that selective PDE9A inhibitors are suitable for producing medicaments for improving perception, concentration, learning or memory.
  • The compounds of the invention can, by reason of their pharmacological and pharmacokinetic properties, be employed alone or in combination with other medicaments for improving perception, concentration, learning and/or memory.
  • A PDE9A inhibitor for the purposes of the invention is a compound which inhibits human PDE9A under the conditions indicated below with an IC50 of less than 10 μM, preferably less than 1 μM.
  • A selective PDE9A inhibitor for the purposes of the invention is a compound which inhibits human PDE9A under the conditions indicated below more strongly than human PDE1C, PDE2A, PDE3B, PDE4B, PDE5A, PDE7B, PDE8A, PDE10A and PDE11. A preferred IC50 (PDE9A)/IC50 (PDE1C, PDE2A, PDE3B, PDE4B, PDE5A, PDE7B and PDE10A) ratio is less than 0.2.
  • The selective PDE9A inhibitors are particularly suitable for improving perception, concentration, learning or memory after cognitive impairments like those occurring in particular in situations/diseases/syndromes such as mild cognitive impairment, age-associated learning and memory impairments, age-associated memory losses, vascular dementia, craniocerebral trauma, stroke, dementia occurring after strokes (post stroke dementia), post-traumatic dementia, general concentration impairments, concentration impairments in children with learning and memory problems, Alzheimer's disease, Lewy body dementia, dementia with degeneration of the frontal lobes, including Pick's syndrome, Parkinson's disease, progressive nuclear palsy, dementia with corticobasal degeneration, amyotrophic lateral sclerosis (ALS), Huntington's disease, multiple sclerosis, thalamic degeneration, Creutzfeld-Jacob dementia, HIV dementia, schizophrenia with dementia or Korsakoff's psychosis.
  • The in vitro effect of the compounds of the invention can be shown with the following biological assays:
  • PDE Inhibition
  • Recombinant PDE1C (GenBank/EMBL Accession Number: NM005020, Loughney et al. J. Biol. Chem. 1996 271, 796-806), PDE2A (GenBank/EMBL Accession Number: NM002599, Rosman et al. Gene 1997 191, 89-95), PDE3B (GenBank/EMBL Accession Number: NM——000922, Miki et al. Genomics 1996, 36, 476-485), PDE4I3 (GenBank/EMBL Accession Number: NM002600, Obernolte et al. Gene. 1993, 129, 239-247), PDE5A (GenBank/EMBL Accession Number: NM001083, Loughney et al. Gene 1998, 216, 139-147), PDE7B (GenBank/EMBL Accession Number: NM018945, Hetman et al. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 472-476), PDE8A (GenBank/EMBL Accession Number: AF056490, Fisher et al. Biochem, Biophys. Res. Commun. 1998 246, 570-577), PDE9A (Fisher et al., J. Biol. Chem, 1998, 273 (25): 15559-15564), PDE10A (GenBank/EMBL Accession Number: NM06661, Fujishige et al. J. Biol Chem. 1999, 274, 18438-45), PDE11A (GenBank/EMBL, Accession Number: NM——016953, Fawcett et al. Proc. Natl, Acad. Sci. 2000, 97, 3702-3707) were expressed in Sf9 cells with the aid of the pFASTBAC baculovirus expression system (GibcoBRL).
  • The test substances are dissolved in 100% DMSO and serially diluted to determine their in vitro effect on PDE9A. Typically, serial dilutions from 200 μM to 1.6 μM are prepared (resulting final concentrations in the assay: 4 μM to 0.032 μM). 2 μL, portions of the diluted substance solutions are introduced into the wells of microtiter plates (Isoplate; Wallac Inc., Atlanta, Ga.). Then 50 μL of a dilution of the PDE9A preparation described above are added. The dilution of the PDE9A preparation is chosen so that less than 70% of the substrate is converted during the subsequent incubation (typical dilution: 1:10000; dilution buffer: 50 mM Tris/HCl pH 7.5, 8.3 mM MgCl2, 1.7 mM EDTA, 0.2% BSA). The substrate, [8-3H] guanosine 3′,5′-cyclic phosphate (1 μCi/μL; Amersham Pharmacia Biotech., Piscataway, N.J.) is diluted 1:2000 with assay buffer (50 mM Tris/HCl pH 7.5, 8.3 mM MgCl2, 1.7 mM EDTA) to a concentration of 0.0005 The enzyme reaction is finally started by adding 50 μL (0.025 μCi) of the diluted substrate. The assay mixtures are incubated at room temperature for 60 min and the reaction is stopped by adding 25 μl of a PDE9A inhibitor (e.g. the inhibitor from preparation example 1, final concentration 10 μM) dissolved in assay buffer. Immediately thereafter, 25 μL of a suspension containing 18 mg/mL Yttrium Scintillation Proximity Beads (Amersham Pharmacia Biotech., Piscataway, N.J.) are added. The microtiter plates are sealed with a film and left to stand at room temperature for 60 min. The plates are then measured for 30 s per well in a Microbeta scintillation counter (Wallac Inc., Atlanta, Ga.). IC50 values are determined from the graphical plot of the substance concentration versus the percentage inhibition.
  • The in vitro effect of test substances on recombinant PDE3B, PDE4B, PDE7B, PDE8A, PDE10A and PDE11A is determined in accordance with the assay protocol described above for PDE 9A with the following adaptations: [5′,8-3H] adenosine 3′,5′-cyclic phosphate (1 μCi/μL; Amersham Pharmacia Biotech., Piscataway, N.J.) is used as substrate. Addition of an inhibitor solution to stop the reaction is unnecessary. Instead, the incubation of substrate and PDE is followed immediately by addition of the yttrium scintillation proximity beads as described above and thus the reaction is stopped. To determine a corresponding effect on recombinant PDE1C, PDE2A and PDE5A, the protocol is additionally adapted as follows: with PDE1C, additionally 10−7M calmodulin and 3 mM CaCl2 are added to the reaction mixture. PDE2A is stimulated in the assay by adding 1 μM cGMP and is assayed with a BSA concentration of 0.01%. The substrate employed for PDE1C and PDE2A is [5′,8-3H] adenosine 3′,5′-cyclic phosphate (1 μCi/μL; Amersham Pharmacia Biotech., Piscataway, N.J.), and for PDE5A is [8-3H] guanosine 3′,5′-cyclic phosphate (1 μCi/μL; Amersham Pharmacia Biotech., Piscataway, N.J.).
  • The PDE9A-inhibiting effect of the compounds of the invention can be shown by means of the following examples:
  • TABLE 1
    Example IC50 [nM]
    1 20
    2 30
    4 30
    10 64
    13 30
  • Increasing the Intracellular Neuronal cGMP Concentration Cell Cultures
  • PDE9A inhibitors increase the intracellular neuronal cGMP in cultivated primary cortical neurons.
  • Rat embryos (embryonic day E17-E19) were decapitated, and the heads were transferred into dissection dishes filled with dissection medium (DMEM, penicillin/streptomycin; both from Gibco). The scalp and roof of the skull were removed, and the exposed brains were transferred into another Petri dish with dissection medium. Using a binocular microscope and two forceps, the cerebrum (cortex) was isolated and cooled to 4° C. using ice. This dissection and the isolation of the cortical neurons were then carried out in accordance with a standard protocol using the papain kit (Worthington Biochemical Corporation, Lakewood, N.J. 08701, USA) (Huettner et al. J. Neurosci. 1986, 6, 3044-3060). The mechanically isolated cortical neurons were cultivated at 150 000 cells/well in 200 μl Neurobasal medium/well (Neurobasal; B27 Supplement; 2 mM L-glutamine; in the presence of penicillin/streptomycin; all agents from Gibco) in 96-well plates (pretreated with poly-D-lysine 100 μg/ml for 30 min) under standard conditions (37° C., 5% CO2) for 7 days. After 7 days, the medium was removed and the cells were washed with HBSS buffer (Hank's balanced salt solution, Gibco/BRL). Then 100 μl of the compound of the invention, dissolved in HBSS buffer (previously dissolved in 100% DMSO: 10 mM), are put on the cells. A further 100 μl of HBSS buffer are then added, so that the final concentration of the compounds of the invention is for example in a range from 20 nM to 10 μM, and incubated at 37° C. for 20 min. The assay buffer is then completely removed. The cells are then lyzed in 200 μl of lysis buffer (cGMP Kit code RPN 226; from Amersham Pharmacia Biotech.) and the cGMP concentration is measured as stated by the manufacturer. All measurements are carried out in triplicates. The statistical analysis takes place using Prism Software version 2.0 (GraphPad Software Inc., San Diego, Calif. USA).
  • Incubation of the primary neurons with the compounds of the invention led to an increase in the cGMP content.
  • Long-Term Potentiation
  • Long-term potentiation is regarded as a cellular correlate of learning and memory processes. The following method can be used to determine whether PDE9 inhibition has an influence on long-term potentiation:
  • Rat hippocampi are placed at an angle of about 70 degrees to the cutting blade (chopper). 400 μm-thick slices of the hippocampus are prepared. The slices are removed from the blade using a very soft, thoroughly wetted brush (marten hair) and transferred into a glass vessel with cold nutrient solution (124 mM NaCl, 4.9 mM KCl, 13 mM MgSO4×7 H2O, 2.5 mM CaCl2 anhydrous, 1.2 mM KH2PO4, 25.6 mM NaHCO3, 10 mM glucose, pH 7A) gassed with 95% O2/5% CO2. During the measurement, the slices are kept in a temperature-controlled chamber under a 1-3 mm-high liquid level. The flow rate is 2.5 ml/min. The preliminary gassing takes place under a slightly elevated pressure (about 1 atm) and through a microneedle in the prechamber. The slice chamber is connected to the prechamber in such a way that a minicirculation can be maintained. The minicirculation is driven by the 95% O2/5% CO2 flowing out through the microneedle. The freshly prepared hippocampus slices are adapted in the slice chamber at 33° C for at least 1 hour.
  • The stimulus level is chosen so that the focal excitatory postsynaptic potentials (fEPSP) are 30% of e maximum excitatory postsynaptic potential (EPSP). A monopolar stimulation electrode consisting of lacquered stainless steel, and a constant-current biphasic stimulus generator (AM Systems 2100) are used for local stimulation of the Schaffer collaterals (voltage: 1-5 V, pulse width of one polarity 0.1 ms, total pulse 0.2 ms). Glass electrodes (borosilicate glass with filament, 1-5 MOhm, diameter: 1.5 mm, tip diameter: 3-20 μm), filled with normal nutrient solution, are used to record the excitatory postsynaptic potentials (fEPSP) from the stratum radiatum. The field potentials are measured versus a chlorinated silver reference electrode located at the edge of the slice chamber using a DC voltage amplifier. The field potentials are filtered through a low-pass filter (5 kHz). The slope of the fEPSPs (fEPSP slope) is determined for the statistical analysis of the experiments. The recording, analysis and control of the experiment takes place with the aid of a software program (PWIN) which was developed in the Department of Neurophysiology. The formation of the average fEPSP slopes at the respective time points and construction of the diagrams takes place with the aid of the EXCEL software, with automatic data recording by an appropriate macro.
  • Superfusion of the hippocampus slices with a 10 μM solution of the compounds of the invention leads to a significant increase in the LTP.
  • Social Recognition Test
  • The social recognition test is a learning and memory test. It measures the ability of rats to distinguish between known and unknown members of the same species. This test is therefore suitable for examining the learning- or memory-improving effect of the compounds of the invention.
  • Adult rats housed in groups are placed singly in test cages 30 min before the start of the test. Four min before the start of the test, the test animal is put in an observation box. After this adaptation time, a juvenile animal is put in with the test animal and the absolute time for which the adult animal inspects the young one is measured for 2 min (trial 1). All behaviors clearly directed at the young animal are measured, i.e. anogenital inspection, pursuit and grooming, during which the old animal was no further than 1 cm from the young animal. The juvenile is then removed, and the adult is treated with a compound of the invention or vehicle and subsequently returned to its own cage. The test is repeated after a retention time of 24 hours (trial 2). A diminished social interaction time compared with trial 1 indicates that the adult rat remembers the young animal.
  • The adult animals receive intraperitoneal injections directly following trial 1 either with vehicle (10% ethanol, 20% Solutol, 70% physiological saline) or 0.1 mg/kg, 0.3 mg/kg, 1.0 mg/kg or 3.0 mg/kg compound of the invention dissolved in 10% ethanol, 20% Solutol, 70% physiological saline. Vehicle-treated rats show no reduction in the social interaction time in trial 2 compared with trial 1. They have consequently forgotten that they have already had contact with the young animal. Surprisingly, the social interaction time in the second run after treatment with the compounds of the invention is significantly reduced compared with those treated with vehicle. This means that the substance-treated rats have remembered the juvenile animal and thus the compounds of the invention display an improving effect on learning and memory.
  • The present invention further relates to a method for the treatment and/or prophylaxis of disorders, in particular of the aforementioned disorders, using an effective amount of the compounds of the invention.
  • The present invention farther relates to medicaments comprising at least one compound of the invention and one or more other active ingredients, in particular for the treatment and/or prophylaxis of the aforementioned disorders.
  • The compounds of the invention may have systemic and/or local effects. They can for this purpose be administered in a suitable way, such as, for example, by the oral, parenteral, pulmonary, nasal, sublingual, lingual, buccal, rectal, dermal, transdermal, conjunctival or otic route or as implant or stent.
  • The compounds of the invention can be administered in suitable administration forms for these administration routes.
  • Administration forms suitable for oral administration are those which function according to the state of the art and deliver the compounds of the invention in a rapid and/or modified way, and which contain the compounds of the invention in crystalline and/or amorphized and/or dissolved form, such as, for example, tablets (uncoated or coated tablets, for example with coatings which are resistant to gastric juice or dissolve slowly or are insoluble and which control the release of the compound of the invention), tablets which rapidly disintegrate in the mouth, or films/wafers, films/lyophilisates, capsules (for example hard or soft gelatin capsules), sugar-coated tablets, granules, pellets, powders, emulsions, suspensions, aerosols or solutions.
  • Parenteral administration can take place with avoidance of an absorption step (e.g. intravenous, intraarterial, intracardiac, intraspinal or intralumbar) or with inclusion of an absorption (e.g. intramuscular, subcutaneous, intracutaneous, percutaneous or intraperitoneal). Administration forms suitable for parenteral administration are, inter alia, injection and infusion preparations in the form of solutions, suspensions, emulsions, lyophilisates or sterile powders.
  • Examples suitable for other administration routes are medicinal forms for inhalation (inter alia powder inhalators, nebulizers), nasal drops, solutions, sprays; tablets for lingual, sublingual or buccal administration, films/wafers or capsules, suppositories, preparations for the ears or eyes, vaginal capsules, aqueous suspensions (lotions, shaking mixtures), lipophilic suspensions, ointments, creams, transdermal therapeutic systems (such as, for example, patches), milk, pastes, foams, dusting powders, implants or stents.
  • The compounds of the invention can be converted into the stated administration forms. This can take place in a manner known per se by mixing with inert, non-toxic, pharmaceutically suitable excipients. These excipients include, inter alia, carriers (for example microcrystalline cellulose, lactose, mannitol), solvents (e.g. liquid polyethylene glycols), emulsifiers and dispersants or wetting agents (for example sodium dodecyl sulfate, polyoxysorbitan oleate), binders (for example polyvinylpyrrolidone), synthetic and natural polymers (for example albumin), stabilizers (e.g. antioxidants such as, for example, ascorbic acid), colors (e.g. inorganic pigments such as, for example, iron oxides) and masking tastes and/or odors.
  • The present invention further relates to medicaments which comprise at least one compound of the invention, normally together with one or more inert, non-toxic, pharmaceutically suitable excipients, and to the use thereof for the aforementioned purposes.
  • It has generally proved advantageous on parenteral administration to administer amounts of about 0.001 to 10 mg/kg of body weight per day to achieve effective results. The amount per day on oral administration is about 0.005 to 3 mg/kg of body weight.
  • It may nevertheless be necessary to deviate from the stated amounts, in particular as a function of body weight, administration route, individual behavior towards the active ingredient, type of preparation and time or interval over which administration takes place. Thus, it may in some cases be sufficient to make do with less than the aforementioned minimum amount, whereas in other cases the stated upper limit must be exceeded. Where larger amounts are administered, it may be advisable to divide them into a plurality of single doses over the day.
  • The percentage data in the following tests and examples arc, unless indicated otherwise, percentages by weight; parts are parts by weight. Solvent ratios, dilution ratios and concentration data for liquid/liquid solutions are in each case based on volume.
  • ABBREVIATIONS USED
    • DCI direct chemical ionization (in MS)
    • DCM dichloromethane
    • DMSO dimethyl sulfoxide
    • equiv. equivalent(s)
    • ESI electrospray ionization (in MS)
    • HPLC high pressure, high performance liquid chromatography
    • m.p. melting point
    • MS mass spectroscopy
    • NMR nuclear magnetic resonance spectroscopy
    • TRIS 2-amino-2-(hydroxymethyl)-1,3-propanediol
  • Staring Compounds
  • EXAMPLE 1A 5-Amino-1-cyclohexyl-1H-pyrazole-4-carbonitrile
  • Figure US20120165349A1-20120628-C00011
  • Firstly ethoxymethylenemalononitrile (2.43 g, 19.9 mmol) and then 8 ml of triethylamine are added to a solution of cyclohexylhydrazine hydrochloride (3 g, 19.9 mmol) in 36 ml of ethanol at room temperature. The mixture is refluxed for 20 min and then cooled. The solvent is stripped of in a rotary evaporator, and the residue is taken up in DCM, washed with aqueous sodium bicarbonate solution, dried over sodium sulfate, filtered and concentrated in vacua. The crude product is chromatographed on silica gel (mobile phase: dichloromethane/methanol 0-10%).
  • Yield: 1.95 g (51% of theory)
  • MS (DCI): m/z=191 (M+H)+
  • 1H NMR (200 MHz, DMSO-d6): δ=7.5 (s, 1H), 6.5 (s, 2H), 4.0 (m, 1H), 1.95-1.05 (m, 10H) ppm.
  • EXAMPLE 2A 5-Amino-1-cyclopentyl-1H-pyrazole-4-carbonitrile
  • Figure US20120165349A1-20120628-C00012
  • Preparation takes place in analogy to the method for Example 1A.
  • MS (ESI): m/z=177 (M+H)+
  • 1H NMR (200 MHz, CDCl3): δ=7.5 (s, 1H), 4.45 (br. s, 2H), 4.35 (m, 1H), 2.2-1.55 (m, 6H) ppm.
  • EXAMPLE 3A 5-Amino-1-(1-ethylpropyl)-1H-1-pyrazole-4-carbonitrile
  • Figure US20120165349A1-20120628-C00013
  • Preparation takes place in analogy to the method for Example 1A.
  • MS (ESI): m/z=179 (M+H)+
  • 1H NMR (300 MHz, DMSO-d6): δ=7.55 (s, 1H), 6.45 (s, 2H), 4.0 (m, 1H), 1.8-1.55 (m, 4H), 0.65 (t, 6H) ppm.
  • EXAMPLE 4A 5-Amino-1-cyclohexyl-1H-pyrazole-4-carboxamide
  • Figure US20120165349A1-20120628-C00014
  • 18 ml of 30% strength hydrogen peroxide solution are added to a solution of 5-amino-1-cyclohexyl-1H-pyrazole-4-carbonitrile (1.86 g, 9.81 mmol in a mixture of 73 ml of ethanol and 90 ml of concentrated aqueous ammonia solution at room temperature, and the mixture is stirred at room temperature for 1 h. The nonaqueous solvents are then stripped off in a rotary evaporator. The product precipitates as solid from the remaining mixture and is filtered off with suction, washed with a little water and dried under high vacuum.
  • Yield: 1.77 g (86% of theory)
  • MS (DCI): m/z=209 (M+H)+
  • 1H NMR (300 MHz, DMSO-d6): δ=7.6 (s, 1H), 7.3-6.4 (broad, 2H), 6.1 (s, 2H) 3.95 (m, 1H), 1.95-1.05 (m, 10H) ppm.
  • EXAMPLE 5A 5-Amino-1-cyclopentyl-1H-pyrazole-4-carboxamide
  • Figure US20120165349A1-20120628-C00015
  • Preparation takes place in analogy to the method for Example 4A.
  • MS (ESI): m/z=195 (M+H)+
  • 1H NMR (200 MHz, CDCl3): δ=7.5 (s, 1H), 5.6-4.8 (broad, 4H), 4.35 (m, 1H), 2.2-1.55 (m, 8H) ppm.
  • EXAMPLE 6A 5-Amino-1-(1-ethylpropyl)-1H-pyrazole-4-carboxamide
  • Figure US20120165349A1-20120628-C00016
  • Preparation takes place in analogy to the method for Example 4A.
  • MS (ESI): m/z=197 (M+H)+
  • 1H NMR (300 MHz, DMSO-d6): δ=7.65 (s, 1H), 6.9 (br. s, 2H), 6.1 (s, 2H), 3.9 (m, 1H), 1.85-1.6 (m, 4H), 0.7 (t, 6H) ppm.
  • Exemplary Embodiments EXAMPLE 1 6-(3-Chlorobenzyl)-1-cyclopentyl-1,5-dihydro-41-1-pyrazolo[3,4-d]pyrimidin-4-one
  • Figure US20120165349A1-20120628-C00017
  • Under argon, 180 mg (0.91 mmol) of 5-amino-1-cyclopentyl-1H-pyrazole-4-carboxamide and 575 mg (2.72 mmol; 3 equiv.) of ethyl (3-chlorophenyl)acetate are introduced into 3.5 ml of absolute ethanol. At 0° C., 127 mg of sodium hydride (60% dispersion in mineral oil; 3.18 mmol; 15 equiv.) are slowly added in a countercurrent of argon. The resulting mixture is slowly warmed and stirred under reflux for 18 h. The mixture is worked up by adding 50 ml of water and extracted several times with ethyl acetate. The combined organic phases are dried over sodium sulfate and concentrated in vacuo. The crude product is purified by preparative HPLC.
  • Yield: 244 mg (81% of theory)
  • MS (ESI): m/z=329 (M+H)+
  • m.p.: 159° C.
  • 1H NMR (200 MHz, DMSO-d6): δ=12.3 (s, 1H), 8.0 (s, 1H), 7.5-7.2 H), 5.05 (m, 1H), 3.95 (s, 2H), 2.2-1.5 (m, 8H) ppm.
  • EXAMPLE 2 6-(2-Fluorobenzyl)-1-cyclopentyl-1,5-dihydro--4H-pyrazolo[3,4-d]pyrimidin-4-one
  • Figure US20120165349A1-20120628-C00018
  • The product is obtained in analogy to Example 1 starting from 100 mg (0.5 mmol) 5-amino-1-cyclopentyl-1H-pyrazole-4-carboxamide and 260 mg (1.51 mmol) of methyl (2-fluorophenyl)acetate.
  • Yield: 100 mg (63% of theory)
  • MS (DCI): m/z=313 (M+H)+
  • m.p.: 180° C.
  • 1H NMR (400 MHz, DMSO d6): δ=12.25 (s, 1H), 8.0 (s, 1H), 7.4-7.3 (m, 2H), 7.2-7.1 (m, 2H), 4.95 (m, 1H), 4.05 (s, 2H), 2.05-1.55 (m, 8H) ppm.
  • EXAMPLE 3 6-(3-Bromobenzyl)-1-cyclopentyl-1,5-dihydro-4H-pyrazolo[3,4-d]pyrimidin-4-one
  • Figure US20120165349A1-20120628-C00019
  • The product is obtained in analogy to Example 1 starting from 80 mg (0.4 mmol) of 5-amino-1H-cyclopentyl-1H-pyrazole-4-carboxamide and 277 mg (1.21 mmol) of methyl (3-bromophenyl)acetate.
  • Yield: 93 mg (62% of theory)
  • MS (ESI): m/z=373 (M+H)+
  • m.p.: 159° C.
  • 1H NMR (400 MHz, DMSO-d6): δ=12.2 (s, 1H), 8.0 (s, 1H), 7.6 (s, 1H), 7.5-7.35 (m, 3H), 5.05 (m, 1H), 4.0 (s, 2H), 2.1L1.6 (m, 8H) ppm.
  • EXAMPLE 4 6-(3,4-Dichlorobenzyl)-1-cyclopentyl-1,5-dihydro-4H-pyrazolo[3,4-d]pyrimidin-4-one
  • Figure US20120165349A1-20120628-C00020
  • The product is obtained in analogy to Example 1 starting from 75 mg (0.38 mmol) of 5-amino-1-cyclopentyl-1H-pyrazole-4-carboxamide and 254 mg (1.14 mmol) of methyl (3,4-dichlorophenyl)acetate.
  • Yield: 94 mg (68% of theory)
  • MS (EST): m/z=363 (M+H)+
  • m.p.: 198° C.
  • 1H NMR (400 MHz, DMSO-d6): δ=12.2 (s, 1H), 8.0 (s, 1H), 7.65 (d, 1H, J=1 Hz), 7.55 (d,1H, J=7.5 Hz), 7,3 (dd, 1H, J=7.5 Hz, 1 Hz), 5.05 (m, 1H), 4.0 (s, 2H), 2.1-1.6 (m, 8H) ppm.
  • EXAMPLE 5 6-(3,5-Dichlorobenzyl)-1-cyclopentyl-1,5-dihydro-4H-pyrazolo[3,4-d]pyrimidin-4-one
  • Figure US20120165349A1-20120628-C00021
  • The product is obtained in analogy to Example 1 starting from 150 mg (0.76 mmol) of 5-amino-1-cyclopentyl-1H-pyrazole-4-carboxamide and 507 mg (2.27 mmol) of methyl (3,5-dichlorophenyl)acetate.
  • Yield: 159 mg (58% of theory)
  • MS (ESI): m/z=363 (M+H)+
  • m.p.: 177° C. 1H NMR (200 MHz, DMSO-d6): δ=12.25 (s, 1H), 8,0 (s, 1H), 7.55 (t, 1H, J=1 Hz), 7.45 (d, 2H, J=1 Hz), 5.05 (m, 1H), 4.0 (s, 2H), 2.2-1.5 (m, 8H) ppm.
  • EXAMPLE 6 6-(2,3-Dichlorobenzyl)-1-cyclopentyl-1,5-dihydro-4H-pyrazolo[3,4-d]pyrimidin-4-one
  • Figure US20120165349A1-20120628-C00022
  • The product is obtained in analogy to Example 1 starting from 150 mg (0.76 mmol) of 5-amino-1-cyclopentyl-1H-pyrazole-4-carboxamide and 406 mg (1.82 mmol) of methyl (2,3-dichlorophenyl)acetate.
  • Yield: 114 mg (41% of theory)
  • MS (PSI): m/z=363 (M+H)30
  • imp.: 181° C.
  • 1H NMR (200 MHz, DMSO-d6): δ12.35 (s, 1H), 8.0 (s, 1H), 7.6 (m, 1H), 7.4-7.3 (m, 2H), 4.9 (m, 1H), 4.2 (s, 2H), 2.1-1.5 (m, 8H) ppm.
  • EXAMPLE 7 6-(3-Chlorobenzyl)-1-(1-ethylpropyl)-1,5-dihydro-4H-pyrazolo[3,4-d]pyrimidin-4-one
  • Figure US20120165349A1-20120628-C00023
  • The product is obtained in analogy to Example 1 starting from 150 mg (0.76 mmol) of 5-amino-1-(1-ethylpropyl)-1H-pyrazole-4-carboxamide and 484 mg (2.29 mmol) of ethyl (3-chlorophenyl)acetate.
  • Yield: 210 mg (83% of theory)
  • MS (ESI): m/z=331 (M+H)+
  • m.p.: 138° C.
  • 1NMR (200 MHz, DMSO-d6): δ=12.3 (s, 1H), 8.0 (s, 1H), 7.45-7.25 (m, 4H), 4.45 (m, 1H), 4.0 (s, 2H), 2.0-1.7 (m, 4H), 0.6 (t, 6H, J=7.5 Hz) ppm.
  • EXAMPLE 1 6-(3-Methylbenzyl)-1-cyclopentyl-1,5-dihydro-4H-pyrazolo[3,4-d]pyrimidin-4-one
  • Figure US20120165349A1-20120628-C00024
  • The product is obtained in analogy to Example 1 starting from 200 mg (1.01 mmol) of 5-amino-1-cyclopentyl-1H-pyrazole-4-carboxamide and 550 mg (3.03 mmol) of ethyl (3-methylphenyl)acetate.
  • Yield: 222 mg (71% of theory)
  • MS (ESI): m/z=309 (M+H)+
  • m.p.: 152° C.
  • 1H NMR (200 MHz, DMSO-d6): δ=12.2 (s, 1H), 8.0 (s, 1H), 7.3-7.0 (m, 4H), 5.1 (m, 1H), 3.95 (s, 2H), 2.3 (s, 3H), 2.2-1.55 (m, 8H) ppm.
  • EXAMPLE 9 6-(2,5-Dichlorobenzyl)-1-(1-ethylpropyl)-1,5-dihydro-4H-pyrazolo[3,4-d]pyrimidin-4-one
  • Figure US20120165349A1-20120628-C00025
  • The product is obtained in analogy to Example 1 starting from 200 mg (1.0 mmol) of 5-amino-1-(1-ethylpropyl)-1H-pyrazole-4-carboxamide and 806 mg (3.5 mmol) of methyl (2,5-dichlorophenyl)acetate.
  • Yield: 51 mg (14% of theory)
  • MS (ESI): m/z=365 (M+H)+
  • m.p.: 134° C.
  • 1H NMR (300 MHz, DMSO-d6): δ=12.3 (s, 1H), 8.0 (s, 1H), 7.55-7.35 (m, 3H), 4.2 (m, 1H), 4.15 (s, 2H), 1.9-1.65 (m, 4H), 0.55 (t, 6H,=7.5 Hz) ppm.
  • EXAMPLE 10 6-(3-Methylbenzyl)-1-(1-ethylpropyl)-1,5-dihydro-4H-pyrazolo[3,4-d]pyrimidin-4-one
  • Figure US20120165349A1-20120628-C00026
  • The product is obtained in analogy in Example 1 starting from 200 mg (1.0 mmol) of 5-amino-1-(1-ethylpropyl)-1H-pyrazole-4-carboxamide and 534 mg (3.0 mmol) of ethyl (3-methylphenyl)acetate.
  • Yield: 187 mg (60% of theory)
  • MS (ESI): m/z=311 (M+H)+
  • m.p.: 128° C.
  • 1H NMR (200 MHz, DMSO-d6): δ=12.25 (s, 1H), 8.0 (s, 1H), 7.25-7.0 (m, 4H), 4.5 (m, 1H), 3.95 (s, 2H), 2.25 (s, 3H), 2.0-1.7 (m, 41-1), 0.6 (t, 6H, J=7.5 Hz) ppm.
  • EXAMPLE 11 1-(1-Ethylpropyl)-6-[3-(trifluoroethyl)benzyl]-1,5-dihydro-4H-pyrazolo[3,4-d]-pyrimidin-4-one
  • Figure US20120165349A1-20120628-C00027
  • The product is obtained in analogy to Example 1 starting from 150 mg (0.75 mmol) of 5-amino-1-(1-ethylpropyl-1H-pyrazole-4-carboxamide and 490 mg (2.25 mmol) of methyl (3-trifluoromethylphenyl)acetate.
  • Yield: 159 mg (58% of theory)
  • MS (ESI): m/z=365 (M+H)+
  • m.p.: 120° C.
  • 1H NMR (400 MHz, DMSO-d6): δ=12.3 (s, 1H), 8.0 (s, 1H), 7.7 (s, 1H), 7.7-7.5 (m, 3H), 4.4 (m, 1H), 4.1 (s, 2H), 1.95-1.75 (m, 4H), 0.6 (t, 6H, J=7,5 Hz) ppm.
  • EXAMPLE 12 1-Cyclopentyl-6-(3-nitrobenzyl)-1,5-dihydro-4H-pyrazolo[3,4-d]pyrimidin-4-one
  • Figure US20120165349A1-20120628-C00028
  • The product is obtained in analogy to Example 1 starting from 668 mg (3.44 mmol) of 5-amino-1-cyclopentyl-1H-pyrazole-4-carboxamide and 3.5 g (117 mmol) of ethyl 3-nitrophenylacetate.
  • Yield: 10 mg (1% of theory)
  • MS (ESI): m/z=340 (M+H)+
  • 1H NMR (300 MHz, DMSO-d6): δ=12.3 (s, 1H), 8.3 (s, 1H), 8.15 (m, 1H), 8.0 (s, 1H), 7.8 (d, 1H, J=8 Hz), 7.6 (t, 1H, J=8 Hz), 5.0 (m, 1H), 4.15 (s, 2H), 2.1-1.6 (m, 8H).
  • EXAMPLE 13 6-(3-Chlorobenzyl)-1-cyclopentyl-1,5-dihydro-4H-pyrazolo[3,4-d]pyrimidine-4-thione
  • Figure US20120165349A1-20120628-C00029
  • 50 mg (0.23 mmol, 1.5 equiv.) of diphosphorus pentasulfide are added to a solution of 50 mg (0.15 mmol) of 6-(3-chlorobenzyl)-1-cyclopentyl-1,5-dihydro-4H-pyrazolo[3,4-d]pyrimidin-4-one (Example 1) in 1 ml of pyridine at room temperature, and the mixture is then stirred under reflux overnight. After cooling, the reaction solution is mixed with 10 ml of ice-cold 2.5% strength sodium bicarbonate solution and extracted three times with ethyl acetate. The combined organic phases are washed with saturated brine, dried over sodium sulfate and concentrated in vacuo. The crude product is purified by preparative HPLC.
  • Yield: 36 mg (68% of theory)
  • MS (ESI): m/z=345 (M+H)+
  • m.p.: 154° C.
  • 1H NMR (300 MHz, DMSO-d6): δ=13.6 (s, 1H), 8.15 (s, 1H), 7.5 (s, 1H), 7.4-7.25 (m, 3H), 5.05 (m, 1H), 4.1 (s, 2H), 2.1-1.6 (m, 8H).
  • EXAMPLE 14 1-Cyclopentyl-6-[2-(trifluoromethoxy)benzyl]-1,5-dihydro-4H-pyrazolo[3,4-d]-pyrimidin-4-one
  • Figure US20120165349A1-20120628-C00030
  • The product is obtained in analogy to Example 1 starting from 50 mg (0.26 mmol) of 5-amino-1-cyclopentyl-1H-pyrazole-4-carboxamide and 301 mg (1.29 mmol) of methyl [2-(trifluoromethoxy)phenyl]acetate.
  • Yield: 64 mg (63% of theory)
  • MS (DCI): m/z=379 (M+H)+
  • m.p.: 161° C.
  • 1H NMR (400 MHz, DMSO-d6): δ=12.25 (s, 1H), 8.0 (s, 1H), 7.5-7.3 (m,4H), 4.9 (m, 1H), 4.1 (s, 2H), 2.05-1.5 (m, 8H) ppm.

Claims (12)

1. A compound of the formula
Figure US20120165349A1-20120628-C00031
in which
R1 is phenyl which is substituted by 1 to 5 substituents independently of one another selected from the group of halogen, C1-C6-alkyl, trifluoromethyl, trifluoroethoxy, cyano, hydroxy, nitro and C1-C6-alkoxy,
R2 is pentan-3-yl, C4-C6-cycloalkyl,
X is oxygen or sulfur,
and the salts, solvates and/or solvates of the salts thereof.
2. A compound as claimed in claim 1, where
R1 is phenyl which is substituted by 1 to 3 substituents independently of one another selected from the group of fluorine, chlorine, bromine, C1-C4-alkyl, trifluoromethyl, trifluoromethoxy, cyano, hydroxy, nitro and C1-C4-alkoxy,
R2 is pentan-3-yl, C5-C6-cycloalkyl,
X is oxygen or sulfur,
and the salts, solvates and/or solvates of the salts thereof.
3. A compound as claimed in claims 1 and 2 of the formula
Figure US20120165349A1-20120628-C00032
in which
R3 is hydrogen or chlorine,
R4 is fluorine, chlorine, bromine, methyl, trifluoromethyl,
R2 is pentan-3-yl, cyclopentyl,
X is oxygen or sulfur,
and the salts, solvates and/or solvates of the salts thereof,
4. A compound as claimed in claims 1 to 3 of the formula (Ia), where
R3 is hydrogen or chlorine,
R4 is fluorine, chlorine, bromine, methyl, trifluoromethyl,
R2 is pentan-3-yl, cyclopentyl,
X is oxygen,
and the salts, solvates and/or solvates of the salts thereof.
5. A process for preparing compounds as claimed in claim 1, characterized in that
[A] compounds of the formula
Figure US20120165349A1-20120628-C00033
in which
R2 has the meanings indicated in claim 1,
are converted by reaction with a compound of the formula

R1—CH2—C(O)—Z   (IIIa),
in which
R1 has the meanings indicated in claim 1,
and
is chlorine or bromine,
initially in the presence of a base into compounds of the formula
Figure US20120165349A1-20120628-C00034
in which
R1 and R2 have the meanings indicated in claim 1,
then cyclized in the presence of a base t© compounds of the formula
Figure US20120165349A1-20120628-C00035
in which
R1 and R2 have the meanings indicated in claim 1,
or
[B] compounds of the formula (II) are reacted with direct cyclization to (Ib) with a compound of the formula

R1—CH2—C(O)—OR5   (IIIb),
in which
R1 has the meanings indicated in claim 1,
and
R5 is methyl or ethyl,
in the presence of a base,
or
[C] compounds of the formula
Figure US20120165349A1-20120628-C00036
in which
R2 has the meanings indicated in claim 1,
are converted initially by reaction with a compound of the formula (IIIa) in the presence of a base into compounds of the formula
Figure US20120165349A1-20120628-C00037
in which
R1 and R2 have the meanings indicated in claim 1,
and the latter are cyclized in a second step in the presence of base and of an oxidizing agent to (Ib),
and the compounds of the formula (Ib) are then converted where appropriate by reaction with a sulfurizing agent such as, for example, diphosphorus pentasulfide into the thiono derivatives of the formula
Figure US20120165349A1-20120628-C00038
in which
R1 and R2 have the meanings indicated in claim 1,
and the resulting compounds of the formula (I) are reacted where appropriate with the appropriate (i) solvents and/or (ii) bases or acids to give the solvates, salts and/or solvates of the salts thereof.
6. A compound as claimed in any of claims 1 to 4 for the treatment and/or prophylaxis of diseases,
7. A medicament comprising at least one of the compounds as claimed in any of claims 1 to 4 and at least one pharmaceutically acceptable, essentially non-toxic carrier or excipient.
8. The use of the compounds as claimed in any of claims 1 to 4 for producing a medicament for the prophylaxis and/or treatment of impairments of perception, concentration, learning and/or memory.
9. The use as claimed in claim 8, where the impairment is a consequence of Alzheimer's disease,
10. The use of the compounds as claimed in any of claims 1 to 4 for producing a medicament for improving perception, concentration, learning and/or memory.
11. A method for controlling impairments of perception, concentration, learning and/or memory in humans or animals by administering an effective amount of the compounds from claims 1 to 4.
12. The method as claimed in claim 11, where the impairment is a consequence of Alzheimer's disease.
US13/410,867 2002-08-23 2012-03-02 Phenyl-Substituted Pyrazolopyrimidines Abandoned US20120165349A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/410,867 US20120165349A1 (en) 2002-08-23 2012-03-02 Phenyl-Substituted Pyrazolopyrimidines

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10238723.0 2002-08-23
DE10238723A DE10238723A1 (en) 2002-08-23 2002-08-23 Phenyl substituted pyrazolyprimidines
PCT/EP2003/008923 WO2004018474A1 (en) 2002-08-23 2003-08-12 Phenyl-substituted pyrazolopyrimidines
US52511505A 2005-08-31 2005-08-31
US13/410,867 US20120165349A1 (en) 2002-08-23 2012-03-02 Phenyl-Substituted Pyrazolopyrimidines

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/EP2003/008923 Division WO2004018474A1 (en) 2002-08-23 2003-08-12 Phenyl-substituted pyrazolopyrimidines
US52511505A Division 2002-08-23 2005-08-31

Publications (1)

Publication Number Publication Date
US20120165349A1 true US20120165349A1 (en) 2012-06-28

Family

ID=31501895

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/525,115 Active 2025-03-19 US8158633B2 (en) 2002-08-23 2003-08-12 Phenyl-substituted pyrazolopyrimidines
US13/410,867 Abandoned US20120165349A1 (en) 2002-08-23 2012-03-02 Phenyl-Substituted Pyrazolopyrimidines

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/525,115 Active 2025-03-19 US8158633B2 (en) 2002-08-23 2003-08-12 Phenyl-substituted pyrazolopyrimidines

Country Status (8)

Country Link
US (2) US8158633B2 (en)
EP (1) EP1534711B1 (en)
JP (1) JP4757491B2 (en)
AU (1) AU2003258601A1 (en)
CA (1) CA2496194C (en)
DE (2) DE10238723A1 (en)
ES (1) ES2263057T3 (en)
WO (1) WO2004018474A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8623901B2 (en) 2009-03-31 2014-01-07 Boehringer Ingelheim International Gmbh Compounds for the treatment of CNS disorders
US8623879B2 (en) 2008-04-02 2014-01-07 Boehringer Ingelheim International Gmbh 1-heterocyclyl-1,5-dihydro-pyrazolo[3,4-D] pyrimidin-4-one derivates and their use as PDE9A modulators
US8648085B2 (en) 2007-11-30 2014-02-11 Boehringer Ingelheim International Gmbh 1, 5-dihydro-pyrazolo (3, 4-D) pyrimidin-4-one derivatives and their use as PDE9A mudulators for the treatment of CNS disorders
US8809345B2 (en) 2011-02-15 2014-08-19 Boehringer Ingelheim International Gmbh 6-cycloalkyl-pyrazolopyrimidinones for the treatment of CNS disorders
US8912201B2 (en) 2010-08-12 2014-12-16 Boehringer Ingelheim International Gmbh 6-cycloalkyl-pyrazolopyrimidinones for the treatment of CNS disorders
US9079905B2 (en) 2008-09-08 2015-07-14 Boehringer Ingelheim International Gmbh Compounds for the treatment of CNS disorders

Families Citing this family (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7407955B2 (en) 2002-08-21 2008-08-05 Boehringer Ingelheim Pharma Gmbh & Co., Kg 8-[3-amino-piperidin-1-yl]-xanthines, the preparation thereof and their use as pharmaceutical compositions
DE10238724A1 (en) * 2002-08-23 2004-03-04 Bayer Ag New 6-alkyl-1,5-dihydro-4H-pyrazolo-(3,4-d)-pyrimidin-4-ones useful as selective phosphodiesterase 9A inhibitors for improving attention, concentration, learning and/or memory performance
DE10238723A1 (en) 2002-08-23 2004-03-11 Bayer Ag Phenyl substituted pyrazolyprimidines
DE10238722A1 (en) 2002-08-23 2004-03-11 Bayer Ag Improving attention, concentration, cognition, learning and/or memory performance, using selective phosphodiesterase 9A inhibitors, preferably 4H-pyrazolo-(3,4-d)-pyrimidin-4-one derivatives
US8044060B2 (en) 2003-05-09 2011-10-25 Boehringer Ingelheim International Gmbh 6-cyclylmethyl- and 6-alkylmethyl pyrazolo[3,4-D]pyrimidines, methods for their preparation and methods for their use to treat impairments of perception, concentration learning and/or memory
DE10320785A1 (en) 2003-05-09 2004-11-25 Bayer Healthcare Ag 6-arylmethyl substituted pyrazolopyrimidines
DE10328479A1 (en) * 2003-06-25 2005-01-13 Bayer Ag 6-arylamino-5-cyano-4-pyrimidinones
DE102004001873A1 (en) 2004-01-14 2005-09-29 Bayer Healthcare Ag Cyanopyrimidinone
US7501426B2 (en) 2004-02-18 2009-03-10 Boehringer Ingelheim International Gmbh 8-[3-amino-piperidin-1-yl]-xanthines, their preparation and their use as pharmaceutical compositions
DE102004054054A1 (en) 2004-11-05 2006-05-11 Boehringer Ingelheim Pharma Gmbh & Co. Kg Process for preparing chiral 8- (3-amino-piperidin-1-yl) -xanthines
DE102005024493A1 (en) * 2005-05-27 2006-11-30 Bayer Healthcare Ag Use of pyrazolopyrimidines
ES2526701T3 (en) 2005-06-14 2015-01-14 Aska Pharmaceutical Co., Ltd. Thienopyrimidine derivative
DE102005035891A1 (en) 2005-07-30 2007-02-08 Boehringer Ingelheim Pharma Gmbh & Co. Kg 8- (3-amino-piperidin-1-yl) -xanthines, their preparation and their use as pharmaceuticals
EP1926734A1 (en) 2005-08-22 2008-06-04 Amgen Inc. Pyrazolopyridine and pyrazolopyrimidine compounds useful as kinase enzymes modulators
EP1852108A1 (en) 2006-05-04 2007-11-07 Boehringer Ingelheim Pharma GmbH & Co.KG DPP IV inhibitor formulations
EA015687B1 (en) 2006-05-04 2011-10-31 Бёрингер Ингельхайм Интернациональ Гмбх Polymorphs
PE20080251A1 (en) 2006-05-04 2008-04-25 Boehringer Ingelheim Int USES OF DPP IV INHIBITORS
AU2007256633B2 (en) 2006-06-06 2013-09-12 Intra-Cellular Therapies, Inc. Organic compounds
CA2659967C (en) 2006-08-08 2014-05-13 Aska Pharmaceutical Co., Ltd. Quinazoline derivatives
WO2008072778A1 (en) * 2006-12-13 2008-06-19 Aska Pharmaceutical Co., Ltd. Therapeutic agent for urinary tract disease
US8299080B2 (en) 2006-12-13 2012-10-30 Aska Pharmaceutical Co., Ltd. Substituted imidazo[1,5-A] quinoxalines as a PDE9 inhibitor
MX2010006208A (en) 2007-12-06 2010-12-21 Intra Cellular Therapies Inc Organic compounds.
PE20091730A1 (en) 2008-04-03 2009-12-10 Boehringer Ingelheim Int FORMULATIONS INVOLVING A DPP4 INHIBITOR
UY32030A (en) 2008-08-06 2010-03-26 Boehringer Ingelheim Int "TREATMENT FOR DIABETES IN INAPPROPRIATE PATIENTS FOR THERAPY WITH METFORMIN"
KR20200118243A (en) 2008-08-06 2020-10-14 베링거 인겔하임 인터내셔날 게엠베하 Treatment for diabetes in patients inappropriate for metformin therapy
BRPI0919288A2 (en) 2008-09-10 2015-12-15 Boehring Ingelheim Internat Gmbh combination therapy for treatment of diabetes and related conditions.
US20200155558A1 (en) 2018-11-20 2020-05-21 Boehringer Ingelheim International Gmbh Treatment for diabetes in patients with insufficient glycemic control despite therapy with an oral antidiabetic drug
MA32939B1 (en) 2008-12-06 2012-01-02 Intra Cellular Therapies Inc ORGANIC COMPOUNDS
US8697710B2 (en) 2008-12-06 2014-04-15 Intra-Cellular Therapies, Inc. Optionally substituted 3-amino-4-(thioxo or imino)-4,5-dihydro-2H-pyrazolo [3,4-d]pyrimidin-6(7H)-ones
EA201170772A1 (en) 2008-12-06 2012-03-30 Интра-Селлулар Терапиз, Инк. ORGANIC COMPOUNDS
TWI508965B (en) 2008-12-23 2015-11-21 Boehringer Ingelheim Int Salt forms of organic compound
AR074990A1 (en) 2009-01-07 2011-03-02 Boehringer Ingelheim Int TREATMENT OF DIABETES IN PATIENTS WITH AN INAPPROPRIATE GLUCEMIC CONTROL THROUGH METFORMIN THERAPY
AR077859A1 (en) 2009-08-12 2011-09-28 Boehringer Ingelheim Int COMPOUNDS FOR THE TREATMENT OF CNS DISORDERS
ES2760917T3 (en) 2009-11-27 2020-05-18 Boehringer Ingelheim Int Treatment of diabetic patients genotyped with DPP-IV inhibitors such as linagliptin
PT2566469T (en) 2010-05-05 2023-01-10 Boehringer Ingelheim Int Combination therapy
EP2590657A4 (en) 2010-05-31 2014-02-12 Intra Cellular Therapies Inc Organic compounds
US9434730B2 (en) 2010-05-31 2016-09-06 Intra-Cellular Therapies, Inc. PDE1 inhibitor compounds
EP2585101A1 (en) 2010-06-24 2013-05-01 Boehringer Ingelheim International GmbH Diabetes therapy
WO2012004900A1 (en) * 2010-07-09 2012-01-12 Aska Pharmaceutical Co., Ltd. Thienopyrimidine compounds
SI2615089T1 (en) 2010-09-07 2016-08-31 Astellas Pharma Inc. Pyrazoloquinoline compounds
US9034883B2 (en) 2010-11-15 2015-05-19 Boehringer Ingelheim International Gmbh Vasoprotective and cardioprotective antidiabetic therapy
US20130040971A1 (en) 2011-02-14 2013-02-14 Boehringer Ingelheim International Gmbh 6-cycloalkyl-pyrazolopyrimidinones for the treatment of cns disorders
CA2830027C (en) 2011-03-31 2016-04-26 Pfizer Inc. Novel bicyclic pyridinones
WO2012172449A1 (en) 2011-06-13 2012-12-20 Pfizer Inc. Lactams as beta secretase inhibitors
PL2731947T3 (en) 2011-07-15 2019-07-31 Boehringer Ingelheim International Gmbh Substituted dimeric quinazoline derivative, its preparation and its use in pharmaceutical compositions for the treatment of type i and ii diabetes
JP6043355B2 (en) 2011-08-31 2016-12-14 ファイザー・インク Hexahydropyrano [3,4-d] [1,3] thiazin-2-amine compound
US9555001B2 (en) 2012-03-07 2017-01-31 Boehringer Ingelheim International Gmbh Pharmaceutical composition and uses thereof
ES2585262T3 (en) 2012-05-04 2016-10-04 Pfizer Inc Hexahydropyran [3,4-d] [1,3] thiazin-2-amine heterocyclic compounds substituted as inhibitors of PPA, BACE1 and BACE2
WO2013171167A1 (en) 2012-05-14 2013-11-21 Boehringer Ingelheim International Gmbh A xanthine derivative as dpp -4 inhibitor for use in the treatment of podocytes related disorders and/or nephrotic syndrome
WO2013174767A1 (en) 2012-05-24 2013-11-28 Boehringer Ingelheim International Gmbh A xanthine derivative as dpp -4 inhibitor for use in modifying food intake and regulating food preference
CN104395315B (en) 2012-06-29 2016-08-17 辉瑞大药厂 4-(substituted amino)-7H-pyrrolo-(2,3-d) miazines as LRRK2 inhibitor
CN102786525B (en) * 2012-08-08 2014-12-17 中山大学 N-substituted pyrazolo [3, 4-d] pyrimidine ketone compound and preparation method and application thereof
CA2882389A1 (en) 2012-09-20 2014-03-27 Pfizer Inc. Alkyl-substituted hexahydropyrano[3,4-d][1,3]thiazin-2-amine compounds
UA110688C2 (en) 2012-09-21 2016-01-25 Пфайзер Інк. Bicyclic pirydynony
CA2893256A1 (en) 2012-12-11 2014-06-19 Pfizer Inc. Hexahydropyrano [3,4-d][1,3]thiazin-2-amine compounds as inhibitors of bace1
US9403846B2 (en) 2012-12-19 2016-08-02 Pfizer Inc. Carbocyclic- and heterocyclic-substituted hexahydropyrano[3,4-d][1,3]thiazin-2-amine compounds
CA2897678A1 (en) 2013-02-13 2014-08-21 Pfizer Inc. Heteroaryl-substituted hexahydropyrano[3,4-d][1,3]thiazin-2-amine compounds
US9233981B1 (en) 2013-02-15 2016-01-12 Pfizer Inc. Substituted phenyl hexahydropyrano[3,4-d][1,3]thiazin-2-amine compounds
MX2015010714A (en) 2013-02-19 2016-06-14 Pfizer Azabenzimidazole compounds as inhibitors of pde4 isozymes for the treatment of cns and other disorders.
ES2742078T3 (en) 2013-10-04 2020-02-13 Pfizer Novel bicyclic pyridones as gamma-secretase modulators
US9695171B2 (en) 2013-12-17 2017-07-04 Pfizer Inc. 3,4-disubstituted-1 H-pyrrolo[2,3-b]pyridines and 4,5-disubstituted-7H-pyrrolo[2,3-c]pyridazines as LRRK2 inhibitors
JP6615109B2 (en) 2014-02-28 2019-12-04 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Medical use of DPP-4 inhibitors
DK3126361T3 (en) 2014-04-01 2020-01-02 Pfizer CHROMEN AND 1,1A, 2,7B-TETRAHYDROCYCLOPROPA [C] CHROMEN-PYRIDOPYRAZINE DIONS AS GAMMA SECRETASE MODULATORS
MA39866A (en) 2014-04-10 2017-02-15 Pfizer 2-AMINO-6-METHYL-4,4a,5,6-TETRAHYDROPYRANO[3,4-d][1,3]THIAZIN-8a(8H)-YL-1,3-THIAZOL-4-YL AMIDES
EP3172210B1 (en) 2014-07-24 2020-01-15 Pfizer Inc Pyrazolopyrimidine compounds
DK3177624T3 (en) 2014-08-06 2019-07-01 Pfizer IMIDAZOPYRIDAZINE COMPOUNDS
US9546175B2 (en) 2014-08-07 2017-01-17 Intra-Cellular Therapies, Inc. Organic compounds
TW201629064A (en) 2014-10-10 2016-08-16 H 朗德貝克公司 Triazolopyrainones as PDE1 inhibitors
JP2017538769A (en) 2014-12-22 2017-12-28 ファイザー・インク Prostaglandin EP3 receptor antagonist
MX368391B (en) 2015-02-03 2019-09-30 Pfizer Novel cyclopropabenzofuranyl pyridopyrazinediones.
JO3627B1 (en) 2015-04-30 2020-08-27 H Lundbeck As Imidazopyrazinones as PDE1 inhibitors
PL3310784T3 (en) 2015-06-17 2021-03-08 Pfizer Inc. Tricyclic compounds and their use as phosphodiesterase inhibitors.
EP3350178B1 (en) 2015-09-14 2021-10-20 Pfizer Inc. Novel imidazo [4,5-c]quinoline and imidazo [4,5-c][1,5]naphthyridine derivatives as lrrk2 inhibitors
WO2017051294A1 (en) 2015-09-24 2017-03-30 Pfizer Inc. N-[2-(3-amino-2,5-dimethyl-1,1-dioxido-5,6-dihydro-2h-1,2,4-thiadiazin-5-yl)-1,3-thiazol-4-yl] amides useful as bace inhibitors
AU2016325665A1 (en) 2015-09-24 2018-03-08 Pfizer Inc. N-[2-(2-amino-6,6-disubstituted-4, 4a, 5, 6-tetrahydropyrano [3,4-d][1,3] thiazin-8a (8h)-yl) -1, 3-thiazol-4-yl] amides
WO2017051303A1 (en) 2015-09-24 2017-03-30 Pfizer Inc. Tetrahydropyrano[3,4-d][1,3]oxazin derivatives and their use as bace inhibitors
AU2017223132B2 (en) 2016-02-23 2019-12-05 Pfizer Inc. 6,7-Dihydro-5H-pyrazolo[5,1-b][1,3]oxazine-2-carboxamide compounds
CN105669680B (en) * 2016-03-24 2018-02-23 南京药捷安康生物科技有限公司 (1H) ketone derivatives class PDE9A inhibitor of pyrrolo- [2,1 f] [1,2,4] triazine 4
TWI729109B (en) * 2016-04-12 2021-06-01 丹麥商H 朗德貝克公司 1,5-DIHYDRO-4H-PYRAZOLO[3,4-d]PYRIMIDIN-4-ONES AND 1,5-DIHYDRO-4H-PYRAZOLO[4,3-c]PYRIDIN-4-ONES AS PDE1 INHIBITORS
US10155000B2 (en) 2016-06-10 2018-12-18 Boehringer Ingelheim International Gmbh Medical use of pharmaceutical combination or composition
AU2017286868B2 (en) 2016-07-01 2021-11-11 Pfizer Inc. 5,7-dihydro-pyrrolo-pyridine derivatives for treating neurological and neurodegenerative diseases
EP3529250B1 (en) 2016-10-18 2023-12-06 H. Lundbeck A/S Imidazopyrazinones, pyrazolopyrimidinones and pyrazolopyridinones as pde1 inhibitors
WO2018078038A1 (en) 2016-10-28 2018-05-03 H. Lundbeck A/S Combination treatments comprising imidazopyrazinones for the treatment of psychiatric and/or cognitive disorders
MX2019004859A (en) 2016-10-28 2019-06-20 H Lundbeck As Combination treatments comprising administration of imidazopyrazinones.
CA3056027A1 (en) 2017-03-10 2018-09-13 Pfizer Inc. Cyclic substituted imidazo[4,5-c]quinoline derivatives
KR102582626B1 (en) 2017-03-10 2023-09-22 화이자 인코포레이티드 Novel imidazo[4,5-C]quinoline derivatives as LRRK2 inhibitors
CN110997693A (en) 2017-06-07 2020-04-10 阿德克斯公司 Tau aggregation inhibitors
MX2019015371A (en) 2017-06-22 2020-07-20 Pfizer Dihydro-pyrrolo-pyridine derivatives.
AU2018318319A1 (en) 2017-08-18 2020-02-20 Adrx, Inc. Tau aggregation peptide inhibitors
EP3768669B1 (en) 2018-03-23 2023-01-25 Pfizer Inc. Piperazine azaspiro derivaves

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3211731A (en) * 1960-05-11 1965-10-12 Ciba Geigy Corp Pyrazolo-pyrimidines and process for preparing same

Family Cites Families (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3169965A (en) 1965-02-16 New x-mercapto-pyrazolo
US3165520A (en) 1965-01-12 Certificate of correction
DE1156415B (en) 1960-05-11 1963-10-31 Ciba Geigy Process for the preparation of 1-isopropyl-4-hydroxy-pyrazolo [3, 4-d] -pyrimidines
DE1149013B (en) 1960-05-11 1963-05-22 Ciba Geigy Process for the preparation of 4-oxo-4, 5-dihydro-pyrazolo- [3, 4-d] pyrimidines
CH396923A (en) 1960-05-11 1965-08-15 Ciba Geigy Process for the preparation of 4-mercapto-pyrazolo (3,4-d) pyrimidines
CH396926A (en) 1960-05-11 1965-08-15 Ciba Geigy Process for the preparation of new pyrazolopyrimidines
CH396924A (en) 1960-05-11 1965-08-15 Ciba Geigy Process for the preparation of 4-mercapto-pyrazolo (3,4-d) pyrimidines
CH396927A (en) 1960-05-11 1965-08-15 Ciba Geigy Process for the preparation of new pyrazolopyrimidines
DE1153023B (en) 1960-05-11 1963-08-22 Ciba Geigy Process for the preparation of 4-hydroxy-pyrazolo [3,4-d] pyrimidines
ES267249A1 (en) 1960-05-11 1961-11-01 Ciba Geigy New pyrazolo-pyrimidines and process for the preparation thereof
GB973361A (en) 1960-05-11 1964-10-28 Ciba Ltd Pyrazolo-pyrimidines and process for their manufacture
DE1161281B (en) 1960-05-11 1964-01-16 Ciba Aktiengesellschaft, Basel (Schweiz) Process for the preparation of 1-alkyl-6-aralkyl-pyrazoloÄ3,4-dÜ-pyrimidines.
CH396925A (en) 1960-05-11 1965-08-15 Ciba Geigy Process for the preparation of new pyrazolopyrimidines
DE1147234B (en) 1960-05-11 1963-04-18 Ciba Geigy Process for the preparation of 1-isopropyl-4-hydroxy-6-benzyl-pyrazolo [3, 4-d] pyrimidine
GB937723A (en) 1960-05-11 1963-09-25 Ciba Ltd Pyrazolo-pyrimidines and process for their manufacture
US3732225A (en) 1970-07-23 1973-05-08 Squibb & Sons Inc Pyrazolo(3,4-d)pyrimidine derivatives
US3847908A (en) 1973-03-05 1974-11-12 Squibb & Sons Inc 6-styrylpyrazolo(3,4-d)pyrimidinones and pyrimidines
GR82004B (en) 1983-06-30 1984-12-12 American Home Prod
DE3739366A1 (en) 1987-04-10 1988-10-27 Boehringer Mannheim Gmbh DESAZA-PURIN-NUCLEOSIDE DERIVATIVES, METHOD FOR THE PRODUCTION THEREOF AND THEIR USE IN NUCLEIC ACID SEQUENCING AND AS AN ANTIVIRAL AGENT
US6211158B1 (en) 1987-04-10 2001-04-03 Roche Diagnostics Gmbh Desazapurine-nucleotide derivatives, processes for the preparation thereof, pharmaceutical compositions containing them and the use thereof for nucleic acid sequencing and as antiviral agents
US5466806A (en) 1989-02-08 1995-11-14 Biochem Pharma Inc. Processes for preparing substituted 1,3-oxathiolanes with antiviral properties
US6350753B1 (en) 1988-04-11 2002-02-26 Biochem Pharma Inc. 2-Substituted-4-substituted-1,3-dioxolanes and use thereof
US5047407A (en) 1989-02-08 1991-09-10 Iaf Biochem International, Inc. 2-substituted-5-substituted-1,3-oxathiolanes with antiviral properties
US6903224B2 (en) 1988-04-11 2005-06-07 Biochem Pharma Inc. Substituted 1,3-oxathiolanes
US7119202B1 (en) 1989-02-08 2006-10-10 Glaxo Wellcome Inc. Substituted-1,3-oxathiolanes and substituted-1,3-dioxolanes with antiviral properties
US5270315A (en) 1988-04-11 1993-12-14 Biochem Pharma Inc. 4-(purinyl bases)-substituted-1,3-dioxlanes
US5684164A (en) 1988-04-11 1997-11-04 Biochem Pharma Inc. Processes for preparing substituted 1,3-oxathiolanes with antiviral properties
US5041449A (en) 1988-04-11 1991-08-20 Iaf Biochem International, Inc. 4-(nucleoside base)-substituted-1,3-dioxolanes useful for treatment of retroviral infections
JP2619710B2 (en) 1989-02-27 1997-06-11 日本製紙 株式会社 Method for producing 2 ', 3'-dideoxypurine nucleosides
US5002949A (en) 1990-05-01 1991-03-26 American Home Products Corporation 5-substituted-6-aminopyrimidine derivatives
CA2100863A1 (en) 1991-01-23 1992-07-24 David A. Bullough Adenosine kinase inhibitors
US5294612A (en) 1992-03-30 1994-03-15 Sterling Winthrop Inc. 6-heterocyclyl pyrazolo [3,4-d]pyrimidin-4-ones and compositions and method of use thereof
US5256668A (en) 1993-03-17 1993-10-26 American Home Products Corporation Aminopyrimidine derivatives as antiviral agents for respiratory syncytial virus
ES2128535T3 (en) 1993-05-12 1999-05-16 Novartis Ag NUCLEOSIDES AND OLIGONUCLEOTIDES WITH 2'-ETER GROUPS.
DK0679657T3 (en) 1994-04-27 2003-10-27 Novartis Ag Nucleosides and oligonucleotides with 2'-ether groups
GB9423910D0 (en) 1994-11-26 1995-01-11 Pfizer Ltd Therapeutic agents
US5656629A (en) 1995-03-10 1997-08-12 Sanofi Winthrop, Inc. 6-substituted pyrazolo (3,4-d)pyrimidin-4-ones and compositions and methods of use thereof
US6509320B1 (en) 1996-10-16 2003-01-21 Icn Pharmaceuticals, Inc. Purine L-nucleosides, analogs and uses thereof
DE19709877A1 (en) 1997-03-11 1998-09-17 Bayer Ag 1,5-dihydro-pyrazolo [3,4-d] pyrimidinone derivatives
US5948812A (en) 1997-06-09 1999-09-07 Givaudan Roure (International) Sa 1,7-dioxacycloalkan-8-one compounds
US5969499A (en) 1997-09-10 1999-10-19 Shaffer; Randall A Controller for AC motor
DE19838705A1 (en) 1998-08-26 2000-03-02 Bayer Ag New dihydro- (1,2,3) -triazolo- [4,5-d] pyrimidin-7-ones
GB9823103D0 (en) 1998-10-23 1998-12-16 Pfizer Ltd Pharmaceutically active compounds
CA2348979A1 (en) 1998-11-02 2000-05-11 Merck & Co., Inc. Method of treating migraines and pharmaceutical compositions
US6225315B1 (en) 1998-11-30 2001-05-01 Pfizer Inc Method of treating nitrate-induced tolerance
US6100037A (en) 1999-01-07 2000-08-08 Incyte Pharmaceuticals, Inc. Human cyclic nucleotide PDEs
CA2369746A1 (en) 1999-05-19 2000-11-30 Neurosearch A/S Inhibitors of proton-gated cation channels and their use in the treatment of ischaemic disorders
AU2001289751A1 (en) 2000-08-01 2002-02-13 Bayer Aktiengesellschaft Selective pde 2 inhibitors, used as medicaments for improving cognition
SK2152003A3 (en) 2000-08-24 2003-08-05 Novartis Ag Process for surface modifying substrates and modified substrates resulting therefrom
US20020074774A1 (en) 2000-12-14 2002-06-20 Davin Hsu Adjustable handle of umbrella stroller by telescoping and swiveling
DE10108752A1 (en) 2001-02-23 2002-09-05 Bayer Ag New substituted imidazotriazinones
WO2002086160A1 (en) 2001-04-18 2002-10-31 Mitsubishi Rayon Co., Ltd. Hybridization probes
CA2450167A1 (en) * 2001-06-12 2002-12-19 Elan Pharmaceuticals, Inc. Macrocycles useful in the treatment of alzheimer's disease
DE60118801T2 (en) 2001-07-25 2006-11-02 PPG Industries Ohio, Inc., Cleveland POLYMERMAL WITH HIGH BREAKING INDEX
JP2005508978A (en) * 2001-11-02 2005-04-07 ファイザー・プロダクツ・インク Treatment of insulin resistance syndrome and type 2 diabetes with PDE9 inhibitors
HN2002000317A (en) * 2001-11-02 2003-05-21 Pfizer PDE9 INHIBITORS FOR TREATMENT OF CARDIOVASCULAR DISORDERS
DE10156249A1 (en) 2001-11-15 2003-05-28 Bayer Ag Regulation of the cGMP-specific phosphodiesterase 9A
DE10219435A1 (en) 2002-05-02 2003-11-13 Bayer Cropscience Ag Substituted pyrazolo-pyrimidin-4-ones
DE10238722A1 (en) 2002-08-23 2004-03-11 Bayer Ag Improving attention, concentration, cognition, learning and/or memory performance, using selective phosphodiesterase 9A inhibitors, preferably 4H-pyrazolo-(3,4-d)-pyrimidin-4-one derivatives
DE10238724A1 (en) 2002-08-23 2004-03-04 Bayer Ag New 6-alkyl-1,5-dihydro-4H-pyrazolo-(3,4-d)-pyrimidin-4-ones useful as selective phosphodiesterase 9A inhibitors for improving attention, concentration, learning and/or memory performance
DE10238723A1 (en) 2002-08-23 2004-03-11 Bayer Ag Phenyl substituted pyrazolyprimidines
ATE368666T1 (en) 2003-03-18 2007-08-15 Jordanian Pharmaceutical Mfg PYRAZOLOPYRIMIDINONES AND THEIR USE AS PDE INHIBITORS
US20040220186A1 (en) 2003-04-30 2004-11-04 Pfizer Inc. PDE9 inhibitors for treating type 2 diabetes,metabolic syndrome, and cardiovascular disease
AU2004235915B2 (en) 2003-05-09 2010-08-05 Boehringer Ingelheim International Gmbh 6-cyclylmethyl- and 6-alkylmethyl-substituted pyrazolopyrimidines
US8044060B2 (en) 2003-05-09 2011-10-25 Boehringer Ingelheim International Gmbh 6-cyclylmethyl- and 6-alkylmethyl pyrazolo[3,4-D]pyrimidines, methods for their preparation and methods for their use to treat impairments of perception, concentration learning and/or memory
DE10320785A1 (en) 2003-05-09 2004-11-25 Bayer Healthcare Ag 6-arylmethyl substituted pyrazolopyrimidines
DE10328479A1 (en) 2003-06-25 2005-01-13 Bayer Ag 6-arylamino-5-cyano-4-pyrimidinones
DE102004001873A1 (en) 2004-01-14 2005-09-29 Bayer Healthcare Ag Cyanopyrimidinone
JP2008183929A (en) 2007-01-26 2008-08-14 Toshiba Corp Vor monitoring receiving apparatus and vor monitor receiving method
EP2217602B1 (en) 2007-11-30 2018-08-29 Boehringer Ingelheim International GmbH 1,5-dihydro-pyrazolo[3,4-d]pyrimidin-4-one derivatives and their use as pde9a modulators for the treatment of cns disorders
CA2757231A1 (en) 2009-03-31 2010-10-07 Boehringer Ingelheim International Gmbh 1-heterocyclyl-1,5-dihydro-pyrazolo [3,4-d] pyrimidin-4-one derivatives and their use as pde9a modulators

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3211731A (en) * 1960-05-11 1965-10-12 Ciba Geigy Corp Pyrazolo-pyrimidines and process for preparing same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Schmidt, et. al., Helvetica Chimica Acta (1962), 45, 1620-7. *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8648085B2 (en) 2007-11-30 2014-02-11 Boehringer Ingelheim International Gmbh 1, 5-dihydro-pyrazolo (3, 4-D) pyrimidin-4-one derivatives and their use as PDE9A mudulators for the treatment of CNS disorders
US8623879B2 (en) 2008-04-02 2014-01-07 Boehringer Ingelheim International Gmbh 1-heterocyclyl-1,5-dihydro-pyrazolo[3,4-D] pyrimidin-4-one derivates and their use as PDE9A modulators
US9096603B2 (en) 2008-04-02 2015-08-04 Boehringer Ingelheim International Gmbh 1-heterocyclyl-1,5-dihydro-pyrazolo[3,4-D] pyrimidin-4-one derivatives and their use as PDE9A modulators
US9079905B2 (en) 2008-09-08 2015-07-14 Boehringer Ingelheim International Gmbh Compounds for the treatment of CNS disorders
US8623901B2 (en) 2009-03-31 2014-01-07 Boehringer Ingelheim International Gmbh Compounds for the treatment of CNS disorders
US9102679B2 (en) 2009-03-31 2015-08-11 Boehringer Ingelheim International Gmbh Compounds for the treatment of CNS disorders
US8912201B2 (en) 2010-08-12 2014-12-16 Boehringer Ingelheim International Gmbh 6-cycloalkyl-pyrazolopyrimidinones for the treatment of CNS disorders
US9328120B2 (en) 2010-08-12 2016-05-03 Boehringer Ingelheim International Gmbh 6-cycloalkyl-pyrazolopyrimidinones for the treatment of CNS disorders
US8809345B2 (en) 2011-02-15 2014-08-19 Boehringer Ingelheim International Gmbh 6-cycloalkyl-pyrazolopyrimidinones for the treatment of CNS disorders

Also Published As

Publication number Publication date
CA2496194A1 (en) 2004-03-04
AU2003258601A1 (en) 2004-03-11
DE10238723A1 (en) 2004-03-11
US20060106035A1 (en) 2006-05-18
CA2496194C (en) 2011-07-05
WO2004018474A1 (en) 2004-03-04
EP1534711B1 (en) 2006-04-19
ES2263057T3 (en) 2006-12-01
DE50303054D1 (en) 2006-05-24
JP2006507242A (en) 2006-03-02
JP4757491B2 (en) 2011-08-24
US8158633B2 (en) 2012-04-17
EP1534711A1 (en) 2005-06-01

Similar Documents

Publication Publication Date Title
US8158633B2 (en) Phenyl-substituted pyrazolopyrimidines
US8039477B2 (en) Substituted pyrazolo[3,4-d]pyrimidin-4-one compounds as phosphodiesterase inhibitors
US9067945B2 (en) Selective phosphodiesterase 9A inhibitors as medicaments for improving cognitive processes
US8809348B2 (en) 6-arylmethyl substituted pyrazolo[3,4-d]pyrimidines
US8822479B2 (en) 6-cyclylmethyl-and 6-alkylmethyl-substituted pyrazolepyrimidines
US20090111838A1 (en) 6-arylamino-5-cyano-4-pyrimidinones as pde9a inhibitors
ZA200605781B (en) 6-amino-5-cyano-pyrimidine-4-ones used for improving perception, power of concentration, learning efficiency, and/or memory power
JP2006525966A (en) 6-cyclylmethyl- and 6-alkylmethyl substituted pyrazolopyrimidines
JP5277303B2 (en) 6-cyclylmethyl- and 6-alkylmethyl substituted pyrazolopyrimidines

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION