US20110172315A1 - Composition for cryopreservation of cells and tissues - Google Patents

Composition for cryopreservation of cells and tissues Download PDF

Info

Publication number
US20110172315A1
US20110172315A1 US13/001,237 US200913001237A US2011172315A1 US 20110172315 A1 US20110172315 A1 US 20110172315A1 US 200913001237 A US200913001237 A US 200913001237A US 2011172315 A1 US2011172315 A1 US 2011172315A1
Authority
US
United States
Prior art keywords
poly
polymer compound
lysine
cells
groups
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/001,237
Inventor
Kazuaki Matsumura
Hajime Sugai
Suong-Hyu Hyon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bio Verde Inc
Original Assignee
Bio Verde Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bio Verde Inc filed Critical Bio Verde Inc
Assigned to BIO VERDE INC. reassignment BIO VERDE INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SUGAI, HAJIME, HYON, SUONG-HYU, MATSUMURA, KAZUAKI
Publication of US20110172315A1 publication Critical patent/US20110172315A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N1/00Preservation of bodies of humans or animals, or parts thereof
    • A01N1/02Preservation of living parts
    • A01N1/0205Chemical aspects
    • A01N1/021Preservation or perfusion media, liquids, solids or gases used in the preservation of cells, tissue, organs or bodily fluids
    • A01N1/0221Freeze-process protecting agents, i.e. substances protecting cells from effects of the physical process, e.g. cryoprotectants, osmolarity regulators like oncotic agents
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N1/00Preservation of bodies of humans or animals, or parts thereof
    • A01N1/02Preservation of living parts
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/36Freezing; Subsequent thawing; Cooling
    • A23L3/37Freezing; Subsequent thawing; Cooling with addition of or treatment with chemicals
    • A23L3/375Freezing; Subsequent thawing; Cooling with addition of or treatment with chemicals with direct contact between the food and the chemical, e.g. liquid nitrogen, at cryogenic temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/19Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles lyophilised, i.e. freeze-dried, solutions or dispersions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/04Plant cells or tissues
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers

Definitions

  • the invention relates to an agent for cryopreservation of human and animal cells and tissues, which is able to alleviate damages or injuries on the cells and tissues at the time of freezing and thawing the same.
  • This cryopreservation technology is expected to be highly demanded in transplantation medicine where living tissues such as the skin, cornea, pancreatic islets and heart valves need to be cryropreserved, and in regenarative medicine where cells such as hematopoietic stem cells, mesenchymal stem cells, embryonic stem cells, iPS cells (induced pluripotent stem cell) or the like need to be cryopreserved.
  • Cryopreservation techniques at temperatures at or below 0° C. are routinely used for long-time preservation of water-bearing or aqueous materials such as cells and tissues of plants and animals as well as foods. It is known that upon freezing these materials, ice crystals form, resulting uneven concentrations of solutes and contaminants excluded by water molecules, called ‘freeze concentration.’
  • cryopreservation media various compounds of low molecular weights can be added to the cryopreservation media.
  • DMSO dimethylsulfoxide
  • glycerol glycerol or the like is added as a freeze-protecting agent to minimize the damages on the cells and tissues, which are otherwise caused by crystallized water in the cells on course of cryopreservation.
  • cells are generally suspended in a physiological solution, a culture medium which contains 5-20% cryopreservation agents such as DMSO, glycerin, ethyleneglycol and propylene glycol in a cryotube and preserved at cryogenic temperatures, ⁇ 80° C. or ⁇ 196° C.
  • cryopreservation agents such as DMSO, glycerin, ethyleneglycol and propylene glycol
  • DMSO is the most effective and frequently adopted, but it is physiologically toxic and known to cause high blood pressure, nausea and vomiting when the cells are transfused to a recipient. Further, the toxicity of DMSO tends to debilitate the cells' survival rates and/or functions after the thawed cells are cultured or transfused into a recipient's body.
  • Glycerin among other agents has lower cryopreservation effects and requires freezing only after keeping cell suspensions at room temperatures or non-freezing low temperatures, or accurately controlling the decreasing temperatures by the use of a program freezer or the like. Moreover, such cryopreservation agents are detrimental to the thawed cells because of their low protective effects on cell survival and functions.
  • cryopreservation of stem cells such as embryonic stem cells or iPS cells or reproductive cells such as sperms, unfertilized or fertilized eggs
  • a rapid freezing or vitrifaction is performed with high concentrations of cryoprotective agents such as DMSO, acetamide, propylene glycol and polyethylene glycol.
  • cryoprotective agents such as DMSO, acetamide, propylene glycol and polyethylene glycol.
  • the vitrifaction rapidly renders intracellular water into a vitrified state to avoid injuries or damages on cells caused by the formation of ice crystals. Nevertheless, it is very likely that the cells or the tissues are damaged by the high toxicity of the dense cryopreservation agents; thus, this technique is adopted in only some limited occasions.
  • additives such as sodium chloride or saccharides, glucose and trehalose, are used.
  • Other additives such as antifreeze proteins or antifreeze glycoproteins are also used, which are made from organisms such as plants, fishes and insects (JP2005-126533A (Japan's patent application publication No. 2005-126533) and JP2003-250506A).
  • water is generated on either one of electrodes by an electrochemical reaction.
  • water is generated on a cathode electrode; and portion of generated water runs to the anodal side through an electrolyte film.
  • Water would also arise from the condensation of the vapor in a gas going into the cell. These types of water potentially obstruct the gas flow, deplete the supply of the gas itself and eventually decrease a battery performance.
  • hydrophilic coating materials such as proteins thereby limiting the water condensation, but the liquid water even in such a condition is occasionally frozen at low temperatures causing other complications.
  • cryopreservation methods including a rapid freezing technique cannot preserve the complete structural integrity of cells or tissues after freezing and thawing; therefore, new cryopreservation materials with low toxicity are greatly demanded.
  • DMSO is known to induce differentiation of cells such as HL-60 cells; thus, it is not suited for certain kinds of cells.
  • Anti-freeze proteins and glycoproteins have excellent preserving capabilities, but are too costly (JPY1,300,000YEN/g) to be used for food materials, not to mention, for cells and tissues.
  • Present invention is to provide a cryopreservation agent having excellent protective effects and low toxicity for cells or tissues, thus to replace DMSO.
  • the present invention is also to provide an inexpensive and safe cryopreservation agent having a property similar to that of antifreeze proteins and glycoproteins to prevent freeze condensation, thus to enable cryopreservation and lyophilization of materials such as foods and pharmaceutical products.
  • a cryopreservation liquid according to the invention comprises: substantially 1-50% polyamines having side-chain amino groups; and a physiological solution such as a saline or culture medium.
  • cryopreservation liquid is devoid of protein ingredients such as fetal bovine serum and albumin, therefore, is free of worry of infectious diseases and is not affected by lot-to-lot variations that are occasionally found in pharmaceutical products made from biological materials.
  • Polyamines having side-chain amino groups such as ⁇ -poly-L-lysine and polyallylamine, have an affinity with cell membranes due to the side-chain amino groups, thus, is considered to have cell-protecting effects.
  • Polymer compounds having abundant carboxyl groups also have high affinity with water, thus, would help remove intracellular water to the surrounding medium on course of freezing and thereby are expected to have cryopreservation effects.
  • Polymer compounds having both of the amino and carboxyl groups in an adequate ratio are expected to have further improved cryopreservation effects on the cells at a time of freezing.
  • the invention is to provide a cryopreservation liquid having high effectiveness and high safety, by earnestly investigating conditions or requirements for polymer compounds having cationic groups such as side-chain amino groups, such as poly amino acids, or for polymer compounds having anionic groups such as carboxylic groups as well as for polymer compounds having both of cationic and anionic groups.
  • a cryopreservation agent according to the invention is less toxic compared to DMSO and requires no washing after thawing of cells or tissues. Thawed cells or tissues then may directly be suspended in a culture medium to immediately start a culturing process.
  • cryopreservation of cultured cells for experimental use would be made in a stable manner; and moreover, expected to be enabled is preservation by keeping cell functions, of functional cells such as pancreatic islets and stem cells such as ES cells, mesenchymal stem cells and iPS cells. Thus, efficiency in transplantation of these cells is expected to be improved.
  • non-freezing poly-amino acids By use of non-freezing poly-amino acids according to the invention, deactivation of physiological substances is able to be curbed on course of freezing of water-bearing materials having the physiological substances. Moreover, by use of the non-freezing poly-amino acids, achievable is uniform diffusion of ingredients other than water molecules on course of obtaining frozen products or freeze-dried products by freezing or freeze-drying of the water-bearing or aqueous materials.
  • the frozen product may be Ice cream, sherbet, other frozen sweet, ices for displaying, frozen soup or the like to name a few; and the frozen-dry product may be freeze-dried food or pharmaceutical products, in a powder form, to name a few.
  • Non-freezing agents according to the invention is also applicable in industrial-use fuel cells as to curb deterioration of their starting-up performance due to freezing of liquid.
  • FIG. 1 is a graph showing a relationship between the percentage of blocked amino groups in ⁇ -poly-L-lysine and the percentage of viable L929 cells cryopreserved by using ⁇ -poly-L-lysine whose amino groups were partially blocked by succinic anhydride;
  • FIG. 2 is a graph showing a relationship between the concentration of the partially-blocked poly-L-lysine and the percentage of viable L929 cells when cryopreserved by using ⁇ -poly-L-lysine (PLL succinic anhydride 63%) that has been added with succinic anhydride in a molar amount tantamount to 63% of amino groups of the ⁇ -poly-L-lysine;
  • FIG. 3-1 is a microscopic image showing a culture of L929 cells, which have been frozen in 10% DMSO/fetal bovine serum, then thawed and immediately cultured in a plate for 24 hours without wash or dilution;
  • FIG. 3-2 is a microscopic image showing a culture of L929 cells, which have been frozen in 7.5% solution of PLL with 63% succinic anhydride, then thawed and immediately transferred onto a plate, for 24 hours without wash or dilution;
  • FIG. 4 is a set of graphs showing a rat mesenchymal stem cell (RMSC) frozen in 7.5% solution of PLL with 63% succinic anhydride and 10% DMSO/fetal bovine serum and evaluated in terms of their pluripotency to be differentiated into bones, fat bodies, and cartilages. Unfrozen and undifferentiated cells are included for comparison;
  • RMSC rat mesenchymal stem cell
  • FIG. 5 is a series of microscopic images showing the prevention of ice re-crystallization by adding 0.1-15% PLL ( ⁇ -poly-L-lysine) (PLL succinic anhydride 63%) in a 30% sucrose aqueous solution.
  • PLL ⁇ -poly-L-lysine
  • FIG. 6 is a microscopic image showing a crystal structure of in the frozen 5% solution of PLL ( ⁇ -poly-L-lysine) without succinic anhydride, and 5% solution of PLL with 63% succinic anhydride).
  • FIG. 7 is photograph (1) of freeze-dried agar gels.
  • the gel on the left is additive-free, and one on the right has 5% PLL with 63% succinic anhydride.
  • FIG. 8 is photograph (2) of frozen-thawed agar gels.
  • concentrations of PLL with 63% succinic anhydride are 0% (left), 1% (middle) and 3% (right).
  • a cryopreservation liquid according to the invention is obtained by dissolving a polymer such as poly-lysine in physiological solutions by 1-50 w/w %; preferably by 2-20 w/w %, particularly preferably by 3-15w/w %, and more preferably by 5-10 w/w %.
  • the physiological solutions to be used are a physiological saline as well as culture media for culturing various cells and tissues.
  • Dulbecco-modified eagle MEM culture medium may be one of the preferable culture media.
  • polyallylamines may be used.
  • a compound(s) to be used is/are selected from other polyamines such as amino-group-introduced polyshaccharides, and poly-amino acids such as poly-arginine, poly-glutamic acid and poly-aspartic acid; also a polysaccharide compound(s) that is/are selected from dextran, dextrin, pullulan and chitosan as well as polycarboxylic acid such as polyacrylic acid.
  • especially preferable is a polymer having a repeating unit that has both amino and carboxyl groups.
  • Poly-lysine to be used can be either ⁇ -poly-L-lysine or ⁇ -poly-D-lysine or ⁇ -poly-L-lysine.
  • Cryoprotectant polymers have molecular weights between 100 and 100,000. The most preferable polymers fall into a group of ⁇ -poly-L-lysine routinely used as food additives.
  • the average molecular weights or the average polymerization degrees are easily measurable by sodium dodecyl sulfat ⁇ -polyacrylamide gel electrophoresis (SDS-PAGE), by using an electrophoresis apparatus and AE-6920V type densitograph that are provided by Atto Co., Ltd., for example. Standard protein markers are used for the measurement.
  • the poly-lysine may be heat-treated to increase its molecular weights greater than 30,000 and used as the polymer compound. However, the molecular weight range mentioned above is preferable due to the increasing viscosity with molecular weight.
  • polystyrene resin Because the poly-lysine having a free terminal carboxyl group has side-chain primary amino groups, their partial amidation by dicarboxylic anhydrides greatly gives excellent miscibility and solubilization performance described later.
  • Other particularly favorable polymer compounds also adoptable according to the invention are polyallylamines with average molecular weights of 1000-1,000,000, preferably 1000-20,000.
  • such adoptable polymers are: aqueous solution of the allylamine polymer (PAA-03 of Nitto Boseki Co., Ltd.) added with acetic anhydride or acetic acid; and the partially-methoxy-carbonylated allylamine polymer (PAA-U5000 of Nitto Boseki Co., Ltd.).
  • the allylamine polymer in same manner with the poly-lysine, has as side-chain groups primary amino groups only, but density of the primary amino group per unit molecular weight is larger in the allylamine polymer than in the poly-lysine. And, when the allylamine is partially carboxylated, obtained polymer compound is considered to act in same manner with partially-carboxylated poly-lysine mentioned later.
  • the amino groups of the polyamine are partially blocked by being carboxylated or acetylated with carboxylic acid anhydride(s).
  • This blockage is done by the carboxylation or acetylation of the amino groups to the degrees of preferably 50-99 mol %, particularly 50-93 mol %, more preferably 50-90 mol %, still more preferably 55-80 mol %, and the most preferably 58-76 mol %.
  • About 50% of the amino group would be blocked by being reacted with 52-53 mol % of anhydrous carboxylic acid on basis of molar amount of the amino groups in the polyamine.
  • Carboxylic acid anhydrides adoptable herein include acetic anhydride, citric anhydride, succinic anhydride, glutaric anhydride, malic anhydride, fumaric anhydride and maleic anhydride. Among these, succinic anhydride and acetic anhydride are particularly preferred.
  • polyamine with amino groups not blocked as free may also be used; thus adoptable are the degrees of carboxylation and acetylation throughout a range of 0-100 mol/mol %.
  • polycarboxylic acid in which a part of the carboxyl groups is aminated may be used. More specifically, polycarboxylic acid may be partially aminated by reacting its carboxyl group with compounds such as diamine, triamine and the polyamine.
  • Adoptable diamines are ethylenediamine and hydrazides such as adipodihydrazide. Reaction of these aminocompounds with carboxylic acid is by way of addition reaction with carbodiimide.
  • Cryopreservation liquid according to the invention may also contain 0.3-15 w/w %, or 0.1-50 w/w % in particular, of conventional cryoprotectant materials such as DMSO, glycerol, ethyleneglycol, trehalose or sucrose. Because cells are subject to damages caused by the oxidation stress during freezing and thawing, the addition of anti-oxidants to the cryoprotectant is expected to improve its preserving effects. For examples, anti-oxidants such as catalase, peroxidase, superoxide dismutase, vitamin E, vitamin C, polyphenols such as epigallocatechin gallate or glutathione may be used.
  • anti-oxidants such as catalase, peroxidase, superoxide dismutase, vitamin E, vitamin C, polyphenols such as epigallocatechin gallate or glutathione may be used.
  • the osmotic pressure of the cryopreservation agent according to the invention is 200-1000 mOsm/kg, more preferably is 300-700 mOsm/kg, and further preferably 400-600 mOsm/kg.
  • the cryopreservation agent according to the invention is applicable to the preservation of not only cells but also tissues. Examples of such cells and tissues to be cryopreserved by the cryopreservation agent are cultured cell lines, fertilized eggs of animal and human origin.
  • sperm cells embryonic stem cells, iPS cells, mesenchymal stem cells, haemopoietic stem cells, neuronal stem cells, umbilical cord blood stem cells, hepatocytes, nerve cells, cardiomyocytes, vascular endothelial cells, vascular smooth muscle cells and blood cells.
  • Tissues and organs that are able to be preserved by the cryopreservation agent according to this invention are skins, nerves, blood vessels, cartilages, cornea, livers, kidneys, hearts and pancreatic islets
  • the polymer compounds mentioned above are also applicable to production of frozen or freeze-dried foods or pharmaceuticals by adding the polymer compounds to aqueous or water-bearing materials for the foods or the pharmaceuticals to avoid freeze concentration and to thereby obtain frozen or freeze-dried products, in which ingredients are homogeneously diffused.
  • poly-lysine having partially blocked amino groups other poly-amino acids or aminated poly-saccharides are added to fore-mentioned water-bearing or aqueous materials for ice cream or freeze-dried foods so that concentration of the polymer compound becomes 1-15%. In this way, freeze concentration is curbed.
  • succinic anhydride is used for blocking of the polymer groups, excellent effect of curbing the freeze concentration is obtained when succinic anhydride in a molar amount that matches 50-85 mol % of the amino groups is reacted to the polymer, where actual amino-groups-blockage rate is in a range of about 48-80 mol %).
  • the polymer compounds mentioned in the above are applicable in industrial-use fuel cells so that the polymer compounds are added in the fuel cells to curb deterioration of their starting-up performance that may in otherwise caused by freezing of liquid at a time of starting up.
  • adoptable are polymer compounds formed of units having amino groups, which are selected from a group consisting of ⁇ -poly-L-lysine, ⁇ -poly-L-lysine, polyarginine, other polyamino acids, aminated polysaccharides and polyallyamines; where amino groups of the polymer compound are blocked by carboxylation or acetylation by being reacted with succinic anhydride, acetic anhydride or other carboxylic acid anhydirides; and the polymer compounds may be added to material of surface layer exposed to inside of the fuel cells.
  • the polymer compounds may be incorporated into a material for coating layer, or UV-curable resin liquid in particular, that forms a surface of separator or solid electrolyte film, by 1-15 w
  • a 25% aqueous solution of ⁇ -poly-L-lysine (made by Chisso Corporation; Molecular weight: 4000) was used; and a 20% aqueous solution of polyarylamine (Nittobo, molecular weight 5000 [PAA-05L], 15000 [PAA-L], 60000 [PAA-H]) was used.
  • Each of the solution is added with 0-100 mol % succinic anhydride (Wako Pure Chemical Industries) on basis of amino groups of the polyamine polymer to obtain poly-amines having blocked amino groups with different amino-groups-blockage rates.
  • Each poly-amine solution was added to Dulbecco's Modified Eagle Medium (DMEM, Sigma Aldrich) by 0-10 w/w %.
  • DMEM Dulbecco's Modified Eagle Medium
  • pH of the medium was adjusted to 7.0-8.0 with 1N hydrochloric acid or sodium hydroxide solution. Further, the osmotic pressures of the media were measured by a vapor pressure osmometer (Type 5520, Wescor) and adjusted with 10% sodium chloride aqueous solution.
  • cryovial In a cryovial (Simport Plastics), 1 ⁇ 10 6 cells of each of cell species of L929, MG63, Caco-2 (Japan Sumitomo Pharmaceuticals), Colon26, HT1080, B16F1 and KB cell (ATCC) are suspended in 1 mL of each cryopresevation liquid; and then were frozen in a ⁇ 80° C. freezer. After one week, the cells were quickly thawed in a 37° C. water bath, washed in DMEM and subjected to cell mortality test with trypan blue dye. The thawed cells were then seeded in 6-well culture plates at 1 ⁇ 10 5 cells/well, and cell survival rate was evaluated with trypan blue dye after 6 and 24 hours of culturing. A commonly-used cryopreservative, which is 10% DMSO in fetal bovine serum (FBS), was used as a cryopresercation liquid of comparative example.
  • FBS fetal bovine serum
  • cryopreservation liquid in cryopreserving L929 cells was each 7.5% solution of the poly-lysine (PLL) having been modified by adding 50% or more molar amount of succinic anhydride on basis of amino groups; and then achieved was a cell viability almost same or higher than that of the comparative example using the DMSO solution.
  • a carboxylated poly-lysine (PLLs) having been modified by adding 100% molar amount of succinic anhydride was revealed to have 93% amino-groups-blockage percentage as a result of quantitative measurement of remaining amino groups by ninhydrin and TNBS method.
  • the poly-lysines (PLLs) having been modified by adding 10 mol %, 27 mol %, 45 mol %, 52 mol %, 63 mol % and 79 mol % molar amount of succinic anhydride on basis of amino groups of the poly-lysine were respectively revealed to have 10%, 25%, 43%, 50%, 60% and 76% of amino-groups-blockage percentage. As seen from FIG.
  • solutions of the poly-lysine having amino-groups-blockage percentage in a range of 50-93% are revealed to have cryopreservation effect; and particularly high cryopreservation effects were attained by the solutions of the poly-lysine having a 60% of blockage percentage (having been added with 63 mol % of succinic anhydride) and a 76% blockage percentage (having been added with 79 mol % of succinic anhydride).
  • FIG. 2 shows a relationship between cell survival rate of L929 cells on course of cryopreservation and the concentration of partially-blocked ⁇ -poly-L-lysine; which is modified by adding 63% molar amount of succinic anhydride on basis of amino groups, and which is denoted as “PLL(0.63)” in the Figures and hereinafter referred to as “PLL succinic anhydride 63%” throughout the Description.
  • PLL(0.63) succinic anhydride 63%
  • a range exhibiting best results corresponds to osmotic pressures in a range of 400-600 mOsm/kg as revealed when osmotic pressures of the preservation liquid are obtained.
  • best preservation effect was obtained when the osmotic pressures are in a range of 400-600 mOsm/kg.
  • Table 1 shows cryopreservation effect for other species of cells when the cells are cryopreserved in a 7.5% solution of the PLL succinic anhydride 63%.
  • the cell survival rate As known from the Table 1, attained for all the cell species are the cell survival rate almost same with or higher than that obtained by the DMSO solution (10% DMSO/fetal bovine serum).
  • the polyallylamine with partially-blocked amino group produced similar results although data are not shown.
  • Toxicity test was performed on L929 cells.
  • the cells having been suspended in a culture medium of DMEM with 10% fetal bovine serum are seeded in 96-well plates (1.0 ⁇ 10 3 cells/well) and cultured at 37° C. for 72 hours. Thereafter, each of ⁇ -poly-L-lysine and the modified poly-lysines having been added with varying concentrations of succinic anhydride was added to the culture media to attain final concentrations of 0-10%. Then, after the culture for 48 hours, concentration values at 50% cell growth inhibition were measured as IC 50 by MTT assay, relative to cell growth in the culture medium not added with the polymer.
  • Table 2 shows the results; and a preservation liquid of comparative example is the DMSO solution (10% DMSO/fetal bovine serum).
  • a preservation liquid of comparative example is the DMSO solution (10% DMSO/fetal bovine serum).
  • IC 50 values for the PLLs succinc anhydride 58%, 63% and 79% were 2-3 times of that for the DMSO solution; this indicates that the toxicity of the poly-lysine is 1 ⁇ 2-1 ⁇ 3 of that of the cryopreservation liquids having been generally used.
  • the IC 50 values are largest for the PLL succinic anhydride 63% and the PLL succinic anhydride 58%, which are best polymer compounds for high cell survival rate among data shown in FIG. 1 .
  • the cryopreservation liquid containing the L929 cells was frozen, thawed and directly seeded in 12-well plates and cultured at 37° C. for 24 hours.
  • the cells were cryopreserved in the 7.5% solution of the PLL succinic anhydride 63% and thawed as in EXAMPLE 2, except that no dilution nor washing was made for the liquid or the cells, and the liquid containing the cells was directly transferred to the plates for culturing.
  • the observation of cells has revealed following. As shown in FIG. 3-1 , the cells having been cryopreserved in the DMSO solution (10° A)DMSO/fetal bovine serum) are apparently round in shape and dead; and as shown in FIG.
  • the cells having been cryopreserved in the cryopreservation liquids according to the invention have attached to the plates and survived well.
  • a test result of similarly low toxicity was obtained for the polyallylamine partially blocked at amino group, that is, allylamine polymer of molecular weight of 5000, which has been reacted with 63-85 mol % of succinic anhydride on basis of molar amount of amino groups.
  • Rat mesenchymal stem cells were cryopreserved.
  • Preservation liquid of the comparative example is 10% DMSO fetal bovine serum; and the preservation liquid used in the example is 7.5% solution of the PLL succinic anhydride 63%, which is denoted as 7.5% PLL (0.63) in FIG. 4 .
  • Table 3 shows that the survival rates of rat mesenchymal stem cells (RMSC) after thawing were almost same for the cryopreservation liquid according to the invention and the DMSO solution.
  • DMEM added with 7.5% polyallylamine partially blocked at amino group (allylamine polymer of molecular weight of 5000, to which 63-85 mol % succinic anhydride equivalent to the amino group content was reacted) exhibited similarly high cell survival rates.
  • the cells were cryopreserved and thawed as described in Example 2; and they were induced to differentiate into bone cells, fat cells and chondrocytes to evaluate their differentiation potentials.
  • FIG. 4 shows that the cells' multipotency was maintained to be almost same with that of the cells not frozen and with that of the cells cryopreserved and thawed in the DMSO solution.
  • Image data of colored microphotograph images were subjected to color separation into three primary colors of red, green and blue; and only the red color part is shown in FIG. 4 .
  • the red color in the color images is translated to white color
  • blue color in the color images is translated to black.
  • the differentiation potential to bone cells was evaluated by evaluating of depositing of calcium by way of staining with alizarin red S; and resultantly, red staining was made for each of the samples. As seen from top-rank images in FIG. 4 , all the images of the differentiated cells are presented as similarly dilute or low-gray-scale monochrome patterns as compared with that of undifferentiated one. The dilute monochrome patterns indicate that the colored microphotograph images have a reddish tint over their whole areas. Meanwhile, the cells cryopreserved in each of the cryopreservation liquids show alkaline phosphatase activity as high as those not frozen. Differentiation potential into fat cells was evaluated by staining of fat droplets with oil red O.
  • the fat droplets stained as red were observed for microphotograph images of the cells cryopreserved in each of the cryopreservation liquids.
  • the fat droplets appear in middle-rank images of FIG. 4 , as circular or ellipsoidal patterns having low gray scales and diameter of dozens of micrometers.
  • Differentiation potential into cartilage cells was evaluated by staining of proteoglycans in cell agregates, with Alcyan blue. Resultantly, the proteoglycans stained to be blue were observed for microphotograph images of the cells cryopreserved in each of the cryopreservation liquids, in same manner with that of the cells not frozen.
  • the proteoglycans appear in bottom-rank images of FIG. 4 , as deep black portions.
  • DMEM When used as a preservation liquid is DMEM added by 7.5% with the polyallylamine partially blocked at amino group (allylamine polymer of molecular weight of 5000, to which 63-85 mol % succinic anhydride equivalent to the amino group content was reacted); then differentiation potentials of the cells were maintained even after the freezing in similar manner as the above.
  • Umbilical cord blood was collected from human umbilical cord by a 7 mL plastic vacuum blood sampling tube (Venoject II, Terumo Corporation) loaded with 10.5 mg anticoagulant (EDTA2Na). Subsequently, the cord blood, into which the PLL succinic anhydride 63% was added so that its concentration becomes 7.5% as denoted as 7.5% PLL(0.63), was cryopreserved in a freezer at ⁇ 80° C. for three months. Then the cord blood was quickly thawed in a water bath at 37° C., and a sample of cord blood without dilution was analyzed with respect to the expression of the surface marker, CD34, by flow cytometry.
  • the number of hematopoietic cells expressing CD34 was measured according to the standard method described in the literature (A. Higuchi et al., J. Biomed. Mater. Res., 68A, the fixed method of 34-42 (2004)). Thus the number of CD34-expressing hematopoietic cells was estimated according to the protocol in the manual (International Hemotherapeutics and Transplantation Society ISHAGE guideline) using Stem-Kit (Beckman-Coulter Corporation).
  • cryopreservation liquid according to an embodiment of the invention is remarkably excellent in preserving effects on cord blood.
  • antifreeze protein activities or capabilities of curbing recrystallization of ice.
  • Antifreeze proteins are known to have various special activities are known and to cause thermal hysteresis, curbing of recrystallization growth of ice, and morphological alteration of ice crystal to hexagonal one or bipyramidal one. Please see JP2005-126533A, JP2003-250506A and JP2008-041596A.
  • FIG. 5 shows results where the non-modified PLL and modified PLLs are added to become 5 weight percentage in the solutions whereas 1% through 15% concentration of the PLL succinic anhydride 50% (PLL(0.50)) through the PLL succinic anhydride 84% (PLL(0.84)) were revealed to be effective in curbing of the recrystallization of ice.
  • Agar powder (Naraitesque Co.; 1st grade reagent) was added with the PLL succinic anhydride 63%; and then 5% solution was prepared. This solution is added with red ink, putted into a plastic bottle and then frozen at ⁇ 20° C.; and subsequently thawed at a room temperature. Obtained result is shown in FIG. 7 ; right-hand-side gel was obtained with 5% addition of the PLL succinic anhydride; and left-hand-side gel was obtained with no addition.
  • the left-hand-side gel on the view shows clear division between a red-colored opaque part on view's top-side half and a translucent part on view's bottom-side half, through which a mesh pattern of paper towel appears and which nevertheless induces a shadow on view's top-right neighbor.
  • the right-hand-side gel obtained with addition of the PLL succinic anhydride shows a red color evenly throughout whole of the gel; and thus indicates that freeze concentration has been curbed.
  • Agar powder (Naraitesque Co.; 1st grade reagent) was added with the PLL succinic anhydride 63%, actual amino-groups blockage ratio of which is 0.6, by 0%, 1% and 3%. Solution was putted into a plastic bottle and then frozen at ⁇ 20° C.; and subsequently freeze-dried by vacuuming at 1 Torr for 2-3 days to obtain a freeze-dried agar gel. Photograph image of obtained freeze-dried product is shown in FIG. 8 .
  • a freeze-dried agar gel obtained with 0% addition of the PLL succinic anhydride on left-hand side of the view shows a volume shrinkage to about one third of the original whereas freeze-dried agar gels obtained with 1% and 3% addition of the PLL succinic anhydride (center and right-hand side of the view) show only a small extent of volume shrinkage.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental Sciences (AREA)
  • Dentistry (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Botany (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Inorganic Chemistry (AREA)
  • Freezing, Cooling And Drying Of Foods (AREA)
  • Medicinal Preparation (AREA)

Abstract

A composition for cryopreservation of cells and tissues of human and other animals in a safe manner without using toxic substances such as DMSO, as well as for freeze preserving or freeze-drying of foods and pharmaceuticals. In examples, ε-poly-L-lysine is reacted with succinic anhydride so that 60% or more of amino groups are blocked; and, thus obtained polymer compound is added to Dulbecco-modified eagle MEM culture medium (DMEM) on market sale to form a cryopreservation liquid. In examples for foods or pharmaceuticals, the ε-poly-L-lysine derivative was added by 0.5-10 wt % to curb freeze concentration.

Description

    FIELD OF THE INVENTION
  • The invention relates to an agent for cryopreservation of human and animal cells and tissues, which is able to alleviate damages or injuries on the cells and tissues at the time of freezing and thawing the same. This cryopreservation technology is expected to be highly demanded in transplantation medicine where living tissues such as the skin, cornea, pancreatic islets and heart valves need to be cryropreserved, and in regenarative medicine where cells such as hematopoietic stem cells, mesenchymal stem cells, embryonic stem cells, iPS cells (induced pluripotent stem cell) or the like need to be cryopreserved.
  • BACKGROUND OF THE INVENTION
  • Cryopreservation techniques at temperatures at or below 0° C. are routinely used for long-time preservation of water-bearing or aqueous materials such as cells and tissues of plants and animals as well as foods. It is known that upon freezing these materials, ice crystals form, resulting uneven concentrations of solutes and contaminants excluded by water molecules, called ‘freeze concentration.’
  • To prevent freeze concentration, various compounds of low molecular weights can be added to the cryopreservation media. For example, dimethylsulfoxide (DMSO), glycerol or the like is added as a freeze-protecting agent to minimize the damages on the cells and tissues, which are otherwise caused by crystallized water in the cells on course of cryopreservation.
  • Thus, cells are generally suspended in a physiological solution, a culture medium which contains 5-20% cryopreservation agents such as DMSO, glycerin, ethyleneglycol and propylene glycol in a cryotube and preserved at cryogenic temperatures, −80° C. or −196° C.
  • Among these agents, DMSO is the most effective and frequently adopted, but it is physiologically toxic and known to cause high blood pressure, nausea and vomiting when the cells are transfused to a recipient. Further, the toxicity of DMSO tends to debilitate the cells' survival rates and/or functions after the thawed cells are cultured or transfused into a recipient's body.
  • Glycerin among other agents has lower cryopreservation effects and requires freezing only after keeping cell suspensions at room temperatures or non-freezing low temperatures, or accurately controlling the decreasing temperatures by the use of a program freezer or the like. Moreover, such cryopreservation agents are detrimental to the thawed cells because of their low protective effects on cell survival and functions.
  • In the cryopreservation of stem cells such as embryonic stem cells or iPS cells or reproductive cells such as sperms, unfertilized or fertilized eggs, a rapid freezing or vitrifaction is performed with high concentrations of cryoprotective agents such as DMSO, acetamide, propylene glycol and polyethylene glycol. The vitrifaction rapidly renders intracellular water into a vitrified state to avoid injuries or damages on cells caused by the formation of ice crystals. Nevertheless, it is very likely that the cells or the tissues are damaged by the high toxicity of the dense cryopreservation agents; thus, this technique is adopted in only some limited occasions.
  • In manufacturing pharmaceutical products, foods and ice sculptures for displaying purposes, additives such as sodium chloride or saccharides, glucose and trehalose, are used. Other additives such as antifreeze proteins or antifreeze glycoproteins are also used, which are made from organisms such as plants, fishes and insects (JP2005-126533A (Japan's patent application publication No. 2005-126533) and JP2003-250506A).
  • In a fuel cell, water is generated on either one of electrodes by an electrochemical reaction. For example, in a proton-exchange membrane fuel cell, water is generated on a cathode electrode; and portion of generated water runs to the anodal side through an electrolyte film. Water would also arise from the condensation of the vapor in a gas going into the cell. These types of water potentially obstruct the gas flow, deplete the supply of the gas itself and eventually decrease a battery performance. These complications can be prevented by treating the surface of a gas separator with hydrophilic coating materials such as proteins thereby limiting the water condensation, but the liquid water even in such a condition is occasionally frozen at low temperatures causing other complications. To circumvent this problem, polymer electrolytes with the antifreeze proteins are added to the resin layer, which is then to coat the surface of a polymer electrolyte film (Adler et al. listed in below), but this method has a problem of high cost.
  • PRIOR-ART DOCUMENTS Patent Documents
    • 1. JP1998(H10)-511402A; 2. Japan's issued Patent No. 3694730; 3. JP2005-126533A; 4. JP2003-250506A; and 5. JP2008-041596A.
    Non-Patent Documents
    • 1. Lovelock J E and Bishop M W H Nature 183:1394-1395, 1959
    • 2. Polge C, Smith A U, 164:666 Parkes A S, Nature-666, 1949 Nonpatent Literature
    • 3. Miszta-Lane H, Gill P, Mirbolooki M, Lakey J R T. Cell Presery Technol 5,16-24, 2007
    • 4. Ha S Y, Jee B C, Suh C S, Kim H S, Oh S K, Kim S H, Moon S Y. Human Reproduction 20,1779-1786, 2005
    • 5. Yu H N, Lee Y R, Noh E M, et al. INT J. HEMATOL, 87: 189-194; 2008
    • 6. Adler S, Pellozzer C, Paparella M, Hartung T, Bremer S. Toxicol in Vitro 20 265-271, 2006
    SUMMARY OF THE INVENTION
  • Conventional cryopreservation methods including a rapid freezing technique cannot preserve the complete structural integrity of cells or tissues after freezing and thawing; therefore, new cryopreservation materials with low toxicity are greatly demanded. Moreover, DMSO is known to induce differentiation of cells such as HL-60 cells; thus, it is not suited for certain kinds of cells. Anti-freeze proteins and glycoproteins have excellent preserving capabilities, but are too costly (JPY1,300,000YEN/g) to be used for food materials, not to mention, for cells and tissues.
  • Present invention is to provide a cryopreservation agent having excellent protective effects and low toxicity for cells or tissues, thus to replace DMSO. The present invention is also to provide an inexpensive and safe cryopreservation agent having a property similar to that of antifreeze proteins and glycoproteins to prevent freeze condensation, thus to enable cryopreservation and lyophilization of materials such as foods and pharmaceutical products.
  • A cryopreservation liquid according to the invention comprises: substantially 1-50% polyamines having side-chain amino groups; and a physiological solution such as a saline or culture medium.
  • Various animal cells including human cells, and plant cells are able to be preserved with keeping their survival rate and bioactivity are without using highly toxic DMSO or other conventional cryopreservation agent when the cells are immersed in the cryopreservation liquid and then cryopreserved at −80° C. or under cooling with liquid or vapor nitrogen. Because conventional cryopreservation agents such as DMSO, glycerin, ethylene glycol or the like are not used, toxicity upon the cells are kept to be low and the cells are able to be cryopreserved for an extended period of time without decreasing the cells' bioactivity. Further, the cryopreservation liquid is devoid of protein ingredients such as fetal bovine serum and albumin, therefore, is free of worry of infectious diseases and is not affected by lot-to-lot variations that are occasionally found in pharmaceutical products made from biological materials.
  • Polyamines having side-chain amino groups, such as ε-poly-L-lysine and polyallylamine, have an affinity with cell membranes due to the side-chain amino groups, thus, is considered to have cell-protecting effects. Polymer compounds having abundant carboxyl groups also have high affinity with water, thus, would help remove intracellular water to the surrounding medium on course of freezing and thereby are expected to have cryopreservation effects. Polymer compounds having both of the amino and carboxyl groups in an adequate ratio are expected to have further improved cryopreservation effects on the cells at a time of freezing. Thus, the invention is to provide a cryopreservation liquid having high effectiveness and high safety, by earnestly investigating conditions or requirements for polymer compounds having cationic groups such as side-chain amino groups, such as poly amino acids, or for polymer compounds having anionic groups such as carboxylic groups as well as for polymer compounds having both of cationic and anionic groups.
  • A cryopreservation agent according to the invention is less toxic compared to DMSO and requires no washing after thawing of cells or tissues. Thawed cells or tissues then may directly be suspended in a culture medium to immediately start a culturing process.
  • According to the invention, cryopreservation of cultured cells for experimental use would be made in a stable manner; and moreover, expected to be enabled is preservation by keeping cell functions, of functional cells such as pancreatic islets and stem cells such as ES cells, mesenchymal stem cells and iPS cells. Thus, efficiency in transplantation of these cells is expected to be improved.
  • By use of non-freezing poly-amino acids according to the invention, deactivation of physiological substances is able to be curbed on course of freezing of water-bearing materials having the physiological substances. Moreover, by use of the non-freezing poly-amino acids, achievable is uniform diffusion of ingredients other than water molecules on course of obtaining frozen products or freeze-dried products by freezing or freeze-drying of the water-bearing or aqueous materials. The frozen product may be Ice cream, sherbet, other frozen sweet, ices for displaying, frozen soup or the like to name a few; and the frozen-dry product may be freeze-dried food or pharmaceutical products, in a powder form, to name a few.
  • Non-freezing agents according to the invention is also applicable in industrial-use fuel cells as to curb deterioration of their starting-up performance due to freezing of liquid.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 is a graph showing a relationship between the percentage of blocked amino groups in ε-poly-L-lysine and the percentage of viable L929 cells cryopreserved by using ε-poly-L-lysine whose amino groups were partially blocked by succinic anhydride;
  • FIG. 2 is a graph showing a relationship between the concentration of the partially-blocked poly-L-lysine and the percentage of viable L929 cells when cryopreserved by using ε-poly-L-lysine (PLL succinic anhydride 63%) that has been added with succinic anhydride in a molar amount tantamount to 63% of amino groups of the ε-poly-L-lysine;
  • FIG. 3-1 is a microscopic image showing a culture of L929 cells, which have been frozen in 10% DMSO/fetal bovine serum, then thawed and immediately cultured in a plate for 24 hours without wash or dilution;
  • FIG. 3-2 is a microscopic image showing a culture of L929 cells, which have been frozen in 7.5% solution of PLL with 63% succinic anhydride, then thawed and immediately transferred onto a plate, for 24 hours without wash or dilution;
  • FIG. 4 is a set of graphs showing a rat mesenchymal stem cell (RMSC) frozen in 7.5% solution of PLL with 63% succinic anhydride and 10% DMSO/fetal bovine serum and evaluated in terms of their pluripotency to be differentiated into bones, fat bodies, and cartilages. Unfrozen and undifferentiated cells are included for comparison;
  • FIG. 5 is a series of microscopic images showing the prevention of ice re-crystallization by adding 0.1-15% PLL (ε-poly-L-lysine) (PLL succinic anhydride 63%) in a 30% sucrose aqueous solution.
  • FIG. 6 is a microscopic image showing a crystal structure of in the frozen 5% solution of PLL (ε-poly-L-lysine) without succinic anhydride, and 5% solution of PLL with 63% succinic anhydride).
  • FIG. 7 is photograph (1) of freeze-dried agar gels. The gel on the left is additive-free, and one on the right has 5% PLL with 63% succinic anhydride.
  • FIG. 8 is photograph (2) of frozen-thawed agar gels. The concentrations of PLL with 63% succinic anhydride are 0% (left), 1% (middle) and 3% (right).
  • DETAILED DESCRIPTION OF THE INVENTION
  • A cryopreservation liquid according to the invention is obtained by dissolving a polymer such as poly-lysine in physiological solutions by 1-50 w/w %; preferably by 2-20 w/w %, particularly preferably by 3-15w/w %, and more preferably by 5-10 w/w %. The physiological solutions to be used are a physiological saline as well as culture media for culturing various cells and tissues. For example, Dulbecco-modified eagle MEM culture medium (DMEM) may be one of the preferable culture media. In place of, or in addition to poly-lysine, polyallylamines may be used. In place of these, or in addition to at least one of these, a compound(s) to be used is/are selected from other polyamines such as amino-group-introduced polyshaccharides, and poly-amino acids such as poly-arginine, poly-glutamic acid and poly-aspartic acid; also a polysaccharide compound(s) that is/are selected from dextran, dextrin, pullulan and chitosan as well as polycarboxylic acid such as polyacrylic acid. Among these polymers, preferable are polymers having a structure obtainable by polymerization of a monomer compound(s) that have both cationic and anionic substituent groups within the same monomer molecules; and especially preferable is poly-amino acids. In other words, especially preferable is a polymer having a repeating unit that has both amino and carboxyl groups. Poly-lysine to be used can be either ε-poly-L-lysine or ε-poly-D-lysine or α-poly-L-lysine. Cryoprotectant polymers have molecular weights between 100 and 100,000. The most preferable polymers fall into a group of ε-poly-L-lysine routinely used as food additives. These are either synthesized by enzymes or produced by the Streptomyces fungi and have the average molecular weights of 1000-20,000, and particularly those of 1000-10,000 (http://www.chisso.co.jp/fine/jp/polylisin/index.html) with polymerization degrees ranging between 15-35, and those with 20 or lower are attempted to be produced; for examples, as in JP2003-171463A and JP2005-318815A. The average molecular weights or the average polymerization degrees are easily measurable by sodium dodecyl sulfatε-polyacrylamide gel electrophoresis (SDS-PAGE), by using an electrophoresis apparatus and AE-6920V type densitograph that are provided by Atto Co., Ltd., for example. Standard protein markers are used for the measurement. The poly-lysine may be heat-treated to increase its molecular weights greater than 30,000 and used as the polymer compound. However, the molecular weight range mentioned above is preferable due to the increasing viscosity with molecular weight. Because the poly-lysine having a free terminal carboxyl group has side-chain primary amino groups, their partial amidation by dicarboxylic anhydrides greatly gives excellent miscibility and solubilization performance described later. Other particularly favorable polymer compounds also adoptable according to the invention are polyallylamines with average molecular weights of 1000-1,000,000, preferably 1000-20,000. For examples, such adoptable polymers are: aqueous solution of the allylamine polymer (PAA-03 of Nitto Boseki Co., Ltd.) added with acetic anhydride or acetic acid; and the partially-methoxy-carbonylated allylamine polymer (PAA-U5000 of Nitto Boseki Co., Ltd.). The allylamine polymer, in same manner with the poly-lysine, has as side-chain groups primary amino groups only, but density of the primary amino group per unit molecular weight is larger in the allylamine polymer than in the poly-lysine. And, when the allylamine is partially carboxylated, obtained polymer compound is considered to act in same manner with partially-carboxylated poly-lysine mentioned later.
  • Preferably, the amino groups of the polyamine are partially blocked by being carboxylated or acetylated with carboxylic acid anhydride(s). This blockage is done by the carboxylation or acetylation of the amino groups to the degrees of preferably 50-99 mol %, particularly 50-93 mol %, more preferably 50-90 mol %, still more preferably 55-80 mol %, and the most preferably 58-76 mol %. About 50% of the amino group would be blocked by being reacted with 52-53 mol % of anhydrous carboxylic acid on basis of molar amount of the amino groups in the polyamine. In a normal reaction condition, 90-95% of the amino groups would be blocked when reacted with 100 mol % anhydrous carboxylic acid. The blocking rates above or below the above-mentioned ranges would decrease cryopreservation effects. Carboxylic acid anhydrides adoptable herein include acetic anhydride, citric anhydride, succinic anhydride, glutaric anhydride, malic anhydride, fumaric anhydride and maleic anhydride. Among these, succinic anhydride and acetic anhydride are particularly preferred.
  • However, polyamine with amino groups not blocked as free may also be used; thus adoptable are the degrees of carboxylation and acetylation throughout a range of 0-100 mol/mol %. In the present invention, polycarboxylic acid in which a part of the carboxyl groups is aminated may be used. More specifically, polycarboxylic acid may be partially aminated by reacting its carboxyl group with compounds such as diamine, triamine and the polyamine. Adoptable diamines are ethylenediamine and hydrazides such as adipodihydrazide. Reaction of these aminocompounds with carboxylic acid is by way of addition reaction with carbodiimide. In such occasion, adoptable is the degree of amination in a range of 0-100 mol/mol %. In same manner with blockage of amino groups, percentage of remaining carboxyl groups is preferably in a range of 50-99 mol %, more preferably in a range of 60-97 mol %, in each of which remaining percentage is for aminated carboxylic groups. For example, polyacrylic acid having average molecular weights of 1000-3,000,00, or 1000-10,000 in particular, is used; and 1-50 mol % of, preferably 3-40 mol % of, carboxyl groups of the polyacrylic acid are blocked with amines and carbodiimides such as ethylenediamine dihydrazide, or the like. Cryopreservation liquid according to the invention may also contain 0.3-15 w/w %, or 0.1-50 w/w % in particular, of conventional cryoprotectant materials such as DMSO, glycerol, ethyleneglycol, trehalose or sucrose. Because cells are subject to damages caused by the oxidation stress during freezing and thawing, the addition of anti-oxidants to the cryoprotectant is expected to improve its preserving effects. For examples, anti-oxidants such as catalase, peroxidase, superoxide dismutase, vitamin E, vitamin C, polyphenols such as epigallocatechin gallate or glutathione may be used.
  • The osmotic pressure of the cryopreservation agent according to the invention is 200-1000 mOsm/kg, more preferably is 300-700 mOsm/kg, and further preferably 400-600 mOsm/kg. The cryopreservation agent according to the invention is applicable to the preservation of not only cells but also tissues. Examples of such cells and tissues to be cryopreserved by the cryopreservation agent are cultured cell lines, fertilized eggs of animal and human origin. Further examples are sperm cells, embryonic stem cells, iPS cells, mesenchymal stem cells, haemopoietic stem cells, neuronal stem cells, umbilical cord blood stem cells, hepatocytes, nerve cells, cardiomyocytes, vascular endothelial cells, vascular smooth muscle cells and blood cells. Not only animal or human cells but also plant cells can be included. Tissues and organs that are able to be preserved by the cryopreservation agent according to this invention are skins, nerves, blood vessels, cartilages, cornea, livers, kidneys, hearts and pancreatic islets
  • Further, the polymer compounds mentioned above are also applicable to production of frozen or freeze-dried foods or pharmaceuticals by adding the polymer compounds to aqueous or water-bearing materials for the foods or the pharmaceuticals to avoid freeze concentration and to thereby obtain frozen or freeze-dried products, in which ingredients are homogeneously diffused. Specifically adoptable are, a compound selected from a group consisting of ε-poly-L-lysine, α-poly-L-lysine, polyarginine, other polyamino acids, aminated polysaccharides and polyallylamines whose amino groups are blocked with carboxylation or acetylation by being reacted with succinic anhydride, acetic anhydride or other carboxylic acid anhydrides. It is not necessary to use physiological solutions to dissolve the polymer compounds. For example, poly-lysine having partially blocked amino groups, other poly-amino acids or aminated poly-saccharides are added to fore-mentioned water-bearing or aqueous materials for ice cream or freeze-dried foods so that concentration of the polymer compound becomes 1-15%. In this way, freeze concentration is curbed. If succinic anhydride is used for blocking of the polymer groups, excellent effect of curbing the freeze concentration is obtained when succinic anhydride in a molar amount that matches 50-85 mol % of the amino groups is reacted to the polymer, where actual amino-groups-blockage rate is in a range of about 48-80 mol %).
  • The polymer compounds mentioned in the above are applicable in industrial-use fuel cells so that the polymer compounds are added in the fuel cells to curb deterioration of their starting-up performance that may in otherwise caused by freezing of liquid at a time of starting up. In detail, adoptable are polymer compounds formed of units having amino groups, which are selected from a group consisting of ε-poly-L-lysine, α-poly-L-lysine, polyarginine, other polyamino acids, aminated polysaccharides and polyallyamines; where amino groups of the polymer compound are blocked by carboxylation or acetylation by being reacted with succinic anhydride, acetic anhydride or other carboxylic acid anhydirides; and the polymer compounds may be added to material of surface layer exposed to inside of the fuel cells. For example, the polymer compounds may be incorporated into a material for coating layer, or UV-curable resin liquid in particular, that forms a surface of separator or solid electrolyte film, by 1-15 w/w %.
  • EXAMPLES
  • Shown below are the examples of the invention as well as comparative examples, but the invention is not limited to the examples at below.
  • Example 1 Preparation of Cryopreservative Solution
  • A 25% aqueous solution of ε-poly-L-lysine (made by Chisso Corporation; Molecular weight: 4000) was used; and a 20% aqueous solution of polyarylamine (Nittobo, molecular weight 5000 [PAA-05L], 15000 [PAA-L], 60000 [PAA-H]) was used. Each of the solution is added with 0-100 mol % succinic anhydride (Wako Pure Chemical Industries) on basis of amino groups of the polyamine polymer to obtain poly-amines having blocked amino groups with different amino-groups-blockage rates. Each poly-amine solution was added to Dulbecco's Modified Eagle Medium (DMEM, Sigma Aldrich) by 0-10 w/w %. On this occasion, pH of the medium was adjusted to 7.0-8.0 with 1N hydrochloric acid or sodium hydroxide solution. Further, the osmotic pressures of the media were measured by a vapor pressure osmometer (Type 5520, Wescor) and adjusted with 10% sodium chloride aqueous solution.
  • Example 2 Cryopreservation of Cultured Cells
  • In a cryovial (Simport Plastics), 1×106 cells of each of cell species of L929, MG63, Caco-2 (Japan Sumitomo Pharmaceuticals), Colon26, HT1080, B16F1 and KB cell (ATCC) are suspended in 1 mL of each cryopresevation liquid; and then were frozen in a −80° C. freezer. After one week, the cells were quickly thawed in a 37° C. water bath, washed in DMEM and subjected to cell mortality test with trypan blue dye. The thawed cells were then seeded in 6-well culture plates at 1×105 cells/well, and cell survival rate was evaluated with trypan blue dye after 6 and 24 hours of culturing. A commonly-used cryopreservative, which is 10% DMSO in fetal bovine serum (FBS), was used as a cryopresercation liquid of comparative example.
  • As shown in FIG. 1, when used as the cryopreservation liquid in cryopreserving L929 cells was each 7.5% solution of the poly-lysine (PLL) having been modified by adding 50% or more molar amount of succinic anhydride on basis of amino groups; and then achieved was a cell viability almost same or higher than that of the comparative example using the DMSO solution. A carboxylated poly-lysine (PLLs) having been modified by adding 100% molar amount of succinic anhydride was revealed to have 93% amino-groups-blockage percentage as a result of quantitative measurement of remaining amino groups by ninhydrin and TNBS method. The poly-lysines (PLLs) having been modified by adding 10 mol %, 27 mol %, 45 mol %, 52 mol %, 63 mol % and 79 mol % molar amount of succinic anhydride on basis of amino groups of the poly-lysine were respectively revealed to have 10%, 25%, 43%, 50%, 60% and 76% of amino-groups-blockage percentage. As seen from FIG. 1, solutions of the poly-lysine having amino-groups-blockage percentage in a range of 50-93% are revealed to have cryopreservation effect; and particularly high cryopreservation effects were attained by the solutions of the poly-lysine having a 60% of blockage percentage (having been added with 63 mol % of succinic anhydride) and a 76% blockage percentage (having been added with 79 mol % of succinic anhydride). When used was aqueous solutions of polyallylamine having partially blocked amino groups, which is allylamine polymer of molecular weight of 5000 having been reacted with 45-90 mol % of succinic anhydride on basis of molar amount of amino groups in the allylamine polymer; it was also shown that the cell survival rate was improved with increase of the amino-groups-blockage percentage, in same manner with the above.
  • FIG. 2 shows a relationship between cell survival rate of L929 cells on course of cryopreservation and the concentration of partially-blocked ε-poly-L-lysine; which is modified by adding 63% molar amount of succinic anhydride on basis of amino groups, and which is denoted as “PLL(0.63)” in the Figures and hereinafter referred to as “PLL succinic anhydride 63%” throughout the Description. As seen from FIG. 2, when concentration of the partially-blocked poly-L-lysine or the PLL succinic anhydride 63% is 7.0% or higher; then the cell survival rate was almost same with or higher than that obtained using the DMSO solution. When used was aqueous solutions of polyallylamine having partially blocked amino groups, which is allylamine polymer of molecular weight of 5000 having been reacted with 63-85 mol % of succinic anhydride on basis of molar amount of amino groups; same manner with the above was also shown.
  • In FIGS. 1-2, a range exhibiting best results corresponds to osmotic pressures in a range of 400-600 mOsm/kg as revealed when osmotic pressures of the preservation liquid are obtained. In other words, best preservation effect was obtained when the osmotic pressures are in a range of 400-600 mOsm/kg.
  • Table 1 shows cryopreservation effect for other species of cells when the cells are cryopreserved in a 7.5% solution of the PLL succinic anhydride 63%. As known from the Table 1, attained for all the cell species are the cell survival rate almost same with or higher than that obtained by the DMSO solution (10% DMSO/fetal bovine serum). The polyallylamine with partially-blocked amino group produced similar results although data are not shown.
  • TABLE 1
    Cryopreservation Effects of 7.5% PLL (0.63) on Various Cells
    Cryopreserved Cell Survival Rates at 24 hrs after Thawing
    MG63 93.1 ± 2.3
    HT1080 90.2 ± 4.3
    Colon26 92.3 ± 2.3
    B16F1 94.2 ± 0.6
    KB 91.8 ± 0.9
    Caco2 93.7 ± 1.9
  • Example 3 Toxicity Test
  • Toxicity test was performed on L929 cells. The cells having been suspended in a culture medium of DMEM with 10% fetal bovine serum are seeded in 96-well plates (1.0×103 cells/well) and cultured at 37° C. for 72 hours. Thereafter, each of ε-poly-L-lysine and the modified poly-lysines having been added with varying concentrations of succinic anhydride was added to the culture media to attain final concentrations of 0-10%. Then, after the culture for 48 hours, concentration values at 50% cell growth inhibition were measured as IC50 by MTT assay, relative to cell growth in the culture medium not added with the polymer. Table 2 shows the results; and a preservation liquid of comparative example is the DMSO solution (10% DMSO/fetal bovine serum). As seen from Table 2, IC50 values for the PLLs succinc anhydride 58%, 63% and 79% were 2-3 times of that for the DMSO solution; this indicates that the toxicity of the poly-lysine is ½-⅓ of that of the cryopreservation liquids having been generally used. In particular, the IC50 values are largest for the PLL succinic anhydride 63% and the PLL succinic anhydride 58%, which are best polymer compounds for high cell survival rate among data shown in FIG. 1.
  • Meanwhile, the cryopreservation liquid containing the L929 cells was frozen, thawed and directly seeded in 12-well plates and cultured at 37° C. for 24 hours. In detail, the cells were cryopreserved in the 7.5% solution of the PLL succinic anhydride 63% and thawed as in EXAMPLE 2, except that no dilution nor washing was made for the liquid or the cells, and the liquid containing the cells was directly transferred to the plates for culturing. The observation of cells has revealed following. As shown in FIG. 3-1, the cells having been cryopreserved in the DMSO solution (10° A)DMSO/fetal bovine serum) are apparently round in shape and dead; and as shown in FIG. 3-2, the cells having been cryopreserved in the cryopreservation liquids according to the invention have attached to the plates and survived well. A test result of similarly low toxicity was obtained for the polyallylamine partially blocked at amino group, that is, allylamine polymer of molecular weight of 5000, which has been reacted with 63-85 mol % of succinic anhydride on basis of molar amount of amino groups.
  • TABLE 2
    50% Cell-growth-inhibition Concentration of Cryopreservation Agents
    on L929
    IC50/%
    DMSO 2.035 ± 0.017
    PLL (0) 1.194 ± 0.006
    PLL (0.44) 2.025 ± 0.013
    PLL (0.58) >7.500
    PLL (0.63) 6.777 ± 0.005
    PLL (0.68) 3.412 ± 0.097
    PLL (0.79) 4.801 ± 0.017
  • Example 4 Preservation of Mesenchymal Stem Cells
  • Rat mesenchymal stem cells (RMSC) were cryopreserved. Preservation liquid of the comparative example is 10% DMSO fetal bovine serum; and the preservation liquid used in the example is 7.5% solution of the PLL succinic anhydride 63%, which is denoted as 7.5% PLL (0.63) in FIG. 4.
  • Table 3 shows that the survival rates of rat mesenchymal stem cells (RMSC) after thawing were almost same for the cryopreservation liquid according to the invention and the DMSO solution. DMEM added with 7.5% polyallylamine partially blocked at amino group (allylamine polymer of molecular weight of 5000, to which 63-85 mol % succinic anhydride equivalent to the amino group content was reacted) exhibited similarly high cell survival rates.
  • TABLE 3
    Cryopreservation Effect to Rat Mesenchymal Stem Cell
    Immediately 6 hours later 24 hours later
     10% DMSO 92.3 ± 2.3 88.3 ± 1.1 92.8 ± 3.5
    7.5% PLL (0.63) 95.4 ± 3.8 92.9 ± 2.0 95.7 ± 1.3
  • The cells were cryopreserved and thawed as described in Example 2; and they were induced to differentiate into bone cells, fat cells and chondrocytes to evaluate their differentiation potentials. FIG. 4 shows that the cells' multipotency was maintained to be almost same with that of the cells not frozen and with that of the cells cryopreserved and thawed in the DMSO solution. Image data of colored microphotograph images were subjected to color separation into three primary colors of red, green and blue; and only the red color part is shown in FIG. 4. Thus, the red color in the color images is translated to white color; and blue color in the color images is translated to black. The differentiation potential to bone cells was evaluated by evaluating of depositing of calcium by way of staining with alizarin red S; and resultantly, red staining was made for each of the samples. As seen from top-rank images in FIG. 4, all the images of the differentiated cells are presented as similarly dilute or low-gray-scale monochrome patterns as compared with that of undifferentiated one. The dilute monochrome patterns indicate that the colored microphotograph images have a reddish tint over their whole areas. Meanwhile, the cells cryopreserved in each of the cryopreservation liquids show alkaline phosphatase activity as high as those not frozen. Differentiation potential into fat cells was evaluated by staining of fat droplets with oil red O. The fat droplets stained as red were observed for microphotograph images of the cells cryopreserved in each of the cryopreservation liquids. The fat droplets appear in middle-rank images of FIG. 4, as circular or ellipsoidal patterns having low gray scales and diameter of dozens of micrometers. Differentiation potential into cartilage cells was evaluated by staining of proteoglycans in cell agregates, with Alcyan blue. Resultantly, the proteoglycans stained to be blue were observed for microphotograph images of the cells cryopreserved in each of the cryopreservation liquids, in same manner with that of the cells not frozen. The proteoglycans appear in bottom-rank images of FIG. 4, as deep black portions. When used as a preservation liquid is DMEM added by 7.5% with the polyallylamine partially blocked at amino group (allylamine polymer of molecular weight of 5000, to which 63-85 mol % succinic anhydride equivalent to the amino group content was reacted); then differentiation potentials of the cells were maintained even after the freezing in similar manner as the above.
  • Example 5 Preservation of Cord Blood
  • Umbilical cord blood was collected from human umbilical cord by a 7 mL plastic vacuum blood sampling tube (Venoject II, Terumo Corporation) loaded with 10.5 mg anticoagulant (EDTA2Na). Subsequently, the cord blood, into which the PLL succinic anhydride 63% was added so that its concentration becomes 7.5% as denoted as 7.5% PLL(0.63), was cryopreserved in a freezer at −80° C. for three months. Then the cord blood was quickly thawed in a water bath at 37° C., and a sample of cord blood without dilution was analyzed with respect to the expression of the surface marker, CD34, by flow cytometry. The number of hematopoietic cells expressing CD34 was measured according to the standard method described in the literature (A. Higuchi et al., J. Biomed. Mater. Res., 68A, the fixed method of 34-42 (2004)). Thus the number of CD34-expressing hematopoietic cells was estimated according to the protocol in the manual (International Hemotherapeutics and Transplantation Society ISHAGE guideline) using Stem-Kit (Beckman-Coulter Corporation). Even after the three months of cryopreservation, number of counted cells of the CD34-expressing hematopoietic cells was estimated to be about 70% of that on the first day when the cord blood was added with the PLL succinic anhydride 63% was added by 7.5%; whereas, when the cord blood in a state of 10% DMSO solution was cryopreserved, number of the CD34-expressing hematopoietic cells was estimated to be about 20% of that on the first day. Thus, it was revealed that the CD34-expresssing hematopoietic cells are able to be preserved in undifferentiated state for an extended period of time when the cord blood is stored in the preservation liquid added with the ε-poly-L-lysine.
  • These results indicate that the cryopreservation liquid according to an embodiment of the invention is remarkably excellent in preserving effects on cord blood.
  • Example 6 Antifreeze Protein Activity
  • With respect to the PLL (ε-poly-L-lysine) and the succinic-anhydride modified PLL, investigated is antifreeze protein activities, or capabilities of curbing recrystallization of ice. Antifreeze proteins are known to have various special activities are known and to cause thermal hysteresis, curbing of recrystallization growth of ice, and morphological alteration of ice crystal to hexagonal one or bipyramidal one. Please see JP2005-126533A, JP2003-250506A and JP2008-041596A.
  • A 30% sucrose aeuous solution was added with non-modified PLL and the PLL succinic anhydride 20%, PLL succinic anhydride 46%, PLL succinic anhydride 50%, PLL succinic anhydride 65%, PLL succinic anhydride 76% and PLL succinic anhydride 84%, by 1-15%. Actual amino-groups-blockage rates for these succinic-anhydride modified PLLs were measured by fore-mentioned method and were revealed to be about 0.20, 0.43, 0.48, 0.62, 0.73 and 0.80 respectively. Four micro liters (4 μL) of solution of each of the non-modified PLL and the modified PLLs was putted onto a glass plate and covered with another glass plate; then was placed on a temperature-controlled stage of a microscope, or rapid cooling stage 10002L of a company named as Linkam; and was rapidly cooled to −30° C. to induce formation of ice crystals. Subsequently, temperature of the stage was gradually raised, and then was kept as left at −9° C. for 30 minutes; and on course of it, growth of ice crystals were observed by the microscope. As seen from a series of microphotographs of FIG. 5, it was revealed from the results that effect of curbing ice recrystallization is given to the PLL by introducing of carboxyl groups up to 50% or more of the amino groups. FIG. 5 shows results where the non-modified PLL and modified PLLs are added to become 5 weight percentage in the solutions whereas 1% through 15% concentration of the PLL succinic anhydride 50% (PLL(0.50)) through the PLL succinic anhydride 84% (PLL(0.84)) were revealed to be effective in curbing of the recrystallization of ice.
  • Subsequently, on the rapid cooling stage, investigated was morphology of ice crystals of the 5% solution of non-modified PLL and the 5% solution of the modified PLL (the PLL succinic anhydride 65%). In detail, at first, the solution was rapidly cooled to −30° C. to induce formation of abundant ice crystals; and then temperature of the solution was raised at a rate of 0.02° C./minute up to a temperature at which one ice crystal having about 10 μm diameter is existed in a viewing range of the microscope. As shown in microscopic image of FIG. 6, the ice crystals in the solution of the succinic-anhydride modified PLL were revealed to have shapes of hexagonal crystals. It should be noted that such hexagonal crystals were shown if and when concentration of either of the PLL succinic anhydride 50% (PLL(0.50)) through the PLL succinic anhydride 84% (PLL(0.84)) was in a range of 1% through 15%. The heat hysteresis, which is difference between a melting temperature and a crystal-growth-starting temperature and one of characteristic properties of the antifreeze proteins, was obtained for the succinic-anhydride modified PLL up to 0.1° C. at maximum. This reveals that the antifreeze protein activity is obtainable by introducing carboxylic acid groups onto the amino groups of the PLL by 50 molar % or more of the amino groups.
  • Example 7 Preservation of Food
  • Curbing of Freeze Concentration—Frozen-Thawed Agar Gel:
  • Agar powder (Naraitesque Co.; 1st grade reagent) was added with the PLL succinic anhydride 63%; and then 5% solution was prepared. This solution is added with red ink, putted into a plastic bottle and then frozen at −20° C.; and subsequently thawed at a room temperature. Obtained result is shown in FIG. 7; right-hand-side gel was obtained with 5% addition of the PLL succinic anhydride; and left-hand-side gel was obtained with no addition. The left-hand-side gel on the view shows clear division between a red-colored opaque part on view's top-side half and a translucent part on view's bottom-side half, through which a mesh pattern of paper towel appears and which nevertheless induces a shadow on view's top-right neighbor. Meanwhile, the right-hand-side gel obtained with addition of the PLL succinic anhydride shows a red color evenly throughout whole of the gel; and thus indicates that freeze concentration has been curbed.
  • Freeze-Dried Agar Gel:
  • Agar powder (Naraitesque Co.; 1st grade reagent) was added with the PLL succinic anhydride 63%, actual amino-groups blockage ratio of which is 0.6, by 0%, 1% and 3%. Solution was putted into a plastic bottle and then frozen at −20° C.; and subsequently freeze-dried by vacuuming at 1 Torr for 2-3 days to obtain a freeze-dried agar gel. Photograph image of obtained freeze-dried product is shown in FIG. 8. A freeze-dried agar gel obtained with 0% addition of the PLL succinic anhydride on left-hand side of the view shows a volume shrinkage to about one third of the original whereas freeze-dried agar gels obtained with 1% and 3% addition of the PLL succinic anhydride (center and right-hand side of the view) show only a small extent of volume shrinkage. This results indicate that freeze-drying of the solution containing the non-freezing polyamino acid according to the invention leads to drying that is efficient and keeps quality of the product.

Claims (18)

1. A composition for cryopreservation of cells and tissues comprising: a polymer compound(s) comprised of a polymer(s) of units having amino groups, which is (are) selected from a group consisting of ε-poly-L-lysine, α-poly-L-lysine, poly-arginine, other poly-amino acids, amino-group-introduced polyshaccharides and polyallylamines; and
physiological solution; and said polymer compound(s) being dissolved in the physiological solution by 1-50 w/w %.
2. The composition according to claim 1, wherein 50-99 mol % of amino groups of said polymer compound(s) is blocked by being reacted with carboxylic anhydride to have carboxylic groups or acetyl groups.
3. A composition for cryopreservation of cells and tissues comprising: a polymer compound(s) comprised of a polymer(s) of units having carboxyl, groups, which is (are) selected from a group consisting of polyacrylic acid, α-poly-glutamic acid, γ-poly-glutamic acid, poly-glutamic acid, poly-aspartic acid, other poly-amino acids and carboxylated polyshaccharides; and physiological solution; and said polymer compound(s) being dissolved in the physiological solution by 1-50 w/w %.
4. The composition according to claim 3, wherein 1-50 mol % of amino groups of said polymer compound(s) is blocked by being reacted with a compound(s) having a plurality of amino groups such as diamines, triamines and polyamines.
5. The composition according to claim 1, wherein the physiological solution is a saline, Dulbecco-modified eagle MEM culture medium (DMEM), or a culture medium for cells or tissues.
6. The composition according to claim 1, wherein said polymer compound is ε-poly-L-lysine having number-average molecular weight in a range of 1000-20,000.
7. The composition according to claim 1, wherein said polymer compound is polyacrylic acid having number-average molecular weight in a range of 1000-3,000,000.
8. An additive composition for freeze preservation or freeze-drying of foods or pharmaceuticals, comprising: a polymer compound(s) comprised of a polymer(s) of units having amino groups, which is (are) selected from a group consisting of ε-poly-L-lysine, α-poly-L-lysine, poly-arginine, other poly-amino acids, amino-group-introduced polyshaccharides and polyallylamines; wherein amino groups of said polymer compound(s) is blocked by being reacted with carboxylic anhydride to have carboxylic groups or acetyl groups.
9. A method of manufacturing foods pharmaceuticals comprising adding a polymer compound(s) comprised of a polymer(s) of units having amino groups, which is (are) selected from a group consisting of ε-poly-L-lysine, α-poly-L-lysine, poly-arginine, other poly-amino acids, amino-group-introduced polyshaccharides and polyallylamines, to water-bearing material(s) for producing the foods or the pharmaceuticals so that concentration of said polymer compound in the water-bearing material(s) becomes in a range of 1-15 w/w %.
10. The method of manufacturing foods or pharmaceuticals according to claim 9, wherein 50-99 mol % of amino groups of said polymer compound(s) is blocked by being reacted with carboxylic anhydride to have carboxylic groups or acetyl groups.
11. The method of manufacturing foods or pharmaceuticals according to claim 9, wherein said polymer compound is ε-poly-L-lysine having number-average molecular weight in a range of 1000-20,000.
12. A method of manufacturing fuel cells comprising:
preparing a polymer compound(s) comprised of a polymer(s) of units having amino groups, which is (are) selected from a group consisting of ε-poly-L-lysine, α-poly-L-lysine, poly-arginine, other poly-amino acids, amino-group-introduced polyshaccharides and polyallylamines; in which 50-99 mol % of amino groups of said polymer compound(s) have been blocked by being reacted with succinic anhydride, acetic anhydride or other carboxylic anhydride to have carboxylic groups or acetyl groups; and
adding said polymer compound to a material for coating film covering surface of separator or solid electrolyte membrane, or for other surface layer exposed to insides of the fuel cells so that concentration of said polymer compound in said material becomes in a range of 1-15 w/w %.
13. The method of manufacturing fuel cells according to claim 12, wherein said polymer compound is ε-poly-L-lysine having number-average molecular weight in a range of 1000-20,000.
14. The method of manufacturing fuel cells according to claim 12 or 13, wherein the material for the coating film is UV curable resin liquid.
15. A method of manufacturing fuel cells or other industrial products comprising:
preparing a polymer compound(s) comprised of a polymer(s) of units having amino groups, which is (are) selected from a group consisting of ε-poly-L-lysine, α-poly-L-lysine, poly-arginine, other poly-amino acids, amino-group-introduced polyshaccharides and polyallylamines; in which 50-99 mol % of amino groups of said polymer compound(s) have been blocked by being reacted with succinic anhydride, acetic anhydride or other carboxylic anhydride to have carboxylic groups or acetyl groups; and
adding said polymer compound to a material for forming a hydrophilic surface layer on an inner element of the fuel cell or other industrial product so that concentration of said polymer compound in said material becomes in a range of 1-15 w/w %.
16. The composition according to claim 3, wherein the physiological solution is a saline, Dulbecco-modified eagle MEM culture medium (DMEM), or a culture medium for cells or tissues.
17. The composition according to claim 3, wherein said polymer compound is ε-poly-L-lysine having number-average molecular weight in a range of 1000-20,000.
18. The composition according to claim 3, wherein said polymer compound is polyacrylic acid having number-average molecular weight in a range of 1000-3,000,000.
US13/001,237 2008-06-27 2009-06-26 Composition for cryopreservation of cells and tissues Abandoned US20110172315A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2008169183 2008-06-27
JP2008-169183 2008-06-27
JP2008230005 2008-09-08
JP2008-230005 2008-09-08
PCT/JP2009/002941 WO2009157209A1 (en) 2008-06-27 2009-06-26 Cryopreservative composition for cell and tissue

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/002941 A-371-Of-International WO2009157209A1 (en) 2008-06-27 2009-06-26 Cryopreservative composition for cell and tissue

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/266,236 Division US9603355B2 (en) 2008-06-27 2014-04-30 Composition for cryopreservation of cells and tissues

Publications (1)

Publication Number Publication Date
US20110172315A1 true US20110172315A1 (en) 2011-07-14

Family

ID=41444281

Family Applications (3)

Application Number Title Priority Date Filing Date
US13/001,237 Abandoned US20110172315A1 (en) 2008-06-27 2009-06-26 Composition for cryopreservation of cells and tissues
US14/266,236 Active 2029-08-08 US9603355B2 (en) 2008-06-27 2014-04-30 Composition for cryopreservation of cells and tissues
US15/199,954 Active US9826732B2 (en) 2008-06-27 2016-06-30 Composition for cryopreservation of cells and tissues

Family Applications After (2)

Application Number Title Priority Date Filing Date
US14/266,236 Active 2029-08-08 US9603355B2 (en) 2008-06-27 2014-04-30 Composition for cryopreservation of cells and tissues
US15/199,954 Active US9826732B2 (en) 2008-06-27 2016-06-30 Composition for cryopreservation of cells and tissues

Country Status (7)

Country Link
US (3) US20110172315A1 (en)
EP (1) EP2305792B1 (en)
JP (1) JP5726525B2 (en)
KR (2) KR101490093B1 (en)
CN (2) CN103858859B (en)
HK (2) HK1156970A1 (en)
WO (1) WO2009157209A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130062569A1 (en) * 2010-05-26 2013-03-14 Xiaoying Mo Protein-free solution for non-programmed cell cryopreservation
US20150306288A1 (en) * 2012-10-10 2015-10-29 Etablissement Francais Du Sang Method for preserving placental blood
WO2017087401A1 (en) * 2015-11-16 2017-05-26 Akron Biotechnology, Llc Cryopreservative compositions and methods of use thereof
US20170247659A1 (en) * 2015-03-06 2017-08-31 Vivex Biomedical, Inc. Acellular biologic composition and method of manufacture
CN107306939A (en) * 2017-07-31 2017-11-03 南京佰泰克生物技术有限公司 A kind of cells frozen storing liquid for BMDC
US9826732B2 (en) 2008-06-27 2017-11-28 Bio Verde Inc. Composition for cryopreservation of cells and tissues
CN108084466A (en) * 2017-12-06 2018-05-29 中山大学 A kind of composite membrane that fluidized polymer is derived based on egg white and methacrylic acid and its application in terms of stem cell is cultivated
US20180325830A1 (en) * 2017-05-09 2018-11-15 Vivex Biomedical, Inc. Coated biological composition
US10369227B2 (en) 2013-04-12 2019-08-06 Mcmaster University Immunocompatible polymers
WO2019157439A1 (en) * 2018-02-09 2019-08-15 Akron Biotechnology, Llc Preservation and cryopreservation media
US20200360445A1 (en) * 2015-07-20 2020-11-19 Vivex Biologics Group, Inc. Acellular biologic composition and method of manufacture
US20210178020A1 (en) * 2019-12-13 2021-06-17 Vivex Biologics Group, Inc. Biologic composition and method of use
US11197473B2 (en) 2015-05-29 2021-12-14 Japan Advanced Institute Of Science And Technology Vitrified state stabilizing agent for animal cell cryopreservation solution
EP3939429A4 (en) * 2019-04-09 2022-07-06 Peking University Third Hospital Thawing fluid, preparation method therefor and use thereof
US11484025B2 (en) 2012-11-30 2022-11-01 Pharmacosmos Holding A/S Cryoprotecting agent, cryoprotecting and cryopreserved compositions, uses thereof, and methods of cryopreservation
US11659833B2 (en) 2016-08-22 2023-05-30 Bioverde Inc. Composition for cryopreservation of bovine reproductive cells and cryopreservation method thereof
US11812739B2 (en) 2016-02-17 2023-11-14 Japan Advanced Institute Of Science And Technology Vitreous state stabilizing agent for animal cell cryopreservation solution

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6220108B2 (en) * 2011-04-04 2017-10-25 株式会社バイオベルデ Cryopreservation solution and cryopreservation method for pluripotent stem cells and other cells that can be suspended in suspension
CN102746372B (en) * 2012-07-19 2014-08-13 陕西佰傲再生医学有限公司 Extracellular matrix freeze-drying protection liquid and application method thereof
CN102792947B (en) * 2012-09-03 2014-03-26 四川新生命干细胞科技股份有限公司 Cryopreservation liquid and injection of mesenchymal stem cells
WO2016176485A1 (en) 2015-04-29 2016-11-03 Petkoska Anka T Antioxidant compositions and methods of protecting skin, hair and nails against high energy blue-violet light
JP6678931B2 (en) * 2015-05-29 2020-04-15 国立大学法人北陸先端科学技術大学院大学 Vitrification stabilizer for animal cell cryopreservation
CN105052891B (en) * 2015-07-16 2017-03-08 内蒙古科技大学包头医学院 The long-term preservation method of anatomy internal organ sample
WO2017068140A1 (en) * 2015-10-23 2017-04-27 Rigshospitalet Stem cell therapy based on adipose-derived stem cells
CN106177918A (en) * 2016-09-30 2016-12-07 广州赛莱拉干细胞科技股份有限公司 A kind of mesenchymal stem cell injection and its preparation method and application
BR112019006765B1 (en) 2016-10-04 2023-09-26 Membrane Protective Technologies, Inc METHOD FOR FREEZING CELLS AND TISSUE
US11246308B2 (en) * 2016-12-20 2022-02-15 Tissue Testing Technologies Llc Ice-free preservation of large volume tissue samples for viable, functional tissue banking
WO2018191371A1 (en) 2017-04-12 2018-10-18 X-Therma, Inc. Novel supercooling methods for preservation of biological samples
AU2018301395A1 (en) * 2017-07-11 2020-02-06 Universal Stabilization Technologies, Inc. Method for Preserving Biological Materials
WO2019189758A1 (en) 2018-03-30 2019-10-03 味の素株式会社 Composition that contains polylysine analog and promotes cell growth
CN108669070B (en) * 2018-05-26 2021-05-25 温州医科大学 Low-temperature preservation solution for plant tissues and cells and use method thereof
JP7079984B2 (en) 2018-07-28 2022-06-03 エクソコバイオ インコーポレイテッド Freeze-drying method of exosomes
CN109221082B (en) * 2018-09-14 2021-07-09 上海慧存医疗科技有限公司 Cell cryopreservation liquid, cryopreservation recovery method and application thereof
CN109182231A (en) * 2018-11-14 2019-01-11 哈尔滨美华生物技术股份有限公司 A kind of lactic acid bacteria culturers long term storage method
CN111789101B (en) * 2019-04-09 2022-09-06 北京大学第三医院 Application of PVA-based cryopreservation liquid in cryopreservation of oocytes or embryos
CN111789098B (en) * 2019-04-09 2022-09-06 北京大学第三医院 Application of amino acid freezing solution in cryopreservation of oocytes or embryos
CN111789100B (en) * 2019-04-09 2022-09-06 北京大学第三医院 Application of DMSO-free cryopreservation solution in cryopreservation of oocytes or embryos
CN111789102B (en) * 2019-04-09 2022-07-12 北京大学第三医院 Application of thawing solution in thawing frozen and preserved oocyte or embryo
CN111789108B (en) * 2019-04-09 2022-03-25 中国科学院化学研究所 Cryopreservation liquid and preparation method thereof
CN111789107B (en) * 2019-04-09 2022-11-11 北京大学第三医院(北京大学第三临床医学院) Application of amino acid cryopreservation liquid in organ and tissue cryopreservation
CN111793108B (en) * 2019-04-09 2022-05-27 北京大学第三医院(北京大学第三临床医学院) Application of cryopreservation liquid containing peptide compounds in organ and tissue cryopreservation
CN110800733A (en) * 2019-11-21 2020-02-18 武汉光谷中源协和细胞基因科技有限公司 Cryopreservation solution and kit for umbilical cord mesenchymal stem cells
CN113383766A (en) * 2020-03-12 2021-09-14 中国科学院化学研究所 Freezing storage liquid for stem cell freezing storage and preparation method thereof
CN113661977A (en) * 2021-09-09 2021-11-19 广东圆康再生医学科技开发有限公司 Design and preparation method of DMSO-Free cell cryopreservation solution
CN114557339A (en) * 2022-03-11 2022-05-31 桂宝林 Embryonic stem cell serum-free preservation solution and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6740643B2 (en) * 1999-01-21 2004-05-25 Mirus Corporation Compositions and methods for drug delivery using amphiphile binding molecules
US7033607B2 (en) * 1999-12-31 2006-04-25 Mirus Bio Corporation pH-titratable polyampholytes for delivering polyions to a cell
US7090846B2 (en) * 1999-06-29 2006-08-15 Refuah Research, Inc. Method for preparing polycation based bioconjugates suitable for transporting different kinds of active substances within the body
US20060257539A1 (en) * 2005-05-16 2006-11-16 Krafts Foods Holdings, Inc. Synergistic antimicrobial system
WO2008058963A1 (en) * 2006-11-13 2008-05-22 Centre National De La Recherche Scientifique (Cnrs) Immobilization of membrane proteins onto supports via an amphiphile

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US674064A (en) * 1900-06-20 1901-05-14 Philipp Lenze Lighting apparatus for gas-burners.
US703360A (en) * 1902-01-07 1902-06-24 Joseph Woerndl Washing-machine.
GB8611894D0 (en) * 1986-05-15 1986-06-25 Cell Systems Ltd Biological cryo-protection
JPH0540326A (en) * 1991-08-06 1993-02-19 Konica Corp Silver halide photographic sensitive body
IT1256621B (en) * 1992-12-04 1995-12-12 CRYOPROTETRIC SOLUTIONS
US5580714A (en) 1995-03-08 1996-12-03 Celox Laboratories, Inc. Cryopreservation solution
DE69637625D1 (en) * 1995-10-19 2008-09-18 Bio Origyn Llc METHODS AND COMPOSITIONS THAT IMPROVE THE SURVIVAL AND FUNCTION OF GERMAN CELLS AND EMBRYOS
JPH10146168A (en) * 1996-11-14 1998-06-02 Sakai Mieko Yield improving agent when thermally cooking meats and improvement in yield
JP3694730B2 (en) 2000-03-02 2005-09-14 国立大学法人京都大学 Tissue cold preservation solution
AU2002248192A1 (en) * 2000-12-15 2002-08-12 Stratagene Room temperature stable competent cells
JP2003171463A (en) 2001-12-06 2003-06-20 Chisso Corp Polylysine and method for producing the same
JP2003250506A (en) 2002-03-04 2003-09-09 Ikeda Shokken Kk Freeze-drying method
JP2003267801A (en) * 2002-03-12 2003-09-25 Pharmafoods Kenkyusho:Kk Composition for preservative and preservative of cell or organ of animal containing the same composition
JP2005126533A (en) 2003-10-22 2005-05-19 Nippon Shokubai Co Ltd Ice crystal growth suppressing agent, ice crystal growth onset temperature lowering agent, and water coagulation controlling agent
JP2005304494A (en) * 2004-03-24 2005-11-04 Univ Showa Cryopreservation method for microcapsulated organ cell in immunity isolating membrane, microcapsulated organ cell in immunity isolating membrane, and bio- hybrid artificial organ module using microcapsulated organ cell in immunity isolating membrane
US7553612B2 (en) * 2004-03-24 2009-06-30 Showa University Method for cryopreserving microencapsulated living animal cells enclosed in immunoisolation membranes, such microencapsulated living animal cells in immunoisolation membranes, and biohybrid artificial organ modules using such microencapsulated living animal cells in immunoisolation membranes
JP4395005B2 (en) 2004-05-07 2010-01-06 チッソ株式会社 Strain producing low degree of polymerization ε-poly-L-lysine and method for producing low degree of polymerization ε-poly-L-lysine using the same
US8460926B2 (en) * 2005-11-17 2013-06-11 Nippon Zenyaku Kogyo Co., Ltd Aqueous solution for cell preservation
JP5008860B2 (en) * 2005-11-18 2012-08-22 株式会社豊田中央研究所 Fuel cell system
JP2008041596A (en) 2006-08-10 2008-02-21 Toyota Motor Corp Fuel cell, and method for manufacturing fuel cell
JP5040326B2 (en) 2007-01-19 2012-10-03 日立電線株式会社 Filter assembly and optical module using the same
CN103858859B (en) 2008-06-27 2015-11-04 博傲沃德株式会社 The freezen protective composition of cell and tissue
GB0823056D0 (en) * 2008-12-18 2009-01-28 Ge Healthcare Ltd Methods for conducting cellular assays
EP3246824A1 (en) 2016-05-20 2017-11-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus for determining a similarity information, method for determining a similarity information, apparatus for determining an autocorrelation information, apparatus for determining a cross-correlation information and computer program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6740643B2 (en) * 1999-01-21 2004-05-25 Mirus Corporation Compositions and methods for drug delivery using amphiphile binding molecules
US7090846B2 (en) * 1999-06-29 2006-08-15 Refuah Research, Inc. Method for preparing polycation based bioconjugates suitable for transporting different kinds of active substances within the body
US7033607B2 (en) * 1999-12-31 2006-04-25 Mirus Bio Corporation pH-titratable polyampholytes for delivering polyions to a cell
US20060257539A1 (en) * 2005-05-16 2006-11-16 Krafts Foods Holdings, Inc. Synergistic antimicrobial system
WO2008058963A1 (en) * 2006-11-13 2008-05-22 Centre National De La Recherche Scientifique (Cnrs) Immobilization of membrane proteins onto supports via an amphiphile
US20090275066A1 (en) * 2006-11-13 2009-11-05 Universite Paris 7 - Denis Diderot Immobilization of membrane porteins onto supports via an amphiphile

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Arav et al.(1993) Molecular Reproduction and Development Vol 36, pages 488-493 *
Scott et al. J Mol Evol V 27 pages 29-35, publication date: 1988 *
Tribet et al., PNAS vol 93, pages 15047-15050, publication year: 1996 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9826732B2 (en) 2008-06-27 2017-11-28 Bio Verde Inc. Composition for cryopreservation of cells and tissues
US20130062569A1 (en) * 2010-05-26 2013-03-14 Xiaoying Mo Protein-free solution for non-programmed cell cryopreservation
US20150306288A1 (en) * 2012-10-10 2015-10-29 Etablissement Francais Du Sang Method for preserving placental blood
US11484025B2 (en) 2012-11-30 2022-11-01 Pharmacosmos Holding A/S Cryoprotecting agent, cryoprotecting and cryopreserved compositions, uses thereof, and methods of cryopreservation
US10369227B2 (en) 2013-04-12 2019-08-06 Mcmaster University Immunocompatible polymers
US20170247659A1 (en) * 2015-03-06 2017-08-31 Vivex Biomedical, Inc. Acellular biologic composition and method of manufacture
US11197473B2 (en) 2015-05-29 2021-12-14 Japan Advanced Institute Of Science And Technology Vitrified state stabilizing agent for animal cell cryopreservation solution
US20200360445A1 (en) * 2015-07-20 2020-11-19 Vivex Biologics Group, Inc. Acellular biologic composition and method of manufacture
WO2017087401A1 (en) * 2015-11-16 2017-05-26 Akron Biotechnology, Llc Cryopreservative compositions and methods of use thereof
CN108882699A (en) * 2015-11-16 2018-11-23 阿克伦生物科技公司 Freezen protective composition and its application method
US11812739B2 (en) 2016-02-17 2023-11-14 Japan Advanced Institute Of Science And Technology Vitreous state stabilizing agent for animal cell cryopreservation solution
US11659833B2 (en) 2016-08-22 2023-05-30 Bioverde Inc. Composition for cryopreservation of bovine reproductive cells and cryopreservation method thereof
US20180325830A1 (en) * 2017-05-09 2018-11-15 Vivex Biomedical, Inc. Coated biological composition
CN107306939A (en) * 2017-07-31 2017-11-03 南京佰泰克生物技术有限公司 A kind of cells frozen storing liquid for BMDC
CN108084466A (en) * 2017-12-06 2018-05-29 中山大学 A kind of composite membrane that fluidized polymer is derived based on egg white and methacrylic acid and its application in terms of stem cell is cultivated
CN108084466B (en) * 2017-12-06 2021-06-29 中山大学 Composite membrane based on egg white and methacrylic acid derivative polymer and application of composite membrane in stem cell culture
WO2019157439A1 (en) * 2018-02-09 2019-08-15 Akron Biotechnology, Llc Preservation and cryopreservation media
EP3939429A4 (en) * 2019-04-09 2022-07-06 Peking University Third Hospital Thawing fluid, preparation method therefor and use thereof
AU2020256873B2 (en) * 2019-04-09 2023-08-17 Institute Of Chemistry, Chinese Academy Of Sciences Thawing fluid, preparation method therefor and use thereof
US20210178020A1 (en) * 2019-12-13 2021-06-17 Vivex Biologics Group, Inc. Biologic composition and method of use

Also Published As

Publication number Publication date
JPWO2009157209A1 (en) 2011-12-08
US20140243426A1 (en) 2014-08-28
HK1156970A1 (en) 2012-06-22
US9826732B2 (en) 2017-11-28
WO2009157209A1 (en) 2009-12-30
CN103858859A (en) 2014-06-18
KR101490093B1 (en) 2015-02-04
KR20140072209A (en) 2014-06-12
JP5726525B2 (en) 2015-06-03
KR101457749B1 (en) 2014-11-03
KR20110055522A (en) 2011-05-25
US9603355B2 (en) 2017-03-28
EP2305792B1 (en) 2016-04-20
EP2305792A1 (en) 2011-04-06
CN103858859B (en) 2015-11-04
CN102124098B (en) 2014-03-12
EP2305792A4 (en) 2012-07-25
US20160309706A1 (en) 2016-10-27
CN102124098A (en) 2011-07-13
HK1196034A1 (en) 2014-12-05

Similar Documents

Publication Publication Date Title
US9826732B2 (en) Composition for cryopreservation of cells and tissues
JP5630979B2 (en) Animal stem cell cryopreservation solution
JP6220108B2 (en) Cryopreservation solution and cryopreservation method for pluripotent stem cells and other cells that can be suspended in suspension
US20190059360A1 (en) Cryopreservation of cells in absence of vitrification inducing agents
JP6270158B2 (en) Cryopreservable cell scaffold material
US5897987A (en) Use of arabinogalactan in cell cryopreservation media
Jain et al. Hydrogelation of dextran-based polyampholytes with cryoprotective properties via click chemistry
KR20200035915A (en) Cryoprotectant and / or cryopreservative compositions, methods and uses thereof
KR102328832B1 (en) Composition for cryopreservation of bovine reproductive cells and cryopreservation method therefor
KR20110127185A (en) Method for the cryopreservation of cells, artificial cell constructs or three-dimensional complex tissues assemblies
US20150087056A1 (en) Cryopreservation of cells, tissues and organs
US9055739B2 (en) Compositions for cryopreservation of cells
Liu et al. The gelatin-based liquid marbles for cell cryopreservation
CN101524063B (en) Cornea mid-term preservation liquid
Hyon A non-frozen living tissue bank for allotransplantation using green tea polyphenols
CN110234750A (en) Cell freezes composition and cryopreservation methods
JP2019033707A (en) Vitrification freezing preservation liquid and vitrification freezing preservation method
Suzuki et al. Cryoprotection in plant tissues related to reduced volume expansion of cryoprotectant solution
JP2015198604A (en) Nanofiber base material for cell tissue freezing
TW202043452A (en) Cell cryopreservation liquid
Lobintseva et al. 144. The method of cryopreservation stem cells from human fetal liver and their morfo-functional characterization

Legal Events

Date Code Title Description
AS Assignment

Owner name: BIO VERDE INC., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MATSUMURA, KAZUAKI;SUGAI, HAJIME;HYON, SUONG-HYU;SIGNING DATES FROM 20101217 TO 20101221;REEL/FRAME:025562/0721

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION