US20120124833A1 - Systems and methods for transporting and assembling segmented wind turbine blades - Google Patents

Systems and methods for transporting and assembling segmented wind turbine blades Download PDF

Info

Publication number
US20120124833A1
US20120124833A1 US13/301,613 US201113301613A US2012124833A1 US 20120124833 A1 US20120124833 A1 US 20120124833A1 US 201113301613 A US201113301613 A US 201113301613A US 2012124833 A1 US2012124833 A1 US 2012124833A1
Authority
US
United States
Prior art keywords
blade
segment
segments
transport device
transporting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/301,613
Other languages
English (en)
Inventor
Cory P. Arendt
Myles L. Baker
Sheldon Vilhauer
Michael Johnson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vestas Wind Systems AS
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US13/301,613 priority Critical patent/US20120124833A1/en
Assigned to MODULAR WIND ENERGY, INC. reassignment MODULAR WIND ENERGY, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: VILHAUER, SHELDON, ARENDT, CORY P., BAKER, MYLES L., JOHNSON, MICHAEL
Publication of US20120124833A1 publication Critical patent/US20120124833A1/en
Assigned to MODULAR WIND (ASSIGNMENT FOR THE BENEFIT OF CREDITORS), LLC reassignment MODULAR WIND (ASSIGNMENT FOR THE BENEFIT OF CREDITORS), LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MODULAR WIND ENERGY, INC.
Assigned to VESTAS WIND SYSTEMS A/S reassignment VESTAS WIND SYSTEMS A/S ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MODULAR WIND (ASSIGNMENT FOR THE BENEFIT OF CREDITORS), LLC
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/40Arrangements or methods specially adapted for transporting wind motor components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/10Assembly of wind motors; Arrangements for erecting wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/302Segmented or sectional blades
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/49336Blade making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/53978Means to assemble or disassemble including means to relatively position plural work parts

Definitions

  • the present disclosure is directed generally to systems and methods for transporting and assembling segmented wind turbine blades, including wind turbine blades having multiple segments aligned along a spanwise axis.
  • Wind energy is typically harvested by placing a multitude of wind turbines in geographical areas that tend to experience steady, moderate winds.
  • Modern wind turbines typically include an electric generator connected to one or more wind-driven turbine blades, which rotate about a vertical axis or a horizontal axis.
  • FIG. 1 is a partially schematic, isometric illustration of a wind turbine system having blades configured in accordance with an embodiment of the disclosure.
  • FIG. 2 is a partially schematic, elevation view of a wind turbine blade having a segmented structure in accordance with an embodiment of the disclosure.
  • FIG. 3 is a partially schematic, side elevation view of an arrangement of transport platforms for assembling segmented wind turbine blades in accordance with an embodiment of the disclosure.
  • FIG. 4 is a partially schematic, end isometric view of a guide structure having a support carrying a wind turbine blade segment for alignment and attachment in accordance with an embodiment of the disclosure.
  • FIG. 5 is an enlarged, partially schematic illustration of a portion of the support shown in FIG. 4 .
  • FIG. 6A is an enlarged, partially schematic illustration of another portion of the support shown in FIG. 4 .
  • FIG. 6B is an enlarged, partially schematic illustration a portion of the support shown in FIG. 4 having a guide roller arrangement configured in accordance with another embodiment of the disclosure.
  • FIG. 7A is a partially schematic, isometric illustration of a guide structure having a motion device configured in accordance of an embodiment of the disclosure.
  • FIG. 7B is a partially schematic, isometric illustration of the guide structure shown in FIG. 7A with the carrier removed in accordance of an embodiment of the disclosure.
  • FIG. 8 is a partially schematic, side elevation view of the guide structure shown in FIG. 7A .
  • FIG. 9 is a partially schematic, isometric illustration of a support carrying a portion of a wind turbine blade segment in accordance with an embodiment of the disclosure.
  • FIG. 10A is a partially schematic, isometric illustration of a platform alignment system configured in accordance with an embodiment of the disclosure.
  • FIGS. 10B and 10C are partially schematic illustrations of transport platforms positioned in preparation for joining wind turbine blade segments in accordance with a particular embodiment of the disclosure.
  • FIG. 10D is a partially schematic, side elevation view of two opposing end portions of wind turbine blade segments positioned on adjacent transport platforms prior to assembly in accordance with an embodiment of the disclosure.
  • FIG. 11A is a partially schematic, side elevation view of a wind turbine blade spar having multiple portions, each with layers that terminate at staggered locations to form a non-monotonically varying bond line.
  • FIG. 11B is an illustration of an embodiment of the structure shown in FIG. 11A with clamps positioned to prevent or limit delamination in accordance with an embodiment of the disclosure.
  • FIG. 11C is an enlarged illustration of a portion of the spar shown in FIG. 6B .
  • FIG. 11D is a partially schematic, isometric view of two opposing end portions of a wind turbine blade spar prior to joining.
  • FIG. 11E is a partially schematic, isometric view of the two opposing spar end portions of FIG. 11D after joining, in accordance with an embodiment of the disclosure.
  • FIG. 12 is a partially schematic, isometric view of two opposing end portions of wind turbine blade segments prior to joining in accordance with an embodiment of the disclosure.
  • FIG. 13 illustrates an apparatus for applying heat and/or pressure to a bonded wind turbine blade spar joint in accordance with an embodiment of the disclosure.
  • FIGS. 14A-14F illustrate systems and methods for assembling and transporting wind turbine blades in accordance with further embodiments of the disclosure.
  • the present disclosure is directed generally to systems and methods for efficiently transporting and assembling wind turbine blade sections.
  • Several details describing structures or processes that are well-known and often associated with such systems and methods, but that may unnecessarily obscure some significant aspects of the disclosure, are not set forth in the following description for purposes of brevity.
  • the following disclosure sets forth several embodiments, several other embodiments can have different configurations or different components than those described herein. In particular, other embodiments may have additional elements or may lack one or more of the elements described below with reference to FIGS. 1-14F .
  • FIG. 1 is a partially schematic, isometric illustration of an assembled wind turbine system 100 that includes a wind turbine 103 having blades 110 configured in accordance with an embodiment of the disclosure.
  • the wind turbine 103 includes a tower 101 (a portion of which is shown in FIG. 1 ), a housing or nacelle 102 carried at the top of the tower 101 , and a generator 104 positioned within the housing 102 .
  • the generator 104 is connected to a shaft having a hub 105 that projects outside the housing 102 .
  • the blades 110 each include a hub attachment portion 112 at which the blades 110 are connected to the hub 105 , and a tip 111 positioned radially or longitudinally outwardly from the hub 105 .
  • FIG. 1 is a partially schematic, isometric illustration of an assembled wind turbine system 100 that includes a wind turbine 103 having blades 110 configured in accordance with an embodiment of the disclosure.
  • the wind turbine 103 includes a tower 101 (a portion of which is shown in FIG. 1 ),
  • the wind turbine 103 includes three blades 110 connected to a horizontally-oriented shaft. Accordingly, each blade 110 is subjected to cyclically varying loads as it rotates between the 12:00, 3:00, 6:00 and 9:00 positions, because the effect of gravity is different at each position.
  • the wind turbine 103 can include other numbers of blades connected to a horizontally-oriented shaft, or the wind turbine 103 can have a shaft with a vertical or other orientation.
  • the blades 110 can have structures configured in accordance with the arrangements described in further detail below with reference to FIG. 2 .
  • FIG. 2 is a partially schematic, partially cut-away illustration of one of the blades 110 shown in FIG. 1 .
  • the blade 110 extends outwardly in a radial direction from an inner region 113 that includes the hub attachment portion 112 , to an outer region 114 that includes the tip 111 .
  • the internal structure of the blade 110 can be different at the inner region 113 than at the outer region 114 .
  • the inner region 113 can include a truss structure 140 formed from a plurality of longitudinally extending beams or spars 170 , chordwise extending ribs 142 , and truss members 143 connected between the spars 170 and the ribs 142 .
  • the truss structure 140 can be surrounded by a skin 115 (most of which is removed in FIG. 2 ) that presents a smooth, aerodynamic surface to the wind during operation.
  • the outer region 114 can include a non-truss structure.
  • the term “truss structure” refers generally to a load-bearing structure that includes generally straight, slender members forming closed shapes or units (e.g., triangular units).
  • non-truss structure refers generally to a load-bearing structure having an arrangement that does not rely on, or does not primarily rely on, straight slender members forming closed-shape units for strength.
  • the blade 110 includes three segments 116 , shown as a first segment 116 a, a second segment 116 b, and a third segment 116 c.
  • the first and second segments 116 a , 116 b can each have the truss structure 140 described above, and the third segment 116 c can have a non-truss structure.
  • the blade 110 can have a truss structure for the inner two-thirds of its span, and a non-truss structure for the outer one-third of its span. In other embodiments, these values can be different, depending, for example, on the size, shape and/or other characteristics of the blade 110 .
  • the blade 110 can have other numbers and/or arrangements of segments.
  • the blade 110 can have a non-truss structure for the majority of the length of each segment 116 , and a truss structure at the joints between neighboring sections. Further details of such an arrangement are described in co-pending U.S. Application No. ______, titled “Segmented Wind Turbine Blades with Truss Connection Regions, and Associated Systems and Methods,” filed concurrently herewith and incorporated herein by reference.
  • the segments 116 can be manufactured individually at one or more sites, and then connected to each other at a manufacturing facility, or at an end user installation site.
  • the segments 116 can each be sized to be carried by a 53-foot or other suitably sized container, trailer, or other transport device for shipment, as will be described in further detail later.
  • one or more of the segments e.g., the first segment 116 a and the second segment 116 b
  • the segments can be built entirely at the installation site.
  • individual segments 116 can include ribs 142 , truss members 143 , and portions of the spars 170 that extend for the length of the segment 116 .
  • the segments 116 can be joined to each other by joining adjacent spar portions, e.g., as discussed later with reference to FIGS. 11A-13 , and connecting truss members 143 between the segments 116 .
  • the skin 115 can be laid up on the truss structure 140 with or without forming a joint at the interface between adjacent segments 116 .
  • the spar portions can be joined at a location between two neighboring ribs 142 , and a relatively small panel of skin 115 can be laid over the spar joint and the two neighboring ribs 142 .
  • the neighboring ribs 142 can be spaced apart by about one meter in one embodiment, and by other values in other embodiments. Larger panels of the skin 115 can be laid inboard and outboard of the small panel.
  • the skin 115 can have joints not aligned with spar joints, or no spanwise joints, and can be laid up as a continuous element.
  • the skin 115 can be attached (e.g., bonded or fastened, adhesively, ultrasonically or otherwise) to the ribs 142 alone, or to the ribs 142 and the spars 170 .
  • the truss structure 140 can serve as primary structure for carrying shear and bending loads in the blade 110 . Further details of several embodiments of the blade 110 are described in co-pending PCT Application No. US09/66875, filed Dec. 4, 2009, and incorporated herein by reference.
  • FIG. 3 is a partially schematic, side elevation view of an arrangement for transporting, aligning, and assembling the blade segments described above with reference to FIG. 2 .
  • the arrangement can include multiple transport platforms or devices 121 .
  • the arrangement can include three such platforms, shown in FIG. 3 as a first transport platform 121 a, a second transport platform 121 b, and a third transport platform 121 c.
  • the transport platforms 121 can include truck-drawn highway-compatible trailers, as shown in a particular embodiment illustrated in FIG. 3 .
  • the transport platforms 121 can include other devices e.g., railroad cars, containers, dollies, trolleys, carts, or barges.
  • each of the transport platforms 121 can carry corresponding blade segments 116 , two of which (the first and third segments 116 a, 116 c ) are shown in FIG. 3 .
  • the blade segments 116 can be assembled blade segments, e.g., at least partially assembled blade segments. Accordingly, the blade segments are approximately full length, though they may undergo additional assembly steps after arriving at a final assembly site.
  • One or more of the transport platforms 121 can carry a guide structure 122 (or portions of the guide structure 122 ) which is used to align the corresponding blade segments 116 with each other and move the corresponding blade segments 116 into position for joining. In a particular embodiment shown in FIG.
  • the guide structure 122 can include multiple supports 123 carried by one or more of the transport platforms 121 .
  • each transport platform 121 can include two supports 123 , one positioned at each end of a corresponding one of the blade segments 116 .
  • the supports 123 can be axially offset from the ends of the blade segments to which they are attached. Accordingly, neighboring blade segments can overhang the supports 123 , thus preventing the supports 123 from interfering with each other when the neighboring blade segments are moved toward each other for attachment.
  • Each transport platform 121 a, 121 b, 121 c can carry supports 123 that move the corresponding blade segment along a corresponding axial motion path A 1 , A 2 , A 3 , respectively. Further details at this arrangement are described below with reference to FIGS. 4-10C and 14 A- 14 F.
  • FIG. 4 is a partially schematic end view of the first blade segment 116 a shown in FIG. 3 , carried by two supports 123 .
  • the support 123 can include a base 124 having one or more axial guides 125 (two are shown in FIG. 4 ).
  • the support 123 can further include a first portion 126 carried by the base 124 , and a second a portion 127 carried by the first portion 126 .
  • the first portion 126 can be movable relative to the base 124 along a restricted axial guide path A 1
  • the second portion 127 can be movable relative to the first portion 126 along a restricted lateral guide path L.
  • the first portion 126 can include one or more lateral guides 128 (two are shown in FIG. 4 ) that facilitate the motion of the second portion 127 along the lateral guide path L.
  • the second portion 127 in turn supports a carrier 180 that is releasably engaged with the first blade segment 116 a.
  • the carrier 180 includes two engagement portions 181 , each of which is engaged with a flange 117 at the hub attachment portion 112 of the first blade segment 116 a.
  • the engagement portions 181 can be attached to the flange 117 with bolts, pins, or other suitable, releasable attachment devices.
  • the support 123 can facilitate both lateral and axial motion of the blade segment 116 a, allowing it to be aligned with and then attached to a mating blade segment.
  • both of the supports 123 move along the same axial guide path A 1 .
  • the supports 123 may be laterally offset from each other, and may accordingly move along different axial guide paths.
  • the two axial guide paths associated with a single blade segment may be parallel to prevent binding, and/or the associated supports may have a rotational degree of freedom.
  • Such an embodiment may be used for blade segments (such as the third blade segment 116 c shown in FIG. 3 ) that have a significant amount of lateral or chordwise offset from one end of the segment to the other.
  • FIG. 5 is an enlarged isometric illustration of part of the support 123 shown in FIG. 4 .
  • the second portion 127 of the support 123 includes multiple roller assemblies 150 (one of which is visible in FIG. 5 ) that facilitate the lateral motion of the second portion 127 along the lateral guides 128 carried by the first portion 126 .
  • the first portion 126 includes multiple roller assemblies 150 that facilitate axial motion of the first portion 126 along the axial guides 125 carried by the base 124 .
  • Each of the roller assemblies 150 can include a bracket 151 carrying one or more rollers, including a load roller 152 .
  • the load rollers 152 bear the weight (or a majority of the weight) of the structure to which they are attached, and transmit loads to the corresponding guide below.
  • the roller assemblies 150 can also include guide rollers 153 described further below with reference to FIGS. 6A-6B .
  • the roller assembly 150 can include multiple guide rollers 153 that engage with the corresponding guide along which the roller assembly 150 moves (e.g., the axial guide 125 as shown in FIG. 6A ).
  • the axial guide 125 can include a C-channel or I-beam, and the guide rollers 153 can engage an inner surface of the upwardly facing flanges of the axial guide 125 .
  • other arrangements can be used to guide the motion of the first portion 126 relative to the base 124 .
  • the guide rollers 153 can be positioned at the outer surfaces of the upwardly facing flanges of the axial guide 125 .
  • the guides 125 , 128 and the associated roller assemblies 150 are positioned to permit motion that is restricted or limited to be along only the axial guide path A 1 and the lateral guide path L, respectively.
  • FIG. 7A is a partially schematic, isometric illustration of an embodiment of the support 123 illustrating selected features in addition to those described above with reference to FIGS. 4-6B .
  • the support 123 can include a carrier 780 having vertically upstanding members carrying engagement portions 781 positioned to engage laterally outwardly facing surfaces of a corresponding blade segment, as will be described further below with reference to FIG. 9 .
  • the support 123 can also include a motion device 160 that facilitates relative motion between the components of the support 123 .
  • the motion device 160 can facilitate motion of the components along three orthogonal axes.
  • the motion device 160 can include a base height adjuster 161 that moves the base 124 in a generally vertical direction relative to the transport platform 121 , an axial motion actuator 162 that moves the first portion 126 relative to the base 124 along the axial guide path A 1 , and a lateral motion actuator 163 that moves the second portion 127 relative to the first portion 126 along the lateral guide path L.
  • the motion provided by the motion device 160 can be fully manual, fully powered, or a combination of the two.
  • the base height adjustor 161 can include multiple threaded studs 166 located at several locations around the base 124 , which are manually rotated to adjust the height of the base 124 and/or adjust the planarity of the base 124 .
  • the axial motion actuator 162 can include a motor or other powered device carried by the base 124 and operatively coupled to the first portion 126 to drive the first portion 126 along the axial guides 125 .
  • the lateral motion actuator 163 can include a motor or other powered device carried by the first portion 126 and operatively coupled to the second portion 127 to drive it along the lateral guides 128 . Accordingly, the motion device 160 can be used to move the carrier 780 to a position and orientation suitable for connecting the blade segment (not shown in FIG. 7A ) with a neighboring blade segment.
  • the resistance provided by the threads of the studs 166 can prevent the carrier 780 from changing its elevation.
  • the studs 166 can be further secured, e.g., with locknuts.
  • the resistance provided by the windings and/or internal gearing of the axial motion actuator 162 and the lateral motion actuator 163 can prevent the carrier 780 from moving from the desired position in the axial and lateral directions, respectively. In other embodiments, separate locking devices can be used for this purpose.
  • the motion device 160 can also be automated.
  • the motion device 160 can include a processor (e.g., a computer-based controller), and an input device.
  • An operator can input a desired location and/or orientation for the carrier 780 , and the motion device 160 can automatically drive the carrier 780 to the desired location and/or orientation using one or more sensors (e.g., position sensors) in a closed loop arrangement.
  • the actuators 162 , 163 can be removable, so that they can be moved from one portion of a support 123 to another, or from one support 123 to another, thereby reducing the number of actuators required to position the blade segments.
  • the support 123 can be deliberately configured to allow particular elements to be rapidly assembled and disassembled during normal use.
  • the carrier 780 can be removed from rest of the support 123 during transit.
  • the carrier 780 can be lifted away from second portion 127 (including the roller assemblies 150 engaged with the lateral guides 128 ), the first portion 126 , and the base 124 .
  • the carrier 780 can then be placed on a transport platform without the roller assemblies 150 potentially allowing the carrier 780 to move.
  • the first portion 126 , second portion 127 and base 124 can be slipped under the carrier 780 as a unit to allow the carrier 780 to move.
  • FIG. 8 is a partially schematic, side elevation view of a portion of the support 123 shown in FIGS. 7A-7B , illustrating further details of a particular embodiment of the motion device 160 .
  • the axial motion actuator 162 can be coupled to the first portion 126 with a drive link 164 that allows for motion in two opposing directions along the axial guides 125 .
  • the axial motion actuator 162 includes a rotary motor having a shaft connected to a drive sprocket 165 a which drives a chain connected at one end to one side of the first portion 126 . The opposite end of the chain is wrapped around a guide sprocket 165 b and connected to the opposite end of the first portion 126 .
  • the drive link 164 can include other devices, for example, a direct drive device.
  • the lateral motion actuator 163 can be coupled to the second portion 127 with a similar drive link.
  • FIG. 9 is a partially schematic, isometric illustration of the support 123 releasably attached to the third blade segment 116 c described above with reference to FIG. 2 .
  • the engagement portions 781 are attached directly to a corresponding rib 142 of the blade segment 116 c.
  • the engagement portions 781 are attached to a structure carried by the rib 142 , e.g. one of the truss attachment members described in co-pending PCT Application US09/66875, previously incorporated herein by reference.
  • the engagement portions 781 can be releasably attached to the third blade segment 116 c with threaded fasteners or other suitable structures.
  • a portion of the skin 115 overlying this portion of the blade segment 116 c can be removed or omitted while the blade segment 116 c is carried by the support 123 .
  • the missing skin portion can be attached in place over the rib 142 .
  • the skin 115 can extend over the rib 142 , but can have one or more holes that receive the threaded fasteners. These holes can be filled after the support 123 has been disconnected.
  • the supports 123 can be attached to the third blade segment 116 c before the blade segment 116 c is placed on a corresponding transport platform 121 c ( FIG. 3 ).
  • the supports 123 or the carriers 780 can each be lifted with a forklift, overhead crane or other suitable device and then placed on the transport platform 121 c while attached to the third blade segment 116 c.
  • the support 123 can first be placed on the transport platform 121 c, and the third blade segment 116 c can then be attached to the supports 123 . Either of the foregoing arrangements can be used for any of the blade segments 116 a - 116 c.
  • the carrier 780 is detached from the second portion 127 , the first portion 126 and the base 124 before the blade segment 116 c is placed on the transport platform, as described above with reference to FIG. 7B . Accordingly, the carrier 780 can rest directly on the transport platform while the blade segment 116 c is transported to the assembly site, without allowing motion along the axial motion path A 3 or the lateral motion path L. When the transport platform reaches the final assembly site, the carrier 780 can be lifted while the rest of the support 123 is re-inserted below the carrier 780 . The support 123 is then ready for positioning and alignment. In other embodiments, other arrangements can be used to restrict the carrier 780 from moving. For example, the roller assemblies 150 ( FIG.
  • FIG. 10A is a partially schematic, isometric illustration of a platform alignment system 190 used to align the three transport platforms 121 a, 121 b, 121 c described above with reference to FIG. 3 .
  • the platform alignment system 190 can include one or more platform height adjustors 191 .
  • the platform height adjustors 191 can include hydraulic cylinders, pneumatic cylinders, jack screws, or other devices positioned at one or more locations of each of the transport platforms 121 to adjust the height of the platforms, as well as the tilt of the platforms 121 .
  • the platform height adjustors 191 can be adjusted manually or automatically in response to an indication that the corresponding transport platforms 121 are not at an appropriate height or tilt orientation.
  • the platform alignment system 190 can include an emitter 192 that emits radiation received by one or more receivers 193 located at the transport platforms 121 .
  • the emitter 192 can include a laser that emits a laser beam and rotates to produce a laser plane 194 .
  • the receiver 193 can include multiple receiver elements 195 carried by each of the transport platforms 121 .
  • each transport platform 121 can include a receiver element 195 located at each corner of the transport platform 121 .
  • the operator can adjust the platform height adjustors 191 until each of the receiver elements 195 carried by each of the transport platforms 121 indicates that the transport platform is at the correct height and orientation.
  • This process can also be automated so as to operate in a closed-loop fashion based on inputs from the receiver elements 195 .
  • the alignment system can have other arrangements.
  • the alignment system 190 can include multiple emitters 192 , and/or a single receiver 193 .
  • the alignment system can include components that do not rely on emitting or receiving radiation for suitable operation.
  • each of the transport platforms 121 can be aligned axially.
  • each of the transport platforms 121 a - 121 c can include a corresponding axial guide path A 1 -A 3 along which the corresponding blade segment 116 is moved.
  • each of the axial guide paths A 1 -A 3 is aligned along a common axis. In other embodiments, however, the guide paths may be angularly offset from each other, depending upon the desired orientation of the plane at the interface between the neighboring blade segments. Also, as discussed above with reference to FIG.
  • the individual supports carried by each of the transport platforms 121 may move along different (though typically parallel) guide paths, depending upon the shape of the blade segment carried by the supports.
  • the platform alignment system 190 may also be configured to align each of the axes A 1 -A 3 relative to each other. In other embodiments, however, an operator can adequately align the axes A 1 -A 3 visually.
  • the blade segments carried by the platforms may be more finely aligned using the lateral motion actuators 163 described above.
  • FIGS. 10B and 10C illustrate the transport platform 121 a - c aligned to attach the corresponding blade segments 116 a - 116 c.
  • the first and second blade segments 116 a, 116 b are shown in FIGS. 10B and 10D without the skins attached.
  • the skins can be attached either before or after the blades are shipped to an assembly site via the transport platforms 121 .
  • the first and second axial guide paths A 1 and A 2 are co-linear, and the third guide path A 3 is offset due to the curvature of the blade 110 .
  • two blade segments may be connected to each other before adding additional segments.
  • the first and second segments 116 a, 116 b carried by the first and second transport platforms 121 a, 121 b, respectively can be connected to each other before connecting the third blade segment 116 c carried by the third transport platform 121 c to the assembled first and second segments.
  • all three transport platforms 121 a - 121 c can be initially aligned with each other, and the connection between neighboring segments can be completed sequentially.
  • first two transport platforms 121 a - 121 b can be aligned with each other and the associated segments 116 a, 116 b connected, and then the third transport platform 121 c can be aligned with the first two transport platforms 121 a - 121 b while the third segment 116 c connected to the assembled first and second segments.
  • the transport platforms 121 may be aligned in other manners, and/or the blade segments may be connected in other sequences.
  • FIG. 10D is a side elevation view of a portion of the first blade segment 116 a and the second blade segment 116 b positioned on corresponding first and second transport platforms 121 a, 121 b.
  • each blade segment 116 a, 116 b includes multiple spars 170 , e.g., a first spar 170 a, a second spar 170 b and a third spar 170 c.
  • Each spar 170 has a first end portion 171 a at the first segment 116 a and a second end portion 171 b at the second segment 116 b.
  • the first end portions 171 a of the first blade segment 116 a are aligned with the corresponding second end portions 171 b of the second blade segment 116 b. In this configuration, the first and second blade segments 116 a, 116 b are ready to be joined together as described below with reference to FIGS. 11A-13 .
  • FIG. 11A is a partially schematic, side elevation view of a joint between the first and second end portions 171 a, 171 b of a representative spar 170 .
  • the joint can be formed along a non-monotonically varying (e.g., zig-zagging) bond line 176 .
  • Such a bond line 176 is expected to produce a stronger bond between the first and second portions 171 a , 171 b than is a straight or diagonal bond line.
  • the first portion 171 a can include multiple, stacked, laminated first layers 172 a
  • the second portion 171 b can include multiple, stacked, laminated second layers 172 b.
  • the layers 172 a, 172 b can be made in one piece without gluing.
  • the layers 172 a, 172 b can be formed from a unidirectional fiber material (e.g., fiberglass or a carbon fiber) and a corresponding resin.
  • Each of the layers 172 a, 172 b can be formed from a single ply or multiple plies (e.g., six plies).
  • the layers 172 a, 172 b can be prepared layers, hand lay-ups, pultrusions, or can be formed using other techniques, e.g., vacuum-assisted transfer molding techniques.
  • the first layers 172 a terminate at first terminations 173 a
  • the second layers 172 b terminate at second terminations 173 b.
  • Neighboring terminations 173 a, 173 b located at different positions along a thickness axis T can be staggered relative to each other along a span axis S to create the zig-zag bond line 176 . This arrangement produces projections 174 and corresponding recesses 175 into which the projections 174 fit.
  • each layer has a termination that is staggered relative to its neighbor, except where the bond line 176 changes direction.
  • the zig-zag bond line 176 can be symmetric, as shown in FIG. 11A , or asymmetric in other embodiments.
  • the bond line 176 can be scarfed or can have a zig-zag shape in a direction transverse to the plane of FIG. 11A , as described further in PCT Application US09/66875, previously incorporated herein by reference.
  • each of the first layers 172 a are stacked, bonded and cured, as are each of the second layers 172 b, while the two portions 171 a, 171 b are positioned apart from each other.
  • the layers 172 , 172 b can be pre-cut before stacking so that when stacked, they form the recesses 175 and projections 174 .
  • the recesses 175 and/or projections 174 can be coated and/or filled with an adhesive.
  • the two portions 171 a, 171 b are then brought toward each other so that projections 174 of each portion are received in corresponding recesses 175 of the other.
  • the joint region can then be bonded and cured.
  • FIG. 11B is an illustration of a spar 170 having a bond line 176 generally similar to that described above with reference to FIG. 11A .
  • the spar 170 can include one or more clamps or straps 177 that are positioned at or near the bond line 176 .
  • the clamps 177 can be positioned to prevent or halt delamination that might result between any of the layers in the composite spar 170 .
  • FIG. 11C if a potential delamination 178 begins between two layers 172 a, the compressive force provided by the clamp 177 can prevent the delamination 178 from spreading further in a span-wise direction.
  • the clamp 177 can be positioned where it is expected that the potential risk of delamination is high, e.g., at or near the termination 173 of the outermost layers 172 a, 172 b shown in FIG. 11B .
  • the function provided by the clamps 177 can be provided by other structures, e.g., the truss attachment members described further in PCT Application US09/66875, previously incorporated herein by reference.
  • FIG. 11D is an enlarged isometric view illustrating a third end portion 171 c and an opposing fourth end portion 171 d of the second spar 170 b (also shown in FIG. 10D ) prior to being joined together.
  • the second spar 170 b can be formed from a plurality of layers 172 (e.g., first layers 172 a and second layers 172 b ).
  • the first layers 172 a produce first projections 174 a and corresponding first recesses 175 a .
  • the second layers 172 b produce second projections 174 b and corresponding second recesses 175 b.
  • the corresponding projections 174 and recesses 175 form a staggered, zig-zag bond line between the opposing spar end portions 171 c and 171 d when they are subsequently joined together as illustrated in FIG. 11E .
  • FIG. 12 is an enlarged, partially schematic isometric view illustrating a method of joining the first blade segment 116 a to the second blade segment 116 b in accordance with an embodiment of the disclosure.
  • the opposing end portions 171 of the corresponding spars 170 are initially separated from each other but are axially aligned.
  • a first truss attachment member 150 a on the first blade segment 116 a can include a first lug or truss attachment portion 154 a having a first aperture 1202 a.
  • the opposite second truss attachment member 150 b on the second blade segment 116 b can include a corresponding second truss attachment portion 154 b having a second aperture 1202 b.
  • Third and fourth truss attachment members 150 c, 150 d on the first spar 170 a, and fifth and sixth truss attachment members 150 e, 150 f on the third spar 170 c, can also include similar truss attachment portions having corresponding apertures.
  • a push/pull device 1210 (e.g., a manual or automatic spreader bar, come-along, hydraulic device, etc. that can pull objects together or push objects apart at a controlled rate and with sufficient force) is temporarily installed between the corresponding truss attachment portions 154 a and 154 b. More specifically, in the illustrated embodiment the push/pull device 1210 includes a first clevis 1212 a on one end and a second clevis 1212 b on the opposite end.
  • the clevises 1212 are attached to the body of the push/pull device 1210 by threaded rods 1216 that can be drawn into the body of the push/pull device 1210 or extended out of the body of the push/pull device 1210 by appropriate operation of a manual actuator 1214 (e.g., a ratchet handle).
  • a manual actuator 1214 e.g., a ratchet handle
  • Each of the clevises 1212 can be releasably attached to the corresponding truss attachment portion 154 by a temporary fastener 1218 (e.g., a bolt) that extends through the clevis 1212 and the corresponding aperture 1202 .
  • the actuator 1214 can be moved up and down in the appropriate direction to ratchet the spar end portions 171 c and 171 d together and/or apart as desired.
  • a second push/pull device (not shown) is operably coupled between the third and fourth truss attachment members 150 c, 150 d on the first spar 170 a
  • a third push/pull device (also not shown) is operably coupled between the fifth and sixth truss attachment members 150 e, 150 f on the third spar 170 c, as described above with reference to the second spar 170 b.
  • the spars 170 are then simultaneously pulled together by operation of the three push/pull devices 1210 to “dry fit” the end portions 171 and confirm that they are properly aligned. After this has been done, the push/pull devices 1210 are operated to separate the spar end portions 171 so that the end portions 171 can be suitably prepared for bonding as described in detail below.
  • the overlapping surfaces of the projections/recesses 174 / 175 ( FIG. 10A ) of the end portions 171 can be prepared for bonding.
  • the mating surfaces can be prepared for bonding by first sanding with an appropriate grade sandpaper, followed by a cleaning with acetone and/or a wipe with a lint-free cloth, followed by a wipe with isopropyl alcohol.
  • a suitable adhesive e.g., epoxy, polyurethane, methyl methacrylate, and/or other adhesive
  • Enough adhesive is applied to the mating surfaces to adequately cover the zig-zag bond line.
  • a localized or linear spacer made of suitable material can be laid on a surface of each spar 170 horizontal to the length of the spar.
  • the end portions 171 of the spars 170 are then pulled together simultaneously by individual actuation of the, e.g. three, push/pull devices 1210 .
  • the blade assembler can first draw these end portions 171 together, and then inject adhesive between overlapping projections and recesses, as is described further in pending U.S. patent application Ser. No.
  • the overlapping end portions 171 can then be clamped together with a pressure enclosure tool as described in more detail below.
  • the truss struts e.g., truss struts 143
  • the push/pull device(s) 1210 can be removed.
  • the blade segments 116 can then be prepared for installation of skin panels onto the ribs 142 .
  • FIG. 13 is a partially exploded, schematic isometric view of the joint between the first blade segment 116 a and the second blade segment 116 b illustrating an apparatus and method for clamping and curing the joint end portions 171 of the spars 170 in accordance with an embodiment of the disclosure.
  • the push/pull device(s) 1210 have been removed for purposes of clarity, but those of ordinary skill in the art will understand that the push/pull device(s) 1210 can be left in place during the clamping and curing of the spar joints if desirable.
  • a clamping assembly 1330 can include a clamping tool 1320 that includes at least two opposing plate portions 1321 a, 1321 b that clamp inwardly on the joint between the engaged spar end portions 171 c, 171 d .
  • the clamping tool 1320 applies adequate pressure to the joint during the adhesive curing process.
  • the clamping tool 1320 can include manually operable clamping devices (e.g., such as C-clamps) and/or automatic clamping devices, such as hydraulic clamps.
  • a vacuum blanket or bag 1322 can be wrapped around the joint and evacuated to remove any air pockets from the adhesive bond line.
  • a heating element 1324 (e.g., an electro-thermal heating element) can also be positioned locally around the joint to ensure proper curing of the adhesive at a suitable temperature for a suitable period of time (e.g., 24 hours).
  • a suitable temperature for a suitable period of time e.g., 24 hours.
  • the heating element 1324 , the vacuum bag 1322 , and/or the clamping tool 1320 can be omitted, and the bonded joint can be positioned in an autoclave or other suitable apparatus for elevating the temperature and/or pressure of the joint to ensure suitable curing of the adhesive.
  • a single clamping assembly 1330 is illustrated in FIG.
  • the spar 170 can be joined using techniques other than those described above with reference to FIGS. 11A-11E , for example, those disclosed in PCT Application US09/66875, previously incorporated herein by reference. Still further techniques include, but are not limited to the use of fasteners, bolts arranged in multiple directions, shear connecting tension bolts, scarf joints, butt joints and laminated overlays.
  • the foregoing process can be used to connect the first and second blade segments, and then to connect the second and third blade segments.
  • the order in which the process steps are completed can be changed in other embodiments.
  • the second and third segments can be attached to each other first, and then the first segment can be attached to the second segment.
  • a section of skin 115 FIG. 2
  • the completed blade may then be attached to a crane or other suitable structure for lifting the blade, and each of the now-attached segments can be decoupled from the corresponding supports 123 shown in FIG. 10D .
  • the blade skin can be patched or otherwise treated to seal any temporary holes or openings necessitated by the temporary connection to the supports 123 .
  • the blade can be lifted from the platforms and attached to the hub 105 shown in FIG. 1 .
  • the completed blade can be moved from the assembly site to the wind turbine via one of the transport devices described above, or via a different transport device, as described further below with reference to FIGS. 14A-14F .
  • FIGS. 14A-14F illustrate systems and methods for moving and assembling wind turbine blade segments in accordance with further embodiments of the disclosure.
  • multiple blade segments may be carried by a single transport device.
  • FIG. 14A illustrates a first transport device 1421 a (e.g., a tractor-trailer rig generally similar to those described above) having a first carrier 1480 a that simultaneously supports multiple blade segments.
  • the multiple blade segments include one second blade segment 116 b, and two third blade segments 116 c.
  • the first carrier 1480 a can include two fixture elements 1481 that hold the blade segments in a fixed position relative to the first transport device 1421 a.
  • FIG. 14A also illustrates another first carrier 1480 a that supports two second blade segments 116 b and one third blade segment 116 c, in position for transport by a first transport device 1421 a.
  • FIG. 14A still further illustrates additional first carriers 1480 a, each of which supports one first blade segment 116 a .
  • the first blade segments 116 a are too large to allow multiple blade segments to be carried on the same first transport device 1421 a . Accordingly, each first blade segment 116 c is transported individually.
  • the first carriers 1480 a positioned to carry the first blade segments 116 a can include a corresponding fixture element 1481 and an adjustment element 1482 .
  • the adjustment element 1482 allows the first blade segment 116 a to be rotated off-axis, as shown in FIG. 14A , so that is will fit under highway overpasses.
  • the fixture element 1481 holds the blade in this rotated configuration.
  • five first transport devices 1421 a can be used to transport all nine blade segments used for a three-blade turbine.
  • FIG. 14B the first blade segment 116 a has been removed from the first transport device 1421 a.
  • An operator has rotated the first blade segment 116 a (as indicated by arrow R) under the guidance and control of the adjustment element 1482 , so that the blade now has a vertical position.
  • a new fixture element 1481 is then positioned beneath the first blade segment 116 a to support it in this new orientation.
  • the second transport device 1421 b can include a chassis 1422 carrying a positioning unit 1423 .
  • the positioning unit 1423 can include multiple wheels 1424 (e.g., four castor-type wheels are shown in FIG. 14C ) outfitted with large, all-terrain tires 1425 . Accordingly, the second transport device 1421 b can be rolled along the ground at an assembly site that has unpaved, unimproved or only rudimentarily improved surfaces.
  • the second transport device 1421 b can further include a second carrier 1480 b that supports the second blade segment 116 b.
  • the second carrier 1480 b can include multiple upwardly projecting support members 1483 , each of which carriers an engagement member 1484 .
  • the individual engagement members 1484 include straps or other flexible tension elements having attachment features 1485 (e.g., clips, hooks, buckles, or other suitable arrangements) that are releasably attached to the second blade segment 116 b.
  • the engagement members 1484 are attached to the corresponding support members 1483 with an adjustable arrangement, e.g., a releasable ratchet device.
  • an operator can adjust the axial position, lateral position, and yaw angle of the second blade segment 116 b by rolling the second transport device 1480 b appropriately.
  • the operator can adjust the vertical position of the second blade segment 116 b by adjusting each of the engagement members 1484 (e.g., by the same amount).
  • the operator can adjust a rotation angle R 1 (e.g., a roll angle) of the second blade segment 116 b relative to a first axis A 1 by adjusting the engagement members 1484 on one side of the first axis A 1 by a different amount than the engagement members 1484 on the other side of the first axis A 1 .
  • the operator can adjust a transverse rotation angle R 2 (e.g., a pitch angle) of the second blade segment 116 b relative to a second (transverse) axis A 2 by adjusting fore and aft engagement members 1484 by different amounts.
  • a transverse rotation angle R 2 e.g., a pitch angle
  • the operator can roll the second transport device 1421 b toward the first blade segment 116 a as indicated by arrow T 1 to align the ends of the spars 170 a - 170 c carried by each of the first and second blade segment 116 a, 116 b.
  • the foregoing operations can be completed manually, or via powered drivers (e.g., motors) or other devices.
  • FIG. 14D the second transport device 1421 b has been removed, and the second blade segment 116 b is now supported by fixtures 1481 that carry the second blade segment 116 b in the proper position at the assembly site.
  • the second blade segment 116 b has been attached to the first blade segment 116 a by connecting the ends of the corresponding spars 170 a - 170 c, adding a rib 142 , and adding truss members 143 at the connection location. Further details of an arrangement for carrying out this process are disclosed in pending U.S. application Ser. No. ______, titled “Segmented Wind Turbine Blades with Truss Connection Regions, and Associated Systems and Methods,” and previously incorporated herein by reference.
  • FIG. 14E a process generally similar to that described above with reference to FIGS. 14C and 14D is conducted to attach the third blade segment 116 c to the second blade segment 116 b.
  • the overall blade 110 may be curved so that the axes along which the second and third blade segments 116 b, 116 c are attached may be different than the axes along which the first and second blade segments 116 a, 116 b are attached.
  • the second transport device 1480 b is easily movable, the operator can use the same or a generally similar second transport device 1480 b to move the third blade segment 116 c toward the second blade segment 116 b.
  • the operator can adjust the vertical position of the third blade segment 116 c, as well as a rotation angle R 3 relative to a third (longitudinal) axis A 3 , and a rotation angle R 4 relative to a fourth (transverse) axis A 4 .
  • the operator can then move the third blade segment 116 c via the second transport device 1480 b toward the second blade segment 116 b, as indicated by arrow T 3 , and connect the two segments 116 b, 116 c using any of the techniques described above.
  • FIG. 14F illustrates the assembled blade 110 , with a tip section 116 d attached to the third blade segment 116 c.
  • the assembled blade 110 can now be repositioned on the first transport device 1421 a with a significant portion of the blade 110 overhanging the first transport device 1421 a. While this arrangement would not be suitable for transporting the blade over typical highways, it can be used to transport the blade 110 from an assembly site (e.g., located at a wind farm) to a particular wind turbine (also located at the wind farm).
  • the first transport device 1421 a can be driven at very low speed over improved or unimproved roads (e.g., at the wind farm) having gradual radiuses of curvature, without damaging the wind turbine blade 110 or structures along the way.
  • the transport distances and speeds associated with moving the assembled blade from the assembly site to the wind turbine will be less (e.g., significantly less) than the distances and speeds associated with transporting the individual blade segments to the assembly site.
  • the blade segments 116 can be assembled at an unimproved assembly site (which may be typical at a wind farm) without impacting the accuracy which with the blade segments 116 are attached. This process can be conducted economically by using fewer first transport devices 1480 a to transport the blade segments 116 to the site, and/or by using a single second transport device 1480 b to sequentially assemble multiple blade segments.
  • the assembled blade can be transported from the assembly site to the wind turbine using a standard first transport device 1480 a (e.g., an over-the-highway tractor-trailer rig), even though the assembled blade 110 is over-length (by 50%, 60%, 70%, or another significant amount), and even though the road between the assembly site and the wind turbine may not be up to the standards of a typical highway.
  • a standard first transport device 1480 a e.g., an over-the-highway tractor-trailer rig
  • the assembled blade 110 is over-length (by 50%, 60%, 70%, or another significant amount)
  • the road between the assembly site and the wind turbine may not be up to the standards of a typical highway.
  • the blade segments can be easily transported from one or more manufacturing facilities to an installation site using conventional transport systems e.g., highway trucks, trains, or barges. Because the blade is segmented, it is easier to transport than it would be if it were completely assembled at the manufacturing site.
  • the transport platforms can include guide structures that accurately align each of the blade segments relative to neighboring segments to facilitate accurate and repeatable assembly techniques. This in turn can produce more uniform blades, despite the fact that the blades are segmented. As a result, the blades can operate more efficiently when installed on corresponding wind turbines, and can reduce maintenance costs over the life-time of the blades.
  • the guide structures described above may have arrangements other than nested portions that are each movable along a single axis.
  • the guide structures may include features other than rollers to control the motion of the supports relative to each other.
  • the guide structure can be configured to facilitate restricted rotational motion, in addition to restricted linear motion.
  • the supports can have other arrangements, including arrangements in which the supports extend above the blade and straddle the blade, with the blade supported (e.g., suspended) from above.
  • not all the transport platforms 121 provide axial motion for the corresponding blade segment.
  • the second blade segment 116 b can have a fixed axial position relative to the second transport platform 121 b, and the first and third segments 116 a, 116 c can move toward opposing ends of the centrally located second segment 116 b.
  • FIG. 3 illustrates two supports 123 for each blade segment
  • the guide structure 122 can include other arrangements, including a single support 123 at each transport platform 121 , or more than two supports 123 at each transport platform 121 .
  • the wind turbine blades can have structures other than those expressly disclosed herein, but can still be transported, aligned and/or assembled using the systems and methods described above. For example, in other embodiments these methods and systems can be used to join turbine blade structures together that extend in chordwise directions. In still further embodiments, these methods and systems can be used to join leading or trailing edge members together, or to join portions of a segmented root together.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)
  • Hydraulic Turbines (AREA)
US13/301,613 2009-05-22 2011-11-21 Systems and methods for transporting and assembling segmented wind turbine blades Abandoned US20120124833A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/301,613 US20120124833A1 (en) 2009-05-22 2011-11-21 Systems and methods for transporting and assembling segmented wind turbine blades

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US18081209P 2009-05-22 2009-05-22
US18081609P 2009-05-22 2009-05-22
PCT/US2010/035957 WO2010135737A1 (fr) 2009-05-22 2010-05-24 Systèmes et procédés permettant de transporter et d'assembler des pales d'éolienne segmentées
US13/301,613 US20120124833A1 (en) 2009-05-22 2011-11-21 Systems and methods for transporting and assembling segmented wind turbine blades

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2010/035957 Continuation WO2010135737A1 (fr) 2009-05-22 2010-05-24 Systèmes et procédés permettant de transporter et d'assembler des pales d'éolienne segmentées

Publications (1)

Publication Number Publication Date
US20120124833A1 true US20120124833A1 (en) 2012-05-24

Family

ID=43126539

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/301,613 Abandoned US20120124833A1 (en) 2009-05-22 2011-11-21 Systems and methods for transporting and assembling segmented wind turbine blades

Country Status (9)

Country Link
US (1) US20120124833A1 (fr)
EP (1) EP2432972B1 (fr)
CN (1) CN102803656B (fr)
AU (1) AU2010249320A1 (fr)
BR (1) BRPI1012803A2 (fr)
CA (1) CA2763019A1 (fr)
CL (1) CL2011002952A1 (fr)
DK (1) DK2432972T3 (fr)
WO (1) WO2010135737A1 (fr)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110194896A1 (en) * 2008-07-30 2011-08-11 Liftra Aps Fixture for retaining an end of a member
US20140234116A1 (en) * 2011-09-20 2014-08-21 Astrium Sas Device for connecting wing sections and method for assembling such sections
US20140255191A1 (en) * 2013-03-11 2014-09-11 Bell Helicopter Textron Inc. Low Shear Modulus Transition Shim for Elastomeric Bearing Bonding in Torsional Applications
CN104043954A (zh) * 2013-03-14 2014-09-17 通用电气公司 安装叶片插入件的系统和方法
US20150003991A1 (en) * 2013-06-28 2015-01-01 General Electric Company Modular extensions for wind turbine rotor blades
US20150044011A1 (en) * 2013-08-09 2015-02-12 Gamesa Innovation & Technologym S.L. Apparatus, system and method for wind turbine component replacement
US20150147151A1 (en) * 2013-11-25 2015-05-28 General Electric Company Method for positioning of equipment
US20150144761A1 (en) * 2013-11-25 2015-05-28 General Electric Company Apparatus and system for positioning of equipment
US20150219070A1 (en) * 2012-09-13 2015-08-06 Alstom Renewable Technologies Wind turbine blade and methods for transporting, storing and installing wind turbine blades
US20150300314A1 (en) * 2012-10-26 2015-10-22 Lm Wp Patent Holding A/S Method and system for transporting and storing at least two wind turbine blades
US20170074239A1 (en) * 2015-09-14 2017-03-16 General Electric Company Methods for assembling rotor blades
WO2018046436A1 (fr) * 2016-09-08 2018-03-15 Liftra Ip Aps Dispositif de retenue réglable pour éléments d'éolienne
US20190219031A1 (en) * 2016-09-02 2019-07-18 Lm Wind Power Us Technology Aps Transporation and Storage System for a Wind Turbine Blade
US20190301430A1 (en) * 2018-04-02 2019-10-03 Tpi Composites, Inc. Self-aligned tilt and yaw system for wind turbine blade rotating device
US10519810B2 (en) 2013-11-25 2019-12-31 General Electric Company Manipulation of turbomachine combustors
US10697437B1 (en) * 2019-08-27 2020-06-30 Bnsf Logistics, Llc Rotatable support fixture for wind turbine blade
US10738497B1 (en) 2017-10-31 2020-08-11 Pecos Wind Power, Inc. Nested wind tower assembly
US10961983B2 (en) * 2016-03-15 2021-03-30 DOOSAN Heavy Industries Construction Co., LTD Blade transport vehicle
US11066188B2 (en) 2018-08-10 2021-07-20 Sikorsky Aircraft Corporation Method and apparatus for locating and forming fastener holes in a replacement tip section of a rotor blade
CN113799308A (zh) * 2020-06-12 2021-12-17 西门子歌美飒可再生能源公司 适于生产风力涡轮机叶片的至少一部分的模具
US11242140B2 (en) * 2018-08-10 2022-02-08 Sikorsky Aircraft Corporation Method of removal and replacement of a tip section of a rotor blade
CN114017264A (zh) * 2021-09-27 2022-02-08 上海机器人产业技术研究院有限公司 一种风电叶片转运装置及双车联动控制方法
US20220082080A1 (en) * 2020-09-15 2022-03-17 Lm Wind Power A/S Section wind turbine blade and assembly of a section wind turbine blade
US20220178351A1 (en) * 2019-04-12 2022-06-09 Lm Wind Power A/S Performing post-moulding operations on a blade segment of a wind turbine blade
EP3701143B1 (fr) 2017-10-24 2022-07-13 Wobben Properties GmbH Pale de rotor d'une éolienne et procédé de conception de celle-ci
US20220364548A1 (en) * 2019-10-18 2022-11-17 Siemens Gamesa Renewable Energy A/S A method and a system for assembling blade parts of a wind turbine blade
EP4102061A1 (fr) * 2021-06-10 2022-12-14 Siemens Gamesa Renewable Energy A/S Ensemble de support
RU215647U1 (ru) * 2022-01-27 2022-12-21 Общество С Ограниченной Ответственностью "Тепловетровые Технологии" Разборная металлическая лопасть ветрогенератора
WO2022203880A3 (fr) * 2021-03-10 2023-01-19 Zsm Holdings Llc Dispositifs et procédés de support en porte-à-faux de charges utiles de chargement d'aéronef dans des extrémités avant et arrière d'une soute
WO2023146436A1 (fr) * 2022-01-27 2023-08-03 Общество С Ограниченной Ответственностью "Тепловетровые Технологии" Pale métallique démontable de générateur éolien
WO2024104536A1 (fr) * 2022-11-15 2024-05-23 Vestas Wind Systems A/S Transporteur

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2009322104B2 (en) 2008-12-05 2014-07-10 Vestas Wind Systems A/S Efficient wind turbine blades, wind turbine blade structures, and associated systems and methods of manufacture, assembly and use
US9500179B2 (en) 2010-05-24 2016-11-22 Vestas Wind Systems A/S Segmented wind turbine blades with truss connection regions, and associated systems and methods
CN103038500B (zh) * 2010-05-24 2016-11-23 维斯塔斯风力系统有限公司 具有桁架连接区域的分段风力涡轮机叶片,以及相关系统和方法
DK177238B1 (en) * 2011-03-11 2012-07-30 Envision Energy Denmark Aps A Transportation Method for a Wind Turbine Blade
DE102012019351A1 (de) 2012-10-02 2014-04-03 Nordex Energy Gmbh Verfahren und Positioniereinheit zum Zusammenfügen eines Windenergieanlagentorblatts
US9470205B2 (en) 2013-03-13 2016-10-18 Vestas Wind Systems A/S Wind turbine blades with layered, multi-component spars, and associated systems and methods
US20160341177A1 (en) * 2013-07-09 2016-11-24 Vestas Wind Systems A/S Wind turbine blade with sections that are joined together
DE102016114833A1 (de) * 2016-08-10 2018-02-15 Wobben Properties Gmbh Verfahren zum Montieren von Komponenten einer Windenergieanlage
EP3542051B1 (fr) * 2016-11-21 2021-05-19 LM Wind Power International Technology II ApS Procédé et système permettant d'établir une section ou une pale de turbine éolienne modulaire et usine mobile permettant d'assembler des sections d'une pale de turbine éolienne
DK3719297T3 (da) 2019-04-05 2023-01-30 Siemens Gamesa Renewable Energy As Bom til en vindmøllevinge og en fremgangsmåde til fremstilling deraf
EP3719298B1 (fr) * 2019-04-05 2023-01-11 Siemens Gamesa Renewable Energy A/S Poutre pour une pale d'éolienne et procédé de fabrication pour celle-ci
EP3763938B1 (fr) 2019-07-09 2024-09-11 Siemens Gamesa Renewable Energy A/S Procédé pour relier deux portions de pale d'éolienne, procédé de fabrication d'une éolienne et procédé pour relier deux portions moulées
WO2021136569A1 (fr) * 2019-12-30 2021-07-08 Vestas Wind Systems A/S Procédé d'assemblage d'une pale d'éolienne
CN111791400B (zh) * 2020-04-30 2022-04-26 株洲时代新材料科技股份有限公司 一种风电叶片模具分段兼容设计方法
CN112896030A (zh) * 2021-02-03 2021-06-04 广州汇琪网络科技有限公司 一种大型风电叶片运输装置
EP4066987A1 (fr) * 2021-04-01 2022-10-05 Siemens Gamesa Renewable Energy A/S Procédé de fabrication d'une pale d'éolienne

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3481694D1 (de) * 1983-06-02 1990-04-26 Sumitomo Electric Industries Positioniermechanismus.
US6027295A (en) * 1997-03-26 2000-02-22 Carl Geppert Lifting system for manufactured and mobile homes
DE10200401A1 (de) * 2002-01-08 2003-07-24 Aloys Wobben Vorrichtung zum Handhaben von Stückgütern
US20030175089A1 (en) * 2002-03-13 2003-09-18 Preben Almind Transport container for wind turbine blades
US7210882B2 (en) * 2003-07-03 2007-05-01 Vestas-American Wind Technology System and process for transporting wind turbines
DK177128B1 (da) * 2003-07-10 2011-12-19 Lm Glasfiber As Transport og opbevaring af forkrumme vindmøllevinger
DK176923B1 (da) * 2004-06-29 2010-05-17 Vamdrup Specialtransp Aps Fremgangsmåde til transport af en lang vindmøllevinge samt et køretøj til transport heraf
CN102287322B (zh) * 2004-06-30 2015-12-16 维斯塔斯风力系统有限公司 由两个分离的部分制成的风轮机叶片以及装配方法
US20070177954A1 (en) * 2006-01-31 2007-08-02 General Electric Company Method and apparatus for containing and/or transporting rotor blades
US7704024B2 (en) * 2006-01-31 2010-04-27 General Electric Company Methods and systems for transporting wind turbine components
AU2009322104B2 (en) 2008-12-05 2014-07-10 Vestas Wind Systems A/S Efficient wind turbine blades, wind turbine blade structures, and associated systems and methods of manufacture, assembly and use

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110194896A1 (en) * 2008-07-30 2011-08-11 Liftra Aps Fixture for retaining an end of a member
US8998546B2 (en) * 2008-07-30 2015-04-07 Liftra Aps Fixture for retaining an end of a member
US20140234116A1 (en) * 2011-09-20 2014-08-21 Astrium Sas Device for connecting wing sections and method for assembling such sections
US20150219070A1 (en) * 2012-09-13 2015-08-06 Alstom Renewable Technologies Wind turbine blade and methods for transporting, storing and installing wind turbine blades
US10066598B2 (en) * 2012-09-13 2018-09-04 Ge Renewable Technologies Wind B.V. Wind turbine blade and methods for transporting, storing and installing wind turbine blades
US10781834B2 (en) * 2012-10-26 2020-09-22 Lm Wp Patent Holding A/S Method and system for transporting and storing at least two wind turbine blades
US9874235B2 (en) * 2012-10-26 2018-01-23 Lm Wp Patent Holding A/S Method and system for transporting and storing at least two wind turbine blades
US20160369768A1 (en) * 2012-10-26 2016-12-22 Lm Wp Patent Holding A/S Method and system for transporting and storing at least two wind turbine blades
US20150300314A1 (en) * 2012-10-26 2015-10-22 Lm Wp Patent Holding A/S Method and system for transporting and storing at least two wind turbine blades
US9879722B2 (en) * 2013-03-11 2018-01-30 Bell Helicopter Textron Inc. Low shear modulus transition shim for elastomeric bearing bonding in torsional applications
US20140255191A1 (en) * 2013-03-11 2014-09-11 Bell Helicopter Textron Inc. Low Shear Modulus Transition Shim for Elastomeric Bearing Bonding in Torsional Applications
CN104043954A (zh) * 2013-03-14 2014-09-17 通用电气公司 安装叶片插入件的系统和方法
US20150003991A1 (en) * 2013-06-28 2015-01-01 General Electric Company Modular extensions for wind turbine rotor blades
US9429138B2 (en) * 2013-08-09 2016-08-30 Gamesa Innovation & Technology, S.L. Apparatus, system and method for wind turbine component replacement
US20150044011A1 (en) * 2013-08-09 2015-02-12 Gamesa Innovation & Technologym S.L. Apparatus, system and method for wind turbine component replacement
US20150144761A1 (en) * 2013-11-25 2015-05-28 General Electric Company Apparatus and system for positioning of equipment
US9322504B2 (en) * 2013-11-25 2016-04-26 General Electric Company Apparatus and system for positioning of equipment
US9486899B2 (en) * 2013-11-25 2016-11-08 General Electric Company Method for positioning of equipment
US20150147151A1 (en) * 2013-11-25 2015-05-28 General Electric Company Method for positioning of equipment
US20160376927A1 (en) * 2013-11-25 2016-12-29 General Electric Company System for positioning of equipment
US10519810B2 (en) 2013-11-25 2019-12-31 General Electric Company Manipulation of turbomachine combustors
US9885255B2 (en) * 2013-11-25 2018-02-06 General Electric Company System for positioning of equipment
US10138867B2 (en) * 2015-09-14 2018-11-27 General Electric Company Methods for assembling rotor blades
US20170074239A1 (en) * 2015-09-14 2017-03-16 General Electric Company Methods for assembling rotor blades
US10961983B2 (en) * 2016-03-15 2021-03-30 DOOSAN Heavy Industries Construction Co., LTD Blade transport vehicle
US20190219031A1 (en) * 2016-09-02 2019-07-18 Lm Wind Power Us Technology Aps Transporation and Storage System for a Wind Turbine Blade
US10731634B2 (en) * 2016-09-02 2020-08-04 Lm Wind Power Us Technology Aps Transportation and storage system for a wind turbine blade
US10753339B2 (en) 2016-09-08 2020-08-25 Liftra Ip Aps Adjustable retention fixture for wind turbine members
WO2018046436A1 (fr) * 2016-09-08 2018-03-15 Liftra Ip Aps Dispositif de retenue réglable pour éléments d'éolienne
KR102435972B1 (ko) 2016-09-08 2022-08-23 리프트라 아이피 에이피에스 윈드 터빈 부재들에 관한 조정 가능한 유지 고정물
KR20190046982A (ko) * 2016-09-08 2019-05-07 리프트라 아이피 에이피에스 윈드 터빈 부재들에 관한 조정 가능한 유지 고정물
EP3701143B1 (fr) 2017-10-24 2022-07-13 Wobben Properties GmbH Pale de rotor d'une éolienne et procédé de conception de celle-ci
US11053704B1 (en) 2017-10-31 2021-07-06 Pecos Wind Power, Inc. Fixture for tilt-up wind turbine installation
US10968895B1 (en) * 2017-10-31 2021-04-06 Pecos Wind Power, Inc. Wind turbine shipping method
US10738497B1 (en) 2017-10-31 2020-08-11 Pecos Wind Power, Inc. Nested wind tower assembly
US20190301430A1 (en) * 2018-04-02 2019-10-03 Tpi Composites, Inc. Self-aligned tilt and yaw system for wind turbine blade rotating device
US11027412B2 (en) * 2018-04-02 2021-06-08 Tpi Composites, Inc. Self-aligned tilt and yaw system for wind turbine blade rotating device
JP7269952B2 (ja) 2018-04-02 2023-05-09 ティーピーアイ コンポジッツ,インコーポレーティッド 風力タービンブレード回転装置の自己整列ティルト及びヨーシステム
US11642775B2 (en) 2018-04-02 2023-05-09 Tpi Composites, Inc. Individual emergency brake system for wind turbine blade rotating device
JP2021520467A (ja) * 2018-04-02 2021-08-19 ティーピーアイ コンポジッツ,インコーポレーティッド 風力タービンブレード回転装置の自己整列ティルト及びヨーシステム
US11602834B2 (en) 2018-04-02 2023-03-14 Tpi Composites, Inc. Scissor lift system and plug-in mobility mechanism for wind turbine blade rotating device
CN112135969A (zh) * 2018-04-02 2020-12-25 泰普爱复合材料股份有限公司 风力涡轮机叶片旋转装置的自对准倾斜和偏航系统
US11541529B2 (en) 2018-04-02 2023-01-03 Tpi Composites, Inc. Wind turbine blade rotating device—strapped tip device with blade stabilization system
US11534904B2 (en) 2018-04-02 2022-12-27 Tpi Composites, Inc. Self-aligned tilt and yaw system for wind turbine blade rotating device
US11242140B2 (en) * 2018-08-10 2022-02-08 Sikorsky Aircraft Corporation Method of removal and replacement of a tip section of a rotor blade
US11066188B2 (en) 2018-08-10 2021-07-20 Sikorsky Aircraft Corporation Method and apparatus for locating and forming fastener holes in a replacement tip section of a rotor blade
US11655052B2 (en) 2018-08-10 2023-05-23 Sikorsky Aircraft Corporation Method and apparatus for locating and forming fastener holes in a replacement tip section of a rotor blade
US20220178351A1 (en) * 2019-04-12 2022-06-09 Lm Wind Power A/S Performing post-moulding operations on a blade segment of a wind turbine blade
US10697437B1 (en) * 2019-08-27 2020-06-30 Bnsf Logistics, Llc Rotatable support fixture for wind turbine blade
US20220364548A1 (en) * 2019-10-18 2022-11-17 Siemens Gamesa Renewable Energy A/S A method and a system for assembling blade parts of a wind turbine blade
US11959454B2 (en) * 2019-10-18 2024-04-16 Siemens Gamesa Renewable Energy A/S Method and a system for assembling blade parts of a wind turbine blade
US11964348B2 (en) 2020-06-12 2024-04-23 Siemens Gamesa Renewable Energy A/S Mold adapted for producing at least a part of a wind turbine blade
CN113799308A (zh) * 2020-06-12 2021-12-17 西门子歌美飒可再生能源公司 适于生产风力涡轮机叶片的至少一部分的模具
US20220082080A1 (en) * 2020-09-15 2022-03-17 Lm Wind Power A/S Section wind turbine blade and assembly of a section wind turbine blade
US11781523B2 (en) * 2020-09-15 2023-10-10 Lm Wind Power A/S Section wind turbine blade and assembly of a section wind turbine blade
WO2022203880A3 (fr) * 2021-03-10 2023-01-19 Zsm Holdings Llc Dispositifs et procédés de support en porte-à-faux de charges utiles de chargement d'aéronef dans des extrémités avant et arrière d'une soute
EP4102061A1 (fr) * 2021-06-10 2022-12-14 Siemens Gamesa Renewable Energy A/S Ensemble de support
CN114017264A (zh) * 2021-09-27 2022-02-08 上海机器人产业技术研究院有限公司 一种风电叶片转运装置及双车联动控制方法
WO2023146436A1 (fr) * 2022-01-27 2023-08-03 Общество С Ограниченной Ответственностью "Тепловетровые Технологии" Pale métallique démontable de générateur éolien
RU215647U1 (ru) * 2022-01-27 2022-12-21 Общество С Ограниченной Ответственностью "Тепловетровые Технологии" Разборная металлическая лопасть ветрогенератора
WO2024104536A1 (fr) * 2022-11-15 2024-05-23 Vestas Wind Systems A/S Transporteur

Also Published As

Publication number Publication date
AU2010249320A1 (en) 2011-12-15
EP2432972A1 (fr) 2012-03-28
CA2763019A1 (fr) 2010-11-25
EP2432972B1 (fr) 2018-07-11
CN102803656A (zh) 2012-11-28
WO2010135737A1 (fr) 2010-11-25
DK2432972T3 (en) 2018-08-13
CN102803656B (zh) 2016-01-13
BRPI1012803A2 (pt) 2019-09-24
CL2011002952A1 (es) 2012-07-20
EP2432972A4 (fr) 2017-01-04

Similar Documents

Publication Publication Date Title
US20120124833A1 (en) Systems and methods for transporting and assembling segmented wind turbine blades
US11691352B2 (en) Post-modulation station and an associated method of manufacture of a wind turbine blade
US10843303B2 (en) System and method for manufacturing a wind turbine blade
CN105083963B (zh) 叶片尖端夹持装置
US8382440B2 (en) Efficient wind turbine blades, wind turbine blade structures, and associated systems and methods of manufacture, assembly and use
CA2863288C (fr) Systeme de serrage concu pour une pale d'eolienne
CA2781551A1 (fr) Pale d'eolienne et procedes, appareil et materiaux pour la fabrication sur place
CN105874194A (zh) 模块化风轮机转子叶片
WO2021046555A1 (fr) Systèmes, procédés et véhicules pour transporter une grande cargaison sur et hors d'un véhicule de transport
CN113396045B (zh) 风力叶片部件结合固定装置
CN117203150A (zh) 气动操作的腹板提升夹钳
CN113738584A (zh) 一种风机叶片组装辅助装置及组装方法
US20230219316A1 (en) Method for manufacturing a wind turbine blade and mandrel tool

Legal Events

Date Code Title Description
AS Assignment

Owner name: MODULAR WIND ENERGY, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ARENDT, CORY P.;BAKER, MYLES L.;VILHAUER, SHELDON;AND OTHERS;SIGNING DATES FROM 20120111 TO 20120112;REEL/FRAME:027669/0982

AS Assignment

Owner name: VESTAS WIND SYSTEMS A/S, DENMARK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MODULAR WIND (ASSIGNMENT FOR THE BENEFIT OF CREDITORS), LLC;REEL/FRAME:031532/0060

Effective date: 20130925

Owner name: MODULAR WIND (ASSIGNMENT FOR THE BENEFIT OF CREDIT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MODULAR WIND ENERGY, INC.;REEL/FRAME:031531/0763

Effective date: 20130521

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION