US20110139626A1 - Electrolytic copper coating, method of manufacturing the same, and copper electrolyte for manufacturing electrolytic copper coating - Google Patents

Electrolytic copper coating, method of manufacturing the same, and copper electrolyte for manufacturing electrolytic copper coating Download PDF

Info

Publication number
US20110139626A1
US20110139626A1 US12/997,420 US99742009A US2011139626A1 US 20110139626 A1 US20110139626 A1 US 20110139626A1 US 99742009 A US99742009 A US 99742009A US 2011139626 A1 US2011139626 A1 US 2011139626A1
Authority
US
United States
Prior art keywords
type
electrolytic copper
poly
aliphatic hydrocarbon
saturated aliphatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/997,420
Inventor
Takahiro Saito
Yuji Suzuki
Shoya Iuchi
Tetsuji Nishikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Ishihara Chemical Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Ishihara Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Ishihara Chemical Co Ltd filed Critical Furukawa Electric Co Ltd
Assigned to ISHIHARA CHEMICAL CO., LTD., FURUKAWA ELECTRIC CO., LTD. reassignment ISHIHARA CHEMICAL CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: IUCHI, Shoya, NISHIKAWA, TETSUJI, SAITO, TAKAHIRO, SUZUKI, YUJI
Publication of US20110139626A1 publication Critical patent/US20110139626A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • C25D7/0635In radial cells
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0393Flexible materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1105Heating or thermal processing not related to soldering, firing, curing or laminating, e.g. for shaping the substrate or during finish plating

Definitions

  • the present invention relates to an electrolytic copper coating having superior bendability and flexibility, a method of manufacturing the same, and a copper electrolyte used for manufacturing the electrolytic copper coating.
  • an electrolytic copper coating is a general term covering a copper plating layer provided on a substrate in a printed circuit board, a multilayer printed circuit board, and a circuit board for chip-on films (below, these able to be generally referred to as a “circuit board”), a copper plating layer provided on a metal wire, and an electrolytic copper foil.
  • the requirements on the bending characteristics of circuit boards are therefore becoming tougher.
  • the important characteristics of copper foil for improving the bending characteristics are the thickness, surface smoothness, size of crystal grain, mechanical properties, etc. Further, to increase the density of wiring to deal with the reduction in size of electrical products, it is an important to use space as effectively as possible. Therefore, the use of a polyimide film, which enables a circuit board to easily deform, has become indispensable.
  • the adhesive strength and the flexibility of the copper foil which is bonded on the polyimide film have become indispensable characteristics.
  • a rolled copper foil produced by a special manufacturing process is used as copper foil satisfying these characteristics.
  • rolled copper foil suffers from the disadvantages that the manufacturing process is long, so the processing cost is high, copper foil having a wide width cannot be produced, and production of thin foil is difficult. Therefore, electrolytic copper foil satisfying the above-mentioned characteristics is being demanded. Further, in a circuit board, thick plating is performed at the time of forming circuits. Flexibility of the copper plating layer at the time of formation of a thick copper plating layer is also required. However, with the current copper plating technology, no electrolytic copper foil satisfying all the requirements while maintaining the smoothness of electrolytic copper foil and its production method has been proposed. No electrolytic copper coating (electrolytic copper foil or copper plating layer) having a flexibility and bendability equal to or better than those of above-mentioned rolled copper foil exists at present.
  • the problem to be solved by the invention is to provide an electrolytic copper coating whose flexibility and bendability are equal to or better than those of rolled copper foil and to provide a method of manufacturing the same and a copper electrolyte used for manufacturing an electrolytic copper coating.
  • the electrolytic copper coating of the present invention comprises an electrolytic copper coating produced by electrolytic deposition, wherein, when performing heat treatment so that the LMP value shown in Equation 1 becomes 9000 or more, the result becomes a crystal distribution of crystal grains, having a maximum length of crystal grains after heat treatment of 10 ⁇ m or more, of 70% or more:
  • T temperature (° C.)
  • t time (hr).
  • the electrolytic copper coating when the electrolytic copper coating is heat treated to give an LMP value of 9000 or more, the 0.2% proof stress of the electrolytic copper coating is less than 10 kN/cm 2 , and the Young's modulus is less than 2000 kN/cm 2 .
  • the Vickers hardness of the electrolytic copper coating is less than 60 Hv.
  • the content of chlorine (Cl) is less than 0.5%
  • the content of nitrogen (N) is less than 0.005%
  • the content of sulfur (S) is less than 0.005%.
  • a roughness of at least one surface of the electrolytic copper coating is less than 0.30 ⁇ m in terms of Ra and less than 2.0 ⁇ m in terms of Rz prescribed in JIS-B-0601.
  • a method of manufacturing an electrolytic copper coating of the present invention comprises a method of manufacturing an electrolytic copper coating produced by electrolytic deposition using a copper electrolyte, wherein, when performing heat treatment so that the LMP value shown in Equation 1 becomes 9000 or more, the result becomes a crystal distribution of crystal grains, having a maximum length of crystal grains after heat treatment of 10 ⁇ m or more, of 70% or more.
  • T temperature (° C.)
  • t time (hr).
  • the copper electrolyte contains at least one type of reaction product of at least one type of di- or poly-halogenated chain saturated aliphatic hydrocarbon compound, at least one type of di- or poly-halogenated chain saturated aliphatic hydrocarbon compound which has one or more ether bonds, or a combination of at least one type of di- or poly-halogenated chain saturated aliphatic hydrocarbon compound and at least one type of di- or poly-halogenated chain saturated aliphatic hydrocarbon compound which has one or more ether bonds with a heterocyclic compound which has two nitrogen atoms.
  • the copper electrolyte contains at least one type of reaction product of at least one type of di- or poly-halogenated chain saturated aliphatic hydrocarbon compound, at least one type of di- or poly-halogenated chain saturated aliphatic hydrocarbon compound which has one or more ether bonds, or a combination of at least one type of di- or poly-halogenated chain saturated aliphatic hydrocarbon compound and at least one type of di- or poly-halogenated chain saturated aliphatic hydrocarbon compound which has one or more ether bonds with a heterocyclic compound which has two nitrogen atoms and contains at least one type of brightener.
  • the heterocyclic compound which has two nitrogen atoms is a heterocyclic aromatic compound which has two nitrogen atoms.
  • the copper electrolyte contains at least one type of reaction product of a di- or poly-halogenated chain saturated aliphatic hydrocarbon compound or a di- or poly-halogenated chain saturated aliphatic hydrocarbon compound which has one or more ether bonds with a heterocyclic compound which has two nitrogen atoms and contains at least one type of brightener.
  • the copper electrolyte contains at least one type of reaction product of at least one type of di- or poly-halogenated chain saturated aliphatic hydrocarbon compound, at least one type of di- or poly-halogenated chain saturated aliphatic hydrocarbon compound which has one or more ether bonds, or a combination of at least one type of di- or poly-halogenated chain saturated aliphatic hydrocarbon compound and at least one type of di- or poly-halogenated chain saturated aliphatic hydrocarbon compound which has one or more ether bonds with a heterocyclic compound which has two nitrogen atoms.
  • the copper electrolyte contains at least one type of reaction product of at least one type of di- or poly-halogenated chain saturated aliphatic hydrocarbon compound, at least one type of di- or poly-halogenated chain saturated aliphatic hydrocarbon compound which has one or more ether bonds, or a combination of at least one type of di- or poly-halogenated chain saturated aliphatic hydrocarbon compound and at least one type of di- or poly-halogenated chain saturated aliphatic hydrocarbon compound which has one or more ether bonds with a heterocyclic compound which has two nitrogen atoms and contains at least one type of brightener.
  • the present invention can provide an electrolytic copper coating that exhibits flexibility and bendability equal to or better than those of rolled copper foil after the heat history in a circuit board fabrication process, especially after a heat history that is equivalent to the heat history applied when bonding with a polyimide film. Further, the present invention can provide a circuit board having flexibility and bendability using an electrolytic copper coating at a lower cost compared with rolled copper foil.
  • the present invention can provide a copper electrolyte for manufacturing an electrolytic copper coating which exhibits flexibility and bendability equal to or better than those of rolled copper foil after the heat history in a circuit board fabrication process, especially after a heat history that is equivalent to the heat history applied when bonding with a polyimide film.
  • FIG. 1 is a view explaining a drum type foil manufacturing apparatus.
  • FIG. 2 gives electron micrographs of cross-sections of copper foils, wherein FIG. 2A is a cross-sectional photograph of Example 1 in the present invention while FIG. 2B is a cross-sectional photograph of Comparative Example 1.
  • FIG. 3 gives charts of the SIMS analysis results, wherein FIG. 3A is a chart of Example 1 in the present invention while FIG. 3B is a chart of Comparative Example 1.
  • FIG. 4A shows the circuit pattern of an IPC flex test sample
  • FIG. 4B shows an IPC flex test sample
  • a usual electrolytic copper foil is for example produced by an electrolytic foil manufacturing apparatus shown in FIG. 1 .
  • the electrolytic foil manufacturing apparatus is comprised of a rotating drum shaped cathode 2 (surface made of SUS or titanium) and an anode 1 (lead or precious metal oxide-coated titanium electrode) arranged concentrically with the cathode 2 .
  • the electrolytic foil manufacturing apparatus is supplied with an electrolyte 3 while a current is run across the two electrodes so as to electrolytically deposit copper to a predetermined thickness on the surface of the cathode 2 , then the copper is peeled off from the surface of the cathode 2 in the form of foil.
  • the copper foil at this stage is sometimes called untreated electrolytic copper foil 4 .
  • the surface of the untreated electrolytic copper foil 4 which contacted the electrolyte is called as the “matte-side surface”, while the surface which contacted the rotating drum-shaped cathode 2 is called the “shiny-side surface”. Note that, above, an electrolytic foil manufacturing apparatus employing a rotating cathode 2 was explained, but the copper foil may also be produced by an electrolytic foil manufacturing apparatus using a plate shaped cathode.
  • the surface roughness of the electrolytic copper foil just after production is the surface roughness of the cathode transferred to it, so it is preferable to use a cathode whose surface roughness is Ra: 0.01 to 0.3 ⁇ m and Rz: 0.1 to 2.0 ⁇ m as the cathode for electrodeposition of copper.
  • a cathode whose surface roughness is Ra: 0.01 to 0.3 ⁇ m and Rz: 0.1 to 2.0 ⁇ m as the cathode for electrodeposition of copper.
  • the surface roughness of the matte side of the electrolytic copper foil is preferably an Ra of 0.01 to 0.2 ⁇ m and an Rz of 0.05 to 1.5 ⁇ m.
  • a surface roughness of an Ra of less than 0.01 ⁇ m and/or an Rz of less than 0.05 ⁇ m is extremely difficult even if bright plating is performed. In practice, manufacture is close to impossible.
  • the upper limit of the roughness is preferably made an Ra of less than 0.2 ⁇ m and an Rz of less than 1.5 ⁇ m.
  • a surface roughness of the shiny side and/or the matte side of an Ra of less than 0.2 ⁇ m and an Rz of less than 1.0 ⁇ m is more preferable.
  • the thickness of the electrolytic copper foil is preferably 3 ⁇ m to 70 ⁇ m. This is because manufacture of copper foil of a thickness of less than 3 ⁇ m is difficult due to handling technology etc. and is not practical.
  • the upper limit of the thickness is about 70 ⁇ m from the viewpoint of the current state of use of circuit boards. This is because it is difficult to conceive of electrolytic copper foil of a thickness of 70 ⁇ m or more being used as copper foil for circuit boards. Further, there is no cost benefit to using electrolytic copper foil.
  • the copper electrolyte for depositing the electrolytic copper foil there are a copper sulfate plating solution, copper pyrophosphate plating solution, copper sulfamate plating solution, etc. Considering costs etc., a copper sulfate plating solution is preferable.
  • the copper sulfate plating solution preferably has a sulfuric acid concentration of 20 to 150 g/L, especially 30 to 100 g/L. If the sulfuric acid concentration is less than 20 g/L, the flow of current becomes harder, so practical operation becomes difficult. Further, the uniformity of plating and electrodeposition performance also become poorer. If the sulfuric acid concentration is more than 150 g/L, the copper solubility decreases, so a sufficient copper concentration can no longer be obtained and practical operation becomes difficult. Further, the corrosion of equipment is promoted.
  • the copper concentration is preferably 40 to 150 g/L, especially 60 to 100 g/L. If the copper concentration becomes less than 40 g/L, it is difficult to secure the current density at which practical operation is possible in manufacturing electrolytic copper foil. A copper concentration of more than 150 g/L requires a considerably high temperature and therefore is impractical.
  • the current density is preferably 20 to 200 A/dm 2 , especially 30 to 120 A/dm 2 . If the current density becomes less than 20 A/dm 2 , in the manufacture of electrolytic copper foil, the production efficiency is extremely low, so this is impractical. A current density of more than 200 A/dm 2 requires a considerably high copper concentration, high temperature, and high flow velocity, and the production equipment of the electrolytic copper foil is subjected to a high load, so this is impractical.
  • the electrolytic bath temperature is preferably 25 to 80° C., especially 30 to 70° C. If the bath temperature becomes less than 25° C., in the manufacture of the electrolytic copper foil, it is difficult to secure a sufficient copper concentration and current density, so this is impractical. Further, a bath temperature of more than 80° C. is extremely difficult in terms of operation and equipment, so this is impractical.
  • the electrolyte has chlorine added to it if necessary.
  • the chlorine concentration is preferably 1 to 100 ppm, especially 10 to 50 ppm. If the chlorine concentration becomes less than 1 ppm, it becomes difficult to obtain the effect of the later described additives. If more than 100 ppm, normal plating becomes difficult.
  • the electrolysis conditions are suitably adjusted to conditions where problems such as deposition of copper and burning of plating do not occur within each range.
  • a reaction product of at least one type of di- or poly-halogenated chain saturated aliphatic hydrocarbon compound, at least one type of di- or poly-halogenated chain saturated aliphatic hydrocarbon compound which has one or more ether bonds, or a combination of at least one type of di- or poly-halogenated chain saturated aliphatic hydrocarbon compound and at least one type of di- or poly-halogenated chain saturated aliphatic hydrocarbon compound which has one or more ether bonds with a heterocyclic compound which has two nitrogen atoms is added as a leveler.
  • the number of carbon atoms of the di- or poly-halogenated chain saturated aliphatic hydrocarbon compound is in general 1 to 30, preferably 2 to 18, more preferably 4 to 8.
  • the number of carbon atoms of the di- or poly-halogenated chain saturated aliphatic hydrocarbon compound which has one or more ether bonds is 4 to 30, preferably 4 to 12, more preferably 6 to 10.
  • 2,2′-dichloroethyl ether, 1,2-bis(2-chloroethoxy)ethane, diethyleneglycol-bis(2-chloroethyl)ether, triethylene glycol-bis(2-chloroethyl)ether, 2,2′-dichloropropyl ether, 2,2′-dichlorobutyl ether, tetraethylene glycol-bis(2-bromoethyl)ether, heptaethylene glycol-bis(2-chloroethyl)ether, tridecaethylene glycol-bis(2-bromoethyl)ether, etc. can be mentioned. These compounds are used alone or in combinations of a plurality of types.
  • heterocyclic compound which has two nitrogen atoms piperazine, triethylenediamine, 2-methylpiperazine, 2,6-dimethylpiperazine, 2,5-dimethylpiperazine, homopiperazine, 2-pyrazoline, imidazole, 2-methylimidazole, 2-ethylimidazole, 2-propylimidazole, 4-methylimidazole, histidine, 1-(3-aminopropyl)imidazole, 2-imidazoline, 3-imidazoline, 4-imidazoline, 2-methyl-2-imidazoline, pyrazole, 1-methylpyrazole, 3-methylpyrazole, 1,3-dimethylpyrazole, 1,4-dimethylpyrazole, 1,5-dimethylpyrazole, 3,5-dimethylpyrazole, benzimidazole, indazole, piperazine, 2-methylpiperazine, 2,5-dimethylpiperazine, pyrimidine, pyridazine, etc.
  • 2-pyrazoline, pyrazole, imidazole, 2-methylimidazole, 2-imidazoline, 3-imidazoline, 4-imidazoline, 2-methyl-2-imidazoline, etc. are preferable.
  • a reaction product of a combination of a di- or poly-halogenated chain saturated aliphatic hydrocarbon compound and a di- or poly-halogenated chain saturated aliphatic hydrocarbon compound which has one or more ether bonds with a heterocyclic compound which has two nitrogen atoms can be used.
  • reaction product comprised of the above-mentioned starting material compound to which dimethylamine, diethanolamine, ethylenediamine, or another aliphatic amino compound, phenylenediamine or another aromatic amino compound, succinyl chloride, glutaryl chloride, fumaryl chloride, dichloroxylylene, phthaloyl chloride, or another compound which has a plurality of reactive groups is added and reacted as a third material can be used.
  • use of epichlorohydrin or another epihalohydrin compound as the third reaction component is not preferable because the expected effect of the reaction product cannot be obtained.
  • the reaction temperature for producing the reaction product of a di- or poly-halogenated chain saturated aliphatic hydrocarbon compound or di- or poly-halogenated chain saturated aliphatic hydrocarbon compound which has one or more ether bonds with a heterocyclic compound which has two nitrogen atoms is from room temperature to 200° C., preferably 50° C. to 130° C.
  • the reaction time for producing the reaction product of a di- or poly-halogenated chain saturated aliphatic hydrocarbon compound or di- or poly-halogenated chain saturated aliphatic hydrocarbon compound which has one or more ether bonds with a heterocyclic compound which has two nitrogen atoms is 1 hour to 100 hours, preferably 3 hours to 50 hours.
  • the reaction for producing the above reaction product of a di- or poly-halogenated chain saturated aliphatic hydrocarbon compound or di- or poly-halogenated chain saturated aliphatic hydrocarbon compound which has one or more ether bonds with a heterocyclic compound which has two nitrogen atoms can be performed without a solvent, but a solvent may also be used.
  • a solvent methanol, ethanol, 1-propanol, isopropanol, t-butanol, 1-butanol, and other alcohols, dimethylformamide, dioxane, tetrahydrofuran, methyl cellosolve, ethyl cellosolve, dimethyl cellosolve, diethyl cellosolve, etc. may be used.
  • a halogen may be generated.
  • this halogen may be contained, but preferably the halogen is removed by a well known method, for example, an ion exchange method, a method of insolubilizing it as alkaline metal halide by a reaction with an alkali metal hydroxide etc.
  • the selection of whether the reaction product should be allowed to contain a halogen is made so as to satisfy the required performance as a copper electrolyte.
  • the brightener which is used in the present embodiment, one may be suitably selected from known ones.
  • 3-mercaptopropane sulfonic acid and its salt, bis(3-sulfopropyl)disulfide and its salt, N,N-dimethyldithiocarbamic acid (3-sulfopropyl)ester, N,N-dimethyldithiocarbamic acid (3-sulfoethyl)ester, sodium 3-(benzothiazolylthio)ethyl sulfonate, pyridiniumpropyl sulfobetaine, etc. can be mentioned.
  • the polymer When adding a polymer to the copper electrolyte, the polymer may be suitably selected from known ones.
  • a molecular weight 200 or greater polyethyleneglycol, polypropyleneglycol, copolymer of polyethyleneglycol and polypropyleneglycol, C1 to C6 alkyl monoether of the above three types of glycols, polyoxyethylene glyceryl ether, polyoxypropylene glyceryl ether, polyoxyethylene polyoxypropylene glyceryl ether, etc. can be mentioned.
  • one of a molecular weight of 500 to 100,000 is preferable.
  • the contents of elements taken in from the plating solution and additive ingredients such as chlorine (Cl), nitrogen (N), and sulfur (S) are preferably, in terms of intensity ratio with copper (Cu) in SIMS (secondary ion mass spectrometry) analysis of different parts in the copper foil depth direction, chlorine (Cl) of less than 0.5%, nitrogen (N) of less than 0.005%, and sulfur (S) of less than 0.005%.
  • chlorine (Cl) of less than 0.5%
  • sulfur (S) of less than 0.005%.
  • the oxygen (O) is less than 1% and the carbon (C) less than 0.1%.
  • the electrolytic copper foil of the present embodiment is an electrolytic copper foil in which there are few impurities as a whole and in which there are not many partially either (impurities are averagely distributed). Therefore, the electrolytic copper foil of the present embodiment, when subjected to the heat history in the circuit board fabrication process, especially a heat history that is equivalent to the heat history applied when bonding with a polyimide film, can be given flexibility and bendability equal to or better than those of rolled copper foil because the impurities are low and therefore grain coarsening progresses easily.
  • the electrolytic copper foil produced as above when heat treated so that the LMP value shown in Equation 1 (hereinafter, simply described the “LMP value”) becomes 9000 or more, becomes an electrolytic copper foil which has a crystal distribution of 70% or more of crystal grains having a maximum length of the crystal grains after heat treatment of 10 ⁇ m or more.
  • the heat treatment is performed so that a LMP value becomes 11,000 or more.
  • FIG. 2 gives examples of electron micrographs of the cross-sectional surfaces of electrolytic copper foils, wherein FIG. 2A is a cross-sectional photograph of the electrolytic copper foil of this embodiment, and FIG. 2B is a cross-sectional photograph of a conventional electrolytic copper foil.
  • the maximum length of the crystal grains is measured by the method of measuring the lengths of crystal grains in the long axis direction in a 1000 ⁇ m 2 area of a micrograph capturing a cross-section of the electrolytic copper foil, measuring the area occupied by crystal grains of a length of 10 ⁇ m or more, and calculating what percent the measured area is of the area of the cross-section as a whole.
  • the 0.2% proof stress of the copper foil after the above heat treatment is preferably less than 10 kN/cm 2 , and the Young's modulus is preferably less than 2000 kN/cm 2 . Note that the 0.2% proof stress is optimally less than 8 kN/cm 2 .
  • the present invention was explained with reference to an electrolytic copper foil, but it may also be a copper plating layer provided on a substrate in a printed circuit board or a copper plating layer provided on a metal wire. That is, a thick plating provided on a copper laminated substrate after etching, a thick plating provided on an organic film after forming a thin film by sputtering or non-electrolytic plating, and a copper plating layer provided on a metal plate or wire may also be formed by the copper electrolyte of the present invention. Note that, in many cases, a copper plating layer is formed on a metal thin film as explained above, so copper plating is generally performed at low current density conditions compared with electrolytic copper foil.
  • the preferred ranges of copper concentration, current density, and electrolyte temperature differ from those of an electrolytic copper foil.
  • the preferred range of copper concentration is 30 to 70 g/L
  • the preferred range of current density is 0.1 to 15 A/dm 2
  • the preferred range of electrolyte temperature is 20 to 50° C.
  • the hardness becomes a problem.
  • the Vickers hardness is preferably less than 60 Hv.
  • Table 1 shows the electrolyte composition.
  • a copper sulfate plating solution of each composition shown in Table 1 (below, sometimes referred to as an “electrolyte”) was run through an activated charcoal filter to purify it, then the additives shown in Table 2 were added to predetermined concentrations.
  • an 18 ⁇ m thick electrolytic copper foil was deposited on a rotating drum made of titanium shown in FIG. 1 from the copper sulfate plating solution by the current density shown in Table 1, then was peeled off and rolled up.
  • PEG Polyethylene glycol (molecular weight 2000)
  • (8) Polyethylene glycol-polypropylene glycol copolymer
  • the produced electrolytic copper foil and copper plating layer were respectively divided into three samples. Among these, one sample each was used to measure the amounts of impurity elements contained inside the electrolytic copper foil and the copper plating layer and the surface roughness. Further, another unused sample of each was heat-treated and observed for crystal grains at the cross-section. Furthermore, a sample of the electrolytic copper foil was tested for tensile strength, while a sample of the copper plating layer was tested for Vickers hardness. Finally, for each remaining unused sample, the sample of the electrolytic copper foil was hot pressed with a polyimide film, then the sample of the copper plating layer was heat-treated by the same temperature setting, then these samples were tested by an IPC bending test. The details of each measurement and examination are described below.
  • the amounts of impurity elements inside the electrolytic copper foils and copper plating layers of Examples 1 to 7, Examples 14 to 20, Comparative Examples 1 to 3, and Comparative Examples 7 to 9 were measured in the depth direction using SIMS analysis.
  • the measured elements were oxygen (O), carbon (C), chlorine (Cl), nitrogen (N), and sulfur (S).
  • the measurement conditions of the SIMS analysis were as follows.
  • the surfaces of the electrolytic copper foils and copper plating layers are affected by dirt and oxide layers, so the portions from the surfaces to 2 ⁇ m down in the depth direction were removed by sputtering, then the measurement was started and the portion down to a depth of 4 ⁇ m was analyzed.
  • the intensity ratio was calculated from the average value of the intensity of each measured element and the average value of the intensity of copper. Examples of the measurement results of the SIMS analysis are shown in FIG. 3A and FIG. 3B , while the calculation results of the intensity ratio are shown in Table 3.
  • the surface roughnesses Ra and Rz of the electrolytic copper foils and the copper plating layers of Examples 1 to 7, Examples 14 to 20, Comparative Examples 1 to 3, and Comparative Examples 7 to 9 were measured using a contact type surface roughness gauge.
  • the surface roughness is shown by Ra (arithmetic average roughness) and Rz (ten-point average roughness) defined in JIS-B-0601 (Japanese Industrial Standard).
  • the reference length is 0.8 mm.
  • the electrolytic copper foils were measured for the Ra and Rz of the matte-side surfaces and shiny-side surfaces and the copper plating layers were measured for the Ra and Rz of the surfaces of the copper plating layers and the non-electrolytic copper layer surfaces before plating. The results of surface roughness measurement are described in Table 3.
  • the electrolytic copper foils and the copper plating layers of Examples 11 to 13 and Examples 24 to 26 were heat-treated in a nitrogen atmosphere under heating conditions of 200° C.
  • the electrolytic copper foils of Examples 1 to 13 and Comparative Examples 1 to 6 were heat-treated under the above heat conditions, the foils were cut into 6 inch (length) ⁇ 0.5 inch (width) test pieces which were then measured for 0.2% proof stress and Young's modulus using a tensile tester. Further, the tension rate was 50 mm/min.
  • the results of the tensile test are described in Table 4.
  • the 0.2% proof stress is the value obtained in the curve of the relationship of strain and stress by drawing a tangent to the curve at the point of 0% strain, drawing a line parallel to that tangent at the point of 0.2% strain, and dividing the stress at the point where that line and the curve intersect by the cross-sectional area.
  • the electrolytic plating layers of Examples 14 to 26 and Comparative Examples 7 to 12 were heat-treated under the above heating conditions, then the copper plating layers were embedded in a resin, the cross-sections were cut, then the cross-sections were polished and a Vickers hardness tester was used to measure the Vickers hardness. Further, the load was 10 gf and load holding time was 15 sec. The results of the Vickers hardness test are described in Table 4.
  • the obtained electrolytic copper foils to which the polyimide films were bonded and the copper plating layers were etched with the circuit patterns shown in FIG. 4A , then, as shown in FIG.
  • the obtained test samples were tested by IPC flex tests under the following conditions, then the rate of increase of the electrical resistance from an initial state was measured.
  • the results of the IPC flex test are described in Table 5.
  • Test equipment SEK-31B-2S made by Shin-Etsu Engineering Co., Ltd. Flex radius: 2.0 mm Vibrating stroke width: 20 mm Flex speed: 1500 times/minute
  • the percentage of the crystal grains of a length of 10 ⁇ m or more (crystal distribution) is 70% or more.
  • the 0.2% proof stresses of the electrolytic copper foils were less than 10 kN/cm 2
  • the Young's moduli were less than 2000 kN/cm 2 .
  • the Vickers hardness of the copper plating layers was less than 60 Hv.
  • the 0.2% proof stresses of the electrolytic copper foils were 10 kN/cm 2 or more or the Young's moduli were 2000 kN/cm 2 or more.
  • the Vickers hardness of the copper plating layers was 60 Hv or more. These did not satisfy all of the conditions of the present invention.
  • the electrolytic copper foils and the copper plating layers showed poor flexing characteristics as compared with the examples.
  • the electrolytic copper coating, the method of manufacturing the same, and the copper electrolyte for manufacturing an electrolytic copper coating of the present invention can be applied to a copper plating layer provided on a substrate in a printed circuit board, a multilayer printed circuit board, and a chip-on-film circuit board, a copper plating layer provided on a metal wire, or an electrolytic copper foil.

Abstract

An object of the present invention is to provide an electrolytic copper coating that exhibits a bendability and flexibility equal to or better than those of rolled copper foil after the heat history in a circuit board fabrication process, especially after a heat history equivalent to the heat history applied when bonding with a polyimide film. The present invention provides an electrolytic copper coating and a method of manufacturing the same wherein, when performing heat treatment so that the LMP value shown in Equation 1 becomes 9000 or more, the result becomes a crystal distribution of crystal grains, having a maximum length of crystal grains after heat treatment of 10 μm or more, of 70% or more:

LMP=(T+273)*(20+Log t)  Equation 1
    • where, 20 is a material constant of copper, T is temperature (° C.), and t is time (hr).

Description

    TECHNICAL FIELD
  • The present invention relates to an electrolytic copper coating having superior bendability and flexibility, a method of manufacturing the same, and a copper electrolyte used for manufacturing the electrolytic copper coating.
  • Note that, in this Description, “an electrolytic copper coating” is a general term covering a copper plating layer provided on a substrate in a printed circuit board, a multilayer printed circuit board, and a circuit board for chip-on films (below, these able to be generally referred to as a “circuit board”), a copper plating layer provided on a metal wire, and an electrolytic copper foil.
  • BACKGROUND ART
  • Currently, due to the reduction in size of electrical products, the trend is toward the bending angles (R) of hinge parts of mobile phones becoming increasingly smaller.
  • The requirements on the bending characteristics of circuit boards are therefore becoming tougher. The important characteristics of copper foil for improving the bending characteristics are the thickness, surface smoothness, size of crystal grain, mechanical properties, etc. Further, to increase the density of wiring to deal with the reduction in size of electrical products, it is an important to use space as effectively as possible. Therefore, the use of a polyimide film, which enables a circuit board to easily deform, has become indispensable. The adhesive strength and the flexibility of the copper foil which is bonded on the polyimide film have become indispensable characteristics. A rolled copper foil produced by a special manufacturing process is used as copper foil satisfying these characteristics.
  • However, rolled copper foil suffers from the disadvantages that the manufacturing process is long, so the processing cost is high, copper foil having a wide width cannot be produced, and production of thin foil is difficult. Therefore, electrolytic copper foil satisfying the above-mentioned characteristics is being demanded. Further, in a circuit board, thick plating is performed at the time of forming circuits. Flexibility of the copper plating layer at the time of formation of a thick copper plating layer is also required. However, with the current copper plating technology, no electrolytic copper foil satisfying all the requirements while maintaining the smoothness of electrolytic copper foil and its production method has been proposed. No electrolytic copper coating (electrolytic copper foil or copper plating layer) having a flexibility and bendability equal to or better than those of above-mentioned rolled copper foil exists at present.
  • SUMMARY OF INVENTION Technical Problem
  • The problem to be solved by the invention is to provide an electrolytic copper coating whose flexibility and bendability are equal to or better than those of rolled copper foil and to provide a method of manufacturing the same and a copper electrolyte used for manufacturing an electrolytic copper coating.
  • Solution to Problem
  • The electrolytic copper coating of the present invention comprises an electrolytic copper coating produced by electrolytic deposition, wherein, when performing heat treatment so that the LMP value shown in Equation 1 becomes 9000 or more, the result becomes a crystal distribution of crystal grains, having a maximum length of crystal grains after heat treatment of 10 μm or more, of 70% or more:

  • LMP=(T+273)*(20+Log t)  Equation 1
  • where, 20 is a material constant of copper, T is temperature (° C.), and t is time (hr).
  • Preferably, when the electrolytic copper coating is heat treated to give an LMP value of 9000 or more, the 0.2% proof stress of the electrolytic copper coating is less than 10 kN/cm2, and the Young's modulus is less than 2000 kN/cm2.
  • Preferably, when the electrolytic copper coating is heat treated to give an LMP value of 9000 or more, the Vickers hardness of the electrolytic copper coating is less than 60 Hv.
  • Preferably, in SIMS (secondary ion mass spectrometry) analysis of the electrolytic copper coating in the copper coating depth direction, in terms of the strength ratio with the copper (Cu), the content of chlorine (Cl) is less than 0.5%, the content of nitrogen (N) is less than 0.005%, and the content of sulfur (S) is less than 0.005%.
  • Preferably, a roughness of at least one surface of the electrolytic copper coating is less than 0.30 μm in terms of Ra and less than 2.0 μm in terms of Rz prescribed in JIS-B-0601.
  • A method of manufacturing an electrolytic copper coating of the present invention comprises a method of manufacturing an electrolytic copper coating produced by electrolytic deposition using a copper electrolyte, wherein, when performing heat treatment so that the LMP value shown in Equation 1 becomes 9000 or more, the result becomes a crystal distribution of crystal grains, having a maximum length of crystal grains after heat treatment of 10 μm or more, of 70% or more.

  • LMP=(T+273)*(20+Log t)  Equation 1
  • where, 20 is a material constant of copper, T is temperature (° C.), and t is time (hr).
  • Preferably, the copper electrolyte contains at least one type of reaction product of at least one type of di- or poly-halogenated chain saturated aliphatic hydrocarbon compound, at least one type of di- or poly-halogenated chain saturated aliphatic hydrocarbon compound which has one or more ether bonds, or a combination of at least one type of di- or poly-halogenated chain saturated aliphatic hydrocarbon compound and at least one type of di- or poly-halogenated chain saturated aliphatic hydrocarbon compound which has one or more ether bonds with a heterocyclic compound which has two nitrogen atoms.
  • Preferably, the copper electrolyte contains at least one type of reaction product of at least one type of di- or poly-halogenated chain saturated aliphatic hydrocarbon compound, at least one type of di- or poly-halogenated chain saturated aliphatic hydrocarbon compound which has one or more ether bonds, or a combination of at least one type of di- or poly-halogenated chain saturated aliphatic hydrocarbon compound and at least one type of di- or poly-halogenated chain saturated aliphatic hydrocarbon compound which has one or more ether bonds with a heterocyclic compound which has two nitrogen atoms and contains at least one type of brightener.
  • Preferably, the heterocyclic compound which has two nitrogen atoms is a heterocyclic aromatic compound which has two nitrogen atoms.
  • Preferably, the copper electrolyte contains at least one type of reaction product of a di- or poly-halogenated chain saturated aliphatic hydrocarbon compound or a di- or poly-halogenated chain saturated aliphatic hydrocarbon compound which has one or more ether bonds with a heterocyclic compound which has two nitrogen atoms and contains at least one type of brightener.
  • Preferably, the copper electrolyte contains at least one type of reaction product of at least one type of di- or poly-halogenated chain saturated aliphatic hydrocarbon compound, at least one type of di- or poly-halogenated chain saturated aliphatic hydrocarbon compound which has one or more ether bonds, or a combination of at least one type of di- or poly-halogenated chain saturated aliphatic hydrocarbon compound and at least one type of di- or poly-halogenated chain saturated aliphatic hydrocarbon compound which has one or more ether bonds with a heterocyclic compound which has two nitrogen atoms.
  • Preferably, the copper electrolyte contains at least one type of reaction product of at least one type of di- or poly-halogenated chain saturated aliphatic hydrocarbon compound, at least one type of di- or poly-halogenated chain saturated aliphatic hydrocarbon compound which has one or more ether bonds, or a combination of at least one type of di- or poly-halogenated chain saturated aliphatic hydrocarbon compound and at least one type of di- or poly-halogenated chain saturated aliphatic hydrocarbon compound which has one or more ether bonds with a heterocyclic compound which has two nitrogen atoms and contains at least one type of brightener.
  • Advantageous Effects of Invention
  • The present invention can provide an electrolytic copper coating that exhibits flexibility and bendability equal to or better than those of rolled copper foil after the heat history in a circuit board fabrication process, especially after a heat history that is equivalent to the heat history applied when bonding with a polyimide film. Further, the present invention can provide a circuit board having flexibility and bendability using an electrolytic copper coating at a lower cost compared with rolled copper foil.
  • Furthermore, the present invention can provide a copper electrolyte for manufacturing an electrolytic copper coating which exhibits flexibility and bendability equal to or better than those of rolled copper foil after the heat history in a circuit board fabrication process, especially after a heat history that is equivalent to the heat history applied when bonding with a polyimide film.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 is a view explaining a drum type foil manufacturing apparatus.
  • FIG. 2 gives electron micrographs of cross-sections of copper foils, wherein FIG. 2A is a cross-sectional photograph of Example 1 in the present invention while FIG. 2B is a cross-sectional photograph of Comparative Example 1.
  • FIG. 3 gives charts of the SIMS analysis results, wherein FIG. 3A is a chart of Example 1 in the present invention while FIG. 3B is a chart of Comparative Example 1.
  • FIG. 4A shows the circuit pattern of an IPC flex test sample, while FIG. 4B shows an IPC flex test sample.
  • EMBODIMENTS OF INVENTION
  • Below, using an electrolytic copper foil, one type of electrolytic copper coating, as an example, an embodiment of the present invention will be explained in detail. A usual electrolytic copper foil is for example produced by an electrolytic foil manufacturing apparatus shown in FIG. 1. The electrolytic foil manufacturing apparatus is comprised of a rotating drum shaped cathode 2 (surface made of SUS or titanium) and an anode 1 (lead or precious metal oxide-coated titanium electrode) arranged concentrically with the cathode 2. The electrolytic foil manufacturing apparatus is supplied with an electrolyte 3 while a current is run across the two electrodes so as to electrolytically deposit copper to a predetermined thickness on the surface of the cathode 2, then the copper is peeled off from the surface of the cathode 2 in the form of foil. The copper foil at this stage is sometimes called untreated electrolytic copper foil 4. Further, the surface of the untreated electrolytic copper foil 4 which contacted the electrolyte is called as the “matte-side surface”, while the surface which contacted the rotating drum-shaped cathode 2 is called the “shiny-side surface”. Note that, above, an electrolytic foil manufacturing apparatus employing a rotating cathode 2 was explained, but the copper foil may also be produced by an electrolytic foil manufacturing apparatus using a plate shaped cathode.
  • The surface roughness of the electrolytic copper foil just after production is the surface roughness of the cathode transferred to it, so it is preferable to use a cathode whose surface roughness is Ra: 0.01 to 0.3 μm and Rz: 0.1 to 2.0 μm as the cathode for electrodeposition of copper. By using such a cathode, the surface roughness of the shiny side of the electrolytic copper foil just after production, to which the cathode surface is transferred, can be made Ra: 0.01 to 0.3 μm and Rz: 0.1 to 2.0 μm. Production of electrolytic copper foil with a surface roughness Ra of the shiny side of less than 0.01 μm and/or Rz of less than 0.1 μm, considering the technology for polishing cathodes etc., is difficult. Further, this is unsuitable for mass production. Further, if the surface roughness Ra of the shiny side is made 0.3 μm or more and/or the Rz is made 2.0 μm or more, the bending characteristics of the electrolytic copper foil deteriorate and the characteristics sought by the present invention are no longer obtained.
  • The surface roughness of the matte side of the electrolytic copper foil is preferably an Ra of 0.01 to 0.2 μm and an Rz of 0.05 to 1.5 μm. A surface roughness of an Ra of less than 0.01 μm and/or an Rz of less than 0.05 μm is extremely difficult even if bright plating is performed. In practice, manufacture is close to impossible. Further, in the above way, if the surface of the electrolytic copper foil is rough, the bending characteristics deteriorate, so the upper limit of the roughness is preferably made an Ra of less than 0.2 μm and an Rz of less than 1.5 μm. A surface roughness of the shiny side and/or the matte side of an Ra of less than 0.2 μm and an Rz of less than 1.0 μm is more preferable.
  • Further, the thickness of the electrolytic copper foil is preferably 3 μm to 70 μm. This is because manufacture of copper foil of a thickness of less than 3 μm is difficult due to handling technology etc. and is not practical. The upper limit of the thickness is about 70 μm from the viewpoint of the current state of use of circuit boards. This is because it is difficult to conceive of electrolytic copper foil of a thickness of 70 μm or more being used as copper foil for circuit boards. Further, there is no cost benefit to using electrolytic copper foil.
  • Further, as the copper electrolyte for depositing the electrolytic copper foil, there are a copper sulfate plating solution, copper pyrophosphate plating solution, copper sulfamate plating solution, etc. Considering costs etc., a copper sulfate plating solution is preferable.
  • The copper sulfate plating solution preferably has a sulfuric acid concentration of 20 to 150 g/L, especially 30 to 100 g/L. If the sulfuric acid concentration is less than 20 g/L, the flow of current becomes harder, so practical operation becomes difficult. Further, the uniformity of plating and electrodeposition performance also become poorer. If the sulfuric acid concentration is more than 150 g/L, the copper solubility decreases, so a sufficient copper concentration can no longer be obtained and practical operation becomes difficult. Further, the corrosion of equipment is promoted.
  • The copper concentration is preferably 40 to 150 g/L, especially 60 to 100 g/L. If the copper concentration becomes less than 40 g/L, it is difficult to secure the current density at which practical operation is possible in manufacturing electrolytic copper foil. A copper concentration of more than 150 g/L requires a considerably high temperature and therefore is impractical.
  • The current density is preferably 20 to 200 A/dm2, especially 30 to 120 A/dm2. If the current density becomes less than 20 A/dm2, in the manufacture of electrolytic copper foil, the production efficiency is extremely low, so this is impractical. A current density of more than 200 A/dm2 requires a considerably high copper concentration, high temperature, and high flow velocity, and the production equipment of the electrolytic copper foil is subjected to a high load, so this is impractical.
  • The electrolytic bath temperature is preferably 25 to 80° C., especially 30 to 70° C. If the bath temperature becomes less than 25° C., in the manufacture of the electrolytic copper foil, it is difficult to secure a sufficient copper concentration and current density, so this is impractical. Further, a bath temperature of more than 80° C. is extremely difficult in terms of operation and equipment, so this is impractical.
  • In this embodiment, the electrolyte has chlorine added to it if necessary. The chlorine concentration is preferably 1 to 100 ppm, especially 10 to 50 ppm. If the chlorine concentration becomes less than 1 ppm, it becomes difficult to obtain the effect of the later described additives. If more than 100 ppm, normal plating becomes difficult. The electrolysis conditions are suitably adjusted to conditions where problems such as deposition of copper and burning of plating do not occur within each range.
  • In the copper sulfate plating bath for manufacturing the electrolytic copper foil, a reaction product of at least one type of di- or poly-halogenated chain saturated aliphatic hydrocarbon compound, at least one type of di- or poly-halogenated chain saturated aliphatic hydrocarbon compound which has one or more ether bonds, or a combination of at least one type of di- or poly-halogenated chain saturated aliphatic hydrocarbon compound and at least one type of di- or poly-halogenated chain saturated aliphatic hydrocarbon compound which has one or more ether bonds with a heterocyclic compound which has two nitrogen atoms is added as a leveler.
  • The number of carbon atoms of the di- or poly-halogenated chain saturated aliphatic hydrocarbon compound is in general 1 to 30, preferably 2 to 18, more preferably 4 to 8. Specifically, 1,3-dichloro-2-propanol, 1,4-dichloro-2,3-butanediol, 1-bromo-3-chloroethane, 1-chloro-3-iodoethane, 1,2-diiodoethane, 1,3-dichloropropane, 1,2,3-trichloropropane, 1-bromo-3-chloropropane, 1,3-dibromopropane, 1,2-dichloroethane, 1-chloro-3-iodopropane, 1,4-dichloro-2-buthanol, 1,2-dibromoethane, 2,3-dichloro-1-propanol, 1,4-dichlorocyclohexane, 1,3-diiodopropane, 1-bromo-3-chloro-2-methylpropane, 1,4-dichlorobutane, 1,4-dibromobutane, 1,5-dichloro[3-(2-chloroethyl)]pentane, 1,6-dibromohexane, 1,8-dichlorooctane, 1,10-dichlorodecane, 1,18-dichlorooctadecane, etc. can be mentioned. These compounds are used alone or in combinations of a plurality of types.
  • The number of carbon atoms of the di- or poly-halogenated chain saturated aliphatic hydrocarbon compound which has one or more ether bonds is 4 to 30, preferably 4 to 12, more preferably 6 to 10. Specifically, 2,2′-dichloroethyl ether, 1,2-bis(2-chloroethoxy)ethane, diethyleneglycol-bis(2-chloroethyl)ether, triethylene glycol-bis(2-chloroethyl)ether, 2,2′-dichloropropyl ether, 2,2′-dichlorobutyl ether, tetraethylene glycol-bis(2-bromoethyl)ether, heptaethylene glycol-bis(2-chloroethyl)ether, tridecaethylene glycol-bis(2-bromoethyl)ether, etc. can be mentioned. These compounds are used alone or in combinations of a plurality of types.
  • As the heterocyclic compound which has two nitrogen atoms, piperazine, triethylenediamine, 2-methylpiperazine, 2,6-dimethylpiperazine, 2,5-dimethylpiperazine, homopiperazine, 2-pyrazoline, imidazole, 2-methylimidazole, 2-ethylimidazole, 2-propylimidazole, 4-methylimidazole, histidine, 1-(3-aminopropyl)imidazole, 2-imidazoline, 3-imidazoline, 4-imidazoline, 2-methyl-2-imidazoline, pyrazole, 1-methylpyrazole, 3-methylpyrazole, 1,3-dimethylpyrazole, 1,4-dimethylpyrazole, 1,5-dimethylpyrazole, 3,5-dimethylpyrazole, benzimidazole, indazole, piperazine, 2-methylpiperazine, 2,5-dimethylpiperazine, pyrimidine, pyridazine, etc. can be mentioned. These compounds are used alone or in combinations of a plurality of types. In particular, 2-pyrazoline, pyrazole, imidazole, 2-methylimidazole, 2-imidazoline, 3-imidazoline, 4-imidazoline, 2-methyl-2-imidazoline, etc. are preferable. In the present invention, a reaction product of a combination of a di- or poly-halogenated chain saturated aliphatic hydrocarbon compound and a di- or poly-halogenated chain saturated aliphatic hydrocarbon compound which has one or more ether bonds with a heterocyclic compound which has two nitrogen atoms can be used. Furthermore, a reaction product comprised of the above-mentioned starting material compound to which dimethylamine, diethanolamine, ethylenediamine, or another aliphatic amino compound, phenylenediamine or another aromatic amino compound, succinyl chloride, glutaryl chloride, fumaryl chloride, dichloroxylylene, phthaloyl chloride, or another compound which has a plurality of reactive groups is added and reacted as a third material can be used. However, use of epichlorohydrin or another epihalohydrin compound as the third reaction component is not preferable because the expected effect of the reaction product cannot be obtained.
  • The reaction temperature for producing the reaction product of a di- or poly-halogenated chain saturated aliphatic hydrocarbon compound or di- or poly-halogenated chain saturated aliphatic hydrocarbon compound which has one or more ether bonds with a heterocyclic compound which has two nitrogen atoms is from room temperature to 200° C., preferably 50° C. to 130° C.
  • The reaction time for producing the reaction product of a di- or poly-halogenated chain saturated aliphatic hydrocarbon compound or di- or poly-halogenated chain saturated aliphatic hydrocarbon compound which has one or more ether bonds with a heterocyclic compound which has two nitrogen atoms is 1 hour to 100 hours, preferably 3 hours to 50 hours.
  • The reaction for producing the above reaction product of a di- or poly-halogenated chain saturated aliphatic hydrocarbon compound or di- or poly-halogenated chain saturated aliphatic hydrocarbon compound which has one or more ether bonds with a heterocyclic compound which has two nitrogen atoms can be performed without a solvent, but a solvent may also be used. As the solvent, methanol, ethanol, 1-propanol, isopropanol, t-butanol, 1-butanol, and other alcohols, dimethylformamide, dioxane, tetrahydrofuran, methyl cellosolve, ethyl cellosolve, dimethyl cellosolve, diethyl cellosolve, etc. may be used.
  • During the reaction for producing the above reaction product of a di- or poly-halogenated chain saturated aliphatic hydrocarbon compound or di- or poly-halogenated chain saturated aliphatic hydrocarbon compound which has one or more ether bonds with a heterocyclic compound which has two nitrogen atoms, a halogen may be generated. During the reaction, this halogen may be contained, but preferably the halogen is removed by a well known method, for example, an ion exchange method, a method of insolubilizing it as alkaline metal halide by a reaction with an alkali metal hydroxide etc. The selection of whether the reaction product should be allowed to contain a halogen is made so as to satisfy the required performance as a copper electrolyte.
  • As the brightener which is used in the present embodiment, one may be suitably selected from known ones. For example, 3-mercaptopropane sulfonic acid and its salt, bis(3-sulfopropyl)disulfide and its salt, N,N-dimethyldithiocarbamic acid (3-sulfopropyl)ester, N,N-dimethyldithiocarbamic acid (3-sulfoethyl)ester, sodium 3-(benzothiazolylthio)ethyl sulfonate, pyridiniumpropyl sulfobetaine, etc. can be mentioned.
  • When adding a polymer to the copper electrolyte, the polymer may be suitably selected from known ones. For example, a molecular weight 200 or greater polyethyleneglycol, polypropyleneglycol, copolymer of polyethyleneglycol and polypropyleneglycol, C1 to C6 alkyl monoether of the above three types of glycols, polyoxyethylene glyceryl ether, polyoxypropylene glyceryl ether, polyoxyethylene polyoxypropylene glyceryl ether, etc. can be mentioned. Especially, one of a molecular weight of 500 to 100,000 is preferable.
  • In the copper of the electrolytic copper foil produced by the above-mentioned conditions, the contents of elements taken in from the plating solution and additive ingredients such as chlorine (Cl), nitrogen (N), and sulfur (S) are preferably, in terms of intensity ratio with copper (Cu) in SIMS (secondary ion mass spectrometry) analysis of different parts in the copper foil depth direction, chlorine (Cl) of less than 0.5%, nitrogen (N) of less than 0.005%, and sulfur (S) of less than 0.005%. Furthermore, more preferably, the oxygen (O) is less than 1% and the carbon (C) less than 0.1%.
  • The electrolytic copper foil of the present embodiment is an electrolytic copper foil in which there are few impurities as a whole and in which there are not many partially either (impurities are averagely distributed). Therefore, the electrolytic copper foil of the present embodiment, when subjected to the heat history in the circuit board fabrication process, especially a heat history that is equivalent to the heat history applied when bonding with a polyimide film, can be given flexibility and bendability equal to or better than those of rolled copper foil because the impurities are low and therefore grain coarsening progresses easily.
  • The electrolytic copper foil produced as above, when heat treated so that the LMP value shown in Equation 1 (hereinafter, simply described the “LMP value”) becomes 9000 or more, becomes an electrolytic copper foil which has a crystal distribution of 70% or more of crystal grains having a maximum length of the crystal grains after heat treatment of 10 μm or more. Preferably, the heat treatment is performed so that a LMP value becomes 11,000 or more.

  • LMP=(T+273)*(20+Log t)  Equation 1
  • where, 20 is the material constant of copper, T is the temperature (° C.), and t is the time (hr).
  • FIG. 2 gives examples of electron micrographs of the cross-sectional surfaces of electrolytic copper foils, wherein FIG. 2A is a cross-sectional photograph of the electrolytic copper foil of this embodiment, and FIG. 2B is a cross-sectional photograph of a conventional electrolytic copper foil. The maximum length of the crystal grains is measured by the method of measuring the lengths of crystal grains in the long axis direction in a 1000 μm2 area of a micrograph capturing a cross-section of the electrolytic copper foil, measuring the area occupied by crystal grains of a length of 10 μm or more, and calculating what percent the measured area is of the area of the cross-section as a whole.
  • The 0.2% proof stress of the copper foil after the above heat treatment is preferably less than 10 kN/cm2, and the Young's modulus is preferably less than 2000 kN/cm2. Note that the 0.2% proof stress is optimally less than 8 kN/cm2.
  • Above, the present invention was explained with reference to an electrolytic copper foil, but it may also be a copper plating layer provided on a substrate in a printed circuit board or a copper plating layer provided on a metal wire. That is, a thick plating provided on a copper laminated substrate after etching, a thick plating provided on an organic film after forming a thin film by sputtering or non-electrolytic plating, and a copper plating layer provided on a metal plate or wire may also be formed by the copper electrolyte of the present invention. Note that, in many cases, a copper plating layer is formed on a metal thin film as explained above, so copper plating is generally performed at low current density conditions compared with electrolytic copper foil. Therefore, the preferred ranges of copper concentration, current density, and electrolyte temperature differ from those of an electrolytic copper foil. The preferred range of copper concentration is 30 to 70 g/L, the preferred range of current density is 0.1 to 15 A/dm2, and the preferred range of electrolyte temperature is 20 to 50° C. Further, in a copper plating layer, sometimes the hardness becomes a problem. When performing the above heat treatment of the copper plating layer, the Vickers hardness is preferably less than 60 Hv.
  • EXAMPLES
  • Below, the present invention will be explained with reference to examples, but the present invention is not limited to these.
  • Foil-Making Examples 1 to 13 and Comparative Examples 1 to 6
  • Table 1 shows the electrolyte composition. A copper sulfate plating solution of each composition shown in Table 1 (below, sometimes referred to as an “electrolyte”) was run through an activated charcoal filter to purify it, then the additives shown in Table 2 were added to predetermined concentrations. Next, an 18 μm thick electrolytic copper foil was deposited on a rotating drum made of titanium shown in FIG. 1 from the copper sulfate plating solution by the current density shown in Table 1, then was peeled off and rolled up.
  • Examples 14 to 26 and Comparative Examples 7 to 12
  • In the same way, a copper sulfate plating solution of each composition shown in Table 1 was run through an activated charcoal filter, then the additives shown in Table 2 were added to predetermined concentrations. Next, an 18 μm thick copper plating layer was deposited on a 1 μm thick non-electrolytic copper plating layer prepared on a 25 μm thick polyimide film beforehand, from the copper sulfate plating solution by the current density shown in Table 1.
  • TABLE 1
    Copper sulfate plating solution Current
    Copper Sulfuric acid Temperature density
    Form (g/L) (g/L) (° C.) (A/dm2)
    Ex. 1 Electrolytic 90 50 60 60
    to 13 copper foil
    Ex. 14 Copper 50 50 30 5
    to 26 plating layer
    Comp. Ex. Electrolytic 90 50 60 60
    1 to 6 copper foil
    Comp. Ex. Copper 50 50 30 5
    7 to 12 plating layer
  • TABLE 2
    Leveler Brightener Polymer Chlorine
    Concentration Concentration Concentration Concentration
    Type (ppm) Type (ppm) Type (ppm) (ppm)
    Ex. 1 (1) 10 MPS 1 PEG 100 25
    (MW2000)
    Ex. 2 (1) 1000 MPS 1 PEG  50 25
    (MW2000)
    Ex. 3 (1) 1000 MPS 1 None 25
    Ex. 4 (2) 100 SPS 20 None 25
    Ex. 5 (3) 5 SPS 10 (8) 200 25
    Ex. 6 (4) 100 (6) 10 None 25
    Ex. 7 (5) 10 (7) 20 None 25
    Ex. 8 (1) 1000 MPS 1 PEG  50 25
    (MW2000)
    Ex. 9 (1) 1000 MPS 1 None 25
    Ex. 10 (2) 100 SPS 20 None 25
    Ex. 11 (1) 1000 MPS 1 PEG  50 25
    (MW2000)
    Ex. 12 (1) 1000 MPS 1 None 25
    Ex. 13 (2) 100 SPS 20 None 25
    Ex. 14 (1) 10 MPS 1 PEG 100 25
    (MW2000)
    Ex. 15 (1) 1000 MPS 1 PEG  50 25
    (MW2000)
    Ex. 16 (1) 1000 MPS 1 None 25
    Ex. 17 (2) 100 SPS 20 None 25
    Ex. 18 (3) 5 SPS 10 (8) 200 25
    Ex. 19 (4) 100 (6) 10 None 25
    Ex. 20 (5) 10 (7) 20 None 25
    Ex. 21 (1) 1000 MPS 1 PEG  50 25
    (MW2000)
    Ex. 22 (1) 1000 MPS 1 None 25
    Ex. 23 (2) 100 SPS 20 None 25
    Ex. 24 (1) 1000 MPS 1 PEG  50 25
    (MW2000)
    Ex. 25 (1) 1000 MPS 1 None 25
    Ex. 26 (2) 100 SPS 20 None 25
    Comp. Low 80 MPS 1 PEG 100 25
    Ex. 1 molecular (MW2000)
    weight
    glue
    Comp. Low 80 SPS 10 (8) 200 25
    Ex. 2 molecular
    weight
    glue
    Comp. None None None 0
    Ex. 3
    Comp. (1) 1000 MPS 1 PEG  50 25
    Ex. 4 (MW2000)
    Comp. (1) 1000 MPS 1 None 25
    Ex. 5
    Comp. (2) 100 SPS 20 None 25
    Ex. 6
    Comp. Low 80 MPS 1 PEG 100 25
    Ex. 7 molecular (MW2000)
    weight
    glue
    Comp. Low 80 SPS 10 (8) 200 25
    Ex. 8 molecular
    weight
    glue
    Comp. None None None 0
    Ex. 9
    Comp. (1) 1000 MPS 1 PEG  50 25
    Ex. 10 (MW2000)
    Comp. (1) 1000 MPS 1 None 25
    Ex. 11
    Comp. (2) 100 SPS 20 None 25
    Ex. 12
  • Regarding Each Compound Leveler
  • (1): Reaction product of 1,4-dichloro-2-buthanol and 2-pyrazoline
    (2): Reaction product of 2,2′-dichloroethyl ether and 2-imidazoline
    (3): Reaction product of 1,3-dichloro-2-propanol and imidazole
    (4): Reaction product of 1,3-dichloropropane and 2-methyl-2-imidazoline
    (5): Reaction product of 1,3-dibromopropane and piperazine
  • Brightener
  • MPS: 3-mercaptopropanesulfonic acid
    SPS: Sodium bis(3-sulfopropyl)disulfide
  • (6): Sodium N,N-dimethyldithiocarbamate
  • (7): Sodium 3-(benzothiazolyl-2-thio)propylsulfonate
  • Polymer
  • PEG: Polyethylene glycol (molecular weight 2000)
    (8): Polyethylene glycol-polypropylene glycol copolymer
  • The produced electrolytic copper foil and copper plating layer were respectively divided into three samples. Among these, one sample each was used to measure the amounts of impurity elements contained inside the electrolytic copper foil and the copper plating layer and the surface roughness. Further, another unused sample of each was heat-treated and observed for crystal grains at the cross-section. Furthermore, a sample of the electrolytic copper foil was tested for tensile strength, while a sample of the copper plating layer was tested for Vickers hardness. Finally, for each remaining unused sample, the sample of the electrolytic copper foil was hot pressed with a polyimide film, then the sample of the copper plating layer was heat-treated by the same temperature setting, then these samples were tested by an IPC bending test. The details of each measurement and examination are described below.
  • Measurement of Amounts of Impurity Elements
  • The amounts of impurity elements inside the electrolytic copper foils and copper plating layers of Examples 1 to 7, Examples 14 to 20, Comparative Examples 1 to 3, and Comparative Examples 7 to 9 were measured in the depth direction using SIMS analysis. The measured elements were oxygen (O), carbon (C), chlorine (Cl), nitrogen (N), and sulfur (S). The measurement conditions of the SIMS analysis were as follows.
  • Primary ions: Cs+ (5 kV, 100 nA)
    Secondary (detection) ions: Copper (Cu) 63Cu, Chlorine (Cl) 35Cl, Nitrogen (N) 14N+63Cu, Sulfur (S) 34S, Oxygen (O) 16O, Carbon (C) 12C
    Sputtered domain: 200 μm×400
  • The surfaces of the electrolytic copper foils and copper plating layers are affected by dirt and oxide layers, so the portions from the surfaces to 2 μm down in the depth direction were removed by sputtering, then the measurement was started and the portion down to a depth of 4 μm was analyzed. The intensity ratio was calculated from the average value of the intensity of each measured element and the average value of the intensity of copper. Examples of the measurement results of the SIMS analysis are shown in FIG. 3A and FIG. 3B, while the calculation results of the intensity ratio are shown in Table 3.
  • Measurement of Surface Roughness
  • The surface roughnesses Ra and Rz of the electrolytic copper foils and the copper plating layers of Examples 1 to 7, Examples 14 to 20, Comparative Examples 1 to 3, and Comparative Examples 7 to 9 were measured using a contact type surface roughness gauge. The surface roughness is shown by Ra (arithmetic average roughness) and Rz (ten-point average roughness) defined in JIS-B-0601 (Japanese Industrial Standard). The reference length is 0.8 mm. The electrolytic copper foils were measured for the Ra and Rz of the matte-side surfaces and shiny-side surfaces and the copper plating layers were measured for the Ra and Rz of the surfaces of the copper plating layers and the non-electrolytic copper layer surfaces before plating. The results of surface roughness measurement are described in Table 3.
  • Heating Conditions
  • The electrolytic copper foils and the copper plating layers of Examples 1 to 7, Examples 14 to 20, Comparative Examples 1 to 3, and Comparative Examples 7 to 9 were heat-treated in a nitrogen atmosphere under heating conditions of 300° C. and 1 hour giving an LMP value of Equation 1 of 9000 or more (LMP value=11,500). Similarly, the electrolytic copper foils and the copper plating layers of Examples 8 to 10 and Examples 21 to 23 were heat-treated in a nitrogen atmosphere under heating conditions of 250° C. and 1 hour giving an LMP value of 9000 or more (LMP value=10,500). Furthermore, the electrolytic copper foils and the copper plating layers of Examples 11 to 13 and Examples 24 to 26 were heat-treated in a nitrogen atmosphere under heating conditions of 200° C. and 1 hour giving an LMP value of 9000 or more (LMP value=9500). Finally, the electrolytic copper foils and the copper plating layers of Comparative Examples 4 to 6 and Comparative Examples 10 to 12 were heat-treated in a nitrogen atmosphere under heating conditions of 130° C. and 1 hour giving an LMP value of less than 9000 (LMP value=8100).
  • Observation of Crystal Grains at Cross-Section
  • After the electrolytic copper foils and the copper plating layers of the examples and the comparative examples were heat-treated by the above heating conditions, the cross-sections of the copper coatings were photographed by an electron micrograph, then the ratios of the crystals grains with maximum lengths of 10 μm or more is measured and calculated in an area of 1000 μm2. The results of the observation of the crystal grains at the cross-section are described in Table 4.
  • Tensile Test
  • After the electrolytic copper foils of Examples 1 to 13 and Comparative Examples 1 to 6 were heat-treated under the above heat conditions, the foils were cut into 6 inch (length)×0.5 inch (width) test pieces which were then measured for 0.2% proof stress and Young's modulus using a tensile tester. Further, the tension rate was 50 mm/min. The results of the tensile test are described in Table 4. The 0.2% proof stress is the value obtained in the curve of the relationship of strain and stress by drawing a tangent to the curve at the point of 0% strain, drawing a line parallel to that tangent at the point of 0.2% strain, and dividing the stress at the point where that line and the curve intersect by the cross-sectional area.
  • Measurement of Vickers Hardness
  • The electrolytic plating layers of Examples 14 to 26 and Comparative Examples 7 to 12 were heat-treated under the above heating conditions, then the copper plating layers were embedded in a resin, the cross-sections were cut, then the cross-sections were polished and a Vickers hardness tester was used to measure the Vickers hardness. Further, the load was 10 gf and load holding time was 15 sec. The results of the Vickers hardness test are described in Table 4.
  • IPC Flex Test Characteristics
  • The electrolytic copper foils of Examples 1 to 7 and Comparative Examples 1 to 3 and 25 μm thick polyimide films were press bonded under heating conditions of 330° C. and 20 minutes (LMP value=11,800) to prepare electrolytic copper foils to which polyimide films were bonded. Furthermore, the copper plating layers on 25 μm thick polyimide films of Examples 14 to 20 and Comparative Examples 7 to 9 were similarly heat-treated under heating conditions of 330° C. and 20 minutes (LMP value=11,800). The obtained electrolytic copper foils to which the polyimide films were bonded and the copper plating layers were etched with the circuit patterns shown in FIG. 4A, then, as shown in FIG. 4B, 25 μm thick polyimide cover films were press bonded to the circuit forming surfaces, leaving aside the current-carrying parts, under the heating conditions of 300° C. and 20 minutes (LMP value=11,200) to thereby obtain IPC flex test samples. The obtained test samples were tested by IPC flex tests under the following conditions, then the rate of increase of the electrical resistance from an initial state was measured. The results of the IPC flex test are described in Table 5.
  • Test equipment: SEK-31B-2S made by Shin-Etsu Engineering Co., Ltd.
    Flex radius: 2.0 mm
    Vibrating stroke width: 20 mm
    Flex speed: 1500 times/minute
  • The measurement results are shown in Table 3, Table 4, and Table 5.
  • TABLE 3
    Surface roughness
    Shiny-side
    Matte-side surface of
    surface of electrolytic
    electrolytic copper foil or
    copper foil or surface of non-
    Strength ratio against copper surface of electrolytic
    in SIMS analysis copper plating copper plating
    (%) layer layer
    Cl N S O C Ra (μm) Rz (μm) Ra (μm) Rz (μm)
    Ex. 1 0.24 0 0 0.53 0.07 0.13 0.55 0.21 1.65
    Ex. 2 0.21 0 0.002 0.42 0.06 0.11 0.45 0.23 1.55
    Ex. 3 0.15 0 0 0.55 0.06 0.10 0.50 0.20 1.50
    Ex. 4 0.16 0 0 0.49 0.06 0.12 0.55 0.23 1.45
    Ex. 5 0.14 0 0 0.51 0.06 0.12 0.55 0.22 1.45
    Ex. 6 0.17 0 0 0.43 0.07 0.13 0.60 0.24 1.55
    Ex. 7 0.21 0 0.002 0.62 0.05 0.11 0.50 0.23 1.60
    Ex. 14 0.31 0 0.003 0.40 0.06 0.14 0.65 0.19 1.30
    Ex. 15 0.29 0.002 0.003 0.42 0.05 0.08 0.65 0.18 1.35
    Ex. 16 0.33 0 0 0.39 0.05 0.08 0.55 0.18 1.35
    Ex. 17 0.35 0 0.003 0.35 0.04 0.11 0.65 0.19 1.30
    Ex. 18 0.31 0.002 0.002 0.33 0.06 0.10 0.65 0.18 1.25
    Ex. 19 0.29 0 0.003 0.39 0.05 0.11 0.60 0.18 1.30
    Ex. 20 0.38 0 0 0.44 0.05 0.09 0.55 0.17 1.35
    Comp. Ex. 1 1.71 0.008 0.010 2.14 0.09 0.17 1.25 0.23 1.60
    Comp. Ex. 2 2.13 0.013 0.014 1.23 0.07 0.17 1.30 0.24 1.55
    Comp. Ex. 3 0.26 0 0 0.49 0.07 0.25 1.40 0.24 1.45
    Comp. Ex. 7 2.48 0.010 0.015 1.66 0.07 0.14 1.15 0.17 1.35
    Comp. Ex. 8 2.77 0.014 0.016 1.53 0.06 0.14 1.05 0.18 1.30
    Comp. Ex. 9 0.30 0 0 0.43 0.07 0.22 1.45 0.19 1.35
    *Intensity average value of less than 0.5 is below lower limit of detection, so in that case the intensity ratio is indicated as “0”.
  • TABLE 4
    Percentage of the crystal Tensile test Vickers
    LMP grains of lengths of 0.2% proof Young's hardness
    value
    10 μm or more (%) stress (kN/cm2) modulus (kN/cm2) (Hv)
    Ex. 1 11500 91 5.9 1500
    Ex. 2 11500 95 4.8 1400
    Ex. 3 11500 93 4.8 1300
    Ex. 4 11500 96 5.6 1500
    Ex. 5 11500 93 5.9 1500
    Ex. 6 11500 91 4.5 1300
    Ex. 7 11500 94 5.8 1500
    Ex. 8 10500 88 8.2 1800
    Ex. 9 10500 90 7.5 1700
    Ex. 10 10500 91 7.5 1700
    Ex. 11 9500 75 9.2 1900
    Ex. 12 9500 81 8.9 1800
    Ex. 13 9500 80 8.8 1800
    Ex. 14 11500 92 52
    Ex. 15 11500 93 51
    Ex. 16 11500 90 52
    Ex. 17 11500 91 53
    Ex. 18 11500 92 53
    Ex. 19 11500 93 53
    Ex. 20 11500 89 52
    Ex. 21 10500 89 55
    Ex. 22 10500 88 56
    Ex. 23 10500 87 55
    Ex. 24 9500 76 58
    Ex. 25 9500 79 57
    Ex. 26 9500 80 58
    Comp. Ex. 1 11500 13 15.2 3500
    Comp. Ex. 2 11500 17 14.9 3300
    Comp. Ex. 3 11500 42 9.5 2500
    Comp. Ex. 4 8100 3 23.2 4500
    Comp. Ex. 5 8100 2 24.0 4800
    Comp. Ex. 6 8100 5 22.9 4400
    Comp. Ex. 7 11500 10 92
    Comp. Ex. 8 11500 15 93
    Comp. Ex. 9 11500 39 65
    Comp. Ex. 10 8100 3 105
    Comp. Ex. 11 8100 3 103
    Comp. Ex. 12 8100 5 106
  • TABLE 5
    IPC flex test
    Rate of resistance Rate of resistance
    LMP increase at 10,000 increase at 50,000
    value times (%) times (%)
    Ex. 1 11800 2 4
    Ex. 2 2 4
    Ex. 3 2 3
    Ex. 4 2 4
    Ex. 5 3 5
    Ex. 6 1 3
    Ex. 7 2 4
    Ex. 14 3 6
    Ex. 15 2 5
    Ex. 16 2 5
    Ex. 17 2 5
    Ex. 18 2 4
    Ex. 19 3 6
    Ex. 20 2 5
    Comp. Ex. 1 12 subsidiary fracture
    Comp. Ex. 2 14 subsidiary fracture
    Comp. Ex. 3 4 15 
    Comp. Ex. 7 14 subsidiary fracture
    Comp. Ex. 8 13 subsidiary fracture
    Comp. Ex. 9 3 13 
  • As clear from Table 3, in all examples, there are few impurity elements of chlorine (Cl), nitrogen (N), sulfur (S), oxygen (O), and carbon (C) inside the electrolytic copper foils and the copper plating layers. Specifically, in intensity ratio with copper (Cu), chlorine is less than 0.5%, nitrogen is less than 0.005%, sulfur is less than 0.005%, oxygen is less than 1%, and carbon is less than 0.1%. The surface roughnesses show low degrees of roughness of an Ra of less than 0.3 μm and Rz of less than 2.0 μm at the matte-side surface. Further, as clear from Table 4, in all examples, after the heat treatment giving an LMP value of 9000 or more, the percentage of the crystal grains of a length of 10 μm or more (crystal distribution) is 70% or more. Furthermore, the 0.2% proof stresses of the electrolytic copper foils were less than 10 kN/cm2, and the Young's moduli were less than 2000 kN/cm2. The Vickers hardness of the copper plating layers was less than 60 Hv. These all satisfied the requirements of the present invention. Furthermore, as clear from Table 5, the electrolytic copper foils and the copper plating layers showed good flexing characteristics as compared with the comparative examples.
  • On the other hand, the electrolytic copper foils and the copper plating layers of Comparative Examples 1 to 3 and Comparative Examples 7 to 9 shown in Table 3 and Table 4, even if giving values satisfactory in the amounts of impurity elements or surface roughnesses, had percentages of crystal grains of a length of 10 μm or more (crystal distribution) of less than 70% after heat treatment of 300° C. and 1 hour giving an LMP value of 9000 or more. Furthermore, the 0.2% proof stresses of the electrolytic copper foils were 10 kN/cm2 or more or the Young's moduli were 2000 kN/cm2 or more. The Vickers hardness of the copper plating layers was 60 Hv or more. These did not satisfy all of the conditions of the present invention. Furthermore, as clear from Table 5, the electrolytic copper foils and the copper plating layers showed poor flexing characteristics as compared with the examples.
  • Further, the electrolytic copper foils and the copper plating layers of Comparative Examples 4 to 6 and Comparative Examples 10 to 12 shown in Table 3 and Table 4, even if giving values satisfactory in the amounts of impurity elements or surface roughnesses, had percentages of crystal grains of a length of 10 μm or more (crystal distribution) of less than 70% after heat treatment of 130° C. and 1 hour giving an LMP value of less than 9000. Furthermore, the 0.2% proof stresses of the electrolytic copper foils were 10 kN/cm2 or more or the Young's moduli were 2000 kN/cm2 or more. The Vickers hardness of the copper plating layers was 60 Hv or more. These did not satisfy the conditions of the present invention.
  • INDUSTRIAL APPLICABILITY
  • The electrolytic copper coating, the method of manufacturing the same, and the copper electrolyte for manufacturing an electrolytic copper coating of the present invention can be applied to a copper plating layer provided on a substrate in a printed circuit board, a multilayer printed circuit board, and a chip-on-film circuit board, a copper plating layer provided on a metal wire, or an electrolytic copper foil.
  • REFERENCE SIGNS LIST
    • 1: Anode
    • 2: Cathode
    • 3: Electrolyte
    • 4: Untreated electrolytic copper foil

Claims (12)

1. An electrolytic copper coating produced by electrolytic deposition, wherein, when performing heat treatment so that the LMP (Larson-Miller parameter) value shown in Equation 1 becomes 9000 or more, the result becomes a crystal distribution of crystal grains, having a maximum length of crystal grains after heat treatment of 10 μm or more, of 70% or more:

LMP=(T+273)*(20+Log t)  Equation 1
where, 20 is a material constant of copper, T is temperature (° C.), and t is time (hr).
2. The electrolytic copper coating according to claim 1, wherein when the electrolytic copper coating is heat treated to give an LMP value of 9000 or more, the 0.2% proof stress of the electrolytic copper coating is less than 10 kN/cm2, and the Young's modulus is less than 2000 kN/cm2.
3. The electrolytic copper coating according to claim 1, wherein when the electrolytic copper coating is heat treated to give an LMP value of 9000 or more, the Vickers hardness of the electrolytic copper coating is less than 60 Hv.
4. The electrolytic copper coating according to any one of claims 1 to 3, wherein the electrolytic copper coating, in SIMS (secondary ion mass spectrometry) analysis in the copper coating depth direction, in terms of the strength ratio with the copper (Cu), has a content of chlorine (Cl) of less than 0.5%, a content of nitrogen (N) of less than 0.005%, and a content of sulfur (S) of less than 0.005%.
5. The electrolytic copper coating according to any one of claims 1 to 4, wherein a roughness of at least one surface of the electrolytic copper coating is less than 0.30 μm in terms of Ra and less than 2.0 μm in terms of Rz.
6. A method of manufacturing an electrolytic copper coating produced by electrolytic deposition using a copper electrolyte, wherein, when performing heat treatment so that the LMP value shown in Equation 1 becomes 9000 or more, the result becomes a crystal distribution of crystal grains, having a maximum length of crystal grains after heat treatment of 10 μm or more, of 70% or more.

LMP=(T+273)*(20+Log t)  Equation 1
where, 20 is a material constant of copper, T is temperature (° C.), and t is time (hr).
7. The method of manufacturing the electrolytic copper coating according to claim 6, wherein the copper electrolyte contains at least one type of reaction product of at least one type of di- or poly-halogenated chain saturated aliphatic hydrocarbon compound, at least one type of di- or poly-halogenated chain saturated aliphatic hydrocarbon compound which has one or more ether bonds, or a combination of at least one type of di- or poly-halogenated chain saturated aliphatic hydrocarbon compound and at least one type of di- or poly-halogenated chain saturated aliphatic hydrocarbon compound which has one or more ether bonds with a heterocyclic compound which has two nitrogen atoms.
8. The method of manufacturing the electrolytic copper coating according to claim 6 or 7, wherein the copper electrolyte contains at least one type of reaction product of at least one type of di- or poly-halogenated chain saturated aliphatic hydrocarbon compound, at least one type of di- or poly-halogenated chain saturated aliphatic hydrocarbon compound which has one or more ether bonds, or a combination of at least one type of di- or poly-halogenated chain saturated aliphatic hydrocarbon compound and at least one type of di- or poly-halogenated chain saturated aliphatic hydrocarbon compound which has one or more ether bonds with a heterocyclic compound which has two nitrogen atoms and contains at least one type of brightener.
9. The method of manufacturing the electrolytic copper coating according to any one of claims 6 to 8, wherein the heterocyclic compound which has two nitrogen atoms is a heterocyclic aromatic compound which has two nitrogen atoms.
10. A copper electrolyte for manufacturing an electrolytic copper coating, containing at least one type of reaction product of a di- or poly-halogenated chain saturated aliphatic hydrocarbon compound or a di- or poly-halogenated chain saturated aliphatic hydrocarbon compound which has one or more ether bonds with a heterocyclic compound which has two nitrogen atoms and contains at least one type of brightener.
11. A copper electrolyte for manufacturing an electrolytic copper coating, containing at least one type of reaction product of at least one type of di- or poly-halogenated chain saturated aliphatic hydrocarbon compound, at least one type of di- or poly-halogenated chain saturated aliphatic hydrocarbon compound which has one or more ether bonds, or a combination of at least one type of di- or poly-halogenated chain saturated aliphatic hydrocarbon compound and at least one type of di- or poly-halogenated chain saturated aliphatic hydrocarbon compound which has one or more ether bonds with a heterocyclic compound which has two nitrogen atoms.
12. A copper electrolyte for manufacturing an electrolytic copper coating, containing at least one type of reaction product of at least one type of di- or poly-halogenated chain saturated aliphatic hydrocarbon compound, at least one type of di- or poly-halogenated chain saturated aliphatic hydrocarbon compound which has one or more ether bonds, or a combination of at least one type of di- or poly-halogenated chain saturated aliphatic hydrocarbon compound and at least one type of di- or poly-halogenated chain saturated aliphatic hydrocarbon compound which has one or more ether bonds with a heterocyclic compound which has two nitrogen atoms and contains at least one type of brightener.
US12/997,420 2008-06-12 2009-06-12 Electrolytic copper coating, method of manufacturing the same, and copper electrolyte for manufacturing electrolytic copper coating Abandoned US20110139626A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008154025 2008-06-12
JP2008-154025 2008-06-12
PCT/JP2009/060792 WO2009151124A1 (en) 2008-06-12 2009-06-12 Electrolytic copper coating and method of manufacture therefor, and copper electrolyte for manufacturing electrolytic copper coatings

Publications (1)

Publication Number Publication Date
US20110139626A1 true US20110139626A1 (en) 2011-06-16

Family

ID=41416826

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/997,420 Abandoned US20110139626A1 (en) 2008-06-12 2009-06-12 Electrolytic copper coating, method of manufacturing the same, and copper electrolyte for manufacturing electrolytic copper coating

Country Status (6)

Country Link
US (1) US20110139626A1 (en)
EP (1) EP2302103A4 (en)
JP (1) JP2010018885A (en)
KR (1) KR101274544B1 (en)
CN (1) CN102105622A (en)
WO (1) WO2009151124A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130161614A1 (en) * 2010-07-30 2013-06-27 Ashutosh Tiwari Nanostructured films and related methods
US9404193B1 (en) 2013-11-21 2016-08-02 Rohm And Haas Electronic Materials Llc Reaction products of guanidine compounds or salts thereof, polyepoxides and polyhalogens
US9603245B2 (en) 2010-12-27 2017-03-21 Furukawa Electric Co., Ltd. Lithium-ion secondary battery, electrode for the secondary battery, and electrolytic copper foil for electrode for the secondary battery
US20190109389A1 (en) * 2016-01-15 2019-04-11 Taiwan Semiconductor Manufacturing Company Limited Method of electroplating metal into recessed feature and electroplating layer in recessed feature
US20210371997A1 (en) * 2017-07-31 2021-12-02 Circuit Foil Luxembourg, Sarl Surface treated copper foil and copper-clad laminate
US11346015B2 (en) * 2018-02-01 2022-05-31 Kcf Technologies Co., Ltd. Electrolytic copper foil having high-temperature dimensional stability and texture stability, and manufacturing method therefor
US11939691B2 (en) 2016-06-13 2024-03-26 Ishihara Chemical Co., Ltd. Tin or tin alloy electroplating bath, and electronic component having electrodeposit formed thereon using the plating bath

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2312020A4 (en) * 2008-07-07 2014-05-28 Furukawa Electric Co Ltd Electrolytic copper foil and copper-clad laminate
US8268157B2 (en) * 2010-03-15 2012-09-18 Rohm And Haas Electronic Materials Llc Plating bath and method
JP5794806B2 (en) * 2011-03-30 2015-10-14 古河電気工業株式会社 Surface-treated copper foil, copper-clad laminate using the surface-treated copper foil, and printed wiring board
US8747643B2 (en) * 2011-08-22 2014-06-10 Rohm And Haas Electronic Materials Llc Plating bath and method
JP5730742B2 (en) * 2011-10-25 2015-06-10 古河電気工業株式会社 Electrolytic copper foil for lithium ion secondary battery and method for producing the same
CN103074646A (en) * 2013-01-11 2013-05-01 安徽铜冠铜箔有限公司 Rolling way of copper foil on surface of titanium roller
JP6212273B2 (en) * 2013-03-29 2017-10-11 Jx金属株式会社 Electrolytic copper foil, copper-clad laminate using the same and method for producing the same, printed wiring board and method for producing the same, electronic component and method for producing the same
TWI539032B (en) * 2013-08-01 2016-06-21 Chang Chun Petrochemical Co Electrolytic copper foil, cleaning fluid composition and cleaning copper foil method
JP5810197B2 (en) * 2013-09-11 2015-11-11 古河電気工業株式会社 Electrolytic copper foil, flexible wiring board and battery
JP6260860B2 (en) * 2013-12-27 2018-01-17 日立金属株式会社 Electrolytic aluminum foil, battery electrode and storage device using the same, and method for producing electrolytic aluminum foil
TWI710671B (en) * 2014-09-15 2020-11-21 美商麥德美樂思公司 Levelers for copper deposition in microelectronics
JP6421719B2 (en) * 2015-07-31 2018-11-14 住友金属鉱山株式会社 Electrolytic copper plating solution for flexible wiring board, and method for producing laminate produced by the electrolytic copper plating solution
CN105483764B (en) * 2015-12-04 2019-02-22 广东嘉元科技股份有限公司 A kind of electrolytic copper foil additive
WO2018207785A1 (en) * 2017-05-09 2018-11-15 Jx金属株式会社 Electrolytic copper foil, production method therefor, copper-clad laminate, printed wiring board, production method therefor, electronic device, and production method therefor
TW201900939A (en) * 2017-05-09 2019-01-01 日商Jx金屬股份有限公司 Electrolytic copper foil, copper-clad laminate, printed wiring board, production method therefor, electronic device, and production method therefor
KR20190131579A (en) * 2017-05-09 2019-11-26 제이엑스금속주식회사 Electrolytic copper foil and its manufacturing method, copper clad laminated board, printed wiring board, its manufacturing method, electronic device, and its manufacturing method
TWI705160B (en) * 2019-12-09 2020-09-21 長春石油化學股份有限公司 Electrolytic copper foil and electrode and copper-clad laminate comprising the same
TWI715424B (en) 2020-01-22 2021-01-01 長春石油化學股份有限公司 Electrolytic copper foil and electrode and lithium-ion cell comprising the same
CN115287715B (en) * 2022-08-25 2023-06-23 广东盈华电子科技有限公司 Production process of double-gloss copper foil for lithium battery with medium tensile strength

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050208323A1 (en) * 2000-07-25 2005-09-22 Takayuki Usami Copper alloy material for parts of electronic and electric machinery and tools
US20060011488A1 (en) * 2002-12-25 2006-01-19 Masashi Kumagai Copper electrolytic solution containing quaternary amine compound polymer with specific skeleton and organo-sulfur compound as additives, and electrolytic copper foil manufactured using the same
US20060207886A1 (en) * 2004-07-23 2006-09-21 C. Uyemura & Co., Ltd. Electrolytic copper plating bath and plating process therewith
JP2008013847A (en) * 2006-06-07 2008-01-24 Furukawa Circuit Foil Kk Surface treated electrodeposited copper foil, the production method and circuit board
US20090166213A1 (en) * 2005-10-31 2009-07-02 Mitsui Mining & Smelting Co., Ltd. Production method of electro-deposited copper foil, electro-deposited copper foil obtained by the production method, surface-treated copper foil obtained by using the electro-deposited copper foil and copper-clad laminate obtained by using the electro-deposited copper foil or the surface-treated copper foil

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS527819A (en) * 1975-07-10 1977-01-21 Furukawa Electric Co Ltd:The Process for smooth electrodeposition of copper
US4038161A (en) * 1976-03-05 1977-07-26 R. O. Hull & Company, Inc. Acid copper plating and additive composition therefor
LU90532B1 (en) * 2000-02-24 2001-08-27 Circuit Foil Luxembourg Trading Sarl Comosite copper foil and manufacturing method thereof
TW200401848A (en) * 2002-06-03 2004-02-01 Shipley Co Llc Leveler compounds
JP3756852B2 (en) * 2002-07-01 2006-03-15 日本電解株式会社 Method for producing electrolytic copper foil
AU2002330396A1 (en) * 2002-09-12 2004-04-30 Matsushita Electric Industrial Co., Ltd. Metal foil for current collector of secondary battery and method for producing the same
TW200613586A (en) * 2004-07-22 2006-05-01 Rohm & Haas Elect Mat Leveler compounds
MY158819A (en) * 2007-04-20 2016-11-15 Jx Nippon Mining & Metals Corp Electrolytic copper foil for lithium rechargeable battery and process for producing the copper foil

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050208323A1 (en) * 2000-07-25 2005-09-22 Takayuki Usami Copper alloy material for parts of electronic and electric machinery and tools
US20060011488A1 (en) * 2002-12-25 2006-01-19 Masashi Kumagai Copper electrolytic solution containing quaternary amine compound polymer with specific skeleton and organo-sulfur compound as additives, and electrolytic copper foil manufactured using the same
US20080075972A1 (en) * 2002-12-25 2008-03-27 Nikko Materials Co., Ltd. Copper electrolytic solution containing quaternary amine compound polymer with specific skeleton and organo-sulfur compound as additives, and electrolytic copper foil manufactured using the same
US20060207886A1 (en) * 2004-07-23 2006-09-21 C. Uyemura & Co., Ltd. Electrolytic copper plating bath and plating process therewith
US20090166213A1 (en) * 2005-10-31 2009-07-02 Mitsui Mining & Smelting Co., Ltd. Production method of electro-deposited copper foil, electro-deposited copper foil obtained by the production method, surface-treated copper foil obtained by using the electro-deposited copper foil and copper-clad laminate obtained by using the electro-deposited copper foil or the surface-treated copper foil
JP2008013847A (en) * 2006-06-07 2008-01-24 Furukawa Circuit Foil Kk Surface treated electrodeposited copper foil, the production method and circuit board

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Machine Translation, Saito et al., JP 2008-013847, 01-2008. *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130161614A1 (en) * 2010-07-30 2013-06-27 Ashutosh Tiwari Nanostructured films and related methods
US9057144B2 (en) * 2010-07-30 2015-06-16 University Of Utah Research Foundation Nanostructured films and related methods
US9603245B2 (en) 2010-12-27 2017-03-21 Furukawa Electric Co., Ltd. Lithium-ion secondary battery, electrode for the secondary battery, and electrolytic copper foil for electrode for the secondary battery
US9404193B1 (en) 2013-11-21 2016-08-02 Rohm And Haas Electronic Materials Llc Reaction products of guanidine compounds or salts thereof, polyepoxides and polyhalogens
US9403762B2 (en) 2013-11-21 2016-08-02 Rohm And Haas Electronic Materials Llc Reaction products of guanidine compounds or salts thereof, polyepoxides and polyhalogens
US9435045B2 (en) 2013-11-21 2016-09-06 Rohm And Haas Electronic Materials Llc Reaction products of guanidine compounds or salts thereof, polyepoxides and polyhalogens
US20190109389A1 (en) * 2016-01-15 2019-04-11 Taiwan Semiconductor Manufacturing Company Limited Method of electroplating metal into recessed feature and electroplating layer in recessed feature
US10879629B2 (en) * 2016-01-15 2020-12-29 Taiwan Semiconductor Manufacturing Company Limited Method of electroplating metal into recessed feature and electroplating layer in recessed feature
US11939691B2 (en) 2016-06-13 2024-03-26 Ishihara Chemical Co., Ltd. Tin or tin alloy electroplating bath, and electronic component having electrodeposit formed thereon using the plating bath
US20210371997A1 (en) * 2017-07-31 2021-12-02 Circuit Foil Luxembourg, Sarl Surface treated copper foil and copper-clad laminate
US11346015B2 (en) * 2018-02-01 2022-05-31 Kcf Technologies Co., Ltd. Electrolytic copper foil having high-temperature dimensional stability and texture stability, and manufacturing method therefor

Also Published As

Publication number Publication date
KR20110017429A (en) 2011-02-21
KR101274544B1 (en) 2013-06-17
WO2009151124A1 (en) 2009-12-17
JP2010018885A (en) 2010-01-28
EP2302103A4 (en) 2014-05-28
CN102105622A (en) 2011-06-22
EP2302103A1 (en) 2011-03-30

Similar Documents

Publication Publication Date Title
US20110139626A1 (en) Electrolytic copper coating, method of manufacturing the same, and copper electrolyte for manufacturing electrolytic copper coating
TWI463038B (en) Electrolytic copper foil and copper clad laminate
KR101154203B1 (en) Electrolytic copper foil, surface treated copper foil using the electrolytic copper foil, copper-clad laminated plate using the surface treated copper foil, and method for manufacturing the electrolytic copper foil
JP3058445B2 (en) Characterized electrodeposited foils for printed circuit boards and methods for producing the same and electrolytic cell solutions
US8153273B2 (en) Surface treated electrodeposited copper foil and circuit board
US7223481B2 (en) Method of producing ultra-thin copper foil with carrier, ultra-thin copper foil with carrier produced by the same, printed circuit board, multilayer printed circuit board and chip on film circuit board
US10686191B2 (en) Electrodeposited copper foil, and electrical component and battery comprising same
JP5255229B2 (en) Electrolytic copper foil, surface-treated copper foil using the electrolytic copper foil, copper-clad laminate using the surface-treated copper foil, and method for producing the electrolytic copper foil
CN108728874A (en) Electrolytic copper foil, its manufacturing method with low bounce-back power and its application
KR20090110953A (en) Electrolytic copper foil and process for producing electrolytic copper foil
JP2004339558A (en) Low rough surface electrolytic copper foil, and its production method
US20160260980A1 (en) Electrolytic Copper Foil, Electric Component and Battery Including the Same
KR100694382B1 (en) Method of manufacturing low profile copper foil bearing high tensile stress, Copper foil manufactured using the method, and electric device manufactured using the copper foil
JP2009299100A (en) Electrolytic copper foil and method for manufacturing electrolytic copper foil
KR100454270B1 (en) Low Roughness Electrodeposited Copper Foil Manufacturing Method And Electrodeposited Copper Foil Thereby
KR20230129209A (en) Electrodeposited copper foil with its surfaceprepared, process for producing the same and usethereof
US20120031648A1 (en) Wiring circuit board
TWI396779B (en) Copper foil and its manufacturing method, and flexible printed circuit board
CN101978100A (en) Electrolytic solution for producing electrolytic copper foil
TWI465609B (en) An electrolytic copper film, a method for producing the same, and a copper electrolytic solution for manufacturing a copper electrolytic film
KR20180109364A (en) Flexible Copper Clad Layer With Good Bending Resistance And Test Methods Thereof
EP4202084A2 (en) Double layered electrolytic copper foil and manufacturing method thereof
KR20050090145A (en) Very low profile electrodeposited copper foil which has nodules on the shiny side, and the printed circuits board and copper clad laminate and, electrodeposited copper foil of manufacturing method thereof
KR102392049B1 (en) Flexible Copper Clad Layer With Good Anti Corrosion Properties And Test Methods Thereof
KR102432584B1 (en) Copper Foil Capable of Improving Peer Strength between Nonconductive Polymer Film and The Same, Method for Manufacturing The Same, and Flexible Copper Clad Laminate Comprising The Same

Legal Events

Date Code Title Description
AS Assignment

Owner name: FURUKAWA ELECTRIC CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SAITO, TAKAHIRO;SUZUKI, YUJI;IUCHI, SHOYA;AND OTHERS;SIGNING DATES FROM 20101216 TO 20101227;REEL/FRAME:025903/0390

Owner name: ISHIHARA CHEMICAL CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SAITO, TAKAHIRO;SUZUKI, YUJI;IUCHI, SHOYA;AND OTHERS;SIGNING DATES FROM 20101216 TO 20101227;REEL/FRAME:025903/0390

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION