US20170247659A1 - Acellular biologic composition and method of manufacture - Google Patents

Acellular biologic composition and method of manufacture Download PDF

Info

Publication number
US20170247659A1
US20170247659A1 US15/590,444 US201715590444A US2017247659A1 US 20170247659 A1 US20170247659 A1 US 20170247659A1 US 201715590444 A US201715590444 A US 201715590444A US 2017247659 A1 US2017247659 A1 US 2017247659A1
Authority
US
United States
Prior art keywords
biological composition
mixture
bone
biological
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US15/590,444
Inventor
Timothy Ganey
Wendy W. Weston
Miguel Quevedo
Stuart Oglesby
Gaetan Jean-Robert Delcroix
Paul C. Schiller
Gianluca D'Ippolito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vivex Biologics Group Inc
Original Assignee
Vivex Biomedical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vivex Biomedical Inc filed Critical Vivex Biomedical Inc
Priority to US15/590,444 priority Critical patent/US20170247659A1/en
Publication of US20170247659A1 publication Critical patent/US20170247659A1/en
Priority to US15/837,694 priority patent/US11160904B2/en
Priority to US15/898,558 priority patent/US20180325830A1/en
Assigned to HERITAGE BANK OF COMMERCE reassignment HERITAGE BANK OF COMMERCE SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ADVANCED NUMED TECHNOLOGIES, LTD., UMTB BIOMEDICAL, INC., VIVEX BIOMEDICAL INTERNATIONAL, INC., VIVEX BIOMEDICAL, INC.
Assigned to VIVEX BIOLOGICS, INC. reassignment VIVEX BIOLOGICS, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: VIVEX BIOMEDICAL, INC.
Assigned to VIVEX BIOLOGICS GROUP, INC. reassignment VIVEX BIOLOGICS GROUP, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: VIVEX BIOLOGICS, INC.
Assigned to BANKUNITED, N.A. reassignment BANKUNITED, N.A. NOTICE OF GRANT OF SECURITY INTEREST IN PATENTS Assignors: VIVEX BIOLOGICS GROUP, INC.
Assigned to VIVEX BIOMEDICAL, INC., ADVANCED NUMED TECHNOLOGIES, LTD., VIVEX BIOMEDICAL INTERNATIONAL, INC., UMTB BIOMEDICAL, INC reassignment VIVEX BIOMEDICAL, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: HERITAGE BANK OF COMMERCE
Assigned to VIVEX BIOMEDICAL, INC. reassignment VIVEX BIOMEDICAL, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: QUEVEDO, MIGUEL, SCHILLER, PAUL C., D'IPPOLITO, GIANLUCA, OGLESBY, STUART, DELCROIX, GAETAN JEAN-ROBERT, GANEY, TIMOTHY, WESTON, WENDY W.
Priority to US17/072,625 priority patent/US20210030688A1/en
Assigned to HERITAGE BANK OF COMMERCE reassignment HERITAGE BANK OF COMMERCE SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: VIVEX BIOLOGICS GROUP, INC.
Assigned to VIVEX BIOLOGICS GROUP, INC. reassignment VIVEX BIOLOGICS GROUP, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: BANKUNITED, N.A.
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0669Bone marrow stromal cells; Whole bone marrow
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N1/00Preservation of bodies of humans or animals, or parts thereof
    • A01N1/02Preservation of living parts
    • A01N1/0205Chemical aspects
    • A01N1/021Preservation or perfusion media, liquids, solids or gases used in the preservation of cells, tissue, organs or bodily fluids
    • A01N1/0221Freeze-process protecting agents, i.e. substances protecting cells from effects of the physical process, e.g. cryoprotectants, osmolarity regulators like oncotic agents
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N1/00Preservation of bodies of humans or animals, or parts thereof
    • A01N1/02Preservation of living parts
    • A01N1/0278Physical preservation processes
    • A01N1/0284Temperature processes, i.e. using a designated change in temperature over time
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/28Bone marrow; Haematopoietic stem cells; Mesenchymal stem cells of any origin, e.g. adipose-derived stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/32Bones; Osteocytes; Osteoblasts; Tendons; Tenocytes; Teeth; Odontoblasts; Cartilage; Chondrocytes; Synovial membrane
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3604Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the human or animal origin of the biological material, e.g. hair, fascia, fish scales, silk, shellac, pericardium, pleura, renal tissue, amniotic membrane, parenchymal tissue, fetal tissue, muscle tissue, fat tissue, enamel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3604Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the human or animal origin of the biological material, e.g. hair, fascia, fish scales, silk, shellac, pericardium, pleura, renal tissue, amniotic membrane, parenchymal tissue, fetal tissue, muscle tissue, fat tissue, enamel
    • A61L27/3608Bone, e.g. demineralised bone matrix [DBM], bone powder
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3641Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the site of application in the body
    • A61L27/3645Connective tissue
    • A61L27/365Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3683Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix subjected to a specific treatment prior to implantation, e.g. decellularising, demineralising, grinding, cellular disruption/non-collagenous protein removal, anti-calcification, crosslinking, supercritical fluid extraction, enzyme treatment
    • A61L27/3691Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix subjected to a specific treatment prior to implantation, e.g. decellularising, demineralising, grinding, cellular disruption/non-collagenous protein removal, anti-calcification, crosslinking, supercritical fluid extraction, enzyme treatment characterised by physical conditions of the treatment, e.g. applying a compressive force to the composition, pressure cycles, ultrasonic/sonication or microwave treatment, lyophilisation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • A61L27/3834Cells able to produce different cell types, e.g. hematopoietic stem cells, mesenchymal stem cells, marrow stromal cells, embryonic stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/446Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with other specific inorganic fillers other than those covered by A61L27/443 or A61L27/46
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L89/00Compositions of proteins; Compositions of derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K2035/124Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells the cells being hematopoietic, bone marrow derived or blood cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2300/00Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Definitions

  • This invention is a tissue regenerative biological composition. More specifically, a composition at least in part formed from bone marrow and a method of manufacture and use of said composition with an acellular mixture.
  • a major technological hurdle to producing a safe allogeneic composition with viable cells has been the need to approach a fraction of risk approaching zero by removing all antigenic properties that lead to inflammation factors in a separation to yield only a certain stromal cell type. This has proven both difficult and degrading the quantity of viable cells that can be effectively harvested.
  • the present invention has yielded a biological composition that is safe and achieves and does so in a method that allows the resultant mixture to be recovered from bone marrow wherein the mixture unexpectedly exhibits evidence of viability independent of mesenchymal cells in the dose and sustains a legacy or memory of the lineages from where the acellular biological composition came which retain the ability to support the emergence of new tissue forms including bone and other tissues.
  • a biological composition has a mixture of mechanically selected allogeneic biologic material derived from bone marrow.
  • the mixture has non-whole cellular components including vesicular components and active and inactive components of biological activity, cell fragments, cellular excretions, cellular derivatives, and extracellular components.
  • the mixture including non-whole cell fractions including one or more of exosomes, transcriptosomes, proteasomes, membrane rafts, lipid rafts.
  • the mixture is compatible with biologic function.
  • the biological composition preferably has bone particles.
  • the bone particles can be added to the mixture derived from bone marrow.
  • the bone particles include a mixture of cortical bone particles and cancellous bone particles.
  • the biological composition is predisposed to demonstrate or support elaboration of active volume or spatial geometry consistent in morphology with that of endogenous bone.
  • the biological composition extends regenerative resonance that compliments or mimics tissue complexity.
  • the mixture is treated in a protectant or cryoprotectant prior to preservation or cryopreservation or freeze drying.
  • the composition can be maintained at ambient temperature prior to freeze drying.
  • the protectant or cryoprotectant creates a physical or electrical or chemical gradient or combination thereof for tissue regeneration.
  • the gradient can have a physical characteristic of modulus or topography, such as charge density, field shape or cryo or chemo toxic tendencies.
  • the gradient can have a chemical characteristic of spatially changing compositions of density or species of functional molecules, wherein the molecules can offer a fixed catalytic function as a co-factor. Also, the gradient can have an electrical characteristic of charge based or pH based or electron affinities that confer metastability in biologic potential.
  • the bone marrow mixture which is derived from a cadaver has separation-enhanced non-whole cell fractions vitality including one or more of the following: separating the fractions from cells heightens their vitality, reversing “arrest” of donors, responsive molecular coupling, matrix quest in neutralizing inflammation or satience by balancing stimulus for repair.
  • the protectant or cryoprotectant is a polyampholyte.
  • the regenerative resonance occurs in the presence or absence of a refractory response.
  • the cryopreservation occurs at a temperature that is sub-freezing wherein the cryopreservation temperature is from 0 degrees C. to ⁇ 200 degrees C.
  • the protection may also be achieved by non-cryogenic means.
  • the biological composition's non-whole cellular component also can include organelle fragments and the active and inactive components of biological activity which can also include extants of the human metabolome.
  • a method of making a biological composition of the present invention has the steps of: collecting, recovering and processing bone marrow from a cadaver donor; mechanically separating the cellular or non-cellular components or a combination thereof of bone marrow from cadaverous bone; concentrating by centrifugation and filtering; separation by density gradient centrifugation; collecting non-cellular fractions or non-cellular components or a combination thereof of predetermined density; washing the non-whole cellular fractions or non-cellular components or a combination thereof to create the mixture; quantifying concentrations of non-cellular fractions components at a non-zero entity; suspending to a predetermined concentration in a polyampholyte cryoprotectant; freezing the mixture at a predetermined controlled rate; and packaging a bone blend having particles in the size range of 100 to 300 ⁇ m of demineralized cortical bone, mineralized cortical bone and mineralized cancellous bone either within the mixture or separate.
  • the mixture is thawed by immersion in a warm water bath for 2-3 minutes at 37 degrees C. It is diluted in saline without spinning; and then the diluted mixture, with or without the bone blend being intermixed, can be implanted by packing, injection, scaffolding or any other suitable means into a patient.
  • DNase deoxyribonuclease is any enzyme that catalyzes the hydrolytic cleavage of phosphodiester linkages in the DNA backbone, thus degrading DNA.
  • DMEM DMEM/LG—Dulbecco's Modified Eagle Medium, low glucose. Sterile, with: Low Glucose (1 g/L), Sodium Pyruvate; without: L-glutamine, HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid)
  • DPBS Dulbecco's Phosphate Buffered Saline.
  • Cryopreserved Tissue frozen with the addition of, or in a solution containing, a cryoprotectant agent such as glycerol, or dimethylsulfoxide, or carboxylated poly-1-lysine.
  • a cryoprotectant agent such as glycerol, or dimethylsulfoxide, or carboxylated poly-1-lysine.
  • Freeze Dried/Lyophilized Tissue dehydrated for storage by conversion of the water content of frozen tissue to a gaseous state under vacuum that extracts moisture.
  • Packing Media Media used during initial processing and storage of the processed vertebral bodies prior to bone decellularization.
  • PBS Phosphate Buffered Saline
  • Processing Media Media used during bone decellularization that may contain DMEM/Low Glucose no phenol red, Human Serum Albumin, Heparin, Gentamicin and DNAse.
  • FIG. 1 shows a photograph of a cut vertebral body taken from a spine of a cadaver donor.
  • FIG. 2 shows a photograph of the vertebral body after being cut into cubic pieces and immersed in a packing media.
  • FIG. 3 shows a photograph of the bulk bone material after being ground and immersed in packing media and placed in a jar for later tumbling.
  • FIG. 4 shows a photograph of the jar with a CBT-Mixer connected to a tumbler.
  • FIG. 5 is a photograph of an exemplary sieve device having sieves sized to separate the solid material.
  • FIG. 6 shows a photograph of two 50 ml vials, the one on the left being prior to centrifuging with the Ficoll that is commercially available at the bottom and the material above it.
  • the 50 ml vial on the right is after centrifuging showing the non-whole cell fraction interface layer.
  • FIG. 7 is a photograph showing the four tumbling steps 1 - 4 by exemplary collection and Ficoll separation of the decanted fluids, the fluid in tumble 1 being completely discarded to remove unwanted debris.
  • FIG. 8 shows a photograph of two 50 ml vials, the one on the left being prior to centrifuging with a sucrose gradient that is commercially available at the bottom and the material above it.
  • the 50 ml vial on the right is after centrifuging showing the non-whole cell fraction above the interface layer.
  • FIG. 9 is a representative photograph of the final packaging.
  • FIG. 10 is a photograph showing the ground bone.
  • tissue regenerative biological composition 100 made from bone marrow 200 it is believed best understood by the methods used to process and recover the biological composition, as illustrated in the FIGS. 1-6 .
  • the first steps are to collect, recover and process bone marrow 200 from a cadaver donor.
  • the spine is removed aseptically from the cadaver and the resultant spine segment is covered by cold media.
  • the cold media has 0.5 ml of Heparin; 10,000 units/ml per 500 ml of DMEM.
  • DMEM is a sterile solution with low glucose (1 g/L), Sodium Pyruvate; without L-glutamine, or HEPES. This cold media is used for packaging the spine segments for later processing.
  • the spine segment includes a plurality of vertebral bodies 202 .
  • the clinical technician must remove as much soft tissue as possible and cut each vertebral body 202 with a saw. These vertebral bodies 202 , once cleaned, of all adherent soft tissue around the cortical surfaces will look as shown in FIG. 1 .
  • each vertebral body 202 is obtained, the next step involves cutting each vertebral body 202 into pieces, each piece 204 roughly 1 cm 3 .
  • the cut pieces 204 being immersed in a packing media 400 .
  • the exemplary packing media can be DMEM with 0.5 ml Heparin and 1.25 ml of DNAse added.
  • the pieces 204 are taken to the bone grinder.
  • the bone is ground into 4-10 mm pieces using packing media 400 to help the pieces go through the grinder.
  • the ground bone 206 (bulk cortical-cancellous crushed) and all of the packing media 400 , estimated volume of 500 ml are transferred into a jar 300 where 0.5-1.0 ml of Gentamicin is added to the jar 300 with ground bone 206 and packing media 400 .
  • the crushed bone 206 including cellular soft marrow 200 , is intermixed.
  • the step of mechanically separating these cellular components of bone marrow 200 from the cadaverous bone is next performed. Transferring the bulk cortical-cancellous bone chips into a new jar with a CBT-Mixer in the jar.
  • the bulk cortical-cancellous bone chips 206 will go through four cycles as summarized in the table below. Each cycle, after cycle 1 , contains three steps using a bone tumbler 500 and sieve set 600 .
  • the sieve set 600 has screens 602 of various sizes, for example 500 ⁇ m and 180 ⁇ m, as shown in FIG. 5 .
  • FIG. 7 shows conical tubes with the decanted fluids after each cycle followed by Ficoll separation. Tumble 1 or Cycle 1 has most of the unwanted cells and debris as evidenced by its dark and red appearance whereas each subsequent cycle 2 , 3 and 4 are progressively cleared. This FIG. 7 is only to illustrate the effects of multiple tumbles 1 - 4 and the value in discarding the decanted liquid 210 after the first tumble 1 .
  • the decanted fluid 212 , 214 , 216 containing the mixture with whole cells is collected and put into a collection jar.
  • the decanted fluid is all placed in the collection jar comingling the fluids 212 , 214 and 216 to form a decanted fluid 220 .
  • the centrifugation of the combined decanted fluid 220 occurs by placing the fluid 220 in a number of 250 ml conical tubes using a 100 ml pipette. The centrifuge is programmed to 280 ⁇ g for 10 minutes at room temperature, preferably about 20 degrees C.
  • the fluid 220 is passed through a blood filter to further remove any bone or spicules or clumps from the suspended cells. This completes the step of centrifuging and filtering. At this point, the mixture including whole cells 240 has been separated from the soft marrow tissue 200 and the remaining cancellous and cortical bone is discarded.
  • the step of separating the cells 240 from the non-whole cellular components by a density centrifugation occurs.
  • the whole cells 240 are in the interface and the non-whole cell components are in the supernatant above the interface.
  • the mixture including is placed in 50 ml conical tubes 20 with Ficoll 800 and undergoes a Ficoll-Paque separation under centrifugation wherein a cell density gradient is established by spinning at 400 ⁇ g for 30 minutes at room temperature, preferably about 20 degrees C.
  • the mixture includes cellular or non-cellular components or a combination thereof. All fluid 211 above the interface is removed include the desired non-whole cell components which exclude the whole cells 240 , 250 .
  • non-whole cell fragments, or membrane components have a diameter of 40-100 nm and can be separated within a density of 1.13-1.19 g/mL in a sucrose solution, and can be sedimented by centrifugation at 100,000 g.
  • these fragments, or cell fractions, or microvesicles have been collectively referred to as exosomes. Ranging in size from 20-1000 nm in diameter, they have been similarly referred to as nanoparticles, microparticles, shedding microvesicles, apoptotic blebs, and human endogenous retroviral particles. There are few firm criteria distinguishing one type of microvesicle from the other.
  • Exosomes are further collected and separated within the suspension in multiple centrifugation steps with increasing centrifugal strength to sequentially pellet cells (300 g), microvesicles (10,000 g) and ultimately exosomes (100,000 g). Cells are deliberately removed to achieve the non-whole cell fragments and microvesicles.
  • the method can include additional steps. This leads to the use of a bone blend 102 shown in FIG. 10 , preferably from the same vertebral bone or at least bone from the same donor.
  • the mixture When the mixture is prepared, it can have whole cells or even no whole cells, but will have the mechanically selected non-whole cellular components including vesicular components and active and inactive components of biological activity, cell fragments, cellular excretions, cellular derivatives, and extracellular components.
  • the composition includes the whole cells in the mixture. In that embodiment, it is possible to provide bone particles with the mixture either in the mixture or separately to be combined at the time of use.
  • the bone is ground to a particle size of 100-300 ⁇ m, see FIG. 11 .
  • the bone mixture has 1.5 cc of mineralized cancellous bone 104 , 1.5 cc of mineralized cortical bone 105 and 2.0 cc of demineralized cortical bone 106 yielding 30 percent, 30 percent and 40 percent respectively of the total 5 cc (5 gram) of bone material 102 .
  • the ranges coincide with the 1 cc of mixture when resuspended in 3 cc of saline to provide a bone particle and mixture for implantation, which can be by packing, injection, scaffolding or any other suitable means, into a patient in a fracture healing procedure, by way of example.
  • bone particle sized and mixture can be employed depending on the application which, in this example, was bone regeneration. Lower volumes and concentrations may be more suited for less intrusive bone repairs or more if larger if larger amounts of material are needed as in a hip defect or repair.

Abstract

A biological composition has a mixture of mechanically selected allogeneic biologic material derived from bone marrow. The mixture has non-whole cellular components including vesicular components and active and inactive components of biological activity, cell fragments, cellular excretions, cellular derivatives, and extracellular components. The mixture including non-whole cell fractions including one or more of exosomes, transcriptosomes, proteasomes, membrane rafts, lipid rafts. The mixture is compatible with biologic function.

Description

    RELATED APPLICATIONS
  • This application is a division of co-pending U.S. application Ser. No. 14/682,523 filed on Apr. 9, 2015 entitled “Acellular Biologic Composition And Method Of Manufacture”.
  • TECHNICAL FIELD
  • This invention is a tissue regenerative biological composition. More specifically, a composition at least in part formed from bone marrow and a method of manufacture and use of said composition with an acellular mixture.
  • BACKGROUND OF THE INVENTION
  • In the area of tissue regeneration or repair, the use of stem cell therapy has been widely touted.
  • Often, these inventions describe isolating the stem cells, purifying and culturally expanding mesenchymal stem cells. In U.S. Pat. No. 5,837,539, entitled “Monoclonal Antibodies For Human Mesenchymal Stem Cells”, Arnold Caplan et al. reported that the cells are preferably culturally expanded, but suggest it is possible to use the stem cells without culture expansion. Caplan also describes a way to isolate stem cells.
  • A major technological hurdle to producing a safe allogeneic composition with viable cells has been the need to approach a fraction of risk approaching zero by removing all antigenic properties that lead to inflammation factors in a separation to yield only a certain stromal cell type. This has proven both difficult and degrading the quantity of viable cells that can be effectively harvested.
  • The present invention has yielded a biological composition that is safe and achieves and does so in a method that allows the resultant mixture to be recovered from bone marrow wherein the mixture unexpectedly exhibits evidence of viability independent of mesenchymal cells in the dose and sustains a legacy or memory of the lineages from where the acellular biological composition came which retain the ability to support the emergence of new tissue forms including bone and other tissues.
  • These and other benefits of the present invention and the method of preparing it are described hereinafter.
  • SUMMARY OF THE INVENTION
  • A biological composition has a mixture of mechanically selected allogeneic biologic material derived from bone marrow. The mixture has non-whole cellular components including vesicular components and active and inactive components of biological activity, cell fragments, cellular excretions, cellular derivatives, and extracellular components. The mixture including non-whole cell fractions including one or more of exosomes, transcriptosomes, proteasomes, membrane rafts, lipid rafts. The mixture is compatible with biologic function.
  • The mixture of mechanically selected material derived from bone marrow. The biological composition preferably has bone particles. The bone particles can be added to the mixture derived from bone marrow. The bone particles include a mixture of cortical bone particles and cancellous bone particles.
  • The combination of non-whole cell components with a select number of non-whole cell fractions sustains pluripotency in the cells. In a preferred embodiment, the biological composition is predisposed to demonstrate or support elaboration of active volume or spatial geometry consistent in morphology with that of endogenous bone. The biological composition extends regenerative resonance that compliments or mimics tissue complexity. The mixture is treated in a protectant or cryoprotectant prior to preservation or cryopreservation or freeze drying. The composition can be maintained at ambient temperature prior to freeze drying. The protectant or cryoprotectant creates a physical or electrical or chemical gradient or combination thereof for tissue regeneration. The gradient can have a physical characteristic of modulus or topography, such as charge density, field shape or cryo or chemo toxic tendencies. The gradient can have a chemical characteristic of spatially changing compositions of density or species of functional molecules, wherein the molecules can offer a fixed catalytic function as a co-factor. Also, the gradient can have an electrical characteristic of charge based or pH based or electron affinities that confer metastability in biologic potential.
  • The bone marrow mixture which is derived from a cadaver has separation-enhanced non-whole cell fractions vitality including one or more of the following: separating the fractions from cells heightens their vitality, reversing “arrest” of donors, responsive molecular coupling, matrix quest in neutralizing inflammation or satience by balancing stimulus for repair. The protectant or cryoprotectant is a polyampholyte. The regenerative resonance occurs in the presence or absence of a refractory response. When using a cryoprotectant, the cryopreservation occurs at a temperature that is sub-freezing wherein the cryopreservation temperature is from 0 degrees C. to −200 degrees C. The protection may also be achieved by non-cryogenic means.
  • The biological composition's non-whole cellular component also can include organelle fragments and the active and inactive components of biological activity which can also include extants of the human metabolome.
  • A method of making a biological composition of the present invention has the steps of: collecting, recovering and processing bone marrow from a cadaver donor; mechanically separating the cellular or non-cellular components or a combination thereof of bone marrow from cadaverous bone; concentrating by centrifugation and filtering; separation by density gradient centrifugation; collecting non-cellular fractions or non-cellular components or a combination thereof of predetermined density; washing the non-whole cellular fractions or non-cellular components or a combination thereof to create the mixture; quantifying concentrations of non-cellular fractions components at a non-zero entity; suspending to a predetermined concentration in a polyampholyte cryoprotectant; freezing the mixture at a predetermined controlled rate; and packaging a bone blend having particles in the size range of 100 to 300 μm of demineralized cortical bone, mineralized cortical bone and mineralized cancellous bone either within the mixture or separate. These particle size ranges can vary higher or lower depending on the application. At the time of use, the mixture is thawed by immersion in a warm water bath for 2-3 minutes at 37 degrees C. It is diluted in saline without spinning; and then the diluted mixture, with or without the bone blend being intermixed, can be implanted by packing, injection, scaffolding or any other suitable means into a patient.
  • Definitions
  • DNase—deoxyribonuclease is any enzyme that catalyzes the hydrolytic cleavage of phosphodiester linkages in the DNA backbone, thus degrading DNA.
  • DMEM, DMEM/LG—Dulbecco's Modified Eagle Medium, low glucose. Sterile, with: Low Glucose (1 g/L), Sodium Pyruvate; without: L-glutamine, HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid)
  • DPBS—Dulbecco's Phosphate Buffered Saline.
  • CBT-MIXER—Mixing blade for Cancellous Bone Tumbler Jar.
  • Cold Media—Media used during the preparation of vertebral bodies for initial processing.
  • Cryopreserved—Tissue frozen with the addition of, or in a solution containing, a cryoprotectant agent such as glycerol, or dimethylsulfoxide, or carboxylated poly-1-lysine.
  • Freeze Dried/Lyophilized—Tissue dehydrated for storage by conversion of the water content of frozen tissue to a gaseous state under vacuum that extracts moisture.
  • Normal Saline—0.9% Sodium Chloride Solution.
  • Packing Media—Media used during initial processing and storage of the processed vertebral bodies prior to bone decellularization.
  • PBS—Phosphate Buffered Saline.
  • Processing Media—Media used during bone decellularization that may contain DMEM/Low Glucose no phenol red, Human Serum Albumin, Heparin, Gentamicin and DNAse.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee. The invention will be described by way of example and with reference to the accompanying drawings in which:
  • FIG. 1 shows a photograph of a cut vertebral body taken from a spine of a cadaver donor.
  • FIG. 2 shows a photograph of the vertebral body after being cut into cubic pieces and immersed in a packing media.
  • FIG. 3 shows a photograph of the bulk bone material after being ground and immersed in packing media and placed in a jar for later tumbling.
  • FIG. 4 shows a photograph of the jar with a CBT-Mixer connected to a tumbler.
  • FIG. 5 is a photograph of an exemplary sieve device having sieves sized to separate the solid material.
  • FIG. 6 shows a photograph of two 50 ml vials, the one on the left being prior to centrifuging with the Ficoll that is commercially available at the bottom and the material above it. The 50 ml vial on the right is after centrifuging showing the non-whole cell fraction interface layer.
  • FIG. 7 is a photograph showing the four tumbling steps 1-4 by exemplary collection and Ficoll separation of the decanted fluids, the fluid in tumble 1 being completely discarded to remove unwanted debris.
  • FIG. 8 shows a photograph of two 50 ml vials, the one on the left being prior to centrifuging with a sucrose gradient that is commercially available at the bottom and the material above it. The 50 ml vial on the right is after centrifuging showing the non-whole cell fraction above the interface layer.
  • FIG. 9 is a representative photograph of the final packaging.
  • FIG. 10 is a photograph showing the ground bone.
  • DETAILED DESCRIPTION OF THE INVENTION
  • With reference to the present invention which is a tissue regenerative biological composition 100 made from bone marrow 200, it is believed best understood by the methods used to process and recover the biological composition, as illustrated in the FIGS. 1-6.
  • The first steps are to collect, recover and process bone marrow 200 from a cadaver donor. To do this, the spine is removed aseptically from the cadaver and the resultant spine segment is covered by cold media. The cold media has 0.5 ml of Heparin; 10,000 units/ml per 500 ml of DMEM. DMEM is a sterile solution with low glucose (1 g/L), Sodium Pyruvate; without L-glutamine, or HEPES. This cold media is used for packaging the spine segments for later processing. At this point the spine segment includes a plurality of vertebral bodies 202. The clinical technician must remove as much soft tissue as possible and cut each vertebral body 202 with a saw. These vertebral bodies 202, once cleaned, of all adherent soft tissue around the cortical surfaces will look as shown in FIG. 1.
  • Once a cleaned vertebral body 202 is obtained, the next step involves cutting each vertebral body 202 into pieces, each piece 204 roughly 1 cm3. The cut pieces 204 being immersed in a packing media 400. The exemplary packing media can be DMEM with 0.5 ml Heparin and 1.25 ml of DNAse added.
  • Once all the vertebral bodies 202 have been cut, the pieces 204 are taken to the bone grinder. The bone is ground into 4-10 mm pieces using packing media 400 to help the pieces go through the grinder. The ground bone 206 (bulk cortical-cancellous crushed) and all of the packing media 400, estimated volume of 500 ml are transferred into a jar 300 where 0.5-1.0 ml of Gentamicin is added to the jar 300 with ground bone 206 and packing media 400. At this point, the crushed bone 206, including cellular soft marrow 200, is intermixed.
  • The step of mechanically separating these cellular components of bone marrow 200 from the cadaverous bone is next performed. Transferring the bulk cortical-cancellous bone chips into a new jar with a CBT-Mixer in the jar. The bulk cortical-cancellous bone chips 206 will go through four cycles as summarized in the table below. Each cycle, after cycle 1, contains three steps using a bone tumbler 500 and sieve set 600. The sieve set 600 has screens 602 of various sizes, for example 500 μm and 180 μm, as shown in FIG. 5.
  • Step Cycle 1 Cycle 2 Cycle 3 Cycle 4
    Bone 30 minutes. 30 minutes 30 minutes 30 minutes
    Tumbler Using Using Using Using
    500 mL 500 mL 500 mL 400 mL
    Processing Processing Processing Processing
    Media Media Media Media
    Sieve Set Use the Use the Use the Use the
    500-μm 500-μm, 500-μm, 500-μm,
    and the 180-μm 180-μm 180-μm
    bottom and bottom and bottom and bottom
    pan sieve. pan sieve. pan sieve. pan sieve.
    Discard Collect Collect Collect
    decanted decanted decanted decanted
    fluid. fluid. fluid. fluid.
    Centrifuge N/A Use Use Use
    decanted decanted decanted
    fluid. fluid. fluid.
  • In cycle 1, the decanted fluid 210 is discarded. To best understand this, an exemplary FIG. 7 shows conical tubes with the decanted fluids after each cycle followed by Ficoll separation. Tumble 1 or Cycle 1 has most of the unwanted cells and debris as evidenced by its dark and red appearance whereas each subsequent cycle 2, 3 and 4 are progressively cleared. This FIG. 7 is only to illustrate the effects of multiple tumbles 1-4 and the value in discarding the decanted liquid 210 after the first tumble 1.
  • After each subsequent sieving of the bulk bone material 206, the decanted fluid 212, 214, 216 containing the mixture with whole cells is collected and put into a collection jar. When the next three cycles are complete and the decanted fluid is all placed in the collection jar comingling the fluids 212, 214 and 216 to form a decanted fluid 220. Then the centrifugation of the combined decanted fluid 220 occurs by placing the fluid 220 in a number of 250 ml conical tubes using a 100 ml pipette. The centrifuge is programmed to 280×g for 10 minutes at room temperature, preferably about 20 degrees C. The fluid 220 is passed through a blood filter to further remove any bone or spicules or clumps from the suspended cells. This completes the step of centrifuging and filtering. At this point, the mixture including whole cells 240 has been separated from the soft marrow tissue 200 and the remaining cancellous and cortical bone is discarded.
  • After this as shown in FIG. 6, the step of separating the cells 240 from the non-whole cellular components by a density centrifugation occurs. The whole cells 240 are in the interface and the non-whole cell components are in the supernatant above the interface. The mixture including is placed in 50 ml conical tubes 20 with Ficoll 800 and undergoes a Ficoll-Paque separation under centrifugation wherein a cell density gradient is established by spinning at 400×g for 30 minutes at room temperature, preferably about 20 degrees C. The mixture includes cellular or non-cellular components or a combination thereof. All fluid 211 above the interface is removed include the desired non-whole cell components which exclude the whole cells 240, 250.
  • Typically, non-whole cell fragments, or membrane components have a diameter of 40-100 nm and can be separated within a density of 1.13-1.19 g/mL in a sucrose solution, and can be sedimented by centrifugation at 100,000 g. In fact, these fragments, or cell fractions, or microvesicles, have been collectively referred to as exosomes. Ranging in size from 20-1000 nm in diameter, they have been similarly referred to as nanoparticles, microparticles, shedding microvesicles, apoptotic blebs, and human endogenous retroviral particles. There are few firm criteria distinguishing one type of microvesicle from the other.
  • Following removal of the cell fraction, the supernatant is further filtered through 0.45 and 0.2 μm filters. Exosomes are further collected and separated within the suspension in multiple centrifugation steps with increasing centrifugal strength to sequentially pellet cells (300 g), microvesicles (10,000 g) and ultimately exosomes (100,000 g). Cells are deliberately removed to achieve the non-whole cell fragments and microvesicles.
  • Subsequent separation using density gradient-based isolation, using sucrose or commercially available prep can be applied to obtain more pure exosome preparations. Recent reports encouraging the use of iodixanol-based gradients for improved separation of exosomes from viruses and small apoptotic bodies are considerations left open to be adopted or adapted in refinement. Differing from sucrose, iodixanol forms iso-osmotic solutions at all densities, thus better preserving the size of the vesicles in the gradient, and both technologies are available to best isolation technology. In addition to these traditional isolation techniques, easy-to-use precipitation solutions, such as ExoQuick™ and Total Exosome Isolation™ (TEI), that have been commercialized reduce the need for expensive equipment or technical know-how. Although their mode-of-action has not been disclosed or validated, these kits are commonly used.
  • Once the mixture is completed, the method can include additional steps. This leads to the use of a bone blend 102 shown in FIG. 10, preferably from the same vertebral bone or at least bone from the same donor.
  • When the mixture is prepared, it can have whole cells or even no whole cells, but will have the mechanically selected non-whole cellular components including vesicular components and active and inactive components of biological activity, cell fragments, cellular excretions, cellular derivatives, and extracellular components.
  • In one embodiment, the composition includes the whole cells in the mixture. In that embodiment, it is possible to provide bone particles with the mixture either in the mixture or separately to be combined at the time of use.
  • In one embodiment, the bone is ground to a particle size of 100-300 μm, see FIG. 11. The bone mixture has 1.5 cc of mineralized cancellous bone 104, 1.5 cc of mineralized cortical bone 105 and 2.0 cc of demineralized cortical bone 106 yielding 30 percent, 30 percent and 40 percent respectively of the total 5 cc (5 gram) of bone material 102. The ranges coincide with the 1 cc of mixture when resuspended in 3 cc of saline to provide a bone particle and mixture for implantation, which can be by packing, injection, scaffolding or any other suitable means, into a patient in a fracture healing procedure, by way of example.
  • Other ranges of bone particle sized and mixture can be employed depending on the application which, in this example, was bone regeneration. Lower volumes and concentrations may be more suited for less intrusive bone repairs or more if larger if larger amounts of material are needed as in a hip defect or repair.
  • Variations in the present invention are possible in light of the description of it provided herein. While certain representative embodiments and details have been shown for the purpose of illustrating the subject invention, it will be apparent to those skilled in this art that various changes and modifications can be made therein without departing from the scope of the subject invention. It is, therefore, to be understood that changes can be made in the particular embodiments described, which will be within the full intended scope of the invention as defined by the following appended claims.

Claims (25)

What is claimed is:
1. A biological composition comprising:
a mixture of mechanically selected allogeneic biologic material derived from bone marrow having non-whole cellular components including vesicular components and active and inactive components of biological activity, cell fragments, cellular excretions, cellular derivatives, and extracellular components; and
wherein the mixture is compatible with biologic function.
2. The biological composition of claim 1 further comprises bone particles, the bone particles being added to the mixture derived from bone marrow.
3. The biological composition of claim 2 wherein the bone particles include a mixture of cortical bone particles and cancellous bone particles.
4. The biological composition of claim 1 wherein the mixture of mechanically selected material derived from bone marrow further includes a select number of non-whole cell fractions including one or more of exosomes, transcriptosomes, proteasomes, membrane rafts, lipid rafts.
5. The biological composition of claim 4 wherein the combination of non-whole cell components with a select number of the non-whole cell fractions sustains pluripotency in both graft or host cells or combinations thereof.
6. The biological composition of claim 5 wherein the select number of the non-whole cell fractions sustains pluripotency in graft or host cells or combinations thereof includes differentiated committed cells and non-differentiated and non-committed cells.
7. The biological composition of claim 2 wherein the biological composition is predisposed to demonstrate or support elaboration of active volume or spatial geometry consistent in morphology with that of endogenous bone.
8. The biological composition of claim 1 wherein the biological composition extends regenerative resonance that compliments or mimics tissue complexity.
9. The biological composition of claim 1 wherein the mixture is treated in a protectant or cryoprotectant prior to preservation or cryopreservation or freeze drying.
10. The biological composition of claim 9 wherein the protectant or cryoprotectant creates a physical or electrical or chemical gradient or combination thereof for tissue regeneration.
11. The biological composition of claim 10 wherein the gradient has a physical characteristic of modulus or topography such as charge density, field shape or cryo or chemo toxics tendencies.
12. The biological composition of claim 10 wherein the gradient has a chemical characteristic of spatially changing compositions of density or species of functional molecules, wherein the molecules can offer a fixed catalytic function as a co-factor.
13. The biological composition of claim 10 wherein the gradient has an electrical characteristic of charge based or pH based or electron affinities that confer metastability in biologic potential.
14. The biological composition of claim 4 wherein the bone marrow mixture which is derived from a cadaver has separation-enhanced non-whole cell fractions vitality including one or more of the following: separating the fractions from cells heightens their vitality, reversing “arrest” of donors, responsive molecular coupling, matrix quest in neutralizing inflammation or satience by balancing stimulus for repair.
15. The biological composition of claim 9 wherein the protectant or cryoprotectant is a polyampholyte.
16. The biological composition of claim 8 wherein the regenerative resonance occurs in the presence or absence of a refractory response.
17. The biological composition of claim 9 wherein the cryopreservation occurs at a temperature that is sub-freezing.
18. The biological composition of claim 17 wherein the cryopreservation temperature is from 0 degrees C. to −200 degrees C.
19. The biological composition of claim 1 wherein the mixture creates a physical or electrical or chemical gradient or combination thereof for tissue regeneration.
20. The biological composition of claim 19 wherein the gradient has a physical characteristic such as modulus or topography.
21. The biological composition of claim 19 wherein the gradient has a chemical characteristic such as spatially changing compositions of density or species of functional molecules.
22. The biological composition of claim 19 wherein the gradient has an electrical characteristic such as charge based or pH based.
23. The biological composition of claim 1 can be organelle fragments.
24. The biological composition of claim 1 wherein active an inactive components of biological activity can be extants of the human metabolome.
25. The biological composition of claim 9 wherein the composition is maintained at ambient temperature prior to freeze drying.
US15/590,444 2015-03-06 2017-05-09 Acellular biologic composition and method of manufacture Pending US20170247659A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/590,444 US20170247659A1 (en) 2015-03-06 2017-05-09 Acellular biologic composition and method of manufacture
US15/837,694 US11160904B2 (en) 2017-05-09 2017-12-11 Biological composition in a protectant shroud and methods
US15/898,558 US20180325830A1 (en) 2017-05-09 2018-02-17 Coated biological composition
US17/072,625 US20210030688A1 (en) 2015-03-06 2020-10-16 Coated biological composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201562129337P 2015-03-06 2015-03-06
US201562129351P 2015-03-06 2015-03-06
US14/682,523 US9687511B2 (en) 2015-03-06 2015-04-09 Acellular biologic composition and method of manufacture
US15/590,444 US20170247659A1 (en) 2015-03-06 2017-05-09 Acellular biologic composition and method of manufacture

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US14/682,523 Division US9687511B2 (en) 2015-03-06 2015-04-09 Acellular biologic composition and method of manufacture
US15/590,475 Continuation-In-Part US10760058B2 (en) 2015-03-06 2017-05-09 Acellular biologic composition and method of manufacture

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/591,513 Continuation-In-Part US10513690B2 (en) 2015-03-06 2017-05-10 Biologic composition and method of manufacture
US15/898,558 Continuation-In-Part US20180325830A1 (en) 2015-03-06 2018-02-17 Coated biological composition

Publications (1)

Publication Number Publication Date
US20170247659A1 true US20170247659A1 (en) 2017-08-31

Family

ID=56850441

Family Applications (8)

Application Number Title Priority Date Filing Date
US14/682,523 Active 2035-05-19 US9687511B2 (en) 2015-03-06 2015-04-09 Acellular biologic composition and method of manufacture
US14/683,221 Active US9675643B2 (en) 2015-03-06 2015-04-10 Biologic composition and method of manufacture
US15/080,818 Active US9675644B2 (en) 2015-03-06 2016-03-25 Biologic composition and method of manufacture
US15/590,444 Pending US20170247659A1 (en) 2015-03-06 2017-05-09 Acellular biologic composition and method of manufacture
US15/590,475 Active US10760058B2 (en) 2015-03-06 2017-05-09 Acellular biologic composition and method of manufacture
US15/591,513 Active 2036-01-01 US10513690B2 (en) 2015-03-06 2017-05-10 Biologic composition and method of manufacture
US16/049,215 Active 2035-06-09 US10829740B2 (en) 2015-03-06 2018-07-30 Biologic composition and method of manufacture
US17/071,693 Active 2036-03-23 US11649439B2 (en) 2015-03-06 2020-10-15 Biologic composition and method of manufacture

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US14/682,523 Active 2035-05-19 US9687511B2 (en) 2015-03-06 2015-04-09 Acellular biologic composition and method of manufacture
US14/683,221 Active US9675643B2 (en) 2015-03-06 2015-04-10 Biologic composition and method of manufacture
US15/080,818 Active US9675644B2 (en) 2015-03-06 2016-03-25 Biologic composition and method of manufacture

Family Applications After (4)

Application Number Title Priority Date Filing Date
US15/590,475 Active US10760058B2 (en) 2015-03-06 2017-05-09 Acellular biologic composition and method of manufacture
US15/591,513 Active 2036-01-01 US10513690B2 (en) 2015-03-06 2017-05-10 Biologic composition and method of manufacture
US16/049,215 Active 2035-06-09 US10829740B2 (en) 2015-03-06 2018-07-30 Biologic composition and method of manufacture
US17/071,693 Active 2036-03-23 US11649439B2 (en) 2015-03-06 2020-10-15 Biologic composition and method of manufacture

Country Status (1)

Country Link
US (8) US9687511B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10995318B2 (en) 2019-04-15 2021-05-04 Ossium Health, Inc. System and method for extraction and cryopreservation of bone marrow
US11744243B2 (en) 2020-10-14 2023-09-05 Ossium Health, Inc. Systems and methods for extraction and cryopreservation of bone marrow
US11786558B2 (en) 2020-12-18 2023-10-17 Ossium Health, Inc. Methods of cell therapies
US11896005B2 (en) 2020-07-18 2024-02-13 Ossium Health, Inc. Warming cryopreserved bone

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018071053A1 (en) * 2016-10-14 2018-04-19 Allosource Consistent calcium content bone allograft systems and methods
EP3622079A1 (en) 2017-05-08 2020-03-18 Flagship Pioneering Innovations V, Inc. Compositions for facilitating membrane fusion and uses thereof
CN111093769A (en) * 2017-08-01 2020-05-01 英联邦高等教育系统天普大学 Exosomes derived from cortical stem cells can enhance cardiac function following cardiac injury
US11116872B2 (en) * 2018-08-17 2021-09-14 Vivex Biologies Group, Inc. Infused demineralized bone fibers
US20200054788A1 (en) * 2018-08-17 2020-02-20 Vivex Biomedical, Inc. Infused particles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080268429A1 (en) * 2004-06-02 2008-10-30 Sourcepharm, Inc. Rna - Containing Microvesicles and Methods Therefor
US20110172315A1 (en) * 2008-06-27 2011-07-14 Bio Verde. Inc. Composition for cryopreservation of cells and tissues
US20130059782A1 (en) * 2010-04-19 2013-03-07 Thrombotargets Europe, S.L. Phospholipid-enriched vesicles bearing tissue factor having haemostatic activities and uses thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2622027A (en) * 1950-05-03 1952-12-16 Charles J Ely Method of treating animal bones
US5837539A (en) 1990-11-16 1998-11-17 Osiris Therapeutics, Inc. Monoclonal antibodies for human mesenchymal stem cells
US6599520B2 (en) * 1999-10-14 2003-07-29 Osteotech, Inc. Method of inducing new bone growth in porous bone sites
US7326571B2 (en) * 2003-07-17 2008-02-05 Boston Scientific Scimed, Inc. Decellularized bone marrow extracellular matrix
AU2007207429A1 (en) * 2006-01-19 2007-07-26 Warsaw Orthopedic, Inc. Injectable and moldable bone substitute materials
WO2008129563A2 (en) * 2007-04-23 2008-10-30 Stempeutics Research Private Limited, Human mesenchymal stem cells and preparation thereof
US9192695B2 (en) 2008-11-20 2015-11-24 Allosource Allografts combined with tissue derived stem cells for bone healing
WO2012027711A2 (en) * 2010-08-26 2012-03-01 University Of Louisville Research Foundation, Inc. Compositions and methods for treating bone defects
CN109432126B (en) * 2011-03-11 2022-06-14 儿童医学中心公司 Methods and compositions related to mesenchymal stem cell exosomes
US9044430B2 (en) * 2011-03-18 2015-06-02 Microvascular Tissues, Inc. Allogeneic microvascular tissue for soft tissue treatments
FI3677271T3 (en) * 2013-03-13 2023-06-06 Univ Miami Method for isolation and purification of microvesicles from cell culture supernatants and biological fluids
US20160199413A1 (en) * 2013-08-01 2016-07-14 Isletone Ab Mscs in the treatment of inflammatory pulmonary diseases

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080268429A1 (en) * 2004-06-02 2008-10-30 Sourcepharm, Inc. Rna - Containing Microvesicles and Methods Therefor
US20110172315A1 (en) * 2008-06-27 2011-07-14 Bio Verde. Inc. Composition for cryopreservation of cells and tissues
US20130059782A1 (en) * 2010-04-19 2013-03-07 Thrombotargets Europe, S.L. Phospholipid-enriched vesicles bearing tissue factor having haemostatic activities and uses thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Definition of Resonance, Merriam-Webster, [retrieved on 05/21/2023]. Retrieved from the Internet: https://www.merriam-webster.com/dictionary/resonance (Year: 2023) *
Definition of Satience, Merriuam-Webster, [retrieved on 05/22/2023], Retrieved from the Internet:https://www.merriam-webster.com/dictionary/satience (Year: 2023) *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10995318B2 (en) 2019-04-15 2021-05-04 Ossium Health, Inc. System and method for extraction and cryopreservation of bone marrow
US11085024B2 (en) 2019-04-15 2021-08-10 Ossium Health, Inc. System and method for extraction and cryopreservation of bone marrow
US11104882B2 (en) 2019-04-15 2021-08-31 Ossium Health, Inc. System and method for extraction and cryopreservation of bone marrow
US11447750B2 (en) 2019-04-15 2022-09-20 Ossium Health, Inc. System and method for extraction and cryopreservation of bone marrow
US11697799B2 (en) 2019-04-15 2023-07-11 Ossium Health, Inc. System and method for extraction and cryopreservation of bone marrow
US11702637B2 (en) 2019-04-15 2023-07-18 Ossium Health, Inc. System and method for extraction and cryopreservation of bone marrow
US11896005B2 (en) 2020-07-18 2024-02-13 Ossium Health, Inc. Warming cryopreserved bone
US11744243B2 (en) 2020-10-14 2023-09-05 Ossium Health, Inc. Systems and methods for extraction and cryopreservation of bone marrow
US11786558B2 (en) 2020-12-18 2023-10-17 Ossium Health, Inc. Methods of cell therapies

Also Published As

Publication number Publication date
US20170240862A1 (en) 2017-08-24
US20210024894A1 (en) 2021-01-28
US20180334655A1 (en) 2018-11-22
US9675644B2 (en) 2017-06-13
US10829740B2 (en) 2020-11-10
US20160256490A1 (en) 2016-09-08
US9687511B2 (en) 2017-06-27
US10513690B2 (en) 2019-12-24
US11649439B2 (en) 2023-05-16
US20160256491A1 (en) 2016-09-08
US9675643B2 (en) 2017-06-13
US20160256493A1 (en) 2016-09-08
US20170239390A1 (en) 2017-08-24
US10760058B2 (en) 2020-09-01

Similar Documents

Publication Publication Date Title
US10760058B2 (en) Acellular biologic composition and method of manufacture
US20200360445A1 (en) Acellular biologic composition and method of manufacture
US11160904B2 (en) Biological composition in a protectant shroud and methods
US11606953B2 (en) Viable disc regenerative composition and method of manufacture and use
US20210030688A1 (en) Coated biological composition
KR101098162B1 (en) Method of preparing cell concentrate and cell composition
JP6649257B2 (en) Bioactive composition derivable from concentrated platelets, and methods for preparing and using the same
US20070166389A1 (en) Stabilized lyophilized blood platelets
US20220288274A1 (en) Bioenergetic bone
KR20220004086A (en) Systems and methods for extraction and cryopreservation of bone marrow
US20200230174A1 (en) Exosome composition and method of manufacture
Mendel et al. Studies on cholinesterase: 2. A method for the purification of a pseudo-cholinesterase from dog pancreas
JP2006512389A (en) Recoverable dry blood product
US11326144B2 (en) Particulate lyophilized platelet lysate compositions
KR20160058721A (en) Methods of combining mesenchymal stem cells and cartilage containing allografts, and products of combined mesenchymal stem cells and cartilage containing allografts
CN117043320A (en) Compositions and methods for extracting mesenchymal stem cells
US20220007637A1 (en) Method of disc decompression and disc supplementation
CN114990060B (en) Method for promoting adhesion of umbilical cord tissue blocks
AU2016213839A1 (en) Bioactive grafts and composites

Legal Events

Date Code Title Description
AS Assignment

Owner name: HERITAGE BANK OF COMMERCE, CALIFORNIA

Free format text: SECURITY INTEREST;ASSIGNORS:VIVEX BIOMEDICAL, INC.;UMTB BIOMEDICAL, INC.;ADVANCED NUMED TECHNOLOGIES, LTD.;AND OTHERS;REEL/FRAME:045671/0435

Effective date: 20170221

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

AS Assignment

Owner name: VIVEX BIOLOGICS GROUP, INC., GEORGIA

Free format text: CHANGE OF NAME;ASSIGNOR:VIVEX BIOLOGICS, INC.;REEL/FRAME:050079/0225

Effective date: 20190731

Owner name: VIVEX BIOLOGICS, INC., GEORGIA

Free format text: CHANGE OF NAME;ASSIGNOR:VIVEX BIOMEDICAL, INC.;REEL/FRAME:050079/0179

Effective date: 20190701

AS Assignment

Owner name: BANKUNITED, N.A., FLORIDA

Free format text: NOTICE OF GRANT OF SECURITY INTEREST IN PATENTS;ASSIGNOR:VIVEX BIOLOGICS GROUP, INC.;REEL/FRAME:051260/0064

Effective date: 20191210

AS Assignment

Owner name: ADVANCED NUMED TECHNOLOGIES, LTD., GEORGIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:HERITAGE BANK OF COMMERCE;REEL/FRAME:051282/0653

Effective date: 20191211

Owner name: VIVEX BIOMEDICAL INTERNATIONAL, INC., GEORGIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:HERITAGE BANK OF COMMERCE;REEL/FRAME:051282/0653

Effective date: 20191211

Owner name: UMTB BIOMEDICAL, INC, GEORGIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:HERITAGE BANK OF COMMERCE;REEL/FRAME:051282/0653

Effective date: 20191211

Owner name: VIVEX BIOMEDICAL, INC., GEORGIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:HERITAGE BANK OF COMMERCE;REEL/FRAME:051282/0653

Effective date: 20191211

AS Assignment

Owner name: VIVEX BIOMEDICAL, INC., GEORGIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WESTON, WENDY W.;DELCROIX, GAETAN JEAN-ROBERT;D'IPPOLITO, GIANLUCA;AND OTHERS;SIGNING DATES FROM 20150402 TO 20150409;REEL/FRAME:051967/0326

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

AS Assignment

Owner name: HERITAGE BANK OF COMMERCE, CALIFORNIA

Free format text: SECURITY INTEREST;ASSIGNOR:VIVEX BIOLOGICS GROUP, INC.;REEL/FRAME:061084/0607

Effective date: 20220731

AS Assignment

Owner name: VIVEX BIOLOGICS GROUP, INC., GEORGIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANKUNITED, N.A.;REEL/FRAME:061333/0853

Effective date: 20220825

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCV Information on status: appeal procedure

Free format text: NOTICE OF APPEAL FILED