US20110049000A1 - Package structure for thin display apparatus and method of packing thin display apparatus - Google Patents

Package structure for thin display apparatus and method of packing thin display apparatus Download PDF

Info

Publication number
US20110049000A1
US20110049000A1 US12/807,099 US80709910A US2011049000A1 US 20110049000 A1 US20110049000 A1 US 20110049000A1 US 80709910 A US80709910 A US 80709910A US 2011049000 A1 US2011049000 A1 US 2011049000A1
Authority
US
United States
Prior art keywords
display apparatus
end portion
reinforced plate
cushion
bent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/807,099
Inventor
Hidetoshi Ishibashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JVCKenwood Corp
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Assigned to VICTOR COMPANY OF JAPAN, LTD. reassignment VICTOR COMPANY OF JAPAN, LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ISHIBASHI, HIDETOSHI
Publication of US20110049000A1 publication Critical patent/US20110049000A1/en
Assigned to JVC Kenwood Corporation reassignment JVC Kenwood Corporation MERGER (SEE DOCUMENT FOR DETAILS). Assignors: VICTOR COMPANY OF JAPAN, LTD.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/02Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents specially adapted to protect contents from mechanical damage
    • B65D81/05Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents specially adapted to protect contents from mechanical damage maintaining contents at spaced relation from package walls, or from other contents
    • B65D81/053Corner, edge or end protectors
    • B65D81/055Protectors contacting three surfaces of the packaged article, e.g. three-sided edge protectors
    • B65D81/056Protectors contacting three surfaces of the packaged article, e.g. three-sided edge protectors the surfaces being generally perpendicular to each other, e.g. three-sided corner protectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/02Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents specially adapted to protect contents from mechanical damage
    • B65D81/05Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents specially adapted to protect contents from mechanical damage maintaining contents at spaced relation from package walls, or from other contents
    • B65D81/053Corner, edge or end protectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2585/00Containers, packaging elements or packages specially adapted for particular articles or materials
    • B65D2585/68Containers, packaging elements or packages specially adapted for particular articles or materials for machines, engines, or vehicles in assembled or dismantled form
    • B65D2585/6802Containers, packaging elements or packages specially adapted for particular articles or materials for machines, engines, or vehicles in assembled or dismantled form specific machines, engines or vehicles
    • B65D2585/6835Containers, packaging elements or packages specially adapted for particular articles or materials for machines, engines, or vehicles in assembled or dismantled form specific machines, engines or vehicles audio-visual devices
    • B65D2585/6837Containers, packaging elements or packages specially adapted for particular articles or materials for machines, engines, or vehicles in assembled or dismantled form specific machines, engines or vehicles audio-visual devices tv or computers

Abstract

A thin display apparatus is packed in a package box. A reinforced plate is attached to the display apparatus. The reinforced plate has a first end portion, a second end portion, a middle bent portion and a buffer member fixed to the first end portion. The first and second portions face each other with the bent portion located therebetween and connected thereto. The reinforced plate is attached to the display apparatus so that the bent portion is set on a top portion of the display apparatus at a top side, the buffer member is positioned at a front side of the display apparatus as facing a display screen and the second portion is positioned at a rear side of the display apparatus. A cushion member is attached to the reinforced plate so that the cushion member is set on the bent portion set on the top portion.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is based on and claims the benefit of priority from the prior Japanese Patent Application No. 2009-197914 filed on Aug. 28, 2009, the entire contents of which is incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • The present invention relates to a package structure for a thin display apparatus and a method of packing a thin display apparatus.
  • There are known package structures for use in shipping thin display panels such as liquid crystal panels and organic EL panels, and also thin display apparatuses equipped with such a thin display panel. Examples of known package structures are a common package structure with buffer members provided at four corners of an article to be packed for supporting the article and an improved package structure for a thin display apparatus disclosed in Japanese Un-Examined Patent Application Publication No. 2006-232360 (referred to as Document 1, hereinafter).
  • Document 1 discloses a package structure for use in packing a liquid crystal television in a corrugated cardboard box with holding members to be in contact with both ends of the television at the bottom and top sides thereof. The package structure features a reinforced plate that is turned around the television in the vertical direction to wrap the television, with a sponge plate attached to the reinforced plate to precompress the center region of a display panel in the lateral direction.
  • According to the package structure in Document 1, the sponge plate minimizes jolts of the center region of the display panel that are generated by shocks, vibration, etc., applied to the television while being shipped. Thus, a thin display apparatus, such as a liquid crystal television, can withstand shocks, vibration, etc., generated during shipping even if a display panel is relatively large.
  • However, there is a strong demand for lighter-weight and thinner display panels and apparatuses with a larger screen, for a variety of installation types such as hung on wall and ceiling.
  • Light weight display panels and apparatuses are achieved with light metals such as aluminum, in place of metals such as iron, for display panel frames that support a thin display panel and cabinets in which a thin display panel is installed. Such a light metal offers a light weight of around 6 kg which used to be 10 kg or so for thin display panels and apparatuses.
  • Such light weight display panels and apparatuses, however, have a tendency of low stiffness compared to heavy display panels and apparatuses of the same screen size.
  • Thin liquid crystal display panels are achieved with a thin cell panel, optical sheet, diffusion plate, and other thin components with a small distance between these components. The thinness of 10 mm or less has been achieved for the thinnest part of display panels, which used to be 30 mm or more.
  • Such light-weight and thin display panels and apparatuses, however, suffer several problems when packed in a corrugated cardboard box and shipped.
  • A first problem is that a cell panel is damaged at the rear side due to rubbing or hitting each other between the cell panel and an optical sheet provided behind the panel when vibration is externally applied.
  • This problem is caused by a thinner structure with a smaller distance between the cell panel and the optical sheet, in addition to that a thinner cell panel is more vibrated at the center region in back and forth when an external force is applied.
  • A second problem is that a package box is also made thinner. Thus, when the package box falls down a packed cell panel or display apparatus could suffer flexure deformation as protruding in the direction of falling down, at the center region of the top section of the cell panel or display apparatus.
  • FIG. 1 illustrates the second problem. An article 101 to be packed is a thin display panel, for example. Attached to the four corners of the article 101 are buffer members 102. The article, or the thin display panel 101 is packed in a package box 103 (indicated by a dash-dot line for brevity) with the buffer members 102.
  • Shown in (a) of FIG. 1 is that the package box 103 is placed upright on a floor, etc. Shown in (b) of FIG. 1 is that the package box 103 falls down in a direction indicated by an arrow.
  • When the package box 103 falls down in the direction indicated by the arrow, a flexurally-deformed portion K is created at the center region of the top side as protruding in the direction of falling down due to the shock of falling down, as shown in (b) of FIG. 1.
  • This problem is caused by that, although the display panel 101 is supported by the buffer members 102 at the four corners, the center region between the opposing corners is not protected by the buffer members 102. The center region of the top side of the display panel 101 thus cannot withstand the shock of falling down, in addition to lower stiffness of the panel 101 that is made larger and thinner.
  • The first problem may be solved by the package structure disclosed in Document 1, with the sponge plate that precompress the center region of a display panel in the lateral direction to minimize vibration in back and forth.
  • Nevertheless, since the sponge plate is not provided at the center region of the top side of the display panel in Document 1, the second problem may not be solved by the package structure disclosed in Document 1.
  • Moreover, the package structure disclosed in Document 1 should be improved in the following points concerning a packing operation.
  • One point to be improved lies in the reinforced plate when an article to be packed is a thin display panel or apparatus of 10 mm or less in thickness. In detail, it seems that, if the reinforced plate is weakly turned around such a thin article, it cannot minimize vibration whereas, if it is strongly turned around, the sponge plate precompresses the display panel too much, which results in adverse effects to the thin display panel or apparatus with lowered stiffness.
  • Another point to be improved is that it takes time to turn the reinforced plate around an article to be packed and connect both ends of the reinforced plate, with several steps.
  • Still another point to be improved is that, when an article to be packed is mistakenly packed in a package box without the reinforced plate, the article has to be picked up from the package box for turning the reinforced plate around the article and then again packed in the package box, which leads to lower efficiency in packing operations.
  • SUMMARY OF THE INVENTION
  • A purpose of the present invention is to provide a package structure for a thin display apparatus and a method of packing a thin display apparatus, that offer easier packing operations and protect the packed display apparatus from being deformed when a package box falls down.
  • The present invention provides a package structure for packing a thin display apparatus having a display screen comprising: a reinforced plate to be attached to the display apparatus when the display apparatus is packed, the reinforced plate having an first end portion, a second end portion and a middle portion, the first end portion being positioned at a front side of the display apparatus, the second end portion being positioned at a rear side of the display apparatus and the middle portion being positioned at a top side of the display apparatus when the reinforced plate is attached to the display apparatus; a cushion member to be attached to a top portion of the display apparatus when the display apparatus is packed, the top portion being positioned at the top side; and a buffer member fixed to the first end portion of the reinforced plate, wherein, when the display apparatus is packed, the cushion member supports the top portion of the display apparatus from a front direction at the front side and from a rear direction at the rear side through the reinforced plate with the buffer member being in contact with the display screen or being positioned in the vicinity of the display screen at the front side.
  • Moreover, the present invention provides a method of packing a thin display apparatus having a display screen comprising the steps of: a first step of attaching a reinforced plate to the display apparatus, the reinforced plate having a first end portion, a second end portion, a middle bent portion and a buffer member that is fixed to the first end portion, the first and second end portions facing each other with the middle bent portion located between and connected to the first and second end portions, the reinforced plate being attached to the display apparatus so that the middle bent portion is set on a top portion of the display apparatus at a top side thereof, the buffer member is positioned at a front side of the display apparatus as facing the display screen and the second end portion is positioned at a rear side of the display apparatus; and a second step of attaching a cushion member to the reinforced plate so that the cushion member is set on the middle bent portion set, in the first step, on the top portion of the display apparatus.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 shows a view illustrating a problem of a known package structure;
  • FIG. 2 shows orthographic views of an exemplary article to be packed by a packing method according to an embodiment of the present invention;
  • FIG. 3 shows a first view illustrating the packing method according to the embodiment of the present invention;
  • FIG. 4 shows a second view illustrating the packing method according to the embodiment of the present invention;
  • FIG. 5 shows a third view illustrating the packing method according to the embodiment of the present invention;
  • FIG. 6 shows a development view of a main component of a package structure according to an embodiment of the present invention;
  • FIG. 7 shows a view of a folded state of the main component of the package structure according to the embodiment of the present invention, before used in the packing method according to the embodiment of the present invention;
  • FIG. 8 shows a transverse sectional view illustrating the package structure according to the embodiment of the present invention;
  • FIG. 9 shows a vertical sectional view illustrating the package structure according to the embodiment of the present invention;
  • FIG. 10 shows a partially enlarged view of FIG. 9;
  • FIG. 11 shows an enlarged view of an area DT shown in FIG. 10;
  • FIG. 12 shows a schematic view illustrating the dimension of the components of the package structure according to the embodiment of the present invention; and
  • FIG. 13 shows a perspective view of a modification to the package structure according to the embodiment of the present invention.
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
  • Preferred embodiments of the present invention will be described with respect to FIGS. 2 to 13.
  • FIG. 2 shows orthographic views of an exemplary article to be packed by a packing method of the present invention. The exemplary article shown in FIG. 2 is a thin display apparatus 50, for example, a liquid crystal monitor. The signs “top”, “bottom”, “front”, “rear”, “left” and “right” are given to the drawings when necessary to indicate the direction with respect to the thin display apparatus 50.
  • The thin display apparatus 50 includes a thin liquid crystal display panel 1 and a cabinet 2 for the display panel 1 to be installed, having an opening 2 a through which a display screen 1 a provided on a cell panel is of the display panel 1 is exposed. The cabinet 2 has a protruding portion 3 for installing a circuit board, etc., at the rear side.
  • The thin display apparatus 50 is a 32-inch liquid crystal monitor having 773 mm in width W, 496 mm in height H, 7 mm in thickness T1 (except for the protruding portion 3), and 23 mm in thickness T2 for the protruding portion 3.
  • The thin display apparatus 50 (the liquid crystal monitor) has a mass of 5.7 Kg with the cabinet 2 made of aluminum (including the protruding portion 3).
  • FIGS. 3 to 5 show perspective views illustrating how to pack the thin display apparatus 50 in a package box, according to a packing method of the present invention.
  • Firstly, the thin display apparatus 50 is wrapped with a polyethylene film package (not shown).
  • Next, as shown in FIG. 3, corner cushions 4 a, 4 b, 4 c and 4 d are attached to the four corners of the cabinet 2, as buffer members, so that the corner cushions 4 a and 4 b, and 4 c and 4 d support the cabinet 2 at the bottom and top sides, respectively.
  • The polyethylene film package will not be referred to in the following description because it is much thinner than the other components and does not contribute to the advantages obtained by the present invention.
  • The corner cushions 4 a, 4 b, 4 c and 4 d are provided with slits 4 a 1, 4 b 1, 4 c 1 and 4 d 1, respectively, having a specific shape and width so that the four corners of the cabinet 2 can be tightly inserted into the slits. Shown in FIG. 3 are the slits 4 a 1, 4 b 1, and 4 c 1. The corner cushions 4 a, 4 b, 4 c and 4 d are made of styrene form.
  • Next, as shown in FIG. 4, a reinforced plate 5 bent into an almost J-shape is installed between the corner cushions 4 c and 4 d from the top side in a direction D3 so that cabinet 2 is fit between the opposing inner surfaces of the J-shaped reinforced plate 5.
  • The reinforced plate 5 is made of a corrugated cardboard, for example. When a corrugated cardboard is used, as shown in FIG. 6, a corrugated cardboard material is cut into a rectangular shape. Crease lines 5 a, 5 b and 5 c are then made between one end portion 5 t 1 and another end portion 5 t 2 of the rectangular corrugated cardboard so that a valley fold is formed in a direction of the front side of a drawing paper of FIG. 6. The crease lines 5 a, 5 b and 5 c are preferably made in a direction orthogonal to the direction of the flute.
  • Any flute type of corrugated cardboard can be used in the embodiment. Moreover, perforation may be made instead of the crease lines 5 a, 5 b and 5 c.
  • When the direction of the flute is set as indicated by an arrow in FIG. 6, a buffer plate 6 is fixed at the end portion 5 t 1 (in the direction of the flute) of the reinforced plate 5 (the upper side in FIG. 6).
  • The buffer plate 6 is made of EPS (Expanded Polystyene), a type of styrene foam, sponge material, etc., and formed into a cuboid. The buffer plate 6 is fixed on the reinforced plate 5 by a fixing means, such as glue or an adhesive tape. The reinforced plate 5 has a width W2 for an inner surface 5 e that is the inner side when used, equal to or a little bit smaller than a width W3 shown in FIG. 3.
  • FIG. 7 shows the reinforced plate 5 folded along the crease lines 5 a, 5 b and 5 c when used in packing.
  • As shown in FIG. 7, the reinforced plate 5 is folded along the crease lines 5 a and 5 b at almost right angle whereas folded slightly along the crease line 5 c. Accordingly, the reinforced plate 5 is formed into an almost J-shape in cross section, having a bent portion kk.
  • The term “an almost J-shape” in this description includes not only a letter “J”-shape but also a π-shape with the end portion 5 t 2 located lower than that shown in FIG. 7.
  • The positions of the crease lines 5 a and 5 b of the reinforced plate 5 when folded are defined as follows:
  • A distance Dm1 shown in FIG. 7 is almost equal to H/2 shown in FIG. 2 in which the reference sign H indicates the height of the thin display apparatus 50. The distance Dm1 is, as shown in FIG. 7, a distance between the position of the inner surface 5 e between the crease lines 5 a and 5 b in a top-to-bottom direction and the center position of the buffer member 6 in the top-to-bottom direction.
  • A width T3 of the inner surface 5 e in a lateral direction (orthogonal to the top-to-bottom direction) shown in FIG. 7 is equal to or little bit larger than thickness T1 of the thin display apparatus 50 (except for the protruding portion 3) shown in FIG. 2.
  • The position of the crease line 5 c will be discussed later.
  • In addition to the inner surface 5 e, the reinforced plate 5 has an inner surface 5 d between the crease line 5 a and the end portion 5 t 2, an inner surface 5 f between the crease lines 5 b and 5 c, and an inner surface 5 g between the crease line 5 c and the end portion 5 t 1, as shown in FIGS. 6 and 7. It is noted that the positions of the end portions 5 t 1 and 5 t 2 are upside down in FIGS. 6 and 7.
  • Referring again to FIG. 4, concerning the packing method of the present invention, the reinforced plate 5 formed into a specific shape shown in FIG. 7 is installed in the direction D3 in such a manner that the buffer plate 6 is in contact with the display screen 1 a (FIG. 2) and the top side of the thin display apparatus 50 is inserted between the inner surfaces 5 d and 5 f.
  • Next, as shown in FIG. 5, a cushion 7 (which will be described later in detail) is installed between the corner cushions 4 a and 4 d in a direction D4 from the top side.
  • Then, the thin display apparatus 50 is packed in a package box 8, with the corner cushions 4 a to 4 d, the reinforced plate 5 and the cushion 7 attached thereto. The package box 8 is then closed by folding flaps 8 f, thus completing a packing operation.
  • The cushion 7 is described in detail.
  • The cushion 7 is made of a buffer material such as styrene form. The cushion 7 supports the center region of the thin display apparatus 50 at the top side with the reinforced plate 5, which will be described with reference to FIGS. 8 to 12.
  • FIG. 8 is a sectional view taken on line S2A-S2A of FIG. 5. FIG. 9 is a sectional view taken on line S2B-S2B of FIG. 5. FIG. 10 is a partially enlarged view of FIG. 9 at the top side. FIG. 11 is an enlarged view of an area DT shown in FIG. 10. FIG. 12 is a schematic view illustrating the dimension of the components.
  • As shown in FIG. 8, the cushion 7 has a width W4 in the lateral direction, equal to or little bit smaller than a width W3 that is a gap between the corner cushions 4 c and 4 d. The width adjustment allows that the three cushions 4 c, 7 and 4 d are tightly aligned in the lateral direction at the top side of the thin display apparatus 50.
  • The cushion 7 is provided with a slit 7 a at the center region in cross section, as shown in FIGS. 9 and 10. The slit 7 a is formed by an inner surface 7 a 1 at the front side and an opposing inner surface 7 a 2 at the rear side. The inner surfaces 7 a 1 and 7 a 2 are slopes to shape the slit 7 a open wide gradually in the bottom direction in FIG. 9. The inner surface 7 a 2 at the rear side is provided with several ribs 7 a 3 aligned in the lateral direction, each having an end surface almost orthogonal to the top-to-bottom direction, as shown in FIG. 8.
  • The slit 7 a has a width T5 at the bottom thereof as shown in FIG. 10, which corresponds to the width obtained by adding the width T1 (FIG. 2) of the thin display apparatus 50 and a width twice that of the reinforced plate 5. The cushion 7 thus can be attached to the thin display apparatus 50 tightly in a front-to-rear direction of the apparatus 50 in a manner that the top side of the apparatus 50 is inserted into the slit 7 a with the reinforced plate 5 between the cushion 7 and the apparatus 50.
  • Moreover, the cushion 7 has a specific outer width in the front-to-rear direction of the thin display apparatus 50, that is equal to or little bit smaller than an inner width of the package box 8 in the front-to-rear direction. The width adjustment allows that the cushion 7 is tightly installed in the package box 8 in the front-to-rear direction. The same goes for the corner cushions 4 a to 4 d.
  • Accordingly, the thin display apparatus 50 is packed in the package box 8 tightly in the front-to-rear and lateral directions, with the corner cushions 4 a to 4 d, the reinforced plate 5 and the cushion 7.
  • As shown in FIG. 10, the slit 7 a of the cushion 7 is formed with a tilt angle θ7 of, for example, about 4 degrees for the slope of the inner surface 7 a 1 with respect to the vertical line that goes through the cushion 7 in a direction orthogonal to the front-to-rear direction of the thin display apparatus 50.
  • The tilt angle θ7 is decided in accordance with the relationship between a distance Dm2 in the top-to-bottom direction and a width T4 of the buffer plate 6 in the front-to-rear direction, in FIG. 7. The distance Dm2 is defined as a distance between the crease lines 5 c and the inner surface 5 e between the crease lines 5 a and 5 b.
  • The tilt angle θ7 is discussed in detail. In FIG. 11, an enlarged view of the area DT in FIG. 10, the display screen 1 a is positioned far back (in the right direction in FIG. 11) by Δd from the front side 2 b of the cabinet 2.
  • It is preferable that the buffer member 6 is in almost surface contact with the display screen 1 a or they face with each other with an extremely small gap when the thin display apparatus 50 is packed in the package box 8.
  • In order to satisfy the positional relationship between the buffer member 6 and the display screen 1 a, the following expression (1) is given when the buffer member 6 has a thickness T4, according to FIG. 12:

  • tan θ7=(T4−Δd)/Dm2  (1)
  • wherein T4=10 mm, Δd=1.5 mm, and Dm2=120 mm, in this embodiment.
  • Under the requirements discussed above, an outer surface 5 fr (FIG. 7), the opposite surface of the inner surface 5 f of the reinforced plate 5, is in almost surface contact with the front-side inner surface 7 a 1 (FIG. 10) of the slit 7 of the cushion 7 when the thin display apparatus 50 is packed in the package box 8.
  • Referring to FIG. 8 again, the ribs 7 a 3 are provided in order for the inner surface 5 d (FIG. 7) of the reinforced plate 5 to be in surface contact with the rear surface of the cabinet 2. The ribs 7 a 3 are aligned at a specific interval in the lateral direction in FIG. 8, with a specific width and height.
  • The ribs 7 a 3 provided as described above are deformed when an external force is applied from the front to rear of the thin display apparatus 50 or the package box 8 falls down in the rear direction, in FIG. 5, after the thin display apparatus 50 has been packed in the package box 8. The deformed ribs 7 a 3 effectively absorb the kinetic energy of the thin display apparatus 50 in accordance with the motion of the display apparatus 50 in the rear direction, thus exhibiting preferable buffer effects.
  • According to the packing method and package structure of the embodiment described above, the thin display apparatus 50, an article to be packed, is tightly supported by the corner cushions 4 a to 4 d at the four corners at the top and bottom sides and also the cushion 7 interposed between the corner cushions 4 c and 4 d at the top side, in the package box 8.
  • The thin display apparatus 50, an article to be packed, is therefore protected from being deformed at the top side even if the display apparatus 50 falls down in the front or rear side because it is supported by the corner cushions 4 c and 4 d, and also the cushion 7 at the top side.
  • Moreover, when the thin display apparatus 50 is packed in the package box 8, with the reinforced plate 5, the corner cushions 4 c and 4 d, and the cushion 7, the buffer plate 6 is put in almost surface contact with an specific area of the display screen 1 a including the center region thereof or put in a position to face the specific area with a very small gap. The reinforced plate 5 having the buffer plate 6 is restricted from being deformed in the front direction by the cushion 7 at the inner surface 7 a 1 thereof at the front side. Therefore, when the cell panel 1 s (FIGS. 2 and 11) of the thin liquid crystal display panel 1 is vibrated in the front-to-rear direction, the vibration is diminished by the buffer plate 6 installed as described above.
  • Furthermore, the crease lines 5 a, 5 b and 5 c made in the direction orthogonal to the direction of the flute, as shown in FIG. 6, give higher stiffness to the reinforced plate 5 having the buffer plate 6 against the deformation in the front-to-rear direction, which further restricts the cell panel is from being vibrated.
  • When the reinforced plate 5 is made of a corrugated cardboard, the type of flute, the material type of corrugated cardboard core, etc., and the direction of flute can be appropriately selected so that the cell panel 1 s can be effectively restricted from vibration.
  • With the reinforced plate 5 described above, the cell panel 1 s protected from being damaged, especially, at the back thereof because of no contact (rubbing, hitting, etc.) with an optical panel (not shown) provided just behind the cell panel 1 s.
  • Moreover, the reinforced plate 5 can be attached to an article to be packed, such as the thin display apparatus 50, after the article is packed in the package box 8, thus an easier and more efficient packing operation is achieved.
  • Furthermore, even if the reinforced plate 5 has to be replaced with a new one after packed due to defectiveness after packed, it can be replaced with no need to pick up a packed article, such as the thin display apparatus 50 from the package box 8, thus higher packing operability is achieved.
  • It is further understood by those skilled in the art that the foregoing description is a preferred embodiment of the described structure and method and that various changes and modifications may be made in the invention without departing from the spirit and scope thereof.
  • For example, the reinforced plate 5 may be made of other materials than a corrugated cardboard, such as resin, like polypropylene (PP).
  • An article to be packed may be the thin liquid crystal display panel 1 without being installed in the thin display apparatus 50, or other thin plate-like materials such as glass and resin.
  • Regarding the buffer plate 6 to be put in contact with the display screen 1 a on the cell panel is of the display panel 1, its position of contact, area and shape are not limited to those described above. Nevertheless, it is preferable that the buffer plate 6 covers the center region of the display screen 1 a, the center region being to be vibrated most when the package box 8 falls down.
  • Shown in FIG. 13 is a modification to the package structure described above, with a cushion 71 having an integral structure of the corner cushions 4 c and 4 d, and the cushion 7.
  • Also in this modification, the thin display apparatus 50 (an article to be packed) is tightly supported by the cushion 71 at the top side from left to right corners.
  • The cushion 71 has a larger exterior dimension than each of the separate corner cushions 4 c and 4 d, and cushion 7. However, the use of the cushion 71 reduces the cushion installation steps of ⅓ fewer than those separated cushions.
  • Also in this modification, a packed article is protected from being damaged at the top side when a package box falls down in front or rear because it is supported or protected at the top side.
  • As described in detail, the present invention achieves that a packed article, such as a thin liquid crystal display panel and a thin display apparatus and so on, is packed in a package box by an easier operation and is protected from being deformed even if a package box falls down.

Claims (14)

1. A package structure for packing a thin display apparatus having a display screen comprising:
a reinforced plate to be attached to the display apparatus when the display apparatus is packed, the reinforced plate having an first end portion, a second end portion and a middle portion, the first end portion being positioned at a front side of the display apparatus, the second end portion being positioned at a rear side of the display apparatus and the middle portion being positioned at a top side of the display apparatus when the reinforced plate is attached to the display apparatus;
a cushion member to be attached to a top portion of the display apparatus when the display apparatus is packed, the top portion being positioned at the top side; and
a buffer member fixed to the first end portion of the reinforced plate,
wherein, when the display apparatus is packed, the cushion member supports the top portion of the display apparatus from a front direction at the front side and from a rear direction at the rear side through the reinforced plate with the buffer member being in contact with the display screen or being positioned in the vicinity of the display screen at the front side.
2. The package structure according to claim 1 further comprising a package box, a left corner cushion and a right corner cushion, the left corner cushion and the right corner cushion being to be attached to a left end portion and a right end portion, respectively, of the display apparatus at the top side, wherein, when the display apparatus is packed in the package box, a position of the cushion member in a left direction and a right direction is determined by the left and right corner cushions, the left and right directions being orthogonal to the front and rear directions.
3. The package structure according to claim 1, wherein, when the display apparatus is packed, the cushion member supports the display apparatus from a left end portion to a right end portion of the display apparatus at the top side, the left and right portions being included in the top portion of the display apparatus.
4. The package structure according to claim 1, wherein the buffer member is contact with a specific area of the display screen or positioned in the vicinity of the specific area at the front side, the specific area including a center of the display screen.
5. The package structure according to claim 1, wherein the middle portion of the reinforced plate is a bent middle portion so that the first and second end portions face each other with the bent middle portion located between and connected to the first and second end portions, for the top portion of the display apparatus to be fit in the bent middle portion when the display apparatus is packed.
6. The package structure according to claim 5, wherein the bent middle portion of the reinforced plate has a first crease at which the bent middle portion is connected to the first end portion and a second crease at which the bent middle portion is connected to the second end portion, each crease having a specific angle so that the top portion of the display apparatus is fit in the bent middle portion.
7. The package structure according to claim 6, wherein the reinforced plate has an inner surface connected to the first end portion to which the buffer member is fixed, the inner surface having a third crease at which the inner surface is bent at an angle smaller than the specific angle in the rear direction and connected to the middle portion, the buffer member being interposed between the first end portion and the third crease.
8. The package structure according to claim 7, wherein the cushion member has a slit into which the bent middle portion of the reinforced plate is inserted when the cushion member supports the top portion of the display apparatus through the reinforced plate.
9. The package structure according to claim 8 further comprising a cabinet having the display screen installed therein, wherein the slit of the cushion member has inner surfaces facing each other and having slopes to form the slit, each slope having an angle θ with respect to a vertical line that goes through the cushion member in a direction orthogonal to the front and rear directions, the angle θ being defined as tan θ=(T−Δd)/Dm in which T is a thickness of the buffer member in the front and rear directions, Δd is a distance between the display screen and a front side of the cabinet in the front and rear directions and Dm is a distance between the third crease and an inner surface of the bent middle portion between the first and second creases of the reinforced plate.
10. A method of packing a thin display apparatus having a display screen comprising the steps of:
a first step of attaching a reinforced plate to the display apparatus, the reinforced plate having a first end portion, a second end portion, a middle bent portion and a buffer member that is fixed to the first end portion, the first and second end portions facing each other with the middle bent portion located between and connected to the first and second end portions, the reinforced plate being attached to the display apparatus so that the middle bent portion is set on a top portion of the display apparatus at a top side thereof, the buffer member is positioned at a front side of the display apparatus as facing the display screen and the second end portion is positioned at a rear side of the display apparatus; and
a second step of attaching a cushion member to the reinforced plate so that the cushion member is set on the middle bent portion set, in the first step, on the top portion of the display apparatus.
11. The method according to claim 10 further comprising the steps of:
a third step of packing the display apparatus in a package box; and
a fourth step of attaching a left corner cushion and a right corner cushion to a left end portion and a right end portion, respectively, of the display apparatus at the top side so that a position of the cushion member in a left direction and a right direction on the display screen is determined by the left and right corner cushions in the package box.
12. The method according to claim 10, wherein the second step includes the step of supporting the display apparatus with the cushion member from a left end portion to a right end portion of the display apparatus, the left and right portions being included in the top portion of the display apparatus.
13. The method according to claim 10, wherein the first step includes the step of setting the buffer member at the front side so that buffer member is contact with a specific area of the display screen or positioned in the vicinity of the specific area at the front side, the specific area including a center of the display screen.
14. A method according to claim 10 further comprising the steps of:
a third step of bending the reinforced plate at a first crease and a second crease each at a specific angle to form the middle bent portion so that the first and second end portions face each other with the middle bent portion located between and connected to the first and second end portions; and
a fourth step of bending the reinforced plate at a third crease at an angle smaller than the specific angle in the rear direction, the third crease being located at an inner surface of the reinforced plate, the inner surface being connected to the first end portion to which the buffer member is fixed, the buffer member being interposed between the first end portion and the third crease.
US12/807,099 2009-08-28 2010-08-27 Package structure for thin display apparatus and method of packing thin display apparatus Abandoned US20110049000A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-197914 2009-08-28
JP2009197914A JP2011046426A (en) 2009-08-28 2009-08-28 Package structure for thin display apparatus and method of packing thin display apparatus

Publications (1)

Publication Number Publication Date
US20110049000A1 true US20110049000A1 (en) 2011-03-03

Family

ID=43243081

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/807,099 Abandoned US20110049000A1 (en) 2009-08-28 2010-08-27 Package structure for thin display apparatus and method of packing thin display apparatus

Country Status (3)

Country Link
US (1) US20110049000A1 (en)
EP (1) EP2289818B1 (en)
JP (1) JP2011046426A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110192743A1 (en) * 2010-02-08 2011-08-11 May Derek M Shock Absorber For Portable Devices
US20130308255A1 (en) * 2012-03-13 2013-11-21 Panasonic Corporation Thin display device
WO2014008676A1 (en) * 2012-07-10 2014-01-16 深圳市华星光电技术有限公司 Panel packaging apparatus
CN103547515A (en) * 2012-01-17 2014-01-29 松下电器产业株式会社 Packaging device for flat panel displays
TWI426041B (en) * 2011-09-28 2014-02-11 Au Optronics Corp Packing structure
US20140054194A1 (en) * 2012-08-27 2014-02-27 Hon Hai Precision Industry Co., Ltd. Packaging assembly
US20150060324A1 (en) * 2013-09-05 2015-03-05 International Business Machines Corporation Impact Protection for Electronic Devices
US9227765B1 (en) * 2014-09-02 2016-01-05 Shenzhen China Star Optoelectronics Technology Co., Ltd Packing box of liquid crystal panel
US20160001964A1 (en) * 2014-07-04 2016-01-07 Shenzhen China Star Optoelectronics Technology Co., Ltd. A Package Box Device for Liquid Crystal Panels
CN109051336A (en) * 2018-08-02 2018-12-21 珠海格力电器股份有限公司 A kind of packaging backing plate and the packing method using the packaging backing plate
US11442301B2 (en) * 2019-01-21 2022-09-13 Alpine Electronics, Inc. Display device
TWI792974B (en) * 2022-03-04 2023-02-11 大陸商宸展光電(廈門)股份有限公司 Display packaging structure
TWI804299B (en) * 2022-04-29 2023-06-01 明泰科技股份有限公司 Can be disassembled into a package clamp cushioning material for feet

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI411562B (en) * 2011-04-22 2013-10-11 Au Optronics Corp Packing element
CN102582962B (en) * 2012-03-09 2013-09-25 友达光电股份有限公司 Buffer material
JP5472362B2 (en) * 2012-04-17 2014-04-16 三菱電機株式会社 Packaging material
CN103359406B (en) * 2013-06-24 2015-10-28 深圳市美盈森环保科技股份有限公司 Finished product telltale buffering package
TWI492887B (en) * 2013-12-31 2015-07-21 Combination packaging filler
CN110861838A (en) * 2018-08-28 2020-03-06 鸿富锦精密工业(深圳)有限公司 Buffering packing device
GB2611536A (en) * 2021-10-05 2023-04-12 Sky Cp Ltd Packaging

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2919022A (en) * 1957-10-03 1959-12-29 Flotepak Corp Container for a plurality of sheets of glass or the like
US3414124A (en) * 1967-05-05 1968-12-03 Flotepak Corp Container for sheetlike material
US3451169A (en) * 1967-03-20 1969-06-24 Flex O Lators Edge protector
US4162729A (en) * 1977-10-17 1979-07-31 Uniroyal, Inc. Protective packaging device
US4225043A (en) * 1979-05-07 1980-09-30 Ppg Industries, Inc. Securing pads for sheet shipping containers
US4892193A (en) * 1987-08-14 1990-01-09 Gregg Thomas Expanded plastic packaging system for substantially planar objects
US5094903A (en) * 1990-12-21 1992-03-10 Efp Corporation Hanger for separating stored sheet material
US5101976A (en) * 1989-12-04 1992-04-07 Salisbury John W Shipping log for components
US20090090652A1 (en) * 2006-04-20 2009-04-09 Asahi Glass Company Limited Plate-shaped member holding system, plate-shape member packing device, and method for holding a plate-shaped member
US20090250367A1 (en) * 2005-10-15 2009-10-08 Thomas Murdoch Corner Protector
US7690508B2 (en) * 2006-09-19 2010-04-06 Funai Electric Co., Ltd. Plasma television packing structure and panel display device packing structure
US7748527B2 (en) * 2006-12-15 2010-07-06 Kohler Co. Panel packaging system
US8028831B2 (en) * 2007-09-12 2011-10-04 Mitsubishi Electric Corporation Package structure for display device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9114168U1 (en) * 1991-11-14 1992-01-16 Overath, Udo, 5204 Lohmar, De
JP2006232360A (en) 2005-02-28 2006-09-07 Sharp Corp Packing structure for thin display device
WO2007013319A1 (en) * 2005-07-28 2007-02-01 Matsushita Electric Industrial Co., Ltd. Packaging box

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2919022A (en) * 1957-10-03 1959-12-29 Flotepak Corp Container for a plurality of sheets of glass or the like
US3451169A (en) * 1967-03-20 1969-06-24 Flex O Lators Edge protector
US3414124A (en) * 1967-05-05 1968-12-03 Flotepak Corp Container for sheetlike material
US4162729A (en) * 1977-10-17 1979-07-31 Uniroyal, Inc. Protective packaging device
US4225043A (en) * 1979-05-07 1980-09-30 Ppg Industries, Inc. Securing pads for sheet shipping containers
US4892193A (en) * 1987-08-14 1990-01-09 Gregg Thomas Expanded plastic packaging system for substantially planar objects
US5101976A (en) * 1989-12-04 1992-04-07 Salisbury John W Shipping log for components
US5094903A (en) * 1990-12-21 1992-03-10 Efp Corporation Hanger for separating stored sheet material
US20090250367A1 (en) * 2005-10-15 2009-10-08 Thomas Murdoch Corner Protector
US20090090652A1 (en) * 2006-04-20 2009-04-09 Asahi Glass Company Limited Plate-shaped member holding system, plate-shape member packing device, and method for holding a plate-shaped member
US7690508B2 (en) * 2006-09-19 2010-04-06 Funai Electric Co., Ltd. Plasma television packing structure and panel display device packing structure
US7748527B2 (en) * 2006-12-15 2010-07-06 Kohler Co. Panel packaging system
US8028831B2 (en) * 2007-09-12 2011-10-04 Mitsubishi Electric Corporation Package structure for display device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110192743A1 (en) * 2010-02-08 2011-08-11 May Derek M Shock Absorber For Portable Devices
TWI426041B (en) * 2011-09-28 2014-02-11 Au Optronics Corp Packing structure
US9120613B2 (en) * 2012-01-17 2015-09-01 Panasonic Intellectual Property Management Co., Ltd. Package device for thin display device
CN103547515A (en) * 2012-01-17 2014-01-29 松下电器产业株式会社 Packaging device for flat panel displays
US20140097117A1 (en) * 2012-01-17 2014-04-10 Panasonic Corporation Package device for thin display device
US20130308255A1 (en) * 2012-03-13 2013-11-21 Panasonic Corporation Thin display device
WO2014008676A1 (en) * 2012-07-10 2014-01-16 深圳市华星光电技术有限公司 Panel packaging apparatus
US20140054194A1 (en) * 2012-08-27 2014-02-27 Hon Hai Precision Industry Co., Ltd. Packaging assembly
US8800765B2 (en) * 2012-08-27 2014-08-12 Hon Hai Precision Industry Co., Ltd. Packaging assembly
US20150060324A1 (en) * 2013-09-05 2015-03-05 International Business Machines Corporation Impact Protection for Electronic Devices
US9498031B2 (en) * 2013-09-05 2016-11-22 International Business Machines Corporation Impact protection for electronic devices
US20160001964A1 (en) * 2014-07-04 2016-01-07 Shenzhen China Star Optoelectronics Technology Co., Ltd. A Package Box Device for Liquid Crystal Panels
US9643772B2 (en) * 2014-07-04 2017-05-09 Shenzhen China Star Optoelectronics Technology Co., Ltd. Package box device for liquid crystal panels
US9227765B1 (en) * 2014-09-02 2016-01-05 Shenzhen China Star Optoelectronics Technology Co., Ltd Packing box of liquid crystal panel
CN109051336A (en) * 2018-08-02 2018-12-21 珠海格力电器股份有限公司 A kind of packaging backing plate and the packing method using the packaging backing plate
US11442301B2 (en) * 2019-01-21 2022-09-13 Alpine Electronics, Inc. Display device
TWI792974B (en) * 2022-03-04 2023-02-11 大陸商宸展光電(廈門)股份有限公司 Display packaging structure
TWI804299B (en) * 2022-04-29 2023-06-01 明泰科技股份有限公司 Can be disassembled into a package clamp cushioning material for feet

Also Published As

Publication number Publication date
EP2289818A1 (en) 2011-03-02
EP2289818B1 (en) 2012-10-10
JP2011046426A (en) 2011-03-10

Similar Documents

Publication Publication Date Title
US20110049000A1 (en) Package structure for thin display apparatus and method of packing thin display apparatus
JP4911276B2 (en) Plate body packing box, plate body transport method
JP5382027B2 (en) Plate body packing box and plate body transport method
US8215484B2 (en) Package member for flat panel display apparatus
KR101478682B1 (en) Glass plate package body
US10442597B1 (en) Retention package with article-loading aperture and method of making and using the same
JP2006273357A (en) Packing device
AU2008325729A1 (en) Cushioning device
US20070051660A1 (en) Packing module and packing assembly having the same
JP5155419B2 (en) Packaging structure for flat-screen television
JP2015205715A (en) Packing structure of display device
EP2590873B1 (en) Dual-purpose packaging insert and packaging box for sensitive flat objects
JP4878254B2 (en) Packing spacer
JP2009255940A (en) Packaging apparatus for thin display, and method for mounting thin display
KR100823902B1 (en) Plate-like body packaging box, plate-like body carrying method, and plate-like body loading and unloading method
JP2010215276A (en) Packing box and packing apparatus
CN105730876A (en) Packaging box for television set
JP2000327075A (en) Substrate-carrying box
JP2008296961A (en) Shock absorbing material
JP6324158B2 (en) Packaging structure of display device
JP5091622B2 (en) Support member
TWM630350U (en) Display packaging structure
JP2016169040A (en) Packing device
JP2011037509A (en) Movement restricting tool, buffering device, and television device equipped with the same
JPH1035651A (en) Packing apparatus

Legal Events

Date Code Title Description
AS Assignment

Owner name: VICTOR COMPANY OF JAPAN, LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ISHIBASHI, HIDETOSHI;REEL/FRAME:024958/0529

Effective date: 20100726

AS Assignment

Owner name: JVC KENWOOD CORPORATION, JAPAN

Free format text: MERGER;ASSIGNOR:VICTOR COMPANY OF JAPAN, LTD.;REEL/FRAME:027999/0714

Effective date: 20111001

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION