US20120029121A1 - Thin aluminium flakes - Google Patents

Thin aluminium flakes Download PDF

Info

Publication number
US20120029121A1
US20120029121A1 US13/139,623 US200913139623A US2012029121A1 US 20120029121 A1 US20120029121 A1 US 20120029121A1 US 200913139623 A US200913139623 A US 200913139623A US 2012029121 A1 US2012029121 A1 US 2012029121A1
Authority
US
United States
Prior art keywords
coating
binder
optically variable
aluminium
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/139,623
Other languages
English (en)
Inventor
Geoff Ian Ormerod
Michelle Richert
Michael Milde
Grégoire Folly
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40409770&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20120029121(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by BASF SE filed Critical BASF SE
Assigned to BASF SE reassignment BASF SE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ORMEROD, GEOFF IAN, FOLLY, GREGOIRE, RICHERT, MICHELLE, MILDE, MICHAEL
Publication of US20120029121A1 publication Critical patent/US20120029121A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/62Metallic pigments or fillers
    • C09C1/64Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/36Successively applying liquids or other fluent materials, e.g. without intermediate treatment
    • B05D1/38Successively applying liquids or other fluent materials, e.g. without intermediate treatment with intermediate treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/061Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
    • B05D3/065After-treatment
    • B05D3/067Curing or cross-linking the coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/02Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by a sequence of laminating steps, e.g. by adding new layers at consecutive laminating stations
    • B32B37/025Transfer laminating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B37/1207Heat-activated adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/20Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof characterised by a particular use or purpose
    • B42D25/29Securities; Bank notes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/328Diffraction gratings; Holograms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/373Metallic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/378Special inks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/40Manufacture
    • B42D25/405Marking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/40Manufacture
    • B42D25/45Associating two or more layers
    • B42D25/465Associating two or more layers using chemicals or adhesives
    • B42D25/47Associating two or more layers using chemicals or adhesives using adhesives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/69Particle size larger than 1000 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/72Cured, e.g. vulcanised, cross-linked
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/402Coloured
    • B32B2307/4023Coloured on the layer surface, e.g. ink
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2310/00Treatment by energy or chemical effects
    • B32B2310/08Treatment by energy or chemical effects by wave energy or particle radiation
    • B32B2310/0806Treatment by energy or chemical effects by wave energy or particle radiation using electromagnetic radiation
    • B32B2310/0831Treatment by energy or chemical effects by wave energy or particle radiation using electromagnetic radiation using UV radiation
    • B42D2033/10
    • B42D2033/20
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0812Aluminium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles

Definitions

  • the present invention relates to aluminium flakes having a thickness between 7 and 9 nm, coating compositions containing them and the use of the coating compositions for forming (security) products.
  • the compositions of the present invention are used in coating a hologram the obtained products show an extremely bright OVD image and extremely strong rainbow effect, high purity and contrast.
  • GB-A-1,465,908 (U.S. Pat. No. 4,116,710) relates to a method for the preparation of particulate metal, such as aluminium, which method comprises depositing a metal coating on a substrate by vapor, electroless or sputter deposition and removing the metal coating from the substrate by dissolving the substrate in a solvent therefor, the thickness of the deposited coating being such that upon dissolution of the substrate the metal is released as a plurality of metal particles.
  • the metal platelets obtained by the process have a thickness of from 20 to 100 nm, especially 35 to 60 nm.
  • U.S. Pat. No. 4,321,087 discloses a continuous process for preparing finely divided metal particles comprising the steps of: (a) applying a release coating onto at least one side of a continuous carrier sheet in an amount of from 0.75 to 1.50 lbs.
  • WO0024946 discloses a process for making flakes comprising: providing a vapor deposition chamber; placing a transport device in the vapor deposition chamber; providing a release coat source and a vacuum deposition source in the vacuum deposition chamber directed toward the transport device, in which the deposition source deposits a layer of flake material; applying a vacuum to the chamber, and while the chamber is evacuated, applying-alternate layers of a release coat from the release coat source and a vapor deposited flake layer from the vacuum deposition source to the transport device in sequence to build up a multi-layer sandwich of alternating flake material layers and intervening release coat layers, the release coat layers comprising a dissolvable material that forms a smooth continuous barrier layer and support surface on which the flake material layers can be formed, so that removal of the sandwich from the evacuated chamber yields a multi-layer sandwich which can be easily separated into flakes of fine particle size by subsequent treatment with a material that essentially completely dissolves the intervening release coat layers to remove them from the flakes.
  • WO0024946 another process for making metal flakes is a process of Avery Dennison Corporation for making flakes sold under the designation Metalure®.
  • both sides of a polyester carrier are gravure coated with a solvent-based resin solution.
  • the dried coated web is then transported to a metallizing facility where both sides of the coated sheet are metallized by a thin film of vapor deposited aluminum.
  • the sheet with the thin metal film is then returned to the coating facility where both sides of the aluminum are coated with a second film of the solvent-based resin solution.
  • the dried coated/metal sheet is then transported again to the metallizing facility to apply a second film of vapor deposited aluminum to both sides of the sheet.
  • the resulting multi-layer sheet is then transported for further processing to a facility where the coatings are stripped from the carrier in a solvent such as acetone.
  • the stripping operation breaks the continuous layer into particles contained in a slurry.
  • the solvent dissolves the polymer out from between the metal layers in the slurry.
  • the slurry is then subjected to sonic treatment and centrifuging to remove the solvent and the dissolved coating, leaving a cake of concentrated aluminum flakes approximately 65% solids.
  • the cake is then let down in a suitable vehicle and further sized by homogenizing into flakes of controlled size for use in inks, paints, and coatings.
  • Metal flakes produced by this process for use in printable applications such as inks are characterized by a particle size from about 4 to 12 microns and a thickness from about 150 to about 250 angstroms.
  • WO020090613 as well as WO03046245 discloses a process for the preparation of flakes having a high aspect ratio in which the flakes have an average particle size from about 4 to about 12 microns and a single layer thickness from about 5 to about 500 angstroms.
  • WO02/094945 relates to a method for the production of plane-parallel platelets, comprising the steps:
  • vapour-deposition at a pressure below atmospheric pressure, of a separating agent onto a carrier to produce a separating agent layer
  • vapour-deposition at a pressure below atmospheric pressure, of at least one product layer onto the separating agent layer
  • the separating agent is selected from the group consisting of anthracene, anthraquinone, acetamidophenol, acetylsalicylic acid, camphoric anhydride, benzimidazole, benzene-1,2,4-tricarboxylic acid, biphenyl-2,2-dicarboxylic acid, bis(4-hydroxyphenyl)sulfone, dihydroxyanthraquinone, hydantoin, 3-hydroxybenzoic acid, 8-hydroxyquinoline-5-sulfonic acid monohydrate,
  • WO06/021528 relates to a process for the production of plane-parallel platelets, comprising the steps:
  • separating agent selected from the group consisting of anthracene, anthraquinone, acetamidophenol, acetylsalicylic acid, camphoric anhydride, benzimidazole, benzene-1,2,4-tricarboxylic acid, biphenyl-2,2-dicarboxylic acid, bis(4-hydroxyphenyl)sulfone, dihydroxyanthraquinone, hydantoin, 3-hydroxybenzoic acid, 8-hydroxyquinoline-5-sulfonic acid monohydrate, 4-hydroxycoumarin, 7-hydroxycoumarin, 3-hydroxynaphthalene-2
  • WO07/057,328 discloses a process for the production of plane-parallel platelets, comprising the steps:
  • the aluminium flakes described in WO06/021528 and WO07/057,328 have an average diameter of at least 2 ⁇ m, especially from 2 to 20 ⁇ m, more especially from 3 to 15 ⁇ m, and most preferred from 5 to 15 ⁇ m.
  • the thickness of the aluminium flakes is generally from 10 to 150 nm, especially from 10 to 100 nm, and more especially from 30 to 60 nm.
  • WO2005/051675 relates to a method for forming a (security) product comprising the steps of:
  • the average pigment particle diameter is in the range 8-15 ⁇ m and the thickness of the pigment particles is in the range 10-50 nm, especially 19-21 nm.
  • WO2005/049745 discloses a coating composition for use in coating a diffraction grating, comprising metal pigment particles and a binder wherein the ratio of pigment to binder is sufficiently high as to permit the alignment of the pigment particles to the contours of the diffraction grating.
  • the thickness of the pigment particles is less than 50 nm. More preferably, the thickness of pigment particle is less than 35 nm. More preferably still, the thickness of pigment particle is less than 20 nm. Even more preferably still, the thickness of pigment particle is in the range 5-18 nm.
  • the thickness of the pigment particles is in the range 10-50 nm.
  • the thickness of pigment particle is in the range 10-30 nm.
  • the average thickness of pigment particle is 17 nm. In another embodiment, the average thickness of pigment particle is 12.5 nm.
  • the aluminium flakes have a thickness between 7 and 9 nm.
  • the mean particle diameter may be in the range of 2 to 20 ⁇ m.
  • the mean particle diameter is preferably in the range of 5 to 20 ⁇ m, more preferably 8 to 15 ⁇ m, even more preferably 9 to 10 ⁇ m as measured by a laser diffraction instrument (Coulter LS130).
  • the optical density may be in the range of 0.16 to 0.24 as measured on the McBeth densitometer. Preferably, the range is 0.18 to 0.22. More preferably, the optical density is 0.2 as measured on the McBeth densitometer.
  • the aluminium flakes of the present invention can be used for the preparation of coating compositions. Accordingly, the present invention relates also to coating compositions, comprising the aluminium flakes of the present invention.
  • the coating compositions comprise the aluminium flakes of the present invention and a binder.
  • the ratio of pigment to binder is sufficiently high as to permit the alignment of the pigment particles to the contours of the diffraction grating.
  • the binder is a high-molecular-weight organic compound conventionally used in coating compositions.
  • the high molecular weight organic material for the pigmenting of which the pigments or pigment compositions according to the invention may be used may be of natural or synthetic origin.
  • High molecular weight organic materials usually have molecular weights of about from 10 3 to 10 8 g/mol or even more.
  • They may be, for example, natural resins, drying oils, rubber or casein, or natural substances derived therefrom, such as chlorinated rubber, oil-modified alkyd resins, viscose, cellulose ethers or esters, such as ethylcellulose, cellulose acetate, cellulose propionate, cellulose acetobutyrate or nitrocellulose, but especially totally synthetic organic polymers (thermosetting plastics and thermoplastics), as are obtained by polymerisation, polycondensation or polyaddition.
  • natural resins drying oils, rubber or casein, or natural substances derived therefrom, such as chlorinated rubber, oil-modified alkyd resins, viscose, cellulose ethers or esters, such as ethylcellulose, cellulose acetate, cellulose propionate, cellulose acetobutyrate or nitrocellulose
  • thermosetting plastics and thermoplastics thermoplastics
  • polystyrene resins such as polyethylene, polypropylene or polyisobutylene
  • substituted polyolefins such as polymerisation products of vinyl chloride, vinyl acetate, styrene, acrylonitrile, acrylic acid esters, methacrylic acid esters or butadiene, and also copolymerisation products of the said monomers, such as especially ABS or EVA.
  • the coating composition further comprises a solvent.
  • the binder may comprise any one or more selected from the group comprising nitrocellulose, ethyl cellulose, cellulose acetate, cellulose acetate propionate (CAP), cellulose acetate butyrate (CAB), alcohol soluble propionate (ASP), vinyl chloride, vinyl acetate copolymers, vinyl acetate, vinyl, acrylic, polyurethane, polyamide, rosin ester, hydrocarbon, aldehyde, ketone, urethane, polythyleneterephthalate, terpene phenol, polyolefin, silicone, cellulose, polyamide, polyester and rosin ester resins.
  • nitrocellulose ethyl cellulose, cellulose acetate, cellulose acetate propionate (CAP), cellulose acetate butyrate (CAB), alcohol soluble propionate (ASP), vinyl chloride, vinyl acetate copolymers, vinyl acetate, vinyl, acrylic, polyurethane, polyamide, rosin ester, hydrocarbon, aldehyde
  • a colour change can be obtained by changing the pigment/binder ratio.
  • a low pigment/binder ratio (1:10 to 1:20) results in a deep bluish grey colour, whereas a higher pigment/binder ratio (1:1 to 1:0.5) gives a yellowish gold colour.
  • For pigment/binder ratios inbetween the colour can be seen to gradually shift from bluish grey to yellowish gold.
  • the coating composition is preferably a printing ink.
  • the ink according to the present invention comprises, as in the case of an ordinary printing ink, the aluminium pigment, a binder, an auxiliary agent, and the like.
  • thermoplastic resin examples of which include, polyethylene based polymers [polyethylene (PE), ethylene-vinyl acetate copolymer (EVA), vinyl chloride-vinyl acetate copolymer, vinyl alcohol-vinyl acetate copolymer, polypropylene (PP), vinyl based polymers [poly(vinyl chloride) (PVC), poly(vinyl butyral) (PVB), poly(vinyl alcohol) (PVA), poly(vinylidene chloride) (PVdC), poly(vinyl acetate) (PVAc), poly(vinyl formal) (PVF)], polystyrene based polymers [polystyrene (PS), styrene-acrylonitrile copolymer (AS), acrylonitrile-butadiene-styrene copolymer (ABS)], acrylic based polymers [poly(methyl methacrylate) (PMMA), poly(ethylene based polymers [poly(methyl
  • thermosetting resins such as resol type phenolic resin, a urea resin, a melamine resin, a polyurethane resin, an epoxy resin, an unsaturated polyester and the like, and natural resins such as protein, gum, shellac, copal, starch and rosin may also be used.
  • a plasticizer for stabilizing the flexibility and strength of the print film and a solvent for adjusting the viscosity and drying property thereof may be added according to the needs therefor.
  • the solvent may comprise any one or more of an ester, such as n-propyl acetate, iso-propyl acetate, ethyl acetate, butyl acetate; an alcohol, such as ethyl alcohol, industrial methylated spirits, isopropyl alcohol or normal propyl alcohol; a ketone, such as methyl ethyl ketone or acetone; an aromatic hydrocarbon, such as xylene and toluene.
  • a petroleum solvent of a high boiling temperature of 250° C. or higher may be used according to the type of the printing method.
  • An alkylbenzene or the like for example may be used as a solvent of a low boiling temperature.
  • solvents are ethoxypropanol, methylethylketon, methoxypropylacetate, diacetonalcohol etc.
  • an auxiliary agent including a variety of reactive agents for improving drying property, viscosity, and dispersibility, may suitably be added.
  • the auxiliary agents are to adjust the performance of the ink, and for example, a compound that improves the abrasion resistance of the ink surface and a drying agent that accelerates the drying of the ink, and the like may be employed.
  • a photopolymerization-curable resin or an electron beam curable resin wherein a solvent is not used may also be employed as a binder resin that is a principal component of the vehicle.
  • the examples thereof include an acrylic resin, and specific examples of acrylic monomers commercially available are shown below.
  • a monofunctional acrylate monomer that may be used includes for example, 2-ethylhexyl acrylate, 2-ethylhexyl-EO adduct acrylate, ethoxydiethylene glycol acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-hydroxyethyl acrylate-caprolactone adduct, 2-phenoxyethyl acrylate, phenoxydiethylene glycol acrylate, nonyl phenol-EO adduct acrylate, (nonyl phenol-EO adduct)-caprolactone adduct acrylate, 2-hydroxy-3-phenoxypropyl acrylate, tetrahydrofurfuryl acrylate, furfuryl alcohol-caprolactone adduct acrylate, acryloyl morpholine, dicyclopentenyl acrylate, dicyclopentanyl acrylate, dicyclopentenyloxyethyl acrylate,
  • a polyfunctional acrylate monomer that may be used includes hexanediol diacrylate, neopentyl glycol diacrylate, polyethylene glycol diacrylate, tripropylene glycol diacrylate, neopentyl glycol hydroxypivalate diacrylate, (neopentyl glycol hydroxypivalate)-caprolactone adduct diacrylate, (1,6-hexanediol diglycidyl ether)-acrylic acid adduct, (hydroxypivalaldehyde-trimethylolpropane acetal) diacrylate, 2,2-bis[4-(acryloyloxydiethoxy)phenyl]propane, 2,2-bis[4-(acryloyloxydiethoxy)phenyl]methane, hydrogenated bisphenol A-ethylene oxide adduct diacrylate, tricyclodecanedimethanol diacrylate, trimethylolpropane triacrylate, pentaerithrito
  • Inks comprising the above resins are free of solvent and are so constituted as to polymerize in chain reaction upon irradiation by an electron beam or electromagnetic waves.
  • a photopolymerization initiator and depending on the needs therefor, a sensitizing agent, and auxiliary agents such as a polymerization inhibitor and a chain transfer agent, and the like may be added thereto.
  • photo-polymerization initiators there are, (1) an initiator of direct photolysis type including an arylalkyl ketone, an oxime ketone, an acylphosphine oxide, or the like, (2) an initiator of radical polymerization reaction type including a benzophenone derivative, a thioxanthone derivative, or the like, (3) an initiator of cationic polymerization reaction type including an aryl diazonium salt, an aryl iodinium salt, an aryl sulfonium salt, and an aryl acetophenone salt, or the like, and in addition, (4) an initiator of energy transfer type, (5) an initiator of photoredox type, (6) an initiator of electron transfer type, and the like.
  • a photopolymerization initiator is not necessary and a resin of the same type as in the case of the ultraviolet-irradiation type inks can be used, and various kinds of auxiliary agent may be added thereto according to the needs therefor.
  • the inks comprise a total content of aluminum pigment of from 0.1 to 20% by weight, preferably 0.1-10% by weight based on the total weight of the ink.
  • the binder comprises 50% nitrocellulose in conjunction with any above mentioned resin.
  • the composition may additionally comprise a solvent.
  • the solvent may be ester/alcohol blends and preferably normal propyl acetate and ethanol. More preferably, the ester/alcohol blend is in a ratio of between 10:1 and 40:1, even more preferably 20:1 to 30:1.
  • the solvent used in the metallic ink may comprise any one or more of an ester, such as n-propyl acetate, iso-propyl acetate, ethyl acetate, butyl acetate; an alcohol, such as ethyl alcohol, industrial methylated spirits, isopropyl alcohol or normal propyl alcohol; a ketone, such as methyl ethyl ketone or acetone; an aromatic hydrocarbon, such as toluene, and water.
  • an ester such as n-propyl acetate, iso-propyl acetate, ethyl acetate, butyl acetate
  • an alcohol such as ethyl alcohol, industrial methylated spirits, isopropyl alcohol or normal propyl alcohol
  • a ketone such as methyl ethyl ketone or acetone
  • an aromatic hydrocarbon such as toluene, and water.
  • the average particle diameter of the aluminium flakes may be in the range of 2 to 20 ⁇ m.
  • the average particle diameter is preferably in the range of 5.0 to 15.0 ⁇ m, more preferably 8 to 15 ⁇ m, even more preferably 7 to 11 ⁇ m in diameter as measured by a laser diffraction instrument (Coulter LS130).
  • the composition is used in the manufacture of a hologram.
  • the method described therein for forming an optically variable image (an optically variable device), especially a holographic diffraction grating, on a substrate comprises the steps of:
  • the method comprises the steps of:
  • paper, aluminium, or another opaque substrates (1) is printed with an ultra violet curable lacquer (2) on its lower surface.
  • An optically variable device or other lens or engraved structure is cast (3) into the surface of the lacquer (2) with a clear shim (4) having the optically variable device or other lens or engraved structure thereon.
  • the optically variable device or other lens or engraved structure image is imparted into the lacquer and instantly cured (6) via an UV lamp disposed through the shim (4) at normal processing speeds through polarizing lens (8), quartz roller (6), and clear polycarbonate roller (5).
  • the optically variable device or other lens or engraved structure image is a facsimile of the image on the clear shim.
  • Metallic ink (9) is printed (10) over the optically variable device or other lens or engraved structure and causes the optically variable device or other lens or engraved structure to become light reflective. Further colours (11) can be subsequently conventionally printed in-line at normal printing process speeds.
  • the paper, aluminium, and all manner of other opaque substrate (1) is replaced with a filmic substrate. Such material is substantially transparent and therefore the image is visible from both sides of the surface.
  • the (security) product obtainable by using the above method is new and forms a further subject of the present application.
  • a coloured, or metallic ink is deposited on a substrate, on which the optically variable image is formed; before forming the optically variable image on at least a portion of the coloured, or metallic ink.
  • the substrate may comprise any sheet material.
  • the substrate may be opaque, substantially transparent or translucent, wherein the method described in WO08/061,930 is especially suited for substrates, which are for opaque to UV light (non-transparent).
  • the substrate may comprise paper, leather, fabric such as silk, cotton, tyvac, filmic material or metal, such as aluminium.
  • the substrate may be in the form of one or more sheets or a web.
  • the substrate may be mould made, woven, non-woven, cast, calendared, blown, extruded and/or biaxially extruded.
  • the substrate may comprise paper, fabric, man made fibres and polymeric compounds.
  • the substrate may comprise any one or more selected from the group comprising paper, papers made from wood pulp or cotton or synthetic wood free fibres and board.
  • the paper/board may be coated, calendared or machine glazed; coated, uncoated, mould made with cotton or denim content, Tyvac, linen, cotton, silk, leather, polythyleneterephthalate, polypropylene propafilm, polyvinylchloride, rigid PVC, cellulose, tri-acetate, acetate polystyrene, polyethylene, nylon, acrylic and polytherimide board.
  • the polythyleneterephthalate substrate may be Melienex type film orientated polypropylene (obtainable from DuPont Films Willimington Del. product ID Melinex HS-2).
  • the substrate may comprise papers and board made from wood pulp or cotton or synthetic wood free fibres.
  • the paper/board may be coated, calendared or machine glazed.
  • the substrates being transparent filmic or non transparent substrates like opaque plastic, paper including but not limited to banknote, voucher, passport, and any other security or fiduciary documents, self adhesive stamp and excise seals, card, tobacco, pharmaceutical, computer software packaging and certificates of authentication, aluminium, and the like.
  • the substrate is a non-transparent (opaque) sheet material, such as, for example, paper.
  • the substrate is a transparent sheet material, such as, for example, polythyleneterephthalate.
  • the forming of an optically variable image on the substrate may comprise depositing a curable compound, or composition on at least a portion of the substrate.
  • the composition generally a coating or lacquer may be deposited by means of gravure, flexographic, ink jet and screen process printing.
  • the curable lacquer may be cured by actinic radiations, preferably ultraviolet (U.V.) light or electron beam.
  • the lacquer is UV cured. UV curing lacquers can be obtained from Ciba Specialty Chemicals.
  • lacquers exposed to actinic radiations or electron beam used in the present invention are required to reach a solidified stage when they separate again from the imaging shim in order to keep the record in their upper layer of the sub-microscopic, holographic diffraction grating image or pattern (OVI).
  • Particularly suitable for the lacquers compositions are chemistries used in the radiation curable industries in industrial coatings and graphic arts.
  • Particularly suitable are compositions containing one or several photo-latent catalysts that will initiate polymerization of the exposed lacquer layer to actinic radiations.
  • compositions comprising one or several monomers and oligomers sensitive to free-radical polymerization, such as acrylates, methacrylates or monomers or/and oligomers, containing at least one ethylenically unsaturated group.
  • monomers and oligomers sensitive to free-radical polymerization such as acrylates, methacrylates or monomers or/and oligomers, containing at least one ethylenically unsaturated group.
  • the curable composition is preferably deposited by means of gravure or flexographic printing.
  • the curable composition is preferably curable by means of an ultraviolet (U.V.) light or an electron beam.
  • the curable composition can be coloured.
  • the metallic ink may be applied to the substrate by means of conventional printing press such as gravure, rotogravure, flexographic, lithographic, offset, letterpress intaglio and/or screen process, or other printing process.
  • conventional printing press such as gravure, rotogravure, flexographic, lithographic, offset, letterpress intaglio and/or screen process, or other printing process.
  • the metallic pigment particles are printed in such a way as to align themselves such that they follow and conform to the contours of the diffraction grating.
  • the coating composition preferably has a very low binder, a low pigment content and a medium pigment to binder ratio and/or very thin pigment particles.
  • the coating composition preferably comprises low solids, high viscosity binders.
  • the pigment to binder ratio is in the range of 2:1 to 1:3 by weight. More preferably, the pigment to binder ratio is by weight in the range of 1.5:1 to 1:1, and even more preferably 1:1 to 1.5:1. Most preferably the pigment to binder ratio is 1:3.
  • the binder may comprise any one or more selected from the group comprising nitro cellulose, vinyl chloride, vinyl acetate copolymers, vinyl, acrylic, urethane, polythyleneterephthalate, terpene phenol, polyolefin, silicone, cellulose, polyamide, polyester, rosin ester resins.
  • the preferred binder is 50% nitrocellulose (ID nitrocellulose DHL120/170 and nitrocellulose DLX30/50 supplied by Nobel Industries) 50% polyurethane (ID Neorez U335 supplied by Avecia).
  • the solvents may be ester/alcohol blends and preferably normal propyl acetate and ethanol in a ratio of 20:1 to 30:1.
  • compositions of the present invention can be applied to optically variable images (holograms) for use on substrates such as (security products), including banknotes, credit cards, identification documents like passports, identification cards, drivers licenses, or other verification documents, pharmaceutical apparel, software, compact discs, tobacco packaging and other products or packaging prone to counterfeiting or forgery, to protect them from fraudulent conversion, diversion or imitation.
  • substrates such as (security products), including banknotes, credit cards, identification documents like passports, identification cards, drivers licenses, or other verification documents, pharmaceutical apparel, software, compact discs, tobacco packaging and other products or packaging prone to counterfeiting or forgery, to protect them from fraudulent conversion, diversion or imitation.
  • the thickness of the pigment particles may be less than 10 nm.
  • the thickness of the pigment particles may be above 5 nm.
  • the thickness of the pigment particles is between 7 and 9 nm. More preferably, the thickness of pigment particle is about 8 nm.
  • the substrate carrying the metallised image or pattern is subsequently over-laid onto printed pictures and/or text, or the substrate is pre-printed with pictures and/or text and the metallised image or pattern is deposited thereon those pre-printed features are visible through the substrate and/or the metallic composition coated diffraction grating or image.
  • the coating compositions of the present invention may be deposited on a diffraction grating disposed on a substrate such as a substantially transparent, translucent, or opaque substrate.
  • the substrate may comprise paper, filmic material or metal, such as aluminium.
  • the substrate may comprise polymeric compounds.
  • the substrate may comprise papers made from wood pulp or cotton or synthetic wood-free fibres.
  • the diffraction grating may be formed using any methods known to the skilled man such as those described in U.S. Pat. No. 4,913,858, U.S. Pat. No. 5,164,227, WO2005/051675 and WO2008/061930.
  • the coating composition of the present invention may be applied to the substrate by means of conventional printing press such as gravure, rotogravure, flexographic, lithographic, offset, letterpress intaglio and/or screen process, or other printing process.
  • conventional printing press such as gravure, rotogravure, flexographic, lithographic, offset, letterpress intaglio and/or screen process, or other printing process.
  • the substrate carrying the enhanced diffractive image or pattern is subsequently over-laid onto printed pictures and/or text, or the substrate is pre-printed with pictures and/or text and the enhanced diffractive image or pattern is deposited thereon, those printed features are visible through the substrate and/or the metallic ink coated diffraction grating or image.
  • the transmission of light through the enhanced image can be adjusted to provide a desirable range of visual effects.
  • composition may further comprise modifying additives, for example colorants and/or suitable solvent (s).
  • modifying additives for example colorants and/or suitable solvent (s).
  • the resin maintains adhesion of the composition to the surface of the diffraction grating.
  • Specific additives can be added to the composition to modify its chemicals and/or physical properties. Polychromatic effects can be achieved by the introduction of transparent organic pigments and/or solvent soluble dyestuffs into the ink, to achieve a range of coloured shades.
  • the binder resins may be initially dissolved in the appropriate solvent(s) to form liquid varnishes. These varnishes can then be blended together with the metallic pigment and/or other components by means of a high-speed blender to produce the composition.
  • a metallic ink comprising the aluminium flakes of the present invention and a binder.
  • the ratio of pigment to binder is sufficiently high as to permit the alignment of the aluminum particles to the contours of a diffraction grating.
  • the aluminium particles may be prepared by any means known to the skilled man.
  • a 12-micron thick transparent carrier film such as
  • the acrylic-coated film is deposition coated with aluminium by means of a roll to roll vacuum chamber.
  • the deposition rate and thickness of the vaporised aluminium layer over the printed acrylic coating is accurately controlled through continuos monitoring of the optical density during manufacture.
  • the operating range of vacuum deposition may be in the range of 7 to 9 nm.
  • the optical density may be in the range of 0.16 to 0.24 as measured on the McBeth densitometer. Preferably, the range is 0.18 to 0.22. More preferably, the optical density is 0.2 as measured on the McBeth densitometer.
  • the aluminium layer may be removed from the carrier film by means of desolving the acrylic supporting layer in a bath containing ethyl acetate releasing the aluminium layer from the carrier film.
  • the resulting aluminium in the form of a coarse flake in the resin solution may then be washed in a multi stage centrifuging process to remove the acrylic resin.
  • the coarse aluminium flakes are mixed with ethyl acetate and disintegrated by a high shear mixing process to produce a controlled particle size distribution.
  • the median particle diameter may be in the range of 5 to 12 microns the preferred range being 7 to 9 microns diameter as measured by a Coulter LS130 I. a. s. e. r. diffraction granulometer.
  • the metallic ink of the present invention can also be used in the production of a hot stamping foil.
  • the present invention is also directed to a method of producing a hot stamping foil comprising the steps of:
  • release compound examples include silica, microcrystalline wax, rice wax, oricuri wax, stearic acid esters, polyglycols, and metallic salts of fatty acids.
  • the coating of the hard lacquer are polymethylmethacrylate, styrene acrylonitrile, polyethyleneterephthalate, nitrocellulose, or mixtures thereof.
  • the coating of the hard lacquer affixed to said release coating has in general a thickness in the range 0.25 microns to 9 microns and has a glass transition temperature of at least 70° C.
  • Examples of the adhesive compound are vinyl alcohol, polyacrylates, polyalkacrylates, vinyl resins, polyvinyl acetate, cellulose resins, polyacrylamides, and ethylene/vinyl acetate copolymers.
  • a carrier film substrate having the thickness on the order of 12 microns to 75 microns and formed of a suitable plastic material such as a polyester, oriented polypropylene or other suitable material is coated with a release coating such as a microcrystalline wax or a partially saponified montan wax or other wax based coatings having a thickness in the range of 0.025 microns to 5 microns and then has a coating of hard lacquer applied over the release coating in a thickness in the range of 0.25 microns to 10 microns.
  • the hard lacquer coating may be applied by a gravure roller following which is dried an ultraviolet primer coating having the thickness in a range of 0.3 microns to 9 microns is then applied by means of a gravure roller.
  • An optically variable device is contacted by the embossing shim having an optically variable device thereon and is transferred into the surface of the UV lacquer and cured by UV light.
  • a layer of the vacuum metallised aluminium ink is applied to the UV primer holding the transferred optically variable device either as a whole or in partial areas. Subsequent process colours can be gravure printed.
  • the hot stamping foil obtained in the above process can be used to label an article of manufacture.
  • the method of labeling the article of manufacture comprises the steps of: contacting the heat activated adhesive layer of the hot stamping foil obtained according to the above process with said article; hot stamping said hot stamping foil to cause said heat activated adhesive layer to adhere to said article; and removing the carrier of said hot stamping foil from said hard lacquer layer.
  • the optically variable device is, for example, an diffractive optical variable image (DOVI).
  • DOE diffractive optical variable image
  • the term “diffractive optical variable image” as used herein may refer to any type of holograms including, for example, but not limited to a multiple plane hologram (e.g., 2-dimensional hologram, 3-dimensional hologram, etc.), a stereogram, and a grating image (e.g., dot-matrix, pixelgram, exelgram, kinegram, etc.).
  • optically variable image or device examples include holograms or diffraction gratings, moire grating, etc.
  • These optical microstructured images are composed of a series of structured surfaces. These surfaces may have straight or curved profiles, with constant or random spacing, and may even vary from microns to millimetres in dimension. Patterns may be circular, linear, or have no uniform pattern.
  • a Fresnel lens has a microstructured surface on one side and a pano surface on the other.
  • the microstructured surface consists of a series of grooves with changing slope angles as the distance from the optical axis increases.
  • the draft facets located between the slope facets usually do not affect the optical performance of the Fresnel lens.
  • a 12-micron thick transparent carrier film, two meters wide, made of polythyleneterephthalate was obtained from ICI Films, Wilmington, Del., USA (Melinex HS-2) is gravure coated with an acrylic resin, isobutyl methacrylate, obtained from DuPont (Elvacite 2045), and dried by means of hot air.
  • the acrylic-coated film is deposition coated with aluminium by means of a roll to roll vacuum chamber.
  • the deposition rate and thickness of the vaporised aluminium layer over the printed acrylic coating are accurately controlled through continuous monitoring of the optical density during manufacture (The aluminum layer is vapor deposited at 8-9 nm measured by an IC/5 controller.
  • the controller for the aluminum layer is calibrated by a MacBeth TR927 transmission densitometer with green filter).
  • Several rolls were metallised at different thicknesses of aluminium, in order to give flake products of various thicknesses (see Table below).
  • the aluminium layer is removed from the carrier film by means of dissolving the acrylic supporting layer in a bath containing ethyl acetate, releasing the aluminium layer from the carrier film.
  • the resulting aluminium in the form of a coarse flake in the resin solution, is then washed in a multi stage centrifuging process to remove the acrylic resin.
  • the coarse aluminium flakes were mixed with ethyl acetate and disintegrated by a high shear mixing process to produce a controlled particle size distribution.
  • the coatings are printed on an RK proofer press over an aluminum foil, and white coated papered paper provided with a holographic image by applying a clean UV curable varnish onto the corona treated substrate and embossing by using a shim and exposing to UV light.
  • Product A) is extremely darker than Comparative Product B).
  • Comparative Product B shows bright OVD image and good rainbow effect
  • product A is characterized by an extremely bright OVD image and extremely strong rainbow effect, high purity and contrast.
  • Varnish preparation 14.3 g of nitrocellulose (DHM 10-25 IPA (Nobel Entreprises, UK)) are slowly added to 85.7 g of ethylacetate (99-100% rein, Brenntag) in a 250 mL glass bottle and gently stirred until complete dissolution at room temperature. Solid content measurements are then performed and quantity of ethylacetate is adjusted to achieve a value of 10% solid content in the varnish preparation.
  • DLM 10-25 IPA Nobel Entreprises, UK
  • CieLab L*, a*, b* coordinates are given for a D65 standard illuminant and 10° observer angle.
  • CAB e.g. CAB 381-20 supplied by 10% by weight Eastman
  • Xylene mixed isomers
  • Polyester resin e.g. Setal 173-VS-60 42% by weight supplied by Nuplex Resins
  • n-Butyl acetate 29% by weight
  • Xylene mixed isomers
  • 4.0 g of a 10% slurry of the aluminium flakes of example 1 are added to 10.0 g of a 10% CAB solution, 4.0 g of a polyester resin solution, 41.0 g n-butyl acetate and 41.0 g xylene (mixed isomers) and mixed under low shear conditions (magnetic stirrer or low speed propeller stirrer) until a fully ‘wetted-out’ homogeneous liquid slurry is obtained.
  • the sample is best applied onto a substrate at full opacity (applied over black & white substrate or with black & white marker to ensure opacity) by use of pneumatic or electrostatic spray application (draw-down, pour or other conventional application techniques could also be used with some variation in appearance) and then following a ‘flash-off’ period either at room temperature or under mild forced conditions (flash-off period is the time allowed for solvent to be released from the coating prior to further processing and can be with or without curing of the film), a 1-component stoving clearcoat is applied (use of 1-component or 2-component clearcoats are both feasible) and again after a further ‘flash-off’ period the whole article is cured at elevated temperature to bring about the final film properties.
  • 6.0 g of a 10% slurry of the aluminium flakes of example 1 is added to 9.0 g of a 10% CAB solution, 3.6 g of a polyester resin solution, 40.7 g n-butyl acetate and 40.7 g xylene (mixed isomers) and mixed under low shear conditions (magnetic stirrer or low speed propeller stirrer) until a fully ‘wetted-out’ homogeneous liquid slurry was obtained.
  • Application conditions are the same as for application example 5.
  • Pigment:Binder Ratio 1 0.5, Total Non-Volatile Content 2.4%

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Finance (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Paints Or Removers (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
US13/139,623 2008-12-19 2009-12-09 Thin aluminium flakes Abandoned US20120029121A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP08172290.2 2008-12-19
EP08172290 2008-12-19
PCT/EP2009/066659 WO2010069823A1 (en) 2008-12-19 2009-12-09 Thin aluminum flakes

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/066659 A-371-Of-International WO2010069823A1 (en) 2008-12-19 2009-12-09 Thin aluminum flakes

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/515,683 Division US9856385B2 (en) 2008-12-19 2014-10-16 Thin aluminium flakes

Publications (1)

Publication Number Publication Date
US20120029121A1 true US20120029121A1 (en) 2012-02-02

Family

ID=40409770

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/139,623 Abandoned US20120029121A1 (en) 2008-12-19 2009-12-09 Thin aluminium flakes
US14/515,683 Expired - Fee Related US9856385B2 (en) 2008-12-19 2014-10-16 Thin aluminium flakes

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/515,683 Expired - Fee Related US9856385B2 (en) 2008-12-19 2014-10-16 Thin aluminium flakes

Country Status (4)

Country Link
US (2) US20120029121A1 (de)
EP (1) EP2379650B1 (de)
JP (1) JP5705129B2 (de)
WO (1) WO2010069823A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140118442A1 (en) * 2012-10-26 2014-05-01 Seiko Epson Corporation Liquid ejecting head and liquid ejecting apparatus
WO2014078202A1 (en) * 2012-11-19 2014-05-22 Munzer Makansi Process for forming rainbow and hologram images on papers
US9310676B2 (en) 2009-08-21 2016-04-12 Basf Se Apparatus and method for a sub microscopic and optically variable image carrying device
US9310766B2 (en) 2010-09-29 2016-04-12 Basf Se Security element
US9453132B2 (en) 2009-11-27 2016-09-27 Basf Se Coating compositions for security elements and holograms
US20180291213A1 (en) * 2017-04-11 2018-10-11 Kansai Paint Co., Ltd. Metallic coating composition
CN113677538A (zh) * 2019-01-30 2021-11-19 柯尼格及包尔纸币解决方案有限公司 用于制备聚合物安全制品的工艺

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103608183B (zh) 2011-06-21 2017-05-17 巴斯夫欧洲公司 在纸或纸板上印刷衍射光栅
KR20140101724A (ko) * 2011-11-14 2014-08-20 바스프 코팅스 게엠베하 액체 금속 조성물
US8617646B2 (en) * 2011-12-29 2013-12-31 Sanford, L.P. Metallic ink composition and writing instrument containing same
JP6203253B2 (ja) * 2012-06-14 2017-09-27 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se セキュリティエレメント及びホログラムの製造方法
US8846797B2 (en) 2012-12-31 2014-09-30 Sanford, L.P. Metallic ink composition and writing instrument containing same
US9163153B2 (en) 2013-03-15 2015-10-20 Sanford, L.P. Metallic ink composition and writing instrument containing same
US10494766B2 (en) 2013-10-04 2019-12-03 Basf Se High gloss metal effect papers
US10144837B2 (en) * 2014-05-06 2018-12-04 Basf Coatings Gmbh Method for delivering aluminum into waterborne tint base or paint and refinish mixer system
DE102014011663A1 (de) 2014-08-04 2016-02-04 Giesecke & Devrient Gmbh Sicherheitselement und Wertdokument
DE102014018204A1 (de) 2014-12-09 2016-06-09 Giesecke & Devrient Gmbh Sicherheitselement, Verfahren zum Herstellen desselben und mit dem Sicherheitselement ausgestatteter Datenträger
WO2016156408A2 (en) * 2015-04-02 2016-10-06 Novachem S.R.L. Metallic ink for printing
US20180086921A1 (en) * 2015-04-24 2018-03-29 Basf Se Process for the preparation of metallic nano-particle layers and their use for decorative or security elements
DE102015010744A1 (de) 2015-08-17 2017-02-23 Giesecke & Devrient Gmbh Sicherheitselement, Verfahren zum Herstellen desselben und mit dem Sicherheitselement ausgestatteter Datenträger
DE102016007064A1 (de) 2016-06-08 2017-12-14 Giesecke+Devrient Currency Technology Gmbh Sicherheitselement, Wertdokumentsubstrat, mit demselben ausgestattetes Wertdokument und Herstellungsverfahren
DE102016009437A1 (de) 2016-08-03 2018-02-08 Giesecke+Devrient Currency Technology Gmbh Sicherheitselement und Verfahren zur Herstellung eines Sicherheitselements
DE102017003603A1 (de) 2017-04-12 2018-10-18 Giesecke+Devrient Currency Technology Gmbh Sicherheitselement mit farbigem Merkmalsbereich
DE102017003795A1 (de) 2017-04-19 2018-10-25 Giesecke+Devrient Currency Technology Gmbh Polymeres Wertdokumentsubstrat, Sicherheitselement, Wertdokument und Herstellungsverfahren
AU2018255043B2 (en) * 2017-04-21 2022-12-08 Toppan Printing Co., Ltd. Hot-stamping foil, hot-stamping foil production method, and printing body equipped with laminated optical decoration body
EP3466711B1 (de) 2017-10-05 2020-06-03 Giesecke+Devrient Currency Technology GmbH Zweiseitiges transparentes fenstermerkmal mit dichroitischen farbstoffen
DE102018003030A1 (de) 2018-04-13 2019-10-17 Giesecke+Devrient Currency Technology Gmbh Sicherheitselement, Verfahren zum Herstellen desselben und mit dem Sicherheitselement ausgestatteter Datenträger
US20210086545A1 (en) 2018-04-25 2021-03-25 Basf Se Process for the production of strongly adherent (embossed) films on flexible substrates
DE102018003603A1 (de) 2018-05-03 2019-11-07 Giesecke+Devrient Currency Technology Gmbh Sicherheitselement, Datenträger und Verwendung
DE102018003602A1 (de) 2018-05-03 2019-11-07 Giesecke+Devrient Currency Technology Gmbh Retroreflektierende Folie, Folie, Datenträger und Verwendung
CN109128147B (zh) * 2018-07-13 2021-08-03 南京理工大学 一种球形铝粉的表面包覆方法
DE102018008147A1 (de) * 2018-10-15 2020-04-16 Giesecke+Devrient Currency Technology Gmbh Sicherheitselement und mit dem Sicherheitselement ausgestatteter Datenträger
DE102019003945A1 (de) * 2019-06-06 2020-12-10 Giesecke+Devrient Currency Technology Gmbh Optisch variables Sicherheitselement mit mehrfarbigem reflektivem Flächenbereich
DE102019005456A1 (de) 2019-08-02 2021-02-04 Giesecke+Devrient Currency Technology Gmbh Verfahren zum Herstellen von Effektpigmenten
DE102020005268A1 (de) 2020-08-27 2022-03-03 Giesecke+Devrient Currency Technology Gmbh Optisch variables Sicherheitselement
DE102020007028A1 (de) 2020-11-17 2022-05-19 Giesecke+Devrient Currency Technology Gmbh Sicherheitselement, mit demselben ausgestattetes Wertdokument und Herstellungsverfahren
DE102021000478A1 (de) 2021-02-01 2022-08-04 Giesecke+Devrient Currency Technology Gmbh Maskenbelichtungsverfahren, transparente, leitfähige Metallisierung und Pigment
DE102022002765A1 (de) 2022-07-29 2024-02-01 Giesecke+Devrient Currency Technology Gmbh Sicherheitselement und mit dem Sicherheitselement ausgestattetes Wertdokument

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4082458A (en) * 1975-09-08 1978-04-04 Fuji Photo Film Co., Ltd. Densitometer
WO2005057254A2 (en) * 2003-12-10 2005-06-23 Koninklijke Philips Electronics N.V. Optical integrator

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1465908A (en) 1972-12-14 1977-03-02 Dow Chemical Co Preparation and use of particulate metal
US4116710A (en) 1973-10-24 1978-09-26 The Dow Chemical Company Metallic particulate
US4321087A (en) 1978-12-21 1982-03-23 Revlon, Inc. Process for making metallic leafing pigments
GB9702064D0 (en) * 1997-01-31 1997-03-19 De La Rue Holographics Ltd Manufacture of security tapes and security threads
GB9801947D0 (en) * 1998-01-29 1998-03-25 Rue De Int Ltd Security device manufacture
DE69913982T2 (de) 1998-10-23 2004-12-09 Avery Dennison Corp., Pasadena Verfahren zur herstellung von metallplättchen
US6863851B2 (en) 1998-10-23 2005-03-08 Avery Dennison Corporation Process for making angstrom scale and high aspect functional platelets
JP2002004031A (ja) * 2000-06-26 2002-01-09 Oike Ind Co Ltd 無機箔粉の製造方法および無機箔粉
US7157116B2 (en) 2001-05-21 2007-01-02 Ciba Specialty Chemicals Corporation Method for the production of plane-parallel platelets by using organic separating agents
JP2005510629A (ja) * 2001-11-29 2005-04-21 アベリー・デニソン・コーポレイション オングストロームスケール及び高アスペクト機能性小板の製造方法
GB0326584D0 (en) 2003-11-14 2003-12-17 Wolstenholme Internat Ltd Printing composition
GB0326576D0 (en) 2003-11-14 2003-12-17 Printetch Ltd Printing composition
US7028607B2 (en) * 2003-11-18 2006-04-18 Cool Frootz, Llc Frozen food masticating machine
US7943194B2 (en) * 2004-08-23 2011-05-17 Basf Se Process for preparing flake-form pigments based on aluminum and on Sioz(Z=0.7-2.0) comprising forming a layer of separating agent
ATE433812T1 (de) 2005-04-26 2009-07-15 Avery Dennison Corp Verfahren zur herstellung von geprägten metallflocken und produkt
ATE502087T1 (de) 2005-11-17 2011-04-15 Basf Se Verfahren zur herstellung von schuppenförmigen partikeln
BRPI0719110A2 (pt) 2006-11-21 2013-12-10 Ciba Holding Inc Aparelho e método para fabricação de um produto de segurança
JP2008202076A (ja) * 2007-02-19 2008-09-04 Oike Ind Co Ltd 鱗片状微粉末含有溶液製造方法並びに鱗片状微粉末含有溶液又は鱗片状微粉末
EP2212113A1 (de) 2007-11-15 2010-08-04 Basf Se Verfahren zur herstellung einer optisch variablen bildträgerscheibe

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4082458A (en) * 1975-09-08 1978-04-04 Fuji Photo Film Co., Ltd. Densitometer
WO2005057254A2 (en) * 2003-12-10 2005-06-23 Koninklijke Philips Electronics N.V. Optical integrator

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9310676B2 (en) 2009-08-21 2016-04-12 Basf Se Apparatus and method for a sub microscopic and optically variable image carrying device
US9453132B2 (en) 2009-11-27 2016-09-27 Basf Se Coating compositions for security elements and holograms
US9765227B2 (en) 2009-11-27 2017-09-19 Basf Se Coating compositions for security elements and holograms
US10125278B2 (en) 2009-11-27 2018-11-13 Basf Se Coating compositions for security elements and holograms
US9310766B2 (en) 2010-09-29 2016-04-12 Basf Se Security element
US20140118442A1 (en) * 2012-10-26 2014-05-01 Seiko Epson Corporation Liquid ejecting head and liquid ejecting apparatus
US8985742B2 (en) * 2012-10-26 2015-03-24 Seiko Epson Corporation Liquid ejecting head and liquid ejecting apparatus
WO2014078202A1 (en) * 2012-11-19 2014-05-22 Munzer Makansi Process for forming rainbow and hologram images on papers
US20180291213A1 (en) * 2017-04-11 2018-10-11 Kansai Paint Co., Ltd. Metallic coating composition
US10487223B2 (en) * 2017-04-11 2019-11-26 Kansai Paint Co., Ltd. Metallic coating composition
CN113677538A (zh) * 2019-01-30 2021-11-19 柯尼格及包尔纸币解决方案有限公司 用于制备聚合物安全制品的工艺

Also Published As

Publication number Publication date
EP2379650B1 (de) 2017-11-29
WO2010069823A1 (en) 2010-06-24
JP2012512958A (ja) 2012-06-07
US20150035270A1 (en) 2015-02-05
EP2379650A1 (de) 2011-10-26
JP5705129B2 (ja) 2015-04-22
US9856385B2 (en) 2018-01-02

Similar Documents

Publication Publication Date Title
US9856385B2 (en) Thin aluminium flakes
US10125278B2 (en) Coating compositions for security elements and holograms
EP3285942B1 (de) Verfahren zur herstellung von metallischen nanopartikelschichten und deren verwendung für dekorations- oder sicherheitselemente
EP1901870B1 (de) Verfahren zur herstellung von geprägten metallflocken und produkt
WO2019016136A1 (en) TITANIUM DIOXIDE NANOPARTICLES FUNCTIONALIZED ON SURFACE BY PHOSPHONATE
WO2018210597A1 (en) Process for the preparation of metallic nano-particle layers and their use for decorative or security elements
AU2014256335B2 (en) Coating compositions for security elements and holograms

Legal Events

Date Code Title Description
AS Assignment

Owner name: BASF SE, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ORMEROD, GEOFF IAN;RICHERT, MICHELLE;MILDE, MICHAEL;AND OTHERS;SIGNING DATES FROM 20110616 TO 20111012;REEL/FRAME:027090/0978

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION