US20120101415A1 - Locomotion assisting apparatus with integrated tilt sensor - Google Patents

Locomotion assisting apparatus with integrated tilt sensor Download PDF

Info

Publication number
US20120101415A1
US20120101415A1 US12/909,746 US90974610A US2012101415A1 US 20120101415 A1 US20120101415 A1 US 20120101415A1 US 90974610 A US90974610 A US 90974610A US 2012101415 A1 US2012101415 A1 US 2012101415A1
Authority
US
United States
Prior art keywords
leg
tilt
tilt sensor
braces
user
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/909,746
Other languages
English (en)
Inventor
Amit Goffer
Oren TAMARI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rewalk Robotics Ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US12/909,746 priority Critical patent/US20120101415A1/en
Priority to EP22159563.0A priority patent/EP4082506A1/en
Priority to CN2011800614614A priority patent/CN103328051A/zh
Priority to RU2013122414/14A priority patent/RU2013122414A/ru
Priority to ES11833961T priority patent/ES2915693T3/es
Priority to CA2815572A priority patent/CA2815572A1/en
Priority to KR1020137013021A priority patent/KR20130105867A/ko
Priority to JP2013534456A priority patent/JP2013542014A/ja
Priority to RU2016118307A priority patent/RU2016118307A/ru
Priority to AU2011319487A priority patent/AU2011319487A1/en
Priority to BR112013009760A priority patent/BR112013009760A2/pt
Priority to EP11833961.3A priority patent/EP2629855B8/en
Priority to PCT/IL2011/000799 priority patent/WO2012052988A2/en
Assigned to ARGO MEDICAL TECHNOLOGIES LTD. reassignment ARGO MEDICAL TECHNOLOGIES LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GOFFER, AMIT, TAMARI, OREN
Publication of US20120101415A1 publication Critical patent/US20120101415A1/en
Priority to IL225834A priority patent/IL225834A0/en
Assigned to REWALK ROBOTICS LTD reassignment REWALK ROBOTICS LTD CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: ARGO MEDICAL TECHNOLOGIES LTD
Assigned to KREOS CAPITAL IV (EXPERT FUND) LIMITED reassignment KREOS CAPITAL IV (EXPERT FUND) LIMITED SECURITY INTEREST Assignors: REWALK ROBOTICS LTD
Assigned to REWALK ROBOTICS LTD. reassignment REWALK ROBOTICS LTD. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: KREOS CAPITAL IV (EXPERT FUND) LIMITED
Assigned to KREOS CAPITAL V (EXPERT FUND) L.P. reassignment KREOS CAPITAL V (EXPERT FUND) L.P. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: REWALK ROBOTICS LTD.
Priority to US15/136,844 priority patent/US10849816B2/en
Priority to US17/107,453 priority patent/US20210290471A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H3/00Appliances for aiding patients or disabled persons to walk about
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H1/00Apparatus for passive exercising; Vibrating apparatus ; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
    • A61H1/02Stretching or bending or torsioning apparatus for exercising
    • A61H1/0237Stretching or bending or torsioning apparatus for exercising for the lower limbs
    • A61H1/024Knee
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H1/00Apparatus for passive exercising; Vibrating apparatus ; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
    • A61H1/02Stretching or bending or torsioning apparatus for exercising
    • A61H1/0237Stretching or bending or torsioning apparatus for exercising for the lower limbs
    • A61H1/0244Hip
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H3/00Appliances for aiding patients or disabled persons to walk about
    • A61H2003/007Appliances for aiding patients or disabled persons to walk about secured to the patient, e.g. with belts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/16Physical interface with patient
    • A61H2201/1602Physical interface with patient kind of interface, e.g. head rest, knee support or lumbar support
    • A61H2201/165Wearable interfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5002Means for controlling a set of similar massage devices acting in sequence at different locations on a patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5058Sensors or detectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5058Sensors or detectors
    • A61H2201/5069Angle sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5058Sensors or detectors
    • A61H2201/5071Pressure sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5097Control means thereof wireless

Definitions

  • the present invention relates to assisted walking devices. More particularly, the present invention relates to a locomotion assisting apparatus with an integrated tilt sensor.
  • a motorized locomotion assistance exoskeleton device may assist locomotion of a person with a disability in the lower portion of the body. For example, such a device may assist a disabled user to walk or perform other tasks that ordinarily require use of the legs.
  • Such devices have been described, for example, by Goffer in U.S. Pat. No. 7,153,242 and by Goffer et al. in US 2010/0094188.
  • a device as described typically is designed to be attached to parts of the lower portion and part of the trunk of a person's body.
  • Such a described device typically includes motorized joints and actuators for flexing and extending the parts of the body to which it is attached.
  • Such a described device typically includes sensors for ascertaining the state of the device and the body during locomotion.
  • a described device may include one or more angle sensors for measuring angles of the joints, tilt sensors for measuring a tilt angle of the body, and pressure or force sensors for measuring the force exerted on the ground or other surface.
  • Such a described device may include various controls for controlling the device.
  • the device typically includes a mode selection device for selecting a mode of operation, for example, a gait.
  • a controller that controls operation of the device is designed to receive signals from the device sensors, and to control operation of the device on the basis of the received sensor signals.
  • the sensor signals may indicate whether a gait or action being performed by the device is proceeding as expected.
  • a user to whom the device is attached may deliberately perform an action that affects a reading of one or more sensors.
  • the controller may be programmed to initiate, continue, or discontinue performance of an action based on the sensor readings.
  • the person may at least partially control operation of the device by leaning or performing other actions that may affect sensor readings.
  • a locomotion assisting exoskeleton device includes a plurality of braces including a trunk support for affixing to the part of the torso of a person and leg segment braces each leg segment brace for connecting to a section of a leg of the person.
  • the device also includes at least one motorized joint for connecting two braces of said plurality of braces and for providing relative angular movement between the two braces; at least one tilt sensor mounted on the exoskeleton device for sensing a tilt of the exoskeleton; and a controller for receiving sensed signals from the tilt sensor, and programmed with an algorithm with instructions for actuating the motorized joints in accordance with the sensed signals.
  • the device includes a remote control.
  • the algorithm comprises operating the motorized joint to swing a trailing leg forward when a sensed tilt sensed by the tilt sensor exceeds a threshold value.
  • the algorithm comprises operating the motorized joint to extend a leading leg backward when a sensed tilt sensed by the tilt sensor exceeds a threshold value.
  • the tilt sensor is mounted on the trunk support.
  • the tilt sensor is mounted on a component of the exoskeleton device whose tilt is substantially equal to the tilt of the trunk support.
  • a joint is provided with an angle sensor for sensing an angle between the two braces connected by the joint.
  • the algorithm includes instructions for actuating the motorized joints in accordance with the sensed angle.
  • the algorithm includes halting forward motion of a leg when the sensed angle is within a predetermined range of angles.
  • FIG. 1A is a side view of a locomotion assisting exoskeleton device in accordance with some embodiments of the present invention.
  • FIG. 1B is a front view of the apparatus shown in FIG. 1A .
  • FIG. 1C is a block diagram of control of the apparatus shown in FIG. 1A .
  • FIG. 2A schematically illustrates a method for controlling a locomotion assisting exoskeleton device in accordance with embodiments of the present invention to enable a user to take a step.
  • FIG. 2B is a flow chart of a method for taking a step, in accordance with embodiments of the present invention.
  • Embodiments of the invention may include an article such as a computer or processor readable medium, or a computer or processor storage medium, such as for example a memory, a disk drive, or a USB flash memory, encoding, including or storing instructions, e.g., computer-executable instructions, which when executed by a processor or controller, carry out methods disclosed herein.
  • an article such as a computer or processor readable medium, or a computer or processor storage medium, such as for example a memory, a disk drive, or a USB flash memory, encoding, including or storing instructions, e.g., computer-executable instructions, which when executed by a processor or controller, carry out methods disclosed herein.
  • a locomotion assisting exoskeleton device in accordance with embodiments of the present invention typically includes one or more braces or supports.
  • Each brace may be strapped on, or otherwise attached to, a part of the body of the user.
  • one or more trunk supports may be attached to the trunk, in particular, the lower torso, of the user.
  • Other braces may be attached to sections of the user's legs.
  • Each brace or support of the apparatus is typically joined via a joint or other connection to one or more other components of the apparatus.
  • a joint may enable relative movement between the joined components. For example, a joint may enable relative motion between a brace and an adjacent brace.
  • the locomotion assisting exoskeleton device may include one or more motorized actuation assemblies.
  • a motorized actuation assembly may be operated to move one or more parts of the user's body.
  • a motorized actuation assembly may bend a joint. Coordinated bending of one or more joints may propel one or more limbs of the user's body.
  • a joint may be provided with one or more sensors for sensing the relative positions and orientations of various components of the apparatus.
  • the relative positions of components of the apparatus may indicate the relative positions of body parts to which the components are attached.
  • a sensor may measure and generate a signal indicating, for example, the angle between two braces joined at a joint.
  • the locomotion assisting exoskeleton device includes one or more tilt sensors.
  • a forward tilt of a user wearing the exoskeleton device may be effectively utilized for operation of the device.
  • a forward tilt of the user may indicate that the user wants to walk forward.
  • the apparatus may be operated to initiate a forward step.
  • walking forward may include a repeated sequence of leg swings.
  • a leg swing may include a sequence of operations that includes raising a trailing leg, extending the raised leg forward, and lowering the leg.
  • user's hands may move forward to cause a forward tilt (or “prevented fall”), raising a trailing leg from the ground.
  • the exoskeleton device may initiate a the above sequence of operations. The above sequence of operation may thus swinging the initially trailing leg forward to rest on the ground at a point ahead of the initially leading leg. In this manner, the apparatus may assist the user to walk forward.
  • a tilt sensor of a locomotion assisting exoskeleton device in accordance with embodiments of the present invention is located on a part of the apparatus that tilts with the device.
  • the tilt sensor may be located on a brace of the apparatus that is designed to attach to the lower or upper torso of the user.
  • the tilt sensor may be mounted on a side, back, or front panel of a trunk support designed to be attached to the user's lower torso.
  • the tilt sensor may alternatively be mounted on any component of the exoskeleton device that is substantially rigidly attached to such a brace.
  • a backpack of the exoskeleton device may be rigidly attached to a trunk support, or attached via a substantially rigid connector that enables no more than a small amount of give. In such a case, the tilt sensor may be mounted on or within the backpack.
  • FIG. 1A is a side view of a locomotion assisting exoskeleton device in accordance with some embodiments of the present invention.
  • FIG. 1B is a front view of the apparatus shown in FIG. 1A .
  • FIG. 1C is a block diagram of control of the apparatus shown in FIG. 1A .
  • Components of exoskeleton device 10 may be attached to the body of a user.
  • a trunk support 12 may attach to the user's lower torso above the pelvis.
  • Leg segment braces 14 may each attach to a section of the user's leg.
  • Bands or straps, such as straps 22 , connected to trunk support 12 and leg segment braces 14 may at least partially wrap around parts of the user's body.
  • straps 22 may ensure that each component brace of exoskeleton device 10 attaches to an appropriate corresponding part of the user's body.
  • motion of the component brace may move the attached body part.
  • components of exoskeleton device 10 may be adjustable so as to enable optimally fitting exoskeleton device 10 to the body of a specific user.
  • Component braces of exoskeleton device 10 may connect to one another via joints 16 .
  • two leg segment braces 14 may connect at knee joint 16 a .
  • a leg segment brace 14 and trunk support 12 may connect at hip joint 16 b .
  • Each joint 16 may include an actuator 32 for actuating relative angular motion between components connected by each joint 16 .
  • controller 26 may be controlled by controller 26 .
  • controller 26 may be located in backpack 18 of exoskeleton device 10 .
  • components of controller 26 may be incorporated into trunk support 12 , leg segment braces 14 , or other components of exoskeleton device 10 .
  • controller 26 may include a plurality of intercommunicating electronic devices. The intercommunication may be wired or wireless.
  • communication between controller 26 and components of exoskeleton device 10 such as an actuator 32 or a sensor or control, may be wired or wireless.
  • Controller 26 may be powered by power supply 28 .
  • power supply 28 may include one or more rechargeable batteries and appropriate electronic circuitry to enable recharging of the batteries (e.g. by connection to an external power supply).
  • Power supply 28 may be located in backpack 18 .
  • Each joint 16 may also be provided with an angle sensor 30 for sensing a relative angle between components connected by joint 16 .
  • An output signal from each angle sensor 30 may be communicated to controller 26 .
  • the output signal may indicate a current relative angle between connected components.
  • Tilt sensor 24 may be mounted on trunk support 12 .
  • tilt sensor 24 may be located on any other component of exoskeleton device 10 whose angle of tilt reflects the angle of tilt of the trunk support of exoskeleton device 10 .
  • An output signal from tilt sensor 24 may be communicated to controller 26 .
  • the output signal may indicate, for example, an angle between trunk support 12 and the vertical.
  • Exoskeleton device 10 may include one or more additional auxiliary sensors 31 .
  • auxiliary sensors 31 may include one or more pressure-sensitive sensors.
  • a pressure-sensitive sensor may measure a ground force exerted on exoskeleton device 10 .
  • a ground force sensor may be included in a surface designed for attachment to the bottom of the user's foot.
  • Exoskeleton device 10 may be provided with one or more controls for enabling user input or other external input.
  • exoskeleton device 10 may include a remote control set 20 .
  • Remote control set 20 may include one or more pushbuttons, switches, touch-pads, or other similar manually operated controls that a user may operate.
  • remote control set 20 may include one or more controls for selecting a mode of operation.
  • operation of a control of remote control set 20 may generate an output signal for communication to controller 26 .
  • the communicated signal may indicate a user request to initiate or continue a mode of operation.
  • the communicated signal may indicate to the controller to initiate or continue a walking forward operation when appropriate sensor signals are received.
  • remote control set 20 may include a control for turning exoskeleton device 10 on or off.
  • remote control set 20 may be designed for mounting in a location that is readily accessible by the user.
  • remote control set 20 may be provided with a band or strap. The strap may enable attaching remote control set 20 to the user's wrist or arm (as shown in FIGS. 1A and 1B ). In this manner, remote control set 20 may be conveniently operated by fingers the arm opposite the arm on which it is mounted arm.
  • remote control set 20 or part of it, may be mounted on a crutch, on the front of the user's torso, on the front of trunk support 12 , or any other readily accessible location.
  • remote control set 20 may include several detached controls, each communicating separately with controller 26 and each mounted at a separate location.
  • a locomotion assisting exoskeleton device in accordance with embodiments of the present invention may be operated to assist a disabled user to walk.
  • one or more joints 16 and leg segment braces 14 may be controlled so as to move the legs in a manner to enable a selected activity.
  • joints 16 and leg segment braces 14 may be manipulated in order to enable a user to walk. Control of a joint 16 may depend on previous actions performed and on input from at least an angle sensor 30 and tilt sensor 24 .
  • FIG. 2A schematically illustrates a method for controlling a locomotion assisting exoskeleton device in accordance with embodiments of the present invention to enable a user to take a step.
  • FIG. 2B is a flow chart of a method for taking a step, in accordance with embodiments of the present invention.
  • the illustrated method includes swinging leg 44 a , which is initially (stage 40 a ) a trailing leg, forward. At the conclusion of the step (stage 40 j ), leg 44 a is positioned ahead of initially leading leg 44 b . The method may then be repeated with the legs 44 a and 44 b reversing their roles.
  • the illustrated method assumes that the user is provided with, and is capable of manipulating, a pair of crutches. In the description below, reference is also made to components shown in FIGS. 1A-1C .
  • a user may require training and practice.
  • training may entail practice sessions using the exoskeleton device in conjunction with such other equipment as parallel bars or a walking frame.
  • Various stages of a training program may teach a user how to maintain balance and how to walk when using the exoskeleton device.
  • a control program stored in a memory associated with controller 26 ( FIG. 1C ) may be adapted to a particular user.
  • a parameter indicating a threshold tilt angle or joint flexing angle may be adjusted in order to suit the capabilities or preferences of a particular user.
  • the user may learn how to coordinate manipulation of the crutches with actions by the exoskeleton device in order to optimize effectiveness of the assisted walking.
  • leg 44 b is initially a leading leg
  • leg 44 a is initially a trailing leg.
  • Both legs 44 a and 44 b are initially resting on the ground or other supporting surface, and both legs 44 a and 44 b approximately equally support the weight of the user's body.
  • the user may signal a desire to walk forward, e.g. by operating a control of remote control 20 (step 48 of FIG. 2B ).
  • the user may initiate a step by moving crutches 42 forward.
  • crutches 42 are schematically illustrated in the form of a single line segment, it should be understood that typically a pair of crutches is referred to.
  • the crutches typically positioned on opposite sides of the user's body, are typically moved forward in parallel with one another.
  • exoskeleton device 10 As crutches 42 are moved forward, exoskeleton device 10 , with the user, tilts forward.
  • the controller monitors tilt sensor 24 (step 50 of FIG. 2B ) to determine whether the indicated tilt is sufficient (e.g. greater than a threshold tilt angle value) to enable swinging leg 44 a forward (step 52 ). If the indicated tilt angle is not sufficient, a time of a timer may be compared with a threshold time (step 53 ). For example, a timer may start when operation of a control of remote control 20 indicates a desire to initiate a walk sequence, or when tilt sensor 24 indicates beginning to tilt. Alternatively, a plurality of timers (or timer functions) may monitor time elapsed from a plurality of trigger events.
  • exoskeleton device 10 may initiate a sequence to exit from a walk mode (step 55 ). For example, exoskeleton device 10 may initiate a “standing stance” mode to bring the user to a standing position. Alternatively, operation may stop until a further control signal is received.
  • stage 40 b the user continues to move crutches 42 forward, and exoskeleton device, 10 with the user, continues to tilt forward.
  • the weight of the user's body begins to shift toward leg 44 b , which is a leading leg.
  • crutches 42 are in a forward position.
  • the user's elbows begin to bend so as to enable exoskeleton device 10 to continue to tilt forward.
  • Leg 44 a begins to be raised so as to discontinue contact with the ground.
  • the weight of the user's body is now supported by leg 44 b and crutches 42 .
  • stage 40 d continued bending of the user's elbow may cause exoskeleton device 10 to tilt forward sufficiently to trigger exoskeleton device 10 to initiate a step.
  • a tilt sensor 24 may generate a tilt signal.
  • the generated tilt signal may be processed (e.g. by controller 26 ) to indicate that the tilt angle of exoskeleton device 10 is equal or greater than a threshold angle.
  • a tilt angle equal to the threshold angle may trigger initiation of a step sequence (step 52 ).
  • Controller 26 may then, upon receiving the generated tilt signal, initiate a control program to operate exoskeleton device 10 so as to start a step by swinging leg 44 a forward.
  • exoskeleton device 10 begins to swing leg 44 a forward.
  • controller 26 may cause knee joint 16 a of leg 44 a to flex by a predetermined angle.
  • controller 26 may cause hip joint 16 b of leg 44 a to begin flexing forward, thus swinging leg 44 a forward (step 54 ).
  • controller 26 may monitor output signals of one or more angle sensors 30 (step 56 ) to verify that leg 44 a is moving in accordance with predetermined criteria. Monitoring of the output signal may also indicate whether the step is complete, or whether to continue forward motion of leg 44 a (step 58 ).
  • exoskeleton device 10 continues to swing leg 44 a forward.
  • controller 26 may continue to flex hip joint 16 b of leg 44 a so as to swing leg 44 a forward.
  • hip joint 16 b ′ of leg 44 b extends to raise the trunk 46 towards an upright position (similar to its position in stage 40 a ). The user may push downward on crutches 42 in order to help this operation.
  • exoskeleton device 10 continues to move leg 44 a forward and 44 b backward to as to approach each other.
  • controller 26 may continue to operate hip joint 16 b of leg 44 a so as to swing leg 44 a forward, and hip joint 10 b ′ and of leg 44 b to extend and straighten leg 44 b.
  • exoskeleton device 10 continues to move leg 44 a forward ahead of leg 44 b and to extend leg 44 b .
  • controller 26 may continue to operate hip joint 16 b of leg 44 a so as to swing leg 44 a forward and hip joint 10 b ′ of leg 44 b to straighten leg 44 b.
  • exoskeleton device 10 continues to move leg 44 a forward and leg 44 b backward.
  • controller 26 may continue to operate hip joint 16 b of leg 44 a and extend hip joint 16 b ′ of leg 44 b so as to swing leg 44 a forward.
  • exoskeleton device 10 may extend knee joint 16 a to straighten leg 44 a .
  • controller 26 may receive a signal from angle sensors 30 of hip joints 16 b and 16 b ′. The sensed signal may indicate that a sensed angle is within a predetermined range of angles indicating a completed step (step 58 ). Controller 26 may then operate knee joint 16 a of leg 44 a so as to extend and straighten leg 44 a .
  • controller 26 may monitor signals from angle sensors 30 of knee joint 16 a of leg 44 a to verify when the leg is sufficiently straight so as to stop operation of knee joint 16 a.
  • stage 40 j leg 44 a is extended forward and is a leading leg, while leg 44 b is a trailing leg.
  • stage 40 j is essentially identical to stage 40 a , with the roles of legs 44 a and 44 b reversed.
  • exoskeleton device 10 has performed a single step. If the walk mode is still selected (step 59 ), stages 40 a - 40 j may be repeated, with the roles of legs 44 a and 44 b reversed (return to step 50 ). Continued operation in this manner may enable a user to whom exoskeleton device 10 is attached to walk.
  • the walking operation may stop.
  • exoskeleton device 10 may cause the user to change to a standing stance (step 60 ).
  • the device may stop operation and ignore any further tilt signals.
  • a user may practice walking with exoskeleton device 10 in order learn to coordinate body movements and crutches movements with operation of exoskeleton device 10 .
  • a training program may begin with practicing balance and walking using exoskeleton device 10 between parallel bars. The user may then progress to learning to balance using exoskeleton device 10 with crutches or a walking frame. Finally, the user may practice walking using exoskeleton device 10 and crutches, so as to execute the method illustrated in FIG. 2A .
  • an operation method may include monitoring a signal generated by tilt sensor 24 in conjunction with signals generated by one or more angle sensors 30 .
  • the signals may indicate an unexpected configuration or combination of sensor readings.
  • controller 26 may execute one or more activities to verify proper operation or to prevent further unexpected situations.
  • controller 26 may generate an audible, visible, or palpable alert to the user, using an appropriate warning device.
  • controller 26 may pause or stop operation of exoskeleton device 10 until receiving a confirmation signal from the user.
  • the user may operate remote control 20 to indicate continuation of an operation, or alternatively, aborting an operation.
  • controller 26 may operate exoskeleton device 10 so as to assist in maintaining the stability of the user. Similarly, if the generated signals are consistent with an emergency situation, such as falling, controller 26 may operate exoskeleton device 10 in a predetermined manner so as to minimize any risk of injury to the user.
  • exoskeleton device 10 may be provided with one or more ground force sensors.
  • a ground force sensor may be located on a foot support designed to support a foot of the user.
  • execution of an operation by exoskeleton device 10 may be dependent on receiving one or more predetermined signals from the ground force sensors.
US12/909,746 2010-10-21 2010-10-21 Locomotion assisting apparatus with integrated tilt sensor Abandoned US20120101415A1 (en)

Priority Applications (16)

Application Number Priority Date Filing Date Title
US12/909,746 US20120101415A1 (en) 2010-10-21 2010-10-21 Locomotion assisting apparatus with integrated tilt sensor
AU2011319487A AU2011319487A1 (en) 2010-10-21 2011-10-10 Locomotion assisting apparatus with integrated tilt sensor
PCT/IL2011/000799 WO2012052988A2 (en) 2010-10-21 2011-10-10 Locomotion assisting apparatus with integrated tilt sensor
CN2011800614614A CN103328051A (zh) 2010-10-21 2011-10-10 具有集成式倾斜传感器的运动辅助设备
ES11833961T ES2915693T3 (es) 2010-10-21 2011-10-10 Aparato de asistencia a la locomoción con sensor de inclinación integrado
CA2815572A CA2815572A1 (en) 2010-10-21 2011-10-10 Locomotion assisting apparatus with integrated tilt sensor
KR1020137013021A KR20130105867A (ko) 2010-10-21 2011-10-10 통합형 기울기 센서를 구비한 보행 보조 장치
JP2013534456A JP2013542014A (ja) 2010-10-21 2011-10-10 傾斜センサを一体化した歩行運動補助装置
RU2016118307A RU2016118307A (ru) 2010-10-21 2011-10-10 Устройство для помощи передвижению со встроенным датчиком угла наклона и способ передвижения с помощью такого устройства
EP11833961.3A EP2629855B8 (en) 2010-10-21 2011-10-10 Locomotion assisting apparatus with integrated tilt sensor
BR112013009760A BR112013009760A2 (pt) 2010-10-21 2011-10-10 aparelho para auxilio de locomoção com sensor de inclinação integrado
EP22159563.0A EP4082506A1 (en) 2010-10-21 2011-10-10 Locomotion assisting apparatus with integrated tilt sensor
RU2013122414/14A RU2013122414A (ru) 2010-10-21 2011-10-10 Устройство для помощи передвижению со встроенным датчиком угла наклона
IL225834A IL225834A0 (en) 2010-10-21 2013-04-18 Motion assist device with tilt sensor@integral
US15/136,844 US10849816B2 (en) 2010-10-21 2016-04-22 Locomotion assisting apparatus with integrated tilt sensor
US17/107,453 US20210290471A1 (en) 2010-10-21 2020-11-30 Locomotion assisting apparatus with integrated tilt sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/909,746 US20120101415A1 (en) 2010-10-21 2010-10-21 Locomotion assisting apparatus with integrated tilt sensor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/136,844 Continuation US10849816B2 (en) 2010-10-21 2016-04-22 Locomotion assisting apparatus with integrated tilt sensor

Publications (1)

Publication Number Publication Date
US20120101415A1 true US20120101415A1 (en) 2012-04-26

Family

ID=45973574

Family Applications (3)

Application Number Title Priority Date Filing Date
US12/909,746 Abandoned US20120101415A1 (en) 2010-10-21 2010-10-21 Locomotion assisting apparatus with integrated tilt sensor
US15/136,844 Active 2034-01-31 US10849816B2 (en) 2010-10-21 2016-04-22 Locomotion assisting apparatus with integrated tilt sensor
US17/107,453 Pending US20210290471A1 (en) 2010-10-21 2020-11-30 Locomotion assisting apparatus with integrated tilt sensor

Family Applications After (2)

Application Number Title Priority Date Filing Date
US15/136,844 Active 2034-01-31 US10849816B2 (en) 2010-10-21 2016-04-22 Locomotion assisting apparatus with integrated tilt sensor
US17/107,453 Pending US20210290471A1 (en) 2010-10-21 2020-11-30 Locomotion assisting apparatus with integrated tilt sensor

Country Status (11)

Country Link
US (3) US20120101415A1 (ja)
EP (2) EP2629855B8 (ja)
JP (1) JP2013542014A (ja)
KR (1) KR20130105867A (ja)
CN (1) CN103328051A (ja)
AU (1) AU2011319487A1 (ja)
BR (1) BR112013009760A2 (ja)
CA (1) CA2815572A1 (ja)
ES (1) ES2915693T3 (ja)
RU (2) RU2016118307A (ja)
WO (1) WO2012052988A2 (ja)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110067157A1 (en) * 2009-09-19 2011-03-24 Quan Xiao Method and apparatus for Variable G force experience and creating immersive VR sensations
US20130138020A1 (en) * 2011-11-30 2013-05-30 Honda Motor Co., Ltd Walking assist device
US20130145530A1 (en) * 2011-12-09 2013-06-13 Manu Mitra Iron man suit
JP2015527167A (ja) * 2012-09-07 2015-09-17 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 制御可能な非能動性人口膝
US20160106616A1 (en) * 2014-10-20 2016-04-21 Samsung Electronics Co., Ltd. Method and apparatus for recognizing user motion
US20160213496A1 (en) * 2015-01-28 2016-07-28 Steering Solutions Ip Holding Corporation Integrated power generation for human exoskeletons and method of generating power
WO2017105547A1 (en) 2015-12-14 2017-06-22 Parker-Hannifin Corporation Control system utilizing a mobile application for a legged mobility exoskeleton device
US20180228683A1 (en) * 2015-11-05 2018-08-16 Boe Technology Group Co., Ltd. Wearable device and control method thereof
US10154937B2 (en) 2013-03-13 2018-12-18 Ekso Bionics, Inc. Gait orthotic device and method for protecting gait orthotic device and user from damage
US10226395B2 (en) 2008-10-13 2019-03-12 Rewalk Robotics Ltd. Locomotion assisting device and method
US20190133866A1 (en) * 2017-11-09 2019-05-09 Free Bionics Taiwan Inc. Exoskeleton robot and controlling method for exoskeleton robot
US10342725B2 (en) 2015-04-06 2019-07-09 Kessier Foundation Inc. System and method for user-controlled exoskeleton gait control
US10420696B2 (en) 2015-07-27 2019-09-24 Samsung Electronics Co., Ltd. Walking assistance method and apparatuses performing the same
US10576008B2 (en) 2014-11-11 2020-03-03 Ekso Bionics, Inc. Methods of enhancing the rehabilitation or training of an exoskeleton wearer
US10608573B2 (en) 2015-08-26 2020-03-31 Samsung Electronics Co., Ltd. Method and apparatus for protecting circuit
US10730178B2 (en) 2015-05-05 2020-08-04 Ekso Bionics, Inc. Ensuring operator engagement in an exoskeleton bionic device
US20210205651A1 (en) * 2017-01-26 2021-07-08 The Regents Of The University Of Michigan Resistive Device Employing Eddy Current Braking
US11253992B2 (en) 2015-07-06 2022-02-22 Rewalk Robotics Ltd. Methods and apparatuses for exoskeleton attachment
US11324653B2 (en) 2014-11-27 2022-05-10 Marsi Bionics S.L. Exoskeleton for assisting human movement
US11344467B2 (en) 2015-12-04 2022-05-31 Rewalk Robotics Ltd. Apparatus and systems for powering supports for exoskeletons
US11801153B2 (en) 2016-07-29 2023-10-31 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Powered gait assistance systems

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120101415A1 (en) * 2010-10-21 2012-04-26 Amit Goffer Locomotion assisting apparatus with integrated tilt sensor
TWI549986B (zh) 2011-05-19 2016-09-21 Mitsubishi Gas Chemical Co A high-flow polycarbonate copolymer, a method for producing a high molecular weight aromatic polycarbonate resin, and an aromatic polycarbonate compound
US20140005577A1 (en) * 2012-06-28 2014-01-02 Amit Goffer Airbag for exoskeleton device
US9855181B2 (en) 2013-03-15 2018-01-02 Bionik Laboratories, Inc. Transmission assembly for use in an exoskeleton apparatus
US9421143B2 (en) 2013-03-15 2016-08-23 Bionik Laboratories, Inc. Strap assembly for use in an exoskeleton apparatus
US9808390B2 (en) 2013-03-15 2017-11-07 Bionik Laboratories Inc. Foot plate assembly for use in an exoskeleton apparatus
US9675514B2 (en) 2013-03-15 2017-06-13 Bionik Laboratories, Inc. Transmission assembly for use in an exoskeleton apparatus
US20150025423A1 (en) 2013-07-19 2015-01-22 Bionik Laboratories, Inc. Control system for exoskeleton apparatus
KR101489089B1 (ko) 2013-09-04 2015-02-04 주식회사 만도 차량의 주차 보조 장치 및 방법
JP2015177863A (ja) * 2014-03-19 2015-10-08 株式会社東芝 アシスト制御装置および方法
CN103901902B (zh) * 2014-03-26 2016-08-24 中国科学院深圳先进技术研究院 负重外骨骼机器人脱离装置及脱离方法
JP6358853B2 (ja) * 2014-05-23 2018-07-18 本田技研工業株式会社 動作補助装置
CN104224498B (zh) * 2014-09-24 2016-04-20 哈尔滨工业大学 一种外骨骼机器人系统及基于运动学末端检测的控制方法
RU2658481C2 (ru) * 2015-05-08 2018-06-21 Общество С Ограниченной Ответственностью "Экзоатлет" Аппарат помощи при ходьбе человеку с нарушением опорно-двигательных функций (варианты)
KR102529617B1 (ko) 2015-07-23 2023-05-09 삼성전자주식회사 보행 보조 방법 및 이를 수행하는 장치들
WO2017120680A1 (en) 2016-01-17 2017-07-20 Siamak Arzanpour System and device for guiding and detecting motions of 3-dof rotational target joint
JP2017154210A (ja) * 2016-03-02 2017-09-07 パナソニック株式会社 動作支援装置、及び、動作支援システム
JP6890286B2 (ja) * 2016-09-02 2021-06-18 パナソニックIpマネジメント株式会社 起立動作支援装置、起立動作支援方法およびプログラム
US11052011B2 (en) 2016-09-02 2021-07-06 Panasonic Intellectual Property Management Co., Ltd. Standing-up assistance apparatus, standing-up assistance method, and non-transitory computer-readable recording medium
KR102566102B1 (ko) * 2016-09-20 2023-08-11 삼성전자주식회사 보행 보조 장치 및 보행 보조 장치의 제어 방법
CN106344355B (zh) * 2016-10-28 2017-07-18 广州初曲科技有限公司 一种具有重心自调节平衡功能的下肢辅助行动机器骨骼
KR101705839B1 (ko) 2016-11-16 2017-02-10 엑소아틀레트아시아 주식회사 보행 보조 장치
JP7132159B2 (ja) * 2019-03-11 2022-09-06 本田技研工業株式会社 動作支援装置の制御装置
CN109938971B (zh) * 2019-04-15 2021-03-16 哈工大机器人(合肥)国际创新研究院 一种可穿戴的下肢髋关节和膝关节助力装置
CN110731881B (zh) * 2019-09-09 2022-09-16 无锡美安雷克斯医疗机器人有限公司 医用助行器行走安全保护系统
KR102123694B1 (ko) 2019-11-25 2020-06-16 엑소아틀레트아시아 주식회사 보행보조 웨어러블 로봇장치
KR102078878B1 (ko) 2019-11-26 2020-02-19 엑소아틀레트아시아 주식회사 저소음 연결 프레임을 구비한 보행보조 로봇장치
IT202100003095A1 (it) 2021-02-11 2022-08-11 Fondazione St Italiano Tecnologia Dispositivo di interfaccia di bacino per un esoscheletro
CN114050702B (zh) * 2021-04-27 2023-03-31 四川大学华西医院 基于永磁无轴承电机的下肢外骨骼支架自平衡系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5252102A (en) * 1989-01-24 1993-10-12 Electrobionics Corporation Electronic range of motion apparatus, for orthosis, prosthesis, and CPM machine
US20040158175A1 (en) * 2001-06-27 2004-08-12 Yasushi Ikeuchi Torque imparting system
US20040167641A1 (en) * 2001-06-27 2004-08-26 Masakazu Kawai Method of estimating floor reactions of bipedal walking body, and method of estimating joint moments of bipedal walking body
US7153242B2 (en) * 2001-05-24 2006-12-26 Amit Goffer Gait-locomotor apparatus
US20070204687A1 (en) * 2004-07-24 2007-09-06 Haselhurst Richard S Gait assistive system and methods for using same
US7278954B2 (en) * 2004-02-25 2007-10-09 Honda Motor Co., Ltd. Generated torque control method for leg body exercise assistive apparatus
US7628766B1 (en) * 2003-10-29 2009-12-08 The Regents Of The University Of California Lower extremity enhancer
US7998096B1 (en) * 2007-06-25 2011-08-16 Skoog Eric J Paraplegic controlled, concealed mechanized walking device
US8096965B2 (en) * 2008-10-13 2012-01-17 Argo Medical Technologies Ltd. Locomotion assisting device and method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1022798C (zh) * 1990-06-21 1993-11-24 清华大学 下肢高位截瘫者用电动步行机
RU2118147C1 (ru) 1994-06-29 1998-08-27 Анатолий Гералевич Жуков Устройство для облегчения ходьбы и переноски грузов
JP2002301124A (ja) * 2001-04-06 2002-10-15 Honda Motor Co Ltd 歩行補助装置
US7253242B2 (en) * 2004-06-02 2007-08-07 Acushnet Company Compositions for golf equipment
US20070123997A1 (en) * 2005-03-31 2007-05-31 Massachusetts Institute Of Technology Exoskeletons for running and walking
JP3950149B2 (ja) * 2005-09-02 2007-07-25 本田技研工業株式会社 運動補助装置
JP2007130234A (ja) 2005-11-10 2007-05-31 Matsushita Electric Ind Co Ltd 人体動作補助装置
CN100548242C (zh) * 2007-08-20 2009-10-14 中国科学院合肥物质科学研究院 一种人形机器人脚
WO2009082249A2 (en) * 2007-12-26 2009-07-02 Richard Little Mobility aid
JP4744584B2 (ja) * 2008-11-26 2011-08-10 本田技研工業株式会社 運動補助装置
JP2010148637A (ja) * 2008-12-25 2010-07-08 Toyota Motor Corp 歩行補助装置
JP5168158B2 (ja) * 2009-01-13 2013-03-21 トヨタ自動車株式会社 歩行訓練システム
US20120101415A1 (en) * 2010-10-21 2012-04-26 Amit Goffer Locomotion assisting apparatus with integrated tilt sensor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5252102A (en) * 1989-01-24 1993-10-12 Electrobionics Corporation Electronic range of motion apparatus, for orthosis, prosthesis, and CPM machine
US7153242B2 (en) * 2001-05-24 2006-12-26 Amit Goffer Gait-locomotor apparatus
US20040158175A1 (en) * 2001-06-27 2004-08-12 Yasushi Ikeuchi Torque imparting system
US20040167641A1 (en) * 2001-06-27 2004-08-26 Masakazu Kawai Method of estimating floor reactions of bipedal walking body, and method of estimating joint moments of bipedal walking body
US7628766B1 (en) * 2003-10-29 2009-12-08 The Regents Of The University Of California Lower extremity enhancer
US7278954B2 (en) * 2004-02-25 2007-10-09 Honda Motor Co., Ltd. Generated torque control method for leg body exercise assistive apparatus
US20070204687A1 (en) * 2004-07-24 2007-09-06 Haselhurst Richard S Gait assistive system and methods for using same
US7998096B1 (en) * 2007-06-25 2011-08-16 Skoog Eric J Paraplegic controlled, concealed mechanized walking device
US8096965B2 (en) * 2008-10-13 2012-01-17 Argo Medical Technologies Ltd. Locomotion assisting device and method

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10226395B2 (en) 2008-10-13 2019-03-12 Rewalk Robotics Ltd. Locomotion assisting device and method
US20110067157A1 (en) * 2009-09-19 2011-03-24 Quan Xiao Method and apparatus for Variable G force experience and creating immersive VR sensations
US20130138020A1 (en) * 2011-11-30 2013-05-30 Honda Motor Co., Ltd Walking assist device
US9289345B2 (en) * 2011-11-30 2016-03-22 Honda Motor Co., Ltd. Walking assist device
US20130145530A1 (en) * 2011-12-09 2013-06-13 Manu Mitra Iron man suit
JP2015527167A (ja) * 2012-09-07 2015-09-17 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 制御可能な非能動性人口膝
US10682249B2 (en) 2012-09-07 2020-06-16 The Regents Of The University Of California Controllable passive artificial knee
US10154937B2 (en) 2013-03-13 2018-12-18 Ekso Bionics, Inc. Gait orthotic device and method for protecting gait orthotic device and user from damage
US11919156B2 (en) 2014-10-20 2024-03-05 Samsung Electronics Co., Ltd. Method and apparatus for recognizing user motion
US10835442B2 (en) 2014-10-20 2020-11-17 Samsung Electronics Co., Ltd Method and apparatus for recognizing user motion
US20160106616A1 (en) * 2014-10-20 2016-04-21 Samsung Electronics Co., Ltd. Method and apparatus for recognizing user motion
US10576008B2 (en) 2014-11-11 2020-03-03 Ekso Bionics, Inc. Methods of enhancing the rehabilitation or training of an exoskeleton wearer
US11324653B2 (en) 2014-11-27 2022-05-10 Marsi Bionics S.L. Exoskeleton for assisting human movement
US20160213496A1 (en) * 2015-01-28 2016-07-28 Steering Solutions Ip Holding Corporation Integrated power generation for human exoskeletons and method of generating power
US10342725B2 (en) 2015-04-06 2019-07-09 Kessier Foundation Inc. System and method for user-controlled exoskeleton gait control
US10730178B2 (en) 2015-05-05 2020-08-04 Ekso Bionics, Inc. Ensuring operator engagement in an exoskeleton bionic device
US20220176548A1 (en) * 2015-07-06 2022-06-09 Rewalk Robotics Ltd. Methods and apparatuses for exoskeleton attachment
US11253992B2 (en) 2015-07-06 2022-02-22 Rewalk Robotics Ltd. Methods and apparatuses for exoskeleton attachment
US10420696B2 (en) 2015-07-27 2019-09-24 Samsung Electronics Co., Ltd. Walking assistance method and apparatuses performing the same
US10608573B2 (en) 2015-08-26 2020-03-31 Samsung Electronics Co., Ltd. Method and apparatus for protecting circuit
US10463561B2 (en) * 2015-11-05 2019-11-05 Boe Technology Group Co., Ltd. Wearable device and control method thereof
US20180228683A1 (en) * 2015-11-05 2018-08-16 Boe Technology Group Co., Ltd. Wearable device and control method thereof
US11344467B2 (en) 2015-12-04 2022-05-31 Rewalk Robotics Ltd. Apparatus and systems for powering supports for exoskeletons
WO2017105547A1 (en) 2015-12-14 2017-06-22 Parker-Hannifin Corporation Control system utilizing a mobile application for a legged mobility exoskeleton device
US11801153B2 (en) 2016-07-29 2023-10-31 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Powered gait assistance systems
US11534646B2 (en) * 2017-01-26 2022-12-27 The Regents Of The University Of Michigan Resistive device employing eddy current braking
US20210205651A1 (en) * 2017-01-26 2021-07-08 The Regents Of The University Of Michigan Resistive Device Employing Eddy Current Braking
US10624809B2 (en) 2017-11-09 2020-04-21 Free Bionics Taiwan Inc. Exoskeleton robot and controlling method for exoskeleton robot
US20190133866A1 (en) * 2017-11-09 2019-05-09 Free Bionics Taiwan Inc. Exoskeleton robot and controlling method for exoskeleton robot
EP3482882A1 (en) * 2017-11-09 2019-05-15 Free Bionics Taiwan Inc. Exoskeleton robot and controlling method for exoskeleton robot
CN109758342A (zh) * 2017-11-09 2019-05-17 福宝科技股份有限公司 外骨骼机器人及其控制方法

Also Published As

Publication number Publication date
CA2815572A1 (en) 2012-04-26
EP4082506A1 (en) 2022-11-02
ES2915693T3 (es) 2022-06-24
RU2016118307A (ru) 2018-10-29
EP2629855B1 (en) 2022-03-02
EP2629855A4 (en) 2014-05-07
US10849816B2 (en) 2020-12-01
RU2016118307A3 (ja) 2018-10-29
JP2013542014A (ja) 2013-11-21
AU2011319487A1 (en) 2013-06-06
US20210290471A1 (en) 2021-09-23
WO2012052988A2 (en) 2012-04-26
BR112013009760A2 (pt) 2016-07-19
EP2629855A2 (en) 2013-08-28
RU2013122414A (ru) 2014-11-27
WO2012052988A3 (en) 2013-04-18
CN103328051A (zh) 2013-09-25
EP2629855B8 (en) 2022-08-24
US20160235616A1 (en) 2016-08-18
KR20130105867A (ko) 2013-09-26

Similar Documents

Publication Publication Date Title
US20210290471A1 (en) Locomotion assisting apparatus with integrated tilt sensor
US8905955B2 (en) Locomotion assisting device and method
CN108015743B (zh) 运动辅助装置
US8690801B2 (en) Leg assist device
EP2036518B1 (en) Walk assistance device
TW201639533A (zh) 互動式外骨骼膝關節機器系統
US10213357B2 (en) Ambulatory exoskeleton and method of relocating exoskeleton
TW201634025A (zh) 具有坐式支架的外骨骼裝置及其操作方法
EP3750166B1 (en) Advanced gait control system and methods enabling continuous walking motion of a powered exoskeleton device
JP5724312B2 (ja) リハビリ補助装置
JP2014128724A (ja) 歩行介助ロボット
US20240033159A1 (en) Powered-knee exoskeleton system
JP5796365B2 (ja) 歩行補助装置
KR102643294B1 (ko) 목발동작에 따라 선택적 보행모드를 구현하는 보행보조시스템

Legal Events

Date Code Title Description
AS Assignment

Owner name: ARGO MEDICAL TECHNOLOGIES LTD., ISRAEL

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GOFFER, AMIT;TAMARI, OREN;REEL/FRAME:027556/0819

Effective date: 20120111

AS Assignment

Owner name: KREOS CAPITAL IV (EXPERT FUND) LIMITED, JERSEY

Free format text: SECURITY INTEREST;ASSIGNOR:REWALK ROBOTICS LTD;REEL/FRAME:033533/0001

Effective date: 20140619

Owner name: REWALK ROBOTICS LTD, ISRAEL

Free format text: CHANGE OF NAME;ASSIGNOR:ARGO MEDICAL TECHNOLOGIES LTD;REEL/FRAME:033531/0383

Effective date: 20140618

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: REWALK ROBOTICS LTD., ISRAEL

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:KREOS CAPITAL IV (EXPERT FUND) LIMITED;REEL/FRAME:037395/0648

Effective date: 20151228

Owner name: KREOS CAPITAL V (EXPERT FUND) L.P., JERSEY

Free format text: SECURITY INTEREST;ASSIGNOR:REWALK ROBOTICS LTD.;REEL/FRAME:037395/0657

Effective date: 20151228