JP2003171463A - Polylysine and method for producing the same - Google Patents

Polylysine and method for producing the same

Info

Publication number
JP2003171463A
JP2003171463A JP2001372898A JP2001372898A JP2003171463A JP 2003171463 A JP2003171463 A JP 2003171463A JP 2001372898 A JP2001372898 A JP 2001372898A JP 2001372898 A JP2001372898 A JP 2001372898A JP 2003171463 A JP2003171463 A JP 2003171463A
Authority
JP
Japan
Prior art keywords
polylysine
present
molecular weight
producing
epl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001372898A
Other languages
Japanese (ja)
Inventor
Hideji Satake
秀司 佐竹
Hideaki Fukushi
英明 福士
Masakazu Hatakeyama
昌和 畠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP2001372898A priority Critical patent/JP2003171463A/en
Publication of JP2003171463A publication Critical patent/JP2003171463A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Polyamides (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an excellent cationic polymer having biodegradability and high safety and provide a method for producing the polymer. <P>SOLUTION: An ε-polylysine produced by microbial fermentation is heat- treated in an inert gas atmosphere or in vacuum at ≥150°C to adjust the viscosity of 15 wt.% aqueous solution to ≥6 mPa-sec and pH to ≥10.0. The polylysine has a molecular weight of ≥30,000 determined by SDS-PAGE. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】本発明はポリリジン及びその
製造方法に関する。
TECHNICAL FIELD The present invention relates to polylysine and a method for producing the same.

【0002】[0002]

【従来の技術】ポリアミノアルキルメタクリレート、ポ
リアミノメチルアクリルアミド、ポリアリルアミン、お
よびポリビニルアミン等の化学合成によるカチオン性ポ
リマーは、カチオン性と分子量効果(分子鎖の凝集力
や、強度や接着性等の物理的特性など)の両方を利用
し、塗料、接着剤、紙力増強剤、化粧品、医薬・抗体等
の固定等に利用されている。
2. Description of the Related Art Cationic polymers produced by chemical synthesis such as polyaminoalkylmethacrylate, polyaminomethylacrylamide, polyallylamine, and polyvinylamine have a cationic property and a molecular weight effect (cohesive force of molecular chain, physical properties such as strength and adhesiveness). Characteristics, etc.) and is used for fixing paints, adhesives, paper strengthening agents, cosmetics, pharmaceuticals, antibodies, etc.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前述の
化学合成カチオン性ポリマーは、性能は優れるが生分解
性がないうえ安全性の高いポリマーではないことから、
生分解性を有しさらに安全性が高いカチオン性ポリマー
が望まれている。
However, the above-mentioned chemically synthesized cationic polymer is excellent in performance but not biodegradable and is not a highly safe polymer.
A cationic polymer having biodegradability and high safety is desired.

【0004】[0004]

【課題を解決するための手段】本発明者らは前述の従来
技術の課題に鑑み鋭意研究した。その結果、水に可溶な
ポリリジンであって、その15重量%水溶液の粘度が6
mPa・sec以上であるポリリジンは、安全性が高く
且つ生分解性を有する優れたカチオン性ポリマーである
こと、さらに、ε−ポリリジンを不活性ガス雰囲気中も
しくは真空中にて加熱することにより本発明のポリリジ
ンを効率よく製造することが可能であることを見出し、
この知見に基づいて本発明を完成させた。
DISCLOSURE OF THE INVENTION The inventors of the present invention have made extensive studies in view of the above-mentioned problems of the prior art. As a result, the polylysine was soluble in water, and the viscosity of the 15 wt% aqueous solution was 6%.
The polylysine having mPa · sec or more is an excellent cationic polymer having high safety and biodegradability, and further, by heating ε-polylysine in an inert gas atmosphere or in a vacuum, the present invention can be obtained. Found that it is possible to efficiently produce polylysine of
The present invention has been completed based on this finding.

【0005】本発明は以下の構成を有する。 (1)水に可溶なポリリジンであって、その15重量%
水溶液の粘度が6mPa・sec以上であるポリリジ
ン。
The present invention has the following configuration. (1) Water-soluble polylysine, 15% by weight of which
Polylysine having an aqueous solution viscosity of 6 mPa · sec or more.

【0006】(2)SDS−PAGEにより測定した分
子量が3万以上であるポリリジンを含有する前記第1項
記載のポリリジン。
(2) The polylysine according to the above item 1, containing polylysine having a molecular weight of 30,000 or more as measured by SDS-PAGE.

【0007】(3)15%水溶液にした際の該水溶液の
pHが10.0以上となる前記第1項または第2項記載
のポリリジン。
(3) The polylysine according to the above item 1 or 2, wherein the pH of the 15% aqueous solution is 10.0 or more.

【0008】(4)前記第1項〜第3項の何れか1項記
載のポリリジンの製造方法であって、不活性ガス雰囲気
もしくは真空中において、下記一般式で表されるε−ポ
リリジンを150℃以上の温度で熱処理することを特徴
とするポリリジンの製造方法。 (式中nは15〜300の整数である。)
(4) The method for producing polylysine according to any one of items 1 to 3, wherein 150 ε-polylysine represented by the following general formula is added in an inert gas atmosphere or vacuum. A method for producing polylysine, which comprises heat-treating at a temperature of ℃ or higher. (In the formula, n is an integer of 15 to 300.)

【0009】(5)一般式(1)で表されるε−ポリリ
ジンが、微生物発酵により製造されたε−ポリリジンで
ある請求項4記載のポリリジンの製造方法。
(5) The method for producing polylysine according to claim 4, wherein the ε-polylysine represented by the general formula (1) is ε-polylysine produced by microbial fermentation.

【0010】[0010]

【発明の実施の形態】本発明ポリリジンは、その15重
量%水溶液の粘度が6mPa・sec以上であり、本発
明において該粘度は、8mPa・sec以上であること
が好ましく、さらには10mPa・sec以上であるこ
のが好ましい。この範囲であれば、分子鎖の凝集力や、
強度や接着性等の物理的特性などの分子量効果とカチオ
ン性の点において優れた効果を発揮し得る。該粘度の上
限は特に限定されるものではないが、100mPa・s
ec程度までであれば均一な水溶液が得やすい。
BEST MODE FOR CARRYING OUT THE INVENTION The polylysine of the present invention has a viscosity of a 15% by weight aqueous solution of 6 mPa · sec or more. In the present invention, the viscosity is preferably 8 mPa · sec or more, more preferably 10 mPa · sec or more. This is preferred. Within this range, the cohesive force of the molecular chains,
It can exert excellent effects in terms of molecular weight effect such as physical properties such as strength and adhesiveness and cationicity. The upper limit of the viscosity is not particularly limited, but 100 mPa · s
If it is up to about ec, a uniform aqueous solution is easily obtained.

【0011】なお、該粘度の測定方法はE型粘度計によ
る。ポリリジン濃度を15重量%に調整し、E型粘度計
(東洋精機(株)製)を用い、25℃で測定する。
The viscosity is measured by an E-type viscometer. The polylysine concentration is adjusted to 15% by weight, and the viscosity is measured at 25 ° C. using an E-type viscometer (manufactured by Toyo Seiki Co., Ltd.).

【0012】本発明のポリリジンは、SDS−PAGE
により測定した分子量が3万以上であるポリリジンを含
有することが好ましい。該分子量が3万以上であるポリ
リジンの含有割合は特に限定されるものではないが、本
発明のポリリジンに対して20〜100重量%の範囲で
あることが好ましい。この範囲であればカチオン性ポリ
マーとして優れた効果を発揮することができる。
The polylysine of the present invention is SDS-PAGE.
It is preferable to contain polylysine having a molecular weight of 30,000 or more as measured by. The content ratio of the polylysine having the molecular weight of 30,000 or more is not particularly limited, but it is preferably in the range of 20 to 100% by weight based on the polylysine of the present invention. Within this range, excellent effects as a cationic polymer can be exhibited.

【0013】さらに、本発明のポリリジンは、それを濃
度が15重量%の水溶液にした際の該水溶液のpHが1
0.0以上のものであることが好ましい。より好ましく
は10.3以上であるり、特に好ましくは10.5以上
である。この範囲であれば高い抗菌力を示し、また、カ
チオン性ポリマーとして優れた効果を発揮することがで
きる。該pHの上限は特に限定されるものではないが、
11程度が現実的な値であり、カチオンポリマーとして
は十分に機能を発揮する。
Further, the polylysine of the present invention has a pH of 1 when it is made into an aqueous solution having a concentration of 15% by weight.
It is preferably 0.0 or more. It is more preferably 10.3 or more, and particularly preferably 10.5 or more. Within this range, high antibacterial activity is exhibited, and an excellent effect as a cationic polymer can be exhibited. The upper limit of the pH is not particularly limited,
A value of about 11 is a realistic value, and it sufficiently exhibits the function as a cationic polymer.

【0014】本発明のポリリジンの製造方法は特に限定
されるものではないが、不活性ガス雰囲気もしくは真空
中において、下記一般式(1)で表されるε−ポリリジ
ン(以下「EPL」と記述する。)を150℃以上の温
度で熱処理する方法であれば、本発明のポリリジンを再
現性良くしかも容易に効率よく製造することができる。
The method for producing polylysine of the present invention is not particularly limited, but ε-polylysine represented by the following general formula (1) (hereinafter referred to as “EPL”) in an inert gas atmosphere or vacuum. .) At a temperature of 150 ° C. or higher, the polylysine of the present invention can be produced with good reproducibility and easily and efficiently.

【0015】本発明においてnは15〜300の整数で
ある。本発明においては、重合度nがこの範囲を超えた
EPL、若しくは下回ったEPLであっても使用できる
が、重合度nが大きいほうが分子量を効率よく大きくで
きるため、できるだけ重合度nは大きいものが好ましく
用いられる。しかし、重合度nが300を超えたもの
は、それ自体で十分な分子量を持つため、あえて高分子
量化する必要はないと考えられる。
In the present invention, n is an integer of 15 to 300. In the present invention, an EPL having a degree of polymerization n exceeding this range or an EPL having a degree of polymerization lower than this range can be used. However, since the higher the degree of polymerization n is, the more the molecular weight can be increased efficiently, the degree of polymerization n should be as large as possible. It is preferably used. However, a polymer having a degree of polymerization n of more than 300 has a sufficient molecular weight by itself, and thus it is considered unnecessary to increase the molecular weight.

【0016】上記一般式(1)で表されるEPLは、化
学合成によって得られたものであっても、発酵によって
得られたたものであってもよいが、現在、化学合成品は
微生物発酵のEPLと比較して非常に高価なうえ入手が
容易でないため、本発明においては微生物発酵により製
造されたEPLを好ましく使用することができる。該E
PLであれば、化学合成品よりもはるかに安価で容易に
入手が可能である。
The EPL represented by the above general formula (1) may be either one obtained by chemical synthesis or one obtained by fermentation. Currently, the chemically synthesized product is microbial fermentation. The EPL produced by microbial fermentation can be preferably used in the present invention because it is very expensive and not easily available as compared with the EPL. The E
PL is much cheaper and more easily available than chemically synthesized products.

【0017】微生物発酵により得られたEPLの中で
も、ストレプトマイセス・アルブラス(Strepto
myces・alblus)や、ストレプトマイセス・
ヌールセイ(Streptomyces・nourse
i)に代表されるポリリジン生産菌を培地中にて培養
し、培養後の該培地から分離することによって得られた
EPLは、食品添加物として使用することが可能なほど
安全性が高いことに加え、その重合度は25〜35であ
り、分子量的に十分であるため本発明に好ましく使用す
ることができる。さらに、該EPLは、フリー体である
ことが好ましい。なお、α―ポリリジンもEPLと同様
に原料として使用可能である。
Among EPLs obtained by microbial fermentation, Streptomyces alblas (Strepto)
myces / albus) and Streptomyces
Noorsei (Streptomyces ・ nourse)
The EPL obtained by culturing the polylysine-producing bacterium represented by i) in a medium and separating it from the medium after the culturing is highly safe enough to be used as a food additive. In addition, the degree of polymerization is 25 to 35, and the molecular weight is sufficient, so that it can be preferably used in the present invention. Furthermore, the EPL is preferably a free form. Note that α-polylysine can also be used as a raw material like EPL.

【0018】熱処理の際に使用することができる不活性
ガスは特に限定されるものではないが、窒素ガス、アル
ゴンガスなどを挙げることができる。またその際のガス
圧は特に限定されるものではないが、安全性の面から
0.1Mpa以下であることが好ましい。
The inert gas that can be used in the heat treatment is not particularly limited, but examples thereof include nitrogen gas and argon gas. The gas pressure at that time is not particularly limited, but is preferably 0.1 MPa or less from the viewpoint of safety.

【0019】熱処理の際の真空度は、高い程好ましい
が、ロータリーポンプで到達可能な真空度で十分であ
る。
The higher the degree of vacuum during the heat treatment, the more preferable, but the degree of vacuum that can be reached by a rotary pump is sufficient.

【0020】該EPLを熱処理時の温度は、本発明にお
いては150℃以上であるが、好ましくは150〜25
0℃の範囲であり、より好ましくは180〜230℃の
範囲であり、特に好ましくは185〜200℃の範囲で
ある。この範囲であれば、本発明のポリリジンが効率よ
く得られ、且つ着色や水への不溶化などの品質および収
率の低下が起こりにくい。又、温度を均一にするために
必要に応じて攪拌することが好ましい。
The temperature during the heat treatment of the EPL is 150 ° C. or higher in the present invention, but preferably 150 to 25.
It is in the range of 0 ° C., more preferably in the range of 180 to 230 ° C., and particularly preferably in the range of 185 to 200 ° C. Within this range, the polylysine of the present invention can be efficiently obtained, and deterioration in quality and yield such as coloring and insolubilization in water is unlikely to occur. Further, it is preferable to stir as necessary to make the temperature uniform.

【0021】不活性ガス雰囲気下もしくは真空中におい
てEPLを熱処理する本発明の製造方法であれば、空気
中で熱処理する場合に比べ、EPLの劣化、着色、水不
溶性ゲルの発生が非常に少ない。
According to the manufacturing method of the present invention in which the EPL is heat-treated in an inert gas atmosphere or in vacuum, the EPL is much less deteriorated, colored, and a water-insoluble gel is generated, as compared with the case of heat-treating in air.

【0022】熱処理する時間は、加熱温度やEPLの量
やその分子量により異なることから、一概に限定できる
ものではないが、5分〜10時間の範囲であることが好
ましく、より好ましくは10分〜5時間の範囲であり、
さら好ましくは20分〜3時間の範囲である。しかし、
原料として用いるEPLの分子量が大きい場合は、その
限りではない。この範囲であれば、本発明のポリリジン
が効率よく得られ、且つ着色や水への不溶化などの品質
および収率の低下が起こりにくい。
The time for the heat treatment varies depending on the heating temperature, the amount of EPL and the molecular weight thereof, and is not specifically limited, but is preferably in the range of 5 minutes to 10 hours, more preferably 10 minutes to 10 minutes. 5 hours range,
More preferably, it is in the range of 20 minutes to 3 hours. But,
This does not apply when the molecular weight of EPL used as a raw material is large. Within this range, the polylysine of the present invention can be efficiently obtained, and deterioration in quality and yield such as coloring and insolubilization in water is unlikely to occur.

【0023】また、本発明の高分子量EPLは、真空ベ
ントが1個以上付属した単軸又は2軸押し出し機を使用
し、押し出し機のシリンダー内で、混練りしながら加熱
脱気を行うことにより製造することも可能である。この
場合は、加熱時間は滞留時間でコントロールされる。
Further, the high molecular weight EPL of the present invention uses a single-screw or twin-screw extruder equipped with one or more vacuum vents, and performs heat deaeration while kneading in the cylinder of the extruder. It is also possible to manufacture. In this case, the heating time is controlled by the residence time.

【0024】本発明の製造方法はバッチ方式であっても
よく、原料であるEPLを逐次添加する連続方式であっ
ても良い。
The production method of the present invention may be a batch system or a continuous system in which EPL as a raw material is sequentially added.

【0025】本発明のポリリジンは、アミノ基が塩の状
態であっても、本発明EPLと同等の効果を奏する。E
PLの塩は、無機塩であっても有機酸塩であってもよ
い。無機塩としては、塩酸、硫酸、およびリン酸などを
挙げることができる。
The polylysine of the present invention exhibits the same effect as the EPL of the present invention even when the amino group is in a salt state. E
The salt of PL may be an inorganic salt or an organic acid salt. Examples of the inorganic salt include hydrochloric acid, sulfuric acid, phosphoric acid and the like.

【0026】また、有機酸塩としては、クエン酸、グル
コン酸、酢酸、酒石酸、乳酸、フマル酸、コハク酸、リ
ンゴ酸、アジピン酸、プロピオン酸、ソルビン酸、安息
香酸のナトリウム塩、カリウム塩、カルシウム塩、鉄塩
等が挙げることができる。これら無機酸および有機酸も
1種または2種以上混合して用いることができる。
As the organic acid salt, citric acid, gluconic acid, acetic acid, tartaric acid, lactic acid, fumaric acid, succinic acid, malic acid, adipic acid, propionic acid, sorbic acid, sodium salt of benzoic acid, potassium salt, Examples thereof include calcium salt and iron salt. These inorganic acids and organic acids can also be used alone or in combination of two or more.

【0027】本発明のポリリジンは、原料に用いたε−
ポリリジンと同じ抗菌性を有し、かつ触媒や架橋剤等の
化合物を全く含まないので、原料に用いたε−ポリリジ
ンと同様に食品保存剤、化粧品、医薬、医療材料、抗菌
素材、さらにカチオン性に加え高分子量を生かして、塗
料、接着剤、紙力増強剤、化粧品、医薬、抗体等の固定
の用途に使用することができる。
The polylysine of the present invention is ε-used as a raw material.
It has the same antibacterial properties as polylysine and does not contain any compounds such as catalysts and cross-linking agents at all, so similar to ε-polylysine used as a raw material, food preservatives, cosmetics, pharmaceuticals, medical materials, antibacterial materials, and cationic In addition to its high molecular weight, it can be used for fixing paints, adhesives, paper-strengthening agents, cosmetics, pharmaceuticals, antibodies and the like.

【0028】[0028]

【実施例】以下、実施例を用いて本発明を詳細に説明す
る。 1.ポリリジンの製造 実験例1 EPL100%粉末5gをサンプル瓶に入れ、高温減圧
乾燥機の中で真空とし、該EPL粉末を20分間185
℃の状態にした。なお、EPL100粉末は、チッソ株
式会社製ε−ポリリジン25%水溶液を凍結乾燥するこ
とによって得たものである。
EXAMPLES The present invention will be described in detail below with reference to examples. 1. Production Example 1 of Polylysine 1g of EPL100% powder was put in a sample bottle, and vacuum was applied in a high temperature vacuum dryer, and the EPL powder was 185 minutes for 185 minutes.
The temperature was kept at ℃. The EPL100 powder was obtained by freeze-drying a 25% aqueous solution of ε-polylysine manufactured by Chisso Corporation.

【0029】実験例2 時間を60分にした以外は実験例1に準じて本発明ポリ
リジンの製造を行った。
Experimental Example 2 The polylysine of the present invention was produced according to Experimental Example 1 except that the time was changed to 60 minutes.

【0030】実験例3 時間を120分にした以外は実験例1に準じて本発明ポ
リリジンの製造を行った。
Experimental Example 3 The polylysine of the present invention was produced according to Experimental Example 1 except that the time was 120 minutes.

【0031】実験例4 温度を150℃、時間を180分にした以外は実験例1
に準じて本発明ポリリジンの製造を行った。
Experimental Example 4 Experimental Example 1 except that the temperature was 150 ° C. and the time was 180 minutes.
The polylysine of the present invention was produced according to.

【0032】実験例5 温度を200℃、時間を120分にした以外は実験例1
に準じて本発明ポリリジンの製造を行った。
Experimental Example 5 Experimental Example 1 except that the temperature was 200 ° C. and the time was 120 minutes.
The polylysine of the present invention was produced according to.

【0033】2.各測定方法 上記各実験例および上記EPL100%粉末について、
下記の項目について測定を行った。結果を表1に示し
た。
2. Each measuring method For each of the above experimental examples and the above EPL100% powder,
The following items were measured. The results are shown in Table 1.

【0034】(溶液粘度の測定)ポリリジン濃度を15
重量%に調整し、E型粘度計(東洋精機(株)製)を用
い、25℃で測定した。
(Measurement of solution viscosity) The polylysine concentration was set to 15
It was adjusted to a weight% and measured at 25 ° C. using an E-type viscometer (manufactured by Toyo Seiki Co., Ltd.).

【0035】(SDS−PAGEによる分子量の測定)
電気泳動装置(アトー(株)製AE−6200)により、
アクリルアミドゲル、標準タンパクマーカーを用いて行
った。
(Measurement of molecular weight by SDS-PAGE)
By an electrophoresis device (AE-6200 manufactured by Atto Co., Ltd.),
It was performed using an acrylamide gel and a standard protein marker.

【0036】アクリルアミドゲルの濃度を15%とし、
低分子量成分に焦点を絞り、実験例1、2、3、および
EPL100%粉末の分子量測定を行った。結果を図1
に示した。図1から、EPL100%粉末は3万以上の
分子量を含まないが、各実験例のポリリジンは3万以上
の分子量を超える成分を含んでいることがわかる。
The concentration of acrylamide gel is set to 15%,
Focusing on the low molecular weight components, the molecular weights of Experimental Examples 1, 2, 3 and EPL100% powder were measured. The result is shown in Figure 1.
It was shown to. It can be seen from FIG. 1 that the EPL 100% powder does not contain a molecular weight of 30,000 or more, but the polylysine of each experimental example contains a component having a molecular weight of 30,000 or more.

【0037】また、アクリルアミドゲルの濃度を5%と
し、高分子量成分に焦点を絞り、実験例1、2、3、お
よびEPL100%粉末の分子量測定を行った。結果を
図2に示した。図2から実験例2および3のポリリジン
は、分子量20万を超える成分を含んでいることがわか
る。
Further, the concentration of the acrylamide gel was set to 5%, the high molecular weight component was focused, and the molecular weights of Experimental Examples 1, 2, 3 and EPL100% powder were measured. The results are shown in Fig. 2. From FIG. 2, it can be seen that the polylysine of Experimental Examples 2 and 3 contains a component having a molecular weight of more than 200,000.

【0038】(pHの測定)ポリリジン濃度を15%に
調整し、pH測定機(METTLER製 TOLEDO
MP220)を用て測定した。
(Measurement of pH) The polylysine concentration was adjusted to 15%, and a pH measuring device (METTLER TOLEDO
MP220) was used for the measurement.

【0039】(抗菌試験:MIC)試験菌株として、エ
スケリチア コリ(Escherichia coli
(IFO13500))、スタフィロコッカス アレウス
(Staphylococcus aureus(IF
O13276))の2菌種を使用し、液体培地法により
測定した。培地としてはニュートリエントブロス培地
(NB培地)を使用した。
(Antibacterial test: MIC) Escherichia coli was used as a test strain.
(IFO13500)), Staphylococcus aureus (IF
O13276)) was used and measured by the liquid culture method. Nutrient broth medium (NB medium) was used as the medium.

【0040】[0040]

【表1】 [Table 1]

【0041】[0041]

【発明の効果】水に可溶なポリリジンであって、その1
5重量%水溶液の粘度が6mPa・sec以上である本
発明のポリリジンは、安全性が高く且つ生分解性を有す
る優れたカチオン性ポリマーであり、従来のEPLと同
様に抗菌剤、化粧品、医薬、抗菌素材に加え、高分子量
効果を生かし、塗料、接着剤、紙力増強剤、化粧品、医
薬・抗体等の固定に使用することができる。また、本発
明の製造方法であれば、本発明のポリリジンを効率よく
製造することが可能である。
EFFECT OF THE INVENTION Polylysine soluble in water, which is No. 1
The polylysine of the present invention, in which the viscosity of a 5 wt% aqueous solution is 6 mPa · sec or more, is an excellent cationic polymer having high safety and biodegradability, and like the conventional EPL, antibacterial agents, cosmetics, pharmaceuticals, In addition to the antibacterial material, it can be used for fixing paints, adhesives, paper-strengthening agents, cosmetics, medicines, antibodies, etc. by taking advantage of the high molecular weight effect. Further, the production method of the present invention makes it possible to efficiently produce the polylysine of the present invention.

【図面の簡単な説明】[Brief description of drawings]

【図1】 EPL100%粉末、実験例1、2、および
4の分子量 SDS−PAGEチャート(アクリルアミ
ドゲル濃度15%)
FIG. 1 Molecular weight SDS-PAGE chart of EPL100% powder, Experimental Examples 1, 2, and 4 (acrylamide gel concentration 15%)

【図2】 EPL100%粉末、実験例1、2、および
4の分子量 SDS−PAGEチャート(アクリルアミ
ドゲル濃度5%)
FIG. 2 Molecular weight of EPL100% powder, Experimental Examples 1, 2, and 4 SDS-PAGE chart (acrylamide gel concentration 5%)

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4B064 AE25 CA04 DA01 DA10 DA16 4J001 DA01 DB01 DC12 EA37 GA20 GD10 JA17 JA18 JB01 JB02   ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4B064 AE25 CA04 DA01 DA10 DA16                 4J001 DA01 DB01 DC12 EA37 GA20                       GD10 JA17 JA18 JB01 JB02

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 水に可溶なポリリジンであって、その1
5重量%水溶液の粘度が6mPa・sec以上であるポ
リリジン。
1. A polylysine soluble in water, which is
Polylysine having a viscosity of 6 mPa · sec or more in a 5 wt% aqueous solution.
【請求項2】 SDS−PAGEにより測定した分子量
が3万以上であるポリリジンを含有する請求項1記載の
ポリリジン。
2. The polylysine according to claim 1, which contains polylysine having a molecular weight of 30,000 or more as measured by SDS-PAGE.
【請求項3】 15重量%水溶液にした際の該水溶液の
pHが10.0以上となる請求項1または2記載のポリ
リジン。
3. The polylysine according to claim 1, wherein the pH of the aqueous solution when it is made into a 15% by weight aqueous solution becomes 10.0 or more.
【請求項4】 請求項1〜3の何れか1項記載のポリリ
ジンの製造方法であって、不活性ガス雰囲気もしくは真
空中において、下記一般式で表されるε−ポリリジンを
150℃以上の温度で熱処理することを特徴とするポリ
リジンの製造方法。 (式中nは15〜300の整数である。)
4. The method for producing polylysine according to claim 1, wherein the ε-polylysine represented by the following general formula is heated to a temperature of 150 ° C. or higher in an inert gas atmosphere or a vacuum. A method for producing polylysine, which comprises heat-treating. (In the formula, n is an integer of 15 to 300.)
【請求項5】 一般式(1)で表されるε−ポリリジン
が、微生物発酵により製造されたε−ポリリジンである
請求項4記載のポリリジンの製造方法。
5. The method for producing polylysine according to claim 4, wherein the ε-polylysine represented by the general formula (1) is ε-polylysine produced by microbial fermentation.
JP2001372898A 2001-12-06 2001-12-06 Polylysine and method for producing the same Pending JP2003171463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001372898A JP2003171463A (en) 2001-12-06 2001-12-06 Polylysine and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001372898A JP2003171463A (en) 2001-12-06 2001-12-06 Polylysine and method for producing the same

Publications (1)

Publication Number Publication Date
JP2003171463A true JP2003171463A (en) 2003-06-20

Family

ID=19181706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001372898A Pending JP2003171463A (en) 2001-12-06 2001-12-06 Polylysine and method for producing the same

Country Status (1)

Country Link
JP (1) JP2003171463A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006304644A (en) * 2005-04-27 2006-11-09 Chisso Corp Nucleic acid complex and method for transfection of nucleic acid into cell by using the same
JP2007020444A (en) * 2005-07-14 2007-02-01 Chisso Corp Cell culture device and method for producing the same
WO2009057802A1 (en) 2007-11-01 2009-05-07 Osaka City University β-1,3-GLUCAN-DERIVED POLYALDEHYDE/POLYAMINE HYDROGEL
WO2009157209A1 (en) 2008-06-27 2009-12-30 株式会社バイオベルデ Cryopreservative composition for cell and tissue
WO2018038115A1 (en) 2016-08-22 2018-03-01 株式会社バイオベルデ Composition for cryopreservation of bovine reproductive cells and cryopreservation method therefor
WO2018187617A1 (en) * 2017-04-06 2018-10-11 Amicrobe, Inc. Compositions and uses of locally applied antimicrobials with enhanced performance and safety
US10150945B2 (en) * 2004-07-23 2018-12-11 Jnc Corporation Cell culture device and manufacturing method therof
US11298401B2 (en) 2012-03-23 2022-04-12 Amicrobe, Inc. Compositions and uses of antimicrobial materials with tissue-compatible properties
WO2022137861A1 (en) 2020-12-23 2022-06-30 株式会社ブリヂストン Adhesive composition, and resin material, rubber article, organic fiber-rubber composite, and tire using same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10150945B2 (en) * 2004-07-23 2018-12-11 Jnc Corporation Cell culture device and manufacturing method therof
US8796027B2 (en) 2005-04-27 2014-08-05 Jnc Corporation Nucleic acid complex and method of introducing nucleic acid into cell using the same
JP2006304644A (en) * 2005-04-27 2006-11-09 Chisso Corp Nucleic acid complex and method for transfection of nucleic acid into cell by using the same
JP2007020444A (en) * 2005-07-14 2007-02-01 Chisso Corp Cell culture device and method for producing the same
WO2009057802A1 (en) 2007-11-01 2009-05-07 Osaka City University β-1,3-GLUCAN-DERIVED POLYALDEHYDE/POLYAMINE HYDROGEL
US8246992B2 (en) 2007-11-01 2012-08-21 Osaka City University β-1,3-glucan-derived polyaldehyde/polyamine hydrogel
WO2009157209A1 (en) 2008-06-27 2009-12-30 株式会社バイオベルデ Cryopreservative composition for cell and tissue
US9603355B2 (en) 2008-06-27 2017-03-28 Bio Verde Inc. Composition for cryopreservation of cells and tissues
US9826732B2 (en) 2008-06-27 2017-11-28 Bio Verde Inc. Composition for cryopreservation of cells and tissues
US11298401B2 (en) 2012-03-23 2022-04-12 Amicrobe, Inc. Compositions and uses of antimicrobial materials with tissue-compatible properties
US12016898B2 (en) 2012-03-23 2024-06-25 Amicrobe, Inc. Compositions and uses of antimicrobial materials with tissue-compatible properties
WO2018038115A1 (en) 2016-08-22 2018-03-01 株式会社バイオベルデ Composition for cryopreservation of bovine reproductive cells and cryopreservation method therefor
US11285189B2 (en) 2017-04-06 2022-03-29 Amicrobe, Inc. Compositions and uses of locally-applied antimicrobial synthetic cationic polypeptide(s) with enhanced performance and safety
CN110740744A (en) * 2017-04-06 2020-01-31 艾麦克罗比公司 Compositions and uses of topically applied antimicrobial agents with enhanced performance and safety
WO2018187617A1 (en) * 2017-04-06 2018-10-11 Amicrobe, Inc. Compositions and uses of locally applied antimicrobials with enhanced performance and safety
WO2022137861A1 (en) 2020-12-23 2022-06-30 株式会社ブリヂストン Adhesive composition, and resin material, rubber article, organic fiber-rubber composite, and tire using same

Similar Documents

Publication Publication Date Title
US6509039B1 (en) Crosslinked products of biopolymers containing amino groups
Wu et al. Antioxidant and antimicrobial activity of Maillard reaction products from xylan with chitosan/chitooligomer/glucosamine hydrochloride/taurine model systems
Şen et al. Preparation and characterization of hybrid cationic hydroxyethyl cellulose/sodium alginate polyelectrolyte antimicrobial films
JPH0376914B2 (en)
Carvalho et al. Production and characterization of a new dextrin based hydrogel
KR20010021576A (en) Thermoplastic mixture containing 1,4-α-D-polyglucane, method for making the same and use thereof
JP2003171463A (en) Polylysine and method for producing the same
CN109721744A (en) A kind of selfreparing anti-bacterial hydrogel based on boric acid ester bond
CN110684179B (en) Preparation method of high-molecular-weight polylactic acid
CN113475620B (en) Zein-polyphenol covalent complex and preparation method thereof
CN113683786B (en) Double self-healing antibacterial hydrogel and preparation method and application thereof
JP2897780B2 (en) Manufacturing method of highly polymerized gelatin
JP2003171464A (en) Polylysine and method for producing the same
CN104262634B (en) A kind of preparation method of organosilicon collagen polypeptide anti-biotic material
CN104497512B (en) Method for preparing degradable material modified polylactic acid polymer
JPH11116603A (en) High-viscosity xanthan gum and its production
JP4201391B2 (en) Wet heat-treated xanthan gum and method for producing the same
CN115260337B (en) Arginine grafted carboxylated pullulan and preparation method and application thereof
JP2003176353A (en) Polylysine and method for producing the same
CN115124632A (en) Preparation method of p-hydroxybenzoic acid-chitosan graft
JP2008093230A (en) Gel forming composition
JP2002527072A (en) Heteropolysaccharides produced by Agrobacterium radiobacter
JP2003055641A (en) Tackifier
CN110028667A (en) A kind of synthetic method for the poly-aspartate derivant that niacinamide is modified
JP3945950B2 (en) Edible water-absorbing polymer and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20041130

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20070529

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070803

A02 Decision of refusal

Effective date: 20070828

Free format text: JAPANESE INTERMEDIATE CODE: A02