US20110219815A1 - Heat transfer compositions and methods - Google Patents

Heat transfer compositions and methods Download PDF

Info

Publication number
US20110219815A1
US20110219815A1 US13/099,218 US201113099218A US2011219815A1 US 20110219815 A1 US20110219815 A1 US 20110219815A1 US 201113099218 A US201113099218 A US 201113099218A US 2011219815 A1 US2011219815 A1 US 2011219815A1
Authority
US
United States
Prior art keywords
weight
hfc
heat transfer
compositions
systems
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/099,218
Other languages
English (en)
Inventor
Samuel F. Yana Motta
Mark W. Spatz
Ronald P. Vogl
Elizabet del Carmen Vera BECERRA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell International Inc
Original Assignee
Honeywell International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42320296&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20110219815(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from US12/511,954 external-priority patent/US20120097885A9/en
Application filed by Honeywell International Inc filed Critical Honeywell International Inc
Priority to US13/099,218 priority Critical patent/US20110219815A1/en
Assigned to HONEYWELL INTERNATIONAL INC. reassignment HONEYWELL INTERNATIONAL INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SPATZ, MARK W., VERA BECERRA, ELIZABET DEL CARMEN, VOGL, RONALD P., YANA MOTTA, SAMUEL F.
Publication of US20110219815A1 publication Critical patent/US20110219815A1/en
Priority to RU2013152876/05A priority patent/RU2013152876A/ru
Priority to EP12779962.5A priority patent/EP2705107A4/en
Priority to AU2012250863A priority patent/AU2012250863A1/en
Priority to KR1020137031691A priority patent/KR20140027362A/ko
Priority to BR112013028071-9A priority patent/BR112013028071A2/pt
Priority to CA2834894A priority patent/CA2834894A1/en
Priority to PCT/US2012/036056 priority patent/WO2012151238A2/en
Priority to MX2013012673A priority patent/MX2013012673A/es
Priority to JP2014509374A priority patent/JP2014514423A/ja
Priority to CN201280021647.1A priority patent/CN103635558A/zh
Priority to US13/762,550 priority patent/US8980118B2/en
Priority to US14/562,201 priority patent/US9725631B2/en
Priority to US14/609,514 priority patent/US9809734B2/en
Priority to US15/804,409 priority patent/US20180057725A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/104Carboxylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/122Halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/126Unsaturated fluorinated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/22All components of a mixture being fluoro compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/40Replacement mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2345/00Details for charging or discharging refrigerants; Service stations therefor
    • F25B2345/001Charging refrigerant to a cycle

Definitions

  • This invention relates to compositions, methods and systems having utility in refrigeration applications, with particular benefit in medium and low temperature refrigeration applications, and in particular aspects to refrigerant compositions for replacement of refrigerant HFC-404A for heating and cooling applications and to retrofitting medium and low temperature refrigerant systems, including systems designed for use with HFC-404A.
  • Fluorocarbon based fluids have found widespread use in many residential, commercial and industrial applications, including as the working fluid in systems such as air conditioning, heat pump and refrigeration systems. Because of certain suspected environmental problems, including the relatively high global warming potentials associated with the use of some of the compositions that have heretofore been used in these applications, it has become increasingly desirable to use fluids having low or even zero ozone depletion and global warming potentials, such as hydrofluorocarbons (“HFCs”). For example, a number of governments have signed the Kyoto Protocol to protect the global environment and setting forth a reduction of CO2 emissions (global warming). Thus, there is a need for a low- or non-flammable, non-toxic alternative to replace certain of high global warming HFCs.
  • HFCs hydrofluorocarbons
  • HFC-404A the combination of HFC-125:HFC-143a:HFC134a in an approximate 44:52:4 weight ratio is referred to in the art as HFC-404A or R-404A).
  • R-404A has an estimated high Global Warming Potential (GWP) of 3922.
  • any potential substitute must also possess those properties present in many of the most widely used fluids, such as excellent heat transfer properties, chemical stability, low- or no-toxicity, non-flammability and/or lubricant compatibility, among others.
  • thermodynamic performance or energy efficiency may have secondary environmental impacts through increased fossil fuel usage arising from an increased demand for electrical energy.
  • CFC refrigerant substitutes to be effective without major engineering changes to conventional vapor compression technology currently used with CFC refrigerants.
  • Flammability is another important property for many applications. That is, it is considered either important or essential in many applications, including particularly in heat transfer applications, to use compositions which are non-flammable. Thus, it is frequently beneficial to use in such compositions compounds which are nonflammable.
  • nonflammable refers to compounds or compositions which are determined to be nonflammable as determined in accordance with ASTM standard E-681, dated 2002, which is incorporated herein by reference. Unfortunately, many HFC's which might otherwise be desirable for used in refrigerant compositions are not nonflammable as that term is used herein.
  • fluoroalkane difluoroethane HFC-152a
  • fluoroalkene 1,1,1-trifluorpropene HFO-1243zf
  • compositions, and particularly heat transfer compositions that are highly advantageous in heating and cooling systems and methods, particularly vapor compression heating and cooling systems, and even more particularly low temperature refrigerant systems, including systems which are used with and/or have been designed for use with HFC-404A.
  • compositions, methods and systems which comprise or utilize a multi-component mixture comprising: (a) from about 10% to about 35% by weight of difluoromethane (HFC-32); (b) from about 10% to about 35% by weight of pentafluoroethane (HFC-125); (c) from about 20% to about 50% by weight of HFO-1234ze, HFO-1234yf and combinations of these; (d) from about 15% to about 35% by weight of 1,1,1,2-tetrafluoroethane (HFC-134a); and optionally (e) up to about 10% by weight of CF 3 I and up to about 5% by weight of HFCO-1233ze, with the weight percent being based on the total of the components (a)-(e) in the composition.
  • HFC-32 difluoromethane
  • pentafluoroethane HFC-125
  • HFO-1234yf pentafluoroethane
  • HFC-134a 1,1,1,2-tetrafluoroe
  • the compositions comprise a multi-component mixture comprising: (a) from about 15% to about 25% by weight of HFC-32; (b) from about 10% to about 30% by weight of HFC-125; (c) from about 20% to about 50% by weight of HFO-1234ze, HFO-1234yf, and combinations of these; (d) from about 15% to about 35% by weight of HFC-134a; and optionally (e) up to about 5% by weight of CF3I and up to about 5% by weight of HFCO-1233ze, with the weight percent being based on the total of the components (a)-(e) in the composition.
  • the present invention provides also methods and systems which utilize the compositions of the present invention, including methods and systems for heat transfer and for retrofitting existing heat transfer systems.
  • Certain preferred method aspects of the present invention relate to methods of providing relatively low temperature cooling, such as in low temperature refrigeration systems.
  • Other preferred method aspects of the present invention provide methods of retrofitting an existing refrigeration system, preferably low temperature refrigeration systems, designed to contain and/or containing R-404A refrigerant comprising introducing a composition of the present invention into the system without substantial engineering modification of said existing refrigeration system.
  • HFO-1234ze is used herein generically to refer to 1,1,1,3-tetrafluoropropene, independent of whether it is the cis- or trans-form.
  • cisHFO-1234ze and “transHFO-1234ze” are used herein to describe the cis- and trans-forms of 1,1,1,3-tetrafluoropropene respectively.
  • HFO-1234ze therefore includes within its scope cisHFO-1234ze, transHFO-1234ze, and all combinations and mixtures of these.
  • HFO-1233 is used herein to refer to all trifluoro, monochloropropenes. Among the trifluoro, monochloropropenes are included 1,1,1,trifluoro-2,chloro-propene (HFCO-1233xf), both cis- and trans-1,1,1-trifluo-3,chlororopropene (HFCO-1233zd).
  • HFCO-1233zd is used herein generically to refer to 1,1,1-trifluo-3,chloropropene, independent of whether it is the cis- or trans-form.
  • cisHFCO-1233zd and “transHFCO-1233zd” are used herein to describe the cis- and trans-forms of 1,1,1-trifluo,3-chlororopropene, respectively.
  • HFCO-1233zd therefore includes within its scope cisHFCO-1233zd, transHFCO-1233zd, and all combinations and mixtures of these.
  • Low temperature refrigeration systems are important in many applications, such as to the food manufacture, distribution and retail industries. Such systems play a vital role in ensuring that food which reaches the consumer is both fresh and fit to eat.
  • HFC-404A which has an estimated high Global Warming Potential (GWP) of 3922.
  • GWP Global Warming Potential
  • the present invention may also encompass medium temperature refrigeration composition, systems and methods.
  • the present methods and systems involve evaporator temperatures of from above about ⁇ 15° C. to about 5° C.
  • An example of such a medium temperature system and method involves providing cooling in the fresh food compartment of a residential refrigerator.
  • compositions of the present invention are generally adaptable for use in heat transfer applications, that is, as a heating and/or cooling medium, but are particularly well adapted for use, as mentioned above, in medium and low temperature refrigeration systems, and preferably in low temperature systems, that have heretofor used HFC-404A and/or systems that have heretofor used R-22.
  • the combination HFO-1234ze and HFO-1234yf is referred to herein as the “tetrafluoropropene component” or “TFC,” and in certain embodiments highly preferred combinations of properties can be achieved for composition which comprise a weight ratio of HFC-134a:TFC of from about 5:7 to about 1:1, with a ratio of about 4:6 being preferred in certain embodiments.
  • HFO-1234ze comprise transHFO-1234ze, and preferably comprise transHFO-1234ze in major proportion, and in certain embodiments consist essentially of transHFO-1234ze.
  • compositions of the present invention are capable of achieving a difficult to achieve combination of properties, including particularly low GWP.
  • Table A illustrates the substantial improvement in GWP exhibited by certain compositions of the present invention in comparison to the GWP of HFC-404A, which has a GWP of 3922.
  • composition of the Invention GWP as a (weight fraction, based on Percentage of identified components) Name GWP R404A GWP R125/R134a/R143a (0.44/0.04/0.52) R404A 3922 R32/R125/R134a/1234yf A1 1331 34% (0.25/0.25/0.2/0.3) R32/R125/R134a/1234ze A2 1568 40% (0.325/0.325/0.147/0.203) R32/R125/R134a/1234ze/1234yf A3 1494 38% (0.3/0.3/0.168/0.16/0.072) R32/R125/R134a/1234yf A4 974 25% (0.13/0.13/0.3/0.44) R32/R125/R134a/1234ze) A5 975 25% (0.125/0.125/0.315/0.435 R32/R125/R134a/1234ze/1234yf A6 975 25% (0.125/0.125/0.315/0.3/0.135) The compositions
  • refrigerant compositions according to the present invention include a lubricant, generally in amounts of from about 30 to about 50 percent by weight of the composition, and in some case potentially in amount greater than about 50 percent and other cases in amounts as low as about 5 percent.
  • the present compositions may also include a compatibilizer, such as propane, for the purpose of aiding compatibility and/or solubility of the lubricant.
  • a compatibilizer such as propane
  • Such compatibilizers including propane, butanes and pentanes, are preferably present in amounts of from about 0.5 to about 5 percent by weight of the composition.
  • Combinations of surfactants and solubilizing agents may also be added to the present compositions to aid oil solubility, as disclosed by U.S. Pat. No.
  • Commonly used refrigeration lubricants such as Polyol Esters (POEs) and Poly Alkylene Glycols (PAGs), PAG oils, silicone oil, mineral oil, alkyl benzenes (ABs) and poly(alpha-olefin) (PAO) that are used in refrigeration machinery with hydrofluorocarbon (HFC) refrigerants may be used with the refrigerant compositions of the present invention.
  • Commercially available mineral oils include Witco LP 250 (registered trademark) from Witco, Zerol 300 (registered trademark) from Shrieve Chemical, Sunisco 3GS from Witco, and Calumet R015 from Calumet.
  • alkyl benzene lubricants include Zerol 150 (registered trademark).
  • Commercially available esters include neopentyl glycol dipelargonate, which is available as Emery 2917 (registered trademark) and Hatcol 2370 (registered trademark).
  • Other useful esters include phosphate esters, dibasic acid esters, and fluoroesters.
  • hydrocarbon based oils are have sufficient solubility with the refrigerant that is comprised of an iodocarbon, the combination of the iodocarbon and the hydrocarbon oil might more stable than other types of lubricant. Such combination may therefore be advantageous.
  • Preferred lubricants include polyalkylene glycols and esters. Polyalkylene glycols are highly preferred in certain embodiments because they are currently in use in particular applications such as mobile air-conditioning. Of course, different mixtures of different types of lubricants may be used.
  • compositions of the present invention are used in refrigeration systems originally designed for use with an HFC refrigerant, such as, for example, R-404.
  • HFC refrigerant such as, for example, R-404.
  • the preferred compositions of the present invention tend to exhibit many of the desirable characteristics of R-404A but have a GWP that is substantially lower than that of R-404A while at the same time having a capacity and/or efficiency that is substantially similar to or substantially matches, and preferably is as high as or higher than R-404A.
  • GWPs global warming potentials
  • the present compositions have a GWP of about 1500 or less, and even more preferable of less than about 1000.
  • the present compositions are used in refrigeration systems which had contained and/or had originally been designed for use with R-404A.
  • Preferred refrigeration compositions of the present invention may be used in refrigeration systems containing a lubricant used conventionally with R-404A, such as mineral oils, polyalkylbenzene, polyalkylene glycol oils, and the like, or may be used with other lubricants traditionally used with HFC refrigerants.
  • a lubricant used conventionally with R-404A such as mineral oils, polyalkylbenzene, polyalkylene glycol oils, and the like
  • the term “refrigeration system” refers generally to any system or apparatus, or any part or portion of such a system or apparatus, which employs a refrigerant to provide cooling.
  • Such refrigeration systems include, for example, air conditioners, electric refrigerators, chillers (including chillers using centrifugal compressors), and the like.
  • low temperature refrigeration system refers to vapor compression refrigeration systems which utilize one or more compressors and a condenser temperature of from about 35° C. to about 45° C.
  • the systems have an evaporator temperature of from about ⁇ 40° C. and less than about ⁇ 15° C., more preferably from about ⁇ 35° C. to about ⁇ 25° C., with an evaporator temperature preferably of about ⁇ 32° C.
  • the systems have a degree of superheat at evaporator outlet of from about 0° C.
  • the systems have a degree of superheat in the suction line of from about 15° C. to about 25° C., with a degree of superheat in the suction line preferably of from about 20° C. to about 25° C.
  • the coefficient of performance is a universally accepted measure of refrigerant performance, especially useful in representing the relative thermodynamic efficiency of a refrigerant in a specific heating or cooling cycle involving evaporation or condensation of the refrigerant. In refrigeration engineering, this term expresses the ratio of useful refrigeration to the energy applied by the compressor in compressing the vapor.
  • the capacity of a refrigerant represents the amount of cooling or heating it provides and provides some measure of the capability of a compressor to pump quantities of heat for a given volumetric flow rate of refrigerant. In other words, given a specific compressor, a refrigerant with a higher capacity will deliver more cooling or heating power.
  • thermodynamic properties of the refrigerant is from the thermodynamic properties of the refrigerant using standard refrigeration cycle analysis techniques (see for example, R. C. Downing, FLUOROCARBON REFRIGERANTS HANDBOOK, Chapter 3, Prentice-Hall, 1988).
  • a low temperature refrigeration system is provided.
  • the condenser temperature is set to 40.55° C., which generally corresponds to an outdoor temperature of about 35° C.
  • the degree of subcooling at the expansion device inlet is set to 5.55° C.
  • the evaporating temperature is set to ⁇ 31.6° C., which corresponds to a box temperature of about ⁇ 26° C.
  • the degree of superheat at evaporator outlet is set to 5.55° C.
  • the degree of superheat in the suction line is set to 13.88° C., and the compressor efficiency is set to 65%.
  • the pressure drop and heat transfer in the connecting lines are considered negligible, and heat leakage through the compressor shell is ignored.
  • compositions A1-A6 identified in Table A above in accordance with the present invention are determined for the compositions A1-A6 identified in Table A above in accordance with the present invention, and these operating parameters are reported in Table 1 below, based upon HFC-404A having a COP value of 100%, a capacity value of 100% and a discharge temperature of 97.6° C.
  • compositions A1-A3 exhibit capacities and efficiencies (COPs) in this low temperature refrigeration system that are within about 8%, and even more preferably within about 6% of that of R404A, and preferably within such limits but higher than the capacity of the R404A.
  • these compositions of the present invention are excellent candidates for use as drop-in replacements for low temperature refrigeration systems originally containing and/or designed to contain R-404A.
  • compositions A4-A6 have lower capacity (68% to 82%) and superior efficiency (9% to 10% higher) while at the same time exhibiting substantial improvement in GWP, preferably as shown having a GWP of less than about 1000, which minimizes the total environmental impact.
  • Compositions A3-A6 of the present invention are excellent candidates for use in retrofitting of low temperature refrigeration systems originally containing and/or designed to contain R-404A but with only minor adjustment of the system, such as some re-sizing of certain system components, such as compressors and expansion valves.
  • the present invention provides retrofitting methods which comprise removing at least a portion of the existing refrigerant from the system and replacing at least a portion of the removed refrigerant with a composition of the present invention, preferably without substantial modification of the system and even more preferably without any change in major system components, such as compressors, condensers, evaporators, and expansion valves.
  • major system components such as compressors, condensers, evaporators, and expansion valves.
  • major system components such as compressors, condensers, evaporators, and expansion valves.
  • Such operating parameters include:
  • compositions A1-A6 identified in Table A above in accordance with the present invention, and these operating parameters is reported in Table 2 below:
  • the replacement step is a drop-in replacement in the sense that no substantial redesign or modification of the system is required and no major item of equipment needs to be replaced in order to accommodate the refrigerant of the present invention.
  • compositions A1-A3 which in general can be used in most retrofit procedures without any change of major components.
  • the discharge pressure and temperature is below the limit and the expansion valve will produce enough superheat at the outlet of the evaporator.
  • compositions A4-A6 provide relatively good replacement performance, the use of such compositions as a replacement for R-404A in many low temperature systems will require at least a new expansion device. As such, these compositions will provide advantage where the change of the expansion valve and/or other equipment is possible. Of course, all of the compositions A1-A6 provide excellent advantage for use in new equipment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Lubricants (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Ink Jet (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
US13/099,218 2009-05-08 2011-05-02 Heat transfer compositions and methods Abandoned US20110219815A1 (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
US13/099,218 US20110219815A1 (en) 2009-05-08 2011-05-02 Heat transfer compositions and methods
PCT/US2012/036056 WO2012151238A2 (en) 2011-05-02 2012-05-02 Heat transfer compositions and methods
MX2013012673A MX2013012673A (es) 2011-05-02 2012-05-02 Composiciones de transferencia de calor y metodos.
JP2014509374A JP2014514423A (ja) 2011-05-02 2012-05-02 熱伝達組成物及び方法
EP12779962.5A EP2705107A4 (en) 2011-05-02 2012-05-02 METHODS AND COMPOSITIONS FOR HEAT TRANSFER
BR112013028071-9A BR112013028071A2 (pt) 2011-05-02 2012-05-02 composição para transparência de calor, método para substituir um fluido para transferência de calor existente contido no sistema para transferência de calor, e sistema para transferência de calor
CN201280021647.1A CN103635558A (zh) 2011-05-02 2012-05-02 传热组合物和传热方法
AU2012250863A AU2012250863A1 (en) 2011-05-02 2012-05-02 Heat transfer compositions and methods
KR1020137031691A KR20140027362A (ko) 2011-05-02 2012-05-02 열 전달 조성물 및 방법
RU2013152876/05A RU2013152876A (ru) 2011-05-02 2012-05-02 Теплопередающие композиции и способы теплопередачи
CA2834894A CA2834894A1 (en) 2011-05-02 2012-05-02 Heat transfer compositions and methods
US13/762,550 US8980118B2 (en) 2009-05-08 2013-02-08 Heat transfer compositions and methods
US14/562,201 US9725631B2 (en) 2009-05-08 2014-12-05 Heat transfer compositions and methods
US14/609,514 US9809734B2 (en) 2009-05-08 2015-01-30 Heat transfer compositions and methods
US15/804,409 US20180057725A1 (en) 2009-05-08 2017-11-06 Heat transfer compositions and methods

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US17677309P 2009-05-08 2009-05-08
US12/511,954 US20120097885A9 (en) 2003-10-27 2009-07-29 Compositions Containing Difluoromethane and Fluorine Substituted Olefins
US24078609P 2009-09-09 2009-09-09
US24781609P 2009-10-01 2009-10-01
US32995510P 2010-04-30 2010-04-30
PCT/US2010/034120 WO2010129920A1 (en) 2009-05-08 2010-05-07 Heat transfer compositions and methods
US13/099,218 US20110219815A1 (en) 2009-05-08 2011-05-02 Heat transfer compositions and methods

Related Parent Applications (3)

Application Number Title Priority Date Filing Date
US12/511,954 Continuation US20120097885A9 (en) 2002-10-25 2009-07-29 Compositions Containing Difluoromethane and Fluorine Substituted Olefins
US12/511,954 Continuation-In-Part US20120097885A9 (en) 2002-10-25 2009-07-29 Compositions Containing Difluoromethane and Fluorine Substituted Olefins
PCT/US2010/034120 Continuation-In-Part WO2010129920A1 (en) 2009-05-08 2010-05-07 Heat transfer compositions and methods

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US13/182,591 Continuation-In-Part US20120011863A1 (en) 2009-05-08 2011-07-14 Methods of servicing mobile air conditioning systems
US13/762,550 Continuation-In-Part US8980118B2 (en) 2009-05-08 2013-02-08 Heat transfer compositions and methods
US14/562,201 Continuation US9725631B2 (en) 2009-05-08 2014-12-05 Heat transfer compositions and methods

Publications (1)

Publication Number Publication Date
US20110219815A1 true US20110219815A1 (en) 2011-09-15

Family

ID=42320296

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/099,218 Abandoned US20110219815A1 (en) 2009-05-08 2011-05-02 Heat transfer compositions and methods
US14/562,201 Active US9725631B2 (en) 2009-05-08 2014-12-05 Heat transfer compositions and methods

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/562,201 Active US9725631B2 (en) 2009-05-08 2014-12-05 Heat transfer compositions and methods

Country Status (17)

Country Link
US (2) US20110219815A1 (zh)
EP (3) EP3026092B1 (zh)
JP (4) JP5663005B2 (zh)
KR (3) KR20120025494A (zh)
CN (2) CN106905925A (zh)
AU (1) AU2010245671B2 (zh)
BR (1) BRPI1011576A8 (zh)
CA (2) CA3038158C (zh)
DK (2) DK3026092T3 (zh)
ES (2) ES2559009T3 (zh)
HU (2) HUE060399T2 (zh)
LT (1) LT3026092T (zh)
MX (2) MX339549B (zh)
PL (2) PL3026092T3 (zh)
PT (2) PT2427527E (zh)
SI (2) SI2427527T1 (zh)
WO (1) WO2010129920A1 (zh)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130055738A1 (en) * 2010-05-11 2013-03-07 Arkema France Ternary heat-transfer fluids comprising difluoromethane, pentafluoroethane and tetrafluoropropene
US20130096218A1 (en) * 2010-06-22 2013-04-18 Arkema Inc. Heat transfer compositions of hydrofluorocarbons and a hydrofluoroolefin
US20140137578A1 (en) * 2012-11-21 2014-05-22 Honeywell International Inc. Low gwp heat transfer compositions
US20140223927A1 (en) * 2013-02-13 2014-08-14 Honeywell International Inc. Heat transfer compositions and methods
US20140264147A1 (en) * 2013-03-15 2014-09-18 Samuel F. Yana Motta Low GWP heat transfer compositions containing difluoromethane, A Fluorinated ethane and 1,3,3,3-tetrafluoropropene
US20150033770A1 (en) * 2012-02-13 2015-02-05 E I Du Pont De Nemours And Company Refrigerant mixtures comprising tetrafluoropropene, difluoromethane, pentafluoroethane, and tetrafluoroethane and uses thereof
WO2015054110A1 (en) * 2013-10-10 2015-04-16 E. I. Du Pont De Nemours And Company Compositions comprising difluoromethane, pentafluoroethane, tetrafluoroethane and tetrafluoropropene and uses thereof
US20160017199A1 (en) * 2013-03-15 2016-01-21 Honeywell International Inc. Systems for efficient heating and/or cooling and having low climate change impact
US20170131010A1 (en) * 2015-10-07 2017-05-11 Honeywell International Inc. Recharging systems and methods
US9683156B2 (en) 2013-09-11 2017-06-20 Arkema France Heat transfer fluids comprising difluoromethane, pentafluoroethane, tetrafluoropropene and optionally propane
US9752069B2 (en) 2012-11-20 2017-09-05 Arkema France Refrigerant composition
US10023823B2 (en) 2014-10-09 2018-07-17 Jxtg Nippon Oil & Energy Corporation Refrigerator oil and working fluid composition for refrigerator
US10208235B2 (en) * 2007-11-16 2019-02-19 Honeywell International Inc. Heat transfer compositions, methods and systems
CN109689832A (zh) * 2016-07-29 2019-04-26 霍尼韦尔国际公司 热传递组合物、方法和系统
US10301521B2 (en) * 2016-07-29 2019-05-28 Honeywell International Inc. Heat transfer methods, systems and compositions
US10308853B2 (en) 2009-12-18 2019-06-04 Arkema France Heat-transfer fluids having reduced flammability
US20190177589A1 (en) * 2017-10-06 2019-06-13 Honeywell International Inc. Heat transfer compositions, methods and systems
US10731066B2 (en) * 2017-11-17 2020-08-04 Honeywell International Inc. Heat transfer compositions, methods and systems
US10767091B2 (en) * 2017-11-30 2020-09-08 Honeywell International Inc. Heat transfer compositions, methods, and systems
US11359122B2 (en) 2017-03-21 2022-06-14 Arkema France Method for heating and/or air-conditioning in a vehicle
US11370948B2 (en) 2017-03-21 2022-06-28 Arkema France Tetrafluoropropene-based composition

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8974688B2 (en) * 2009-07-29 2015-03-10 Honeywell International Inc. Compositions and methods for refrigeration
US8333901B2 (en) 2007-10-12 2012-12-18 Mexichem Amanco Holding S.A. De C.V. Heat transfer compositions
GB201002625D0 (en) 2010-02-16 2010-03-31 Ineos Fluor Holdings Ltd Heat transfer compositions
EP3498802B1 (en) * 2008-07-30 2021-09-01 Honeywell International Inc. Use of a composition consisting difluoromethane and hfo-1234yf
US8980118B2 (en) 2009-05-08 2015-03-17 Honeywell International Inc. Heat transfer compositions and methods
WO2010129461A2 (en) * 2009-05-08 2010-11-11 Honeywell International Inc. Hydrofluorocarbon refrigerant compositions for heat pump water heaters
US9845419B2 (en) * 2009-07-29 2017-12-19 Honeywell International Inc. Low GWP heat transfer compositions containing difluoromethane and 1,3,3,3-tetrafluoropropene
FR2950069B1 (fr) 2009-09-11 2011-11-25 Arkema France Utilisation de compositions ternaires
GB201002619D0 (en) * 2010-02-16 2010-03-31 Ineos Fluor Holdings Ltd Heat transfer compositions
GB201002622D0 (en) 2010-02-16 2010-03-31 Ineos Fluor Holdings Ltd Heat transfer compositions
ES2886149T3 (es) 2010-04-16 2021-12-16 Chemours Co Fc Llc Enfriadores que contienen una composición que comprende 2,3,3,3-tetrafluoropropeno y 1,1,1,2-tetrafluoroetano
GB2481443B (en) 2010-06-25 2012-10-17 Mexichem Amanco Holding Sa Heat transfer compositions
FR2964976B1 (fr) 2010-09-20 2012-08-24 Arkema France Composition a base de 1,3,3,3-tetrafluoropropene
EP2672201B1 (en) * 2011-01-31 2019-03-27 Mitsubishi Electric Corporation Air-conditioning device
EP2705107A4 (en) * 2011-05-02 2014-10-15 Honeywell Int Inc METHODS AND COMPOSITIONS FOR HEAT TRANSFER
KR20180089556A (ko) 2011-10-26 2018-08-08 제이엑스티지 에네루기 가부시키가이샤 냉동기용 작동 유체 조성물 및 냉동기유
PT2814897T (pt) * 2012-02-13 2018-06-21 Honeywell Int Inc Composições e métodos de transferência térmica
IN2014DN07397A (zh) 2012-03-27 2015-04-24 Jx Nippon Oil & Energy Corp
IN2014DN08798A (zh) * 2012-03-29 2015-05-22 Jx Nippon Oil & Energy Corp
EP2861690A4 (en) * 2012-06-19 2016-04-13 Du Pont REFRIGERANT MIXTURES WITH TETRAFLUORPROPENES, DIFLUOROMETHANE, PENTAFLUORETHANE AND TETRAFLUORETHANE AND USES THEREOF
BR112014031783A2 (pt) * 2012-06-19 2017-06-27 Du Pont composição, método para substituição e de produção de resfriamento e aparelho de refrigeração
FR3000096B1 (fr) * 2012-12-26 2015-02-20 Arkema France Composition comprenant du 2,3,3,3-tetrafluoropropene
JP2016014100A (ja) * 2014-07-01 2016-01-28 株式会社富士通ゼネラル 混合冷媒およびこれを用いた空気調和機
CN108139129A (zh) 2015-08-11 2018-06-08 特灵国际有限公司 制冷剂回收和再利用
CN108291134A (zh) 2015-11-20 2018-07-17 大金工业株式会社 含有氟代烃的混合物的组合物及其应用
FR3063733B1 (fr) 2017-03-10 2020-02-07 Arkema France Composition quasi-azeotropique comprenant le 2,3,3,3-tetrafluoropropene et le trans-1,3,3,3-tetrafluoropropene
KR102142947B1 (ko) 2017-06-30 2020-08-10 주식회사 엘지화학 산화니켈 나노입자의 제조방법 및 이를 이용하여 제조된 산화니켈 나노입자
JP2020003204A (ja) * 2019-08-14 2020-01-09 東芝キヤリア株式会社 冷凍機及び冷凍装置
CN110699042B (zh) * 2019-09-30 2021-04-27 浙江衢化氟化学有限公司 一种氟代烯烃和氟代烷烃的组合物
JP2020180618A (ja) * 2020-07-21 2020-11-05 東芝キヤリア株式会社 密閉型圧縮機および冷凍サイクル装置
CN114111079A (zh) * 2021-11-23 2022-03-01 衢州荣强化工有限公司 一种降低可燃特性的制冷剂

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060019857A1 (en) * 2004-04-16 2006-01-26 Honeywell International Inc. Azeotrope-like compositions of tetrafluoropropene and trifluoroiodomethane
US20060243945A1 (en) * 2005-03-04 2006-11-02 Minor Barbara H Compositions comprising a fluoroolefin
US20080314073A1 (en) * 2007-06-21 2008-12-25 E. L. Du Pont De Nemours And Company Method for leak detection in heat transfer systems
US20100038583A1 (en) * 2007-02-27 2010-02-18 Nippon Oil Corporation Refrigerator oil and working fluid composition for refrigerator
US20100122545A1 (en) * 2008-11-19 2010-05-20 E. I. Du Pont De Nemours And Company Tetrafluoropropene compositions and uses thereof
US20100127209A1 (en) * 2004-04-29 2010-05-27 Honeywell International Inc. Compositions Comprising Tetrafluoropropene And Carbon Dioxide
US20110023535A1 (en) * 2008-03-18 2011-02-03 Kouki Morimoto Refrigeration apparatus
US20110162410A1 (en) * 2007-10-12 2011-07-07 Mexichem Amanco Holding S.A. De C.V. Heat transfer compositions
US20110204279A1 (en) * 2005-03-04 2011-08-25 E. I. Du Pont De Nemours And Company Compositions comprising a fluoroolefin

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04110388A (ja) 1990-08-31 1992-04-10 Daikin Ind Ltd 熱伝達用流体
US6516837B2 (en) 2000-09-27 2003-02-11 Honeywell International Inc. Method of introducing refrigerants into refrigeration systems
US20080292564A1 (en) 2002-10-25 2008-11-27 Honeywell International, Inc. Aerosol compositions containing fluorine substituted olefins and methods and systems using same
US7524805B2 (en) 2004-04-29 2009-04-28 Honeywell International Inc. Azeotrope-like compositions of tetrafluoropropene and hydrofluorocarbons
US20060243944A1 (en) * 2005-03-04 2006-11-02 Minor Barbara H Compositions comprising a fluoroolefin
TW201742908A (zh) 2005-06-24 2017-12-16 哈尼威爾國際公司 含有經氟取代之烯烴之組合物
JP5572284B2 (ja) 2007-02-27 2014-08-13 Jx日鉱日石エネルギー株式会社 冷凍機油および冷凍機用作動流体組成物
PL2247562T3 (pl) * 2008-03-07 2018-03-30 Arkema, Inc. Zastosowanie R-1233 w cieczowych urządzeniach chłodzących
EP2367601B2 (en) * 2008-11-19 2022-08-03 The Chemours Company FC, LLC Tetrafluoropropene compositions and uses thereof
KR20110099701A (ko) * 2008-12-02 2011-09-08 멕시켐 아만코 홀딩 에스.에이. 데 씨.브이. 열전달 조성물
WO2010129461A2 (en) * 2009-05-08 2010-11-11 Honeywell International Inc. Hydrofluorocarbon refrigerant compositions for heat pump water heaters
US8980118B2 (en) * 2009-05-08 2015-03-17 Honeywell International Inc. Heat transfer compositions and methods

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060019857A1 (en) * 2004-04-16 2006-01-26 Honeywell International Inc. Azeotrope-like compositions of tetrafluoropropene and trifluoroiodomethane
US20100127209A1 (en) * 2004-04-29 2010-05-27 Honeywell International Inc. Compositions Comprising Tetrafluoropropene And Carbon Dioxide
US20060243945A1 (en) * 2005-03-04 2006-11-02 Minor Barbara H Compositions comprising a fluoroolefin
US20110204279A1 (en) * 2005-03-04 2011-08-25 E. I. Du Pont De Nemours And Company Compositions comprising a fluoroolefin
US20100038583A1 (en) * 2007-02-27 2010-02-18 Nippon Oil Corporation Refrigerator oil and working fluid composition for refrigerator
US20080314073A1 (en) * 2007-06-21 2008-12-25 E. L. Du Pont De Nemours And Company Method for leak detection in heat transfer systems
US20110162410A1 (en) * 2007-10-12 2011-07-07 Mexichem Amanco Holding S.A. De C.V. Heat transfer compositions
US20110023535A1 (en) * 2008-03-18 2011-02-03 Kouki Morimoto Refrigeration apparatus
US20100122545A1 (en) * 2008-11-19 2010-05-20 E. I. Du Pont De Nemours And Company Tetrafluoropropene compositions and uses thereof

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10208235B2 (en) * 2007-11-16 2019-02-19 Honeywell International Inc. Heat transfer compositions, methods and systems
US11352533B2 (en) 2009-12-18 2022-06-07 Arkema France Heat-transfer fluids having reduced flammability
US10308853B2 (en) 2009-12-18 2019-06-04 Arkema France Heat-transfer fluids having reduced flammability
US9488398B2 (en) 2010-05-11 2016-11-08 Arkema France Ternary heat-transfer fluids comprising difluoromethane, pentafluoroethane and tetrafluoropropene
US20130055738A1 (en) * 2010-05-11 2013-03-07 Arkema France Ternary heat-transfer fluids comprising difluoromethane, pentafluoroethane and tetrafluoropropene
US9057010B2 (en) * 2010-05-11 2015-06-16 Arkema France Ternary heat-transfer fluids comprising difluoromethane, pentafluoroethane and tetrafluoropropene
US9359540B2 (en) 2010-05-11 2016-06-07 Arkema France Ternary heat-transfer fluids comprising difluoromethane, pentafluoroethane and tetrafluoropropene
US20130096218A1 (en) * 2010-06-22 2013-04-18 Arkema Inc. Heat transfer compositions of hydrofluorocarbons and a hydrofluoroolefin
US20150033770A1 (en) * 2012-02-13 2015-02-05 E I Du Pont De Nemours And Company Refrigerant mixtures comprising tetrafluoropropene, difluoromethane, pentafluoroethane, and tetrafluoroethane and uses thereof
US9540554B2 (en) * 2012-02-13 2017-01-10 The Chemours Company Fc, Llc Refrigerant mixtures comprising tetrafluoropropene, difluoromethane, pentafluoroethane, and tetrafluoroethane, and uses thereof
US9523027B2 (en) * 2012-02-13 2016-12-20 The Chemours Company Fc, Llc Refrigerant mixtures comprising tetrafluoropropene, difluoromethane, pentafluoroethane, and tetrafluoroethane and uses thereof
US9752069B2 (en) 2012-11-20 2017-09-05 Arkema France Refrigerant composition
US20140137578A1 (en) * 2012-11-21 2014-05-22 Honeywell International Inc. Low gwp heat transfer compositions
US8940180B2 (en) * 2012-11-21 2015-01-27 Honeywell International Inc. Low GWP heat transfer compositions
TWI616522B (zh) * 2012-11-21 2018-03-01 哈尼威爾國際公司 低全球暖化潛勢(gwp)之熱傳導組合物
US20140223927A1 (en) * 2013-02-13 2014-08-14 Honeywell International Inc. Heat transfer compositions and methods
US9982180B2 (en) * 2013-02-13 2018-05-29 Honeywell International Inc. Heat transfer compositions and methods
US20160017199A1 (en) * 2013-03-15 2016-01-21 Honeywell International Inc. Systems for efficient heating and/or cooling and having low climate change impact
US20140264147A1 (en) * 2013-03-15 2014-09-18 Samuel F. Yana Motta Low GWP heat transfer compositions containing difluoromethane, A Fluorinated ethane and 1,3,3,3-tetrafluoropropene
US10113093B2 (en) 2013-09-11 2018-10-30 Arkema France Heat transfer fluids comprising difluoromethane, pentafluoroethane, tetrafluoropropene and optionally propane
US9683156B2 (en) 2013-09-11 2017-06-20 Arkema France Heat transfer fluids comprising difluoromethane, pentafluoroethane, tetrafluoropropene and optionally propane
US9902888B2 (en) 2013-10-10 2018-02-27 The Chemours Company Fc, Llc Compositions comprising difluoromethane, pentafluoroethane, tetrafluoropropene, and tetrafluoroethane and uses thereof
WO2015054110A1 (en) * 2013-10-10 2015-04-16 E. I. Du Pont De Nemours And Company Compositions comprising difluoromethane, pentafluoroethane, tetrafluoroethane and tetrafluoropropene and uses thereof
US10023823B2 (en) 2014-10-09 2018-07-17 Jxtg Nippon Oil & Energy Corporation Refrigerator oil and working fluid composition for refrigerator
US20170131010A1 (en) * 2015-10-07 2017-05-11 Honeywell International Inc. Recharging systems and methods
CN109689832A (zh) * 2016-07-29 2019-04-26 霍尼韦尔国际公司 热传递组合物、方法和系统
US10301521B2 (en) * 2016-07-29 2019-05-28 Honeywell International Inc. Heat transfer methods, systems and compositions
US20190249055A1 (en) * 2016-07-29 2019-08-15 Honeywell International Inc. Heat transfer methods, systems and compositions
US11359122B2 (en) 2017-03-21 2022-06-14 Arkema France Method for heating and/or air-conditioning in a vehicle
US11370948B2 (en) 2017-03-21 2022-06-28 Arkema France Tetrafluoropropene-based composition
US20190177589A1 (en) * 2017-10-06 2019-06-13 Honeywell International Inc. Heat transfer compositions, methods and systems
US10815409B2 (en) * 2017-10-06 2020-10-27 Honeywell International Inc. Heat transfer compositions, methods and systems
US10731066B2 (en) * 2017-11-17 2020-08-04 Honeywell International Inc. Heat transfer compositions, methods and systems
US10767091B2 (en) * 2017-11-30 2020-09-08 Honeywell International Inc. Heat transfer compositions, methods, and systems

Also Published As

Publication number Publication date
WO2010129920A1 (en) 2010-11-11
EP2427527B1 (en) 2015-10-21
MX350817B (es) 2017-09-21
JP5663005B2 (ja) 2015-02-04
JP6150916B2 (ja) 2017-06-21
LT3026092T (lt) 2022-12-12
BRPI1011576A2 (pt) 2018-09-18
EP2427527A1 (en) 2012-03-14
CA2761418A1 (en) 2010-11-11
KR20120025494A (ko) 2012-03-15
PL3026092T3 (pl) 2023-01-23
US9725631B2 (en) 2017-08-08
KR101894574B1 (ko) 2018-09-04
CA3038158A1 (en) 2010-11-11
EP3026092B1 (en) 2022-10-12
EP4019604A1 (en) 2022-06-29
US20150089965A1 (en) 2015-04-02
BRPI1011576A8 (pt) 2019-03-26
ES2559009T3 (es) 2016-02-10
CN106905925A (zh) 2017-06-30
JP2012526182A (ja) 2012-10-25
JP2015083687A (ja) 2015-04-30
JP6337180B2 (ja) 2018-06-06
DK3026092T3 (da) 2022-11-28
KR20170083651A (ko) 2017-07-18
JP2017201016A (ja) 2017-11-09
EP3026092A1 (en) 2016-06-01
KR102017493B1 (ko) 2019-09-03
AU2010245671A1 (en) 2011-12-01
DK2427527T3 (en) 2016-01-25
HUE026605T2 (hu) 2016-06-28
SI3026092T1 (sl) 2023-01-31
KR20180097769A (ko) 2018-08-31
SI2427527T1 (sl) 2016-03-31
PT3026092T (pt) 2022-11-04
JP5890508B2 (ja) 2016-03-22
JP2016153489A (ja) 2016-08-25
PL2427527T3 (pl) 2016-03-31
CA3038158C (en) 2021-08-10
ES2929349T3 (es) 2022-11-28
CA2761418C (en) 2019-06-04
AU2010245671B2 (en) 2015-01-29
MX339549B (es) 2016-05-30
PT2427527E (pt) 2016-02-11
MX2011011802A (es) 2012-01-12
CN106905926A (zh) 2017-06-30
HUE060399T2 (hu) 2023-02-28
CN102803427A (zh) 2012-11-28
CN106905926B (zh) 2020-05-19

Similar Documents

Publication Publication Date Title
US9725631B2 (en) Heat transfer compositions and methods
US9809734B2 (en) Heat transfer compositions and methods
US9982180B2 (en) Heat transfer compositions and methods
AU2016204521B2 (en) Heat transfer compositions and methods
US20120119136A1 (en) Low gwp heat transfer compositions
US20160024361A1 (en) Heat transfer compositions and methods
AU2012250863A1 (en) Heat transfer compositions and methods
US20140191153A1 (en) Low gwp heat transfer compositions
AU2015202188B2 (en) Heat transfer compositions and methods
AU2015202192A1 (en) Heat transfer compositions and methods

Legal Events

Date Code Title Description
AS Assignment

Owner name: HONEYWELL INTERNATIONAL INC., NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YANA MOTTA, SAMUEL F.;SPATZ, MARK W.;VOGL, RONALD P.;AND OTHERS;REEL/FRAME:026285/0934

Effective date: 20110503

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION