US20110126751A1 - Variable overall hull lengths for watercraft - Google Patents

Variable overall hull lengths for watercraft Download PDF

Info

Publication number
US20110126751A1
US20110126751A1 US12/735,272 US73527208A US2011126751A1 US 20110126751 A1 US20110126751 A1 US 20110126751A1 US 73527208 A US73527208 A US 73527208A US 2011126751 A1 US2011126751 A1 US 2011126751A1
Authority
US
United States
Prior art keywords
added
floaters
accordance
hull
watercraft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/735,272
Other languages
English (en)
Inventor
Peter A. Müller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of US20110126751A1 publication Critical patent/US20110126751A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/16Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving additional lift from hydrodynamic forces
    • B63B1/18Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving additional lift from hydrodynamic forces of hydroplane type
    • B63B1/20Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving additional lift from hydrodynamic forces of hydroplane type having more than one planing surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/02Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement
    • B63B1/04Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with single hull
    • B63B1/08Shape of aft part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/16Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving additional lift from hydrodynamic forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/32Other means for varying the inherent hydrodynamic characteristics of hulls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B39/00Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude
    • B63B39/06Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude to decrease vessel movements by using foils acting on ambient water
    • B63B39/061Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude to decrease vessel movements by using foils acting on ambient water by using trimflaps, i.e. flaps mounted on the rear of a boat, e.g. speed boat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B83/00Rebuilding or retrofitting vessels, e.g. retrofitting ballast water treatment systems
    • B63B83/30Rebuilding or retrofitting vessels, e.g. retrofitting ballast water treatment systems for improving energy efficiency, e.g. by improving hydrodynamics or by upgrading the power plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B39/00Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude
    • B63B39/06Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude to decrease vessel movements by using foils acting on ambient water
    • B63B2039/065Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude to decrease vessel movements by using foils acting on ambient water the foils being pivotal about an axis substantially parallel to the longitudinal axis of the vessel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Definitions

  • the invention is based on a variable hull length for watercraft according to the generic name of the first claim.
  • the not particularly good riding performance at low speed and during acceleration of gliding hulls can be improved by additional buoyancy and stability, such as fixing or integrating extensions onto the hull rear end as described in U.S. Pat. No. 3,783,810. These aids enable the vessel to get quicker to planing and at the same time reducing trim, which improves the view over the bow. The same result can also be achieved successfully by mounting rigid trimtabs.
  • the invention involves that the hull performance of a watercraft, whether at slow, medium or high speed operation, can be improved by means of stepped and separated added floaters, which are fixed at the stern and make specific use of static as well as of dynamic lifting mean, as well as of the omission of additional lift, according to the planing conditions.
  • the improvement of the hull performance at slow and medium speed is attributed to comfort, which means to generate best possible lifting in the stern area, in order to ensure a fuel saving trim position of the watercraft, as well as a good forward view especially when changing from displacement to planing speed and in addition to let the craft softly through the waves.
  • the improvement of the hull performance at high speeds means that, when driving at a higher speed, and to achieve fuel saving in comparison to the total watercraft length this can be achieved by reducing or by the full loss of contact of the wetted surface at the stern.
  • added floaters are fixed or integrated behind the main engine, respectively at the stern of the watercraft hull with the bottom surface of the added floaters mounted higher than the watercraft's bottom so that a step is created.
  • the additional added floaters have the primary function to reduce the surface pressure on the hull per mm 2 , as well as due to the improved three dimensional flow, to influence positively the waves behind the watercraft (fewer waves equals more efficient drive).
  • the added floaters are divided, not only to make space for the stern drives, surface piercing drives, jets or outboards, but to allow the additional, deliberately limited, bottom surface to have the best possible effect in the longitudinal direction of the watercraft so that a best possible trim effect is generated and also to minimize the purpoising on the lateral axis of the watercraft when planing, as well as to achieve a better track keeping and to create an additional lift on the inner far rear surface of the craft in sharp turns, in order to prevent the watercraft hull from ditching in this running position.
  • an adjustable stepping of the added floater is of advantage on the craft hull. This can be controlled by the driver or automatically by an algorithm.
  • the deadrise angle of a V hull has a large influence on the driving comfort, fuel consumption and the top speed of a watercraft. Therefore provision has been made for a variable angle adjustment on the bottom of the additional floater so that the deadrise of the craft can be adjusted to the driving condition.
  • the installation of such an adjustable bottom into an additional fixed or integrated added floater is simpler, compared to the installation directly into the watercraft hull, as the unused part of the additional floater can be watertight and hollow or foamed and is a safe static lifting mean.
  • trim tabs can be inserted too, further improving trimming as well as the rolling of the watercraft, whereby this can also be achieved by adjusting the entire bottom plate.
  • the added floaters can be connected to each other above the waterline and may form a reasonably priced swim plate or be used as an enlargement of the watercraft's deck.
  • Core of the invention is that by means of additional floaters, which are placed aft of a watercraft stern and have a step next to the watercraft hull and can be used as buoyancy elements to the point as long as the friction of such additional bottom surface becomes negative.
  • the added floaters When the craft is travelling at increasing speed then the added floaters lose on purpose the active contact to the damaging resistance flow, by lifting the hull further out of the water, then the step generates a clear distance from the water's surface. Preventing the added floaters from getting into contact with damaging resistance flow while running at high speed can also be achieved by a mechanical lifting mean activated manually or by a control mean. At anchor or at low speed the added floaters generate static buoyancy.
  • FIG. 1A three dimensional stern view of a watercraft with two added floaters placed laterally at the stern
  • FIG. 2 A schematic sideview of a watercraft hull in three different driving conditions, a) in displacement- or semi-displacement mode b) in planing mode c) in speed mode
  • FIG. 3 A schematic stern view of a watercraft hull with two lateral placed added floaters which compared to the stern contour are placed somewhat elevated and slightly inwards to the stern and have auxiliary lifting mean
  • FIG. 4 A schematic sideview of a watercraft hull with a slightly elevated rear added floater with added step with an angled upward edge
  • FIG. 5 A schematic sideview of a watercraft hull with a rear added floater tiltable lengthwise to the vessel and has mean for pitch control
  • FIG. 6 A schematic sideview of a watercraft hull with a rear added floater which is height variable and has mean for stroke control
  • FIG. 7 A schematic sideview of a watercraft hull with a rear added floater and therein has an integrated connecting element to the watercraft stern
  • FIG. 8 A schematic stern view of a watercraft hull with two laterally placed added floaters on which the deadrise can be varied
  • FIG. 9 A schematic stern view of a watercraft hull with two laterally placed added floaters on which the deadrise can be altered and has an extendable flow mean attached onto it
  • FIG. 10 A three dimensional stern view of a watercraft hull with two laterally placed added floaters placed on the stern and attached therein accessories, whereas the added floaters are connected to each other by means of a plate and in between an inner floating device with propulsion drives is located
  • FIG. 11 a,b A schematic floor view of a watercraft hull with lateral added floaters shown here one-sided which have their mounting origin in front of or behind the stern
  • FIG. 12 A schematic sideview of a watercraft hull with a rear added floater which is fixed to an overhead platform element.
  • FIG. 1 Shows a three dimensional stern view of a watercraft hull 1 with two lateral added floaters 2 on the stern 1 a , which on the stern 1 a , according to the chain dotted line U, form a U and having outer side means 3 which run lengthwise or tapered to the watercraft longitudinal axis, as well as the inner side means 4 which are vertical or have an angle.
  • the auxiliary bottom 5 is placed higher than the hull bottom 6 whereas the watercraft hull 1 at the stern end has a deflector 7 .
  • the added floaters 2 have a transom cover 8 and a cover 9 .
  • a closed box form is advantageous, should the added floaters 2 be foamed, thereby creating a static lift.
  • the required additional space is divided into two auxiliary bottoms 5 , which are in the added floaters 2 whereby the additional surface has an effect on a longer longitudinally length measuring unit, should both of the added floaters 2 have a distance from each other.
  • Empirical tests have shown that a length of the auxiliary bottoms 5 in general with approximately 10% of the hull 1 and a width of 2 times 20% of the width of the hull 1 have a good value, whereby the explicit goal for riding in comfort, agility etc. has an influence on the proportion size.
  • the additional surfaces 5 offer more buoyancy but the additional wetted area means more friction. At a certain point the friction resistance is so important that the previously achieved better trimming and the low surface pressure per mm 2 is no more worthwhile, as the flow speed lets the watercraft plan in total but every additional surface does not add to any additional lift but only damaging resistance.
  • the goal is, at this point of flow speed, that flow S on the deflector 7 stalls and the added floaters 2 are no longer active.
  • the hull 1 according to such riding mode, can be lengthened or shortened at the waterline and create more lift or less friction.
  • the function of the outer side means 3 is to lead the created flow S from the hull 1 with the least possible friction to the back, and also by intense inclination of the watercraft in turns, the added floater 2 lying on the innerside in such a turn achieves buoyancy by means of its outer side mean 3 .
  • the inner side mean 4 together with the deadrise angle of auxiliary bottom 5 helps to further improve the straightforward stability.
  • FIG. 2 Shows a schematic sideview—for better comprehension the deadrise has been omitted for technical drawing reasons—of a hull 1 in three different riding conditions, a) in the displacement or semi displacement condition the hull 1 which is designed as a gliding hull and having the added floaters 2 still completely submerged, as well as the hull bottom 6 and auxiliary bottom 5 lying under the waterline WL.
  • the flow S is little and the added floaters 2 just give more static lift As than dynamic lift Ad.
  • the hull 1 can be automatically lengthened or shortened specifically to the waterline WL and focused on the riding conditions creating more static lift As or dynamic lift Ad or no lift at all.
  • the frictional resistance on the added floaters 2 can be influenced. Not shown, but understandable is that in heavy seas, should the bow be pointing upwards when going through a wave, by means of the added floater 2 a counter lift force can be created with the auxiliary bottom 5 , thereby stabilizing the entire watercraft on the lateral axis as well as on the longitudinal axis.
  • FIG. 3 Shows a schematic stern view of a hull 1 with two lateral added floaters 2 placed somewhat higher against the stern contour, which means are stepped and run aft parallel to the hull 1 .
  • the outer side parts for example are shifted slightly inwards, so that the flow S, which originates on hull 1 , can flow past to the outer side means 3 with as little resistance as possible and these can even be slightly turned up in an appropriate angle so that these can still create a positive lift even in sharp turns.
  • the added floaters 2 are firmly fixed as modular elements on the stern 1 a or directly laminated into the hull 1 .
  • Auxiliary strakes 10 on the inner side parts yield added lifting and are useful in sharp turns.
  • the stall of flow S at the deflector 7 can be influenced by a variable trailing edge 11 , only shown here on the left side. This may be varied by cylinder 16 , for eg cylinders which are electrically powered or by fluids and can be operated by a computerised algorithm or manually.
  • outer side means 3 can also be flush mounted on the hull 1 which is shown in the right drawing half.
  • FIG. 4 Shows a schematic sideview of a hull 1 with a rear, somewhat elevated stepped added floater 2 and an integrated second additional step consisting of a secondary auxiliary bottom 12 which can show a phasing out and upward rise bevel.
  • a secondary auxiliary bottom 12 which can show a phasing out and upward rise bevel.
  • the deadrise has been omitted for technical drawing reasons.
  • a fair valuation of the center of gravity of the craft is difficult to determine. It may be that all the passengers on board of a watercraft are at the rear of the craft and at the same time a tender is attached to the stern.
  • the added floaters 2 are correspondingly larger dimensioned for such conditions in order to generate more static as well as dynamic lift especially when starting to plan and when in transition to the gliding phase and thus supporting the hull 1 re trimming.
  • the auxiliary bottom 5 as well as the secondary auxiliary bottom 12 , may be equipped with a phase out angle Z instead of a horizontal standard angle X. Conceivable are also multiple steps.
  • FIG. 5 Shows a schematic sideview of a hull 1 with a rear added floater 2 which is trimmable lengthwise to the craft over the trim angle N.
  • This configuration is preferable to standard trim tabs 13 , which also influence the flow S and also give a time limited lift.
  • auxiliary bottom 5 much better trimming may be achieved, whereby the trim angle is much smaller so that a shorter cylinder 16 can be installed in the added floater 2 .
  • the trim is achieved by pivot elements 14 which are connected to the hull 1 by a mounting bracket 15 and cylinder 16 which can be a fluid cylinder or an electric drive.
  • the trim of the added floater 2 may be achieved manually or over an algorithm in controller 17 with corresponding trim sensors 18 .
  • the auxiliary bottom 5 can only be trimmed.
  • FIG. 6 Shows a schematic sideview of a hull 1 with a rear added floater 2 which is height adjustable.
  • the deadrise has been omitted for technical drawing reasons.
  • the problem to calculate the exact point at which the added floater 2 does not have any added dynamic lift Ad and where the friction causes overproportional damage, especially with craft with varying numbers of people aboard, ballast and weight distribution, the most elegant solution is to be able to vary the height of the added floater 2 independent of the hull 1 respectively to the hull bottom 6 , so that the step, which means the height difference between hull bottom 6 and auxiliary bottom 5 can be controlled and corrected correspondingly.
  • the added floater 2 or the auxiliary bottom 5 is brought up as a whole, respectively the requested area is lifted up preferably parallel. Then a one-sided, which means ramp similar lifting, may lead to a “sticky” effect of the flow at the bottom of the added floater 2 or auxiliary bottom 5 and therefore does not create the requested, clear stall at the deflector 7 , which shortens the wetted hull surface rather nicely and hereby reduces the friction at this point to zero.
  • the lifting is achieved by lifting mean 19 , eg by a screw driven mean or a parallelogram 19 a , which is hinged on one side onto the pivot elements 14 and on the other side at the added floater 2 on hull 1 .
  • the stroke H is achieved by the cylinder 16 which is attached to the parallelogram 19 and is fixed to the hull 1 .
  • the cylinder 16 can be controlled manually or by a controller 17 which sets the stroke position on stroke H by speed gauge 20 or rpm gauge and other sensors.
  • FIG. 7 Shows a schematic sideview of a hull 1 with a rear added floater 2 .
  • the deadrise has been omitted for technical drawing reasons.
  • the added floater 2 higher which means stepped onto the hull 1 a of the watercraft, shows first a firm link element 5 a on hull 1 , whereby the co-bottom 5 b is put on the same level as hull bottom 6 so as to connect both parts more securely to each other, so that, as for eg by race events, these can withstand the high forces while wave jumping.
  • shipyards that modify their watercraft with regard to the installation or fixation of the added floaters 2 , can also take the opportunity of extending their hull 1 so as to have an even larger model. This can be accomplished at a reasonable price by installing the added floater 2 , and the link element 5 a also enables a permanent connection to the other added floater 2 on the opposite side.
  • FIG. 8 Shows a schematic sideview of a hull 1 with two lateral added floaters 2 , on which the deadrise can be varied by means of variable auxiliary bottom 5 which is advantageously fixed to the pivot point DP and the deadrise angle KW can be modified by cylinder 16 .
  • This function has two aims: on the one hand the degree of comfort can be set so that the watercraft moves softer through the waves thanks to a deep V of the added floaters 2 , and the craft uses less fuel.
  • the movable auxiliary bottom 5 conveniently replaces the described target in FIG. 6 of friction reduction from a certain point by withdrawing the area of auxiliary bottom 5 from the flow S.
  • the deadrise angle KW is changed so that the flow S does not have any further active contact with the auxiliary bottom 5 .
  • the controlling of cylinder 16 is achieved exactly as in FIG. 6
  • FIG. 9 Shows a schematic stern view of a hull 1 with two lateral added floaters 2 on which the deadrise can be varied over the deadrise angle KW to KW 1 , by means of an auxiliary bottom 5 fixed to the pivot point DP on which a flow mean 23 is attached, whereby the flow mean 23 can be led over the line of the hull bottom 6 out into the deadrise angle region KW 1 .
  • the flow mean 23 is a straight or bent plate and functions as a trim or steering mean.
  • a flow brake develops, therefore a lifting Ad on the hull 1 is generated, thereby changing the watercraft's trim position.
  • Trimming means also steering, thus when lowering the flow mean 23 on one side, an additional resistance is generated which moves the watercraft in a turn around the vertical axis, thereby pushing the craft to a new course or keeping it simply but safely on track.
  • the settings of the deadrise KW and KW 1 is generated by means identical to those described in FIGS. 6 and 7 . Of course, every deadrise angle adjustment KW and KW 1 can also be achieved by adjusting the added floaters 2 .
  • FIG. 10 Shows a three dimensional stern view of hull 1 with two lateral added floaters 2 placed parallel on the stern and the accessories 13 , 24 , 25 fitted therein, for eg. standard trim tabs 13 , exhaust gas discharge 24 , underwater light 25 , rudder 29 and not shown here sidethrusters and or small “go home” drives and many more and are summarized as technical mean 30 , whereby the added floaters 2 are connected to each other by plate 26 , which may be used as a bathing platform or as part of an extended deck.
  • plate 26 which may be used as a bathing platform or as part of an extended deck.
  • the division of the required additional lifting mean on the stern into two separate external added floaters 2 can serve so that the free space between the additional floaters 2 can be used as an inner floating device 27 which can create limited additional buoyancy and for eg can be equipped with propulsion drives 28 , as for eg with propeller, jet or paddlewheel so that the engines can be pushed even further back into the stern area allowing more room for the persons on board, but at the same time allowing easy compensation regarding static lift As and dynamic lift Ad by means of added floaters 2 .
  • the added floaters 2 Because of the attachment of the added floaters 2 to the hull 1 it is also possible to design the added floaters 2 of a material especially suitable for this stern part which can be different from the hull 1 and can locally generate more stiffness and or less weight.
  • FIG. 11 a shows a schematic bottom view of a hull 1 with a lateral added floater 2 shown from one side which is preferably fixed to the stern 1 a of the hull 1 for technical production and attachment reasons and thereby has a relevantly greater percentage influence over the entire wetted area of the hull bottom 6 when varying the auxiliary bottom's 5 lifting.
  • FIG. 11 b shows a schematic bottom view of a hull 1 with a lateral added floater 2 shown from one side which for production relevant reasons, as for eg the existing molds at the shipyards, which already have lateral extensions built into their hull bottoms, onto which existing extensions the added floaters 2 can be directly attached, whereby the effect of the auxiliary bottom 5 is lower if the watercraft keeps the same in the entire length as in FIG. 11 a.
  • Both of the installations have in common that the force source whether in front of or behind the stern 1 a has an influence on the wetted surface of the entire watercraft as well as on the static lift.
  • FIG. 12 Shows a schematic sideview of a hull 1 with a rear added floater 2 which is fixed onto an overhead platform element 31 .
  • the gap between hull 1 and added floater 2 can be masked elegantly or shown as a design element.
  • the platform element 31 can be fixed rigidly to the stern 1 a or used as a lifting platform so that additional benefits arise from the added floaters 2 .

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Tires In General (AREA)
US12/735,272 2007-12-31 2008-12-30 Variable overall hull lengths for watercraft Abandoned US20110126751A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH2029/07 2007-12-31
CH20292007 2007-12-31
PCT/CH2008/000551 WO2009082829A2 (fr) 2007-12-31 2008-12-30 Véhicule marin à longueur de coque totale variable

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH2008/000551 A-371-Of-International WO2009082829A2 (fr) 2007-12-31 2008-12-30 Véhicule marin à longueur de coque totale variable

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/016,640 Continuation US8943993B2 (en) 2007-12-31 2013-09-03 Variable hull lengths for watercraft

Publications (1)

Publication Number Publication Date
US20110126751A1 true US20110126751A1 (en) 2011-06-02

Family

ID=40723185

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/735,272 Abandoned US20110126751A1 (en) 2007-12-31 2008-12-30 Variable overall hull lengths for watercraft
US14/016,640 Expired - Fee Related US8943993B2 (en) 2007-12-31 2013-09-03 Variable hull lengths for watercraft

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/016,640 Expired - Fee Related US8943993B2 (en) 2007-12-31 2013-09-03 Variable hull lengths for watercraft

Country Status (3)

Country Link
US (2) US20110126751A1 (fr)
EP (1) EP2238015A2 (fr)
WO (1) WO2009082829A2 (fr)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110232557A1 (en) * 2010-03-25 2011-09-29 Scott Armstrong Kilgore Bouyant hull extension providing lateral and longitudinal control for lightweight hulls
JP2015504813A (ja) * 2011-12-22 2015-02-16 エスツー ヨッツ インコーポレイテッド スイミングプラットフォーム支持および船外機隠し用のエクステンションを有する船舶
US9446823B2 (en) 2013-10-11 2016-09-20 Mastercraft Boat Company, Llc Wake-modifying device for a boat
US9580147B2 (en) 2011-09-16 2017-02-28 Malibu Boats, Llc Surf wake system for a watercraft
US9669903B2 (en) 2014-02-04 2017-06-06 Malibu Boats, Llc Methods and apparatus for facilitating watercraft planing
US9802684B2 (en) 2013-10-11 2017-10-31 Mastercraft Boat Company, Llc Wake-modifying device for a boat
US9891620B2 (en) 2015-07-15 2018-02-13 Malibu Boats, Llc Control systems for water-sports watercraft
US9914503B2 (en) 2015-01-22 2018-03-13 Mastercraft Boat Company Llc Boat having an improved ability to get on plane and improved method of getting a boat on plane
US10322777B2 (en) 2011-09-16 2019-06-18 Malibu Boats, Llc Surf wake system for a watercraft
US10358189B2 (en) 2013-10-11 2019-07-23 Mastercraft Boat Company, Llc Wake-modifying device for a boat
WO2021188965A1 (fr) * 2020-03-20 2021-09-23 Ockerman Automation Consulting, Inc. Navire doté d'une extension arrière
US11370508B1 (en) 2019-04-05 2022-06-28 Malibu Boats, Llc Control system for water sports boat with foil displacement system
US11932356B1 (en) 2020-08-24 2024-03-19 Malibu Boats, Llc Powered swim platform

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GR20090100402A (el) * 2009-07-20 2011-02-18 Ν. Τριανταφυλλης & Σια Ο.Ε., Αυτοφερομενο οικολογικο συστημα δυναμικης αντισταθμισης θεσης πλευσης πλωτου μεσου δια μεταβολης της συνολικης υδροδυναμικης ροης κυτους
EP4072935B1 (fr) * 2019-12-10 2024-01-24 Volvo Penta Corporation Unité de coque présentant un système d'hydroptères et navire
US12065232B1 (en) * 2020-10-06 2024-08-20 Correct Craft Ip Holdings, Llc Watersports boat with enhanced wake generation characteristics and related methods and systems

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1141196A (en) * 1915-03-15 1915-06-01 John J Robinson Canoe motor-frame.
US1755709A (en) * 1929-12-10 1930-04-22 Small Jonathan Cook Stern construction for motor boats and the like
US1784071A (en) * 1929-02-08 1930-12-09 Frank M Norman Boat
US2794410A (en) * 1955-07-21 1957-06-04 James V Oliver Means for propelling and steering towboats and barges
US2985130A (en) * 1958-07-10 1961-05-23 Joseph H Jacobs Adjustable planing-floats for power boats
US3001499A (en) * 1959-03-16 1961-09-26 Marcellus L Jacobs Rear mounted planing and stabilizing structure for power boats
US3019755A (en) * 1960-07-27 1962-02-06 Diamond Jack Hydrofoil deck extension
US3763810A (en) * 1972-03-24 1973-10-09 Blade Hulls Inc High speed boat with planing hull
US4896621A (en) * 1988-07-29 1990-01-30 Coles Charles F Method of modifying a boat hull to obtain enhanced lift and rough water stability
EP0518229A1 (fr) * 1991-06-14 1992-12-16 Giorgio Brighi Gouvernail pour bateau
JPH0692289A (ja) * 1992-09-11 1994-04-05 Yanmar Diesel Engine Co Ltd 小型船の動揺減衰装置
US5685253A (en) * 1992-05-27 1997-11-11 Brunswick Corporation Reduced drag stable Vee bottom planing boat
US5819677A (en) * 1996-07-17 1998-10-13 Livingston; David T. Hull with laminar flow interrupters
US6089177A (en) * 1997-12-05 2000-07-18 Mueller; Peter Trim tab and variable-exhaust system especially for motor boats and motor yachts
US7013825B1 (en) * 2004-09-30 2006-03-21 D Alessandro David A Jack plate operated trim for power boats
US20060217011A1 (en) * 2004-11-24 2006-09-28 Morvillo Robert A System and method for controlling a waterjet driven vessel
US7448780B2 (en) * 2007-02-08 2008-11-11 Hurley Todd R Marine light mounting system and method for producing same
US8206192B2 (en) * 2005-08-22 2012-06-26 Honda Motor Co., Ltd. Boat propulsion engine

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1760696A (en) * 1928-02-11 1930-05-27 Charles A Herrmann Boat
JPS58152691A (ja) * 1982-03-03 1983-09-10 Yamaha Motor Co Ltd 小型船舶の船尾部形状
USD286038S (en) * 1984-03-26 1986-10-07 Ski-Horse Corporation Boat
US5224436A (en) * 1991-10-03 1993-07-06 Stricker John G Multifunction hydrodynamic and buoyant hull extension for planing water craft
US6058873A (en) * 1995-09-21 2000-05-09 Yamaha Hatsudoki Kabushiki Kaisha Hull construction for small watercraft
IT1283198B1 (it) * 1996-03-06 1998-04-16 Fabio Buzzi Correttore d'assetto per scafo planante
JP2001088778A (ja) * 1999-09-24 2001-04-03 Yamaha Motor Co Ltd 小型船舶
US6629507B2 (en) * 2001-01-31 2003-10-07 Mark Biddison Chine system for a boat hull
NL1027525C1 (nl) * 2004-11-16 2006-05-17 Quantum Controls B V Actief slingerdempingssysteem voor scheepsbewegingen.

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1141196A (en) * 1915-03-15 1915-06-01 John J Robinson Canoe motor-frame.
US1784071A (en) * 1929-02-08 1930-12-09 Frank M Norman Boat
US1755709A (en) * 1929-12-10 1930-04-22 Small Jonathan Cook Stern construction for motor boats and the like
US2794410A (en) * 1955-07-21 1957-06-04 James V Oliver Means for propelling and steering towboats and barges
US2985130A (en) * 1958-07-10 1961-05-23 Joseph H Jacobs Adjustable planing-floats for power boats
US3001499A (en) * 1959-03-16 1961-09-26 Marcellus L Jacobs Rear mounted planing and stabilizing structure for power boats
US3019755A (en) * 1960-07-27 1962-02-06 Diamond Jack Hydrofoil deck extension
US3763810A (en) * 1972-03-24 1973-10-09 Blade Hulls Inc High speed boat with planing hull
US4896621A (en) * 1988-07-29 1990-01-30 Coles Charles F Method of modifying a boat hull to obtain enhanced lift and rough water stability
EP0518229A1 (fr) * 1991-06-14 1992-12-16 Giorgio Brighi Gouvernail pour bateau
US5685253A (en) * 1992-05-27 1997-11-11 Brunswick Corporation Reduced drag stable Vee bottom planing boat
JPH0692289A (ja) * 1992-09-11 1994-04-05 Yanmar Diesel Engine Co Ltd 小型船の動揺減衰装置
US5819677A (en) * 1996-07-17 1998-10-13 Livingston; David T. Hull with laminar flow interrupters
US6089177A (en) * 1997-12-05 2000-07-18 Mueller; Peter Trim tab and variable-exhaust system especially for motor boats and motor yachts
US7013825B1 (en) * 2004-09-30 2006-03-21 D Alessandro David A Jack plate operated trim for power boats
US20060217011A1 (en) * 2004-11-24 2006-09-28 Morvillo Robert A System and method for controlling a waterjet driven vessel
US8206192B2 (en) * 2005-08-22 2012-06-26 Honda Motor Co., Ltd. Boat propulsion engine
US7448780B2 (en) * 2007-02-08 2008-11-11 Hurley Todd R Marine light mounting system and method for producing same

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8459198B2 (en) * 2010-03-25 2013-06-11 Scott Armstrong Kilgore Bouyant hull extension providing lateral and longitudinal control for lightweight hulls
US20110232557A1 (en) * 2010-03-25 2011-09-29 Scott Armstrong Kilgore Bouyant hull extension providing lateral and longitudinal control for lightweight hulls
US11572136B2 (en) 2011-09-16 2023-02-07 Malibu Boats, Llc Surf wake system for a watercraft
US9914504B2 (en) 2011-09-16 2018-03-13 Malibu Boats, Llc Surf wake system for a watercraft
US10683061B2 (en) 2011-09-16 2020-06-16 Malibu Boats, Llc Surf wake system for a watercraft
US9580147B2 (en) 2011-09-16 2017-02-28 Malibu Boats, Llc Surf wake system for a watercraft
US10322777B2 (en) 2011-09-16 2019-06-18 Malibu Boats, Llc Surf wake system for a watercraft
US9694873B2 (en) 2011-09-16 2017-07-04 Malibu Boats, Llc Surf wake system for a watercraft
US12097930B2 (en) 2011-09-16 2024-09-24 Malibu Boats, Llc Surf wake system for a watercraft
JP2015504813A (ja) * 2011-12-22 2015-02-16 エスツー ヨッツ インコーポレイテッド スイミングプラットフォーム支持および船外機隠し用のエクステンションを有する船舶
US11214335B2 (en) 2013-10-11 2022-01-04 Mastercraft Boat Company, Llc Wake-modifying device for a boat
US10377453B2 (en) 2013-10-11 2019-08-13 Mastercraft Boat Company, Llc Wake-modifying device for a boat
US12005995B2 (en) 2013-10-11 2024-06-11 Mastercraft Boat Company, Llc Wake-modifying device for a boat
US9802684B2 (en) 2013-10-11 2017-10-31 Mastercraft Boat Company, Llc Wake-modifying device for a boat
US10266241B2 (en) 2013-10-11 2019-04-23 Mastercraft Boat Company, Llc Wake-modifying device for a boat
US11046393B2 (en) 2013-10-11 2021-06-29 Mastercraft Boat Company, Llc Wake-modifying device for a boat
US10358189B2 (en) 2013-10-11 2019-07-23 Mastercraft Boat Company, Llc Wake-modifying device for a boat
US11708136B2 (en) 2013-10-11 2023-07-25 Mastercraft Boat Company, Llc Wake-modifying device for a boat
US11999446B2 (en) 2013-10-11 2024-06-04 Mastercraft Boat Company, Llc Wake-modifying device for a boat
US10501156B1 (en) 2013-10-11 2019-12-10 Mastercraft Boat Company, Llc Wake-modifying device for a boat
US9643697B2 (en) 2013-10-11 2017-05-09 Mastercraft Boat Company, Llc Wake-modifying device for a boat
US9446823B2 (en) 2013-10-11 2016-09-20 Mastercraft Boat Company, Llc Wake-modifying device for a boat
US10822055B2 (en) 2013-10-11 2020-11-03 Mastercraft Boat Company, Llc Wake-modifying device for a boat
US10899416B1 (en) 2013-10-11 2021-01-26 Mastercraft Boat Company, Llc Wake-modifying device for a boat
US10259534B2 (en) 2013-10-11 2019-04-16 Mastercraft Boat Company, Llc Wake-modifying device for a boat
US9669903B2 (en) 2014-02-04 2017-06-06 Malibu Boats, Llc Methods and apparatus for facilitating watercraft planing
US10179628B2 (en) 2014-02-04 2019-01-15 Malibu Boats, Llc Methods and apparatus for facilitating watercraft planing
US10501148B2 (en) 2015-01-22 2019-12-10 Mastercraft Boat Company, Llc Boat having an improved ability to get on plane and improved method of getting a boat on plane
US11040757B2 (en) 2015-01-22 2021-06-22 Mastercraft Boat Company, Llc Boat having an improved ability to get on plane and improved method of getting a boat on plane
US11718372B2 (en) 2015-01-22 2023-08-08 Mastercraft Boat Company, Llc Boat having an improved ability to get on plane and improved method of getting a boat on plane
US9914503B2 (en) 2015-01-22 2018-03-13 Mastercraft Boat Company Llc Boat having an improved ability to get on plane and improved method of getting a boat on plane
US11067979B2 (en) 2015-07-15 2021-07-20 Malibu Boats, Llc Control systems for water-sports watercraft
US10386834B2 (en) 2015-07-15 2019-08-20 Malibu Boats, Llc Control systems for water-sports watercraft
US9891620B2 (en) 2015-07-15 2018-02-13 Malibu Boats, Llc Control systems for water-sports watercraft
US11370508B1 (en) 2019-04-05 2022-06-28 Malibu Boats, Llc Control system for water sports boat with foil displacement system
US11518482B1 (en) 2019-04-05 2022-12-06 Malibu Boats, Llc Water sports boat with foil displacement system
US11851136B2 (en) 2019-04-05 2023-12-26 Malibu Boats, Llc Water sports boat with foil displacement system
WO2021188965A1 (fr) * 2020-03-20 2021-09-23 Ockerman Automation Consulting, Inc. Navire doté d'une extension arrière
US11679841B2 (en) 2020-03-20 2023-06-20 Ockerman Automation Consulting, Inc. Marine vessel with aft extension
US11932356B1 (en) 2020-08-24 2024-03-19 Malibu Boats, Llc Powered swim platform

Also Published As

Publication number Publication date
US8943993B2 (en) 2015-02-03
EP2238015A2 (fr) 2010-10-13
WO2009082829A2 (fr) 2009-07-09
WO2009082829A3 (fr) 2010-10-21
US20140000504A1 (en) 2014-01-02

Similar Documents

Publication Publication Date Title
US8943993B2 (en) Variable hull lengths for watercraft
US10202171B1 (en) Boat with reconfigurable running surface for wake adjustment
AU2010260086B2 (en) Watercraft with stepped hull and outboard fins
AU2004304957B2 (en) Low drag ship hull
US10875606B2 (en) Powerboat
US5522333A (en) Catamaran boat with planing pontoons
US5301624A (en) Stern planes for swath vessel
RU2624142C2 (ru) Гибридное однокорпусное глиссирующее судно
US20020017228A1 (en) Stable efficent air lubricated ship
US9272752B1 (en) Boat with reconfigurable running surface for wake adjustment
WO2006119120A1 (fr) Bateau pour navigation
US10953955B1 (en) Pontoon-style vessel having motor pod providing extreme turning radius and performance handling
KR20160000507U (ko) 쌍동선
US4031841A (en) Controlled air film hull for watercraft
CA2472250C (fr) Voilier mu par le vent
US20110162572A1 (en) for a Marine Vessel
US9676450B1 (en) Pontoon structure for supporting a boat body
US5134949A (en) High-speed boat
RU2165865C1 (ru) Глиссирующее судно
US9663189B2 (en) Lightweight power boat concept
JPH02102889A (ja) 滑水式双胴船
WO1993007046A1 (fr) Navire a effet de surface par aspiration naturelle
KR950011592B1 (ko) 전천후 중대형 초고속 수중익쌍동선
CA3211029A1 (fr) Navire maritime comprenant une coque planante
WO2017188862A1 (fr) Jet-ski gonflable à tableau fixe pour moteurs hord bord

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION