US20110038718A1 - Fluid Flow Machine - Google Patents
Fluid Flow Machine Download PDFInfo
- Publication number
- US20110038718A1 US20110038718A1 US12/841,317 US84131710A US2011038718A1 US 20110038718 A1 US20110038718 A1 US 20110038718A1 US 84131710 A US84131710 A US 84131710A US 2011038718 A1 US2011038718 A1 US 2011038718A1
- Authority
- US
- United States
- Prior art keywords
- rotor
- intermediate sleeve
- fluid flow
- stator
- sealing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16J—PISTONS; CYLINDERS; SEALINGS
- F16J15/00—Sealings
- F16J15/16—Sealings between relatively-moving surfaces
- F16J15/32—Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings
- F16J15/3284—Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings characterised by their structure; Selection of materials
- F16J15/3288—Filamentary structures, e.g. brush seals
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D11/00—Preventing or minimising internal leakage of working-fluid, e.g. between stages
- F01D11/001—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between stator blade and rotor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D11/00—Preventing or minimising internal leakage of working-fluid, e.g. between stages
- F01D11/003—Preventing or minimising internal leakage of working-fluid, e.g. between stages by packing rings; Mechanical seals
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D11/00—Preventing or minimising internal leakage of working-fluid, e.g. between stages
- F01D11/02—Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/55—Seals
- F05D2240/56—Brush seals
Definitions
- the present invention is directed to a fluid flow machine with a stator, a rotor which is supported so as to be rotatable relative to the stator and a brush seal which seals the gap between the stator and the rotor in the radial direction to prevent the passage of fluid.
- a fluid flow machine of the type mentioned above is known, e.g., from EP 0 834 688 A1.
- An adjustable brush seal is known from U.S. Pat. No. 6,435,514, the entire content of which is incorporated herein by reference.
- Fluid flow machines include, for example, propellers and repellers, centrifugal pumps and turbo machinery of any kind such as gas turbines, steam turbines and rotary compressors such as, e.g., radial compressors and axial compressors.
- the rotor in fluid flow machines such as turbo machines can be sealed by means of labyrinth tip seals, mechanical seals or brush seals to prevent the leakage of fluid.
- sealing bristles (also known as brush wires) of the brush seal make direct contact with the rotor of the turbo machine, this rotor being constructed, e.g., as a shaft.
- the brush seal limits the amount of work fluid, e.g., the amount of compressor air, flowing out of a flow part of the turbo machine into a bearing periphery of the turbo machine, for example.
- FIGS. 1 and 2 show a prior art fluid flow machine 1 which is constructed as a gas turbine.
- the fluid flow machine 1 has a stator 10 which is constructed in this instance as a gas turbine housing, a rotor 20 which is supported so as to be rotatable relative to the stator 10 and which is constructed in this instance as a shaft, rotational bearings 30 , 40 which carry out the rotatable bearing support of the rotor 20 in the stator 10 , and two brush seals 50 which seal a gap S formed in radial direction RR between the stator 10 and rotor 20 to prevent the passage of fluid.
- every brush seal 50 has a brush holder 51 and a plurality of sealing bristles 5 , each of which has a first end which is fastened to the brush holder 51 and a second end which contacts a sealing surface D which is formed in this case by an outer circumferential surface 21 of the rotor 20 , so that a sealing bristle-on-sealing surface contact zone is formed.
- the sealing surface D is rotationally displaceable, particularly rotatable in this case, relative to the second ends of the respective sealing bristles 52 .
- a fluid flow machine has a stator, a rotor which is supported so as to be rotatable relative to the stator, and a brush seal which seals a gap formed between the stator and rotor in a radial direction of the rotor to prevent the passage of fluid.
- the brush seal has a brush holder and a plurality of sealing bristles, each of which has a first end that is fastened to the brush holder and a second end that contacts a sealing surface so that a sealing bristle-on-sealing surface contact zone is formed.
- the sealing surface is rotationally displaceable relative to the second ends of the respective sealing bristles.
- the fluid flow machine according to the present invention is characterized in that the sealing surface is formed by a circumferential surface of an intermediate sleeve or intermediate bushing which is arranged between the stator and rotor and which radially divides the gap.
- the sealing bristle-on-sealing surface contact zone is thermally decoupled so as to prevent a deformation in the fluid flow machine which is brought about by introduced heat and which impairs the operation of the fluid flow machine.
- the intermediate sleeve is fastened either to a rotating part or to a stationary part of the brush seal.
- This fastening is advantageously carried out in such a way that, on the one hand, sufficient stability is achieved and, on the other hand, a heat transfer between the intermediate sleeve and the part to which the intermediate sleeve is fastened is as small as possible.
- the small heat transfer can be achieved, e.g., by means of the smallest possible contact surfaces and/or by providing an insulating layer between the contact surfaces of the intermediate sleeve and the part fastening the latter.
- the brush holder can be arranged at the stator and the intermediate sleeve can be arranged at the rotor so as to rotate along with the latter.
- the circumferential surface of the intermediate sleeve forming the sealing surface would be an outer circumferential surface.
- the brush holder is arranged at the rotor and the intermediate sleeve is arranged in a stationary manner at the stator so that the circumferential surface of the intermediate sleeve forming the sealing surface would be an inner circumferential surface in this case.
- the respective solution can be determined depending on the desired operating characteristics and design factors.
- the rotor can be formed, e.g., by a shaft rotating in a stator (e.g., in a housing) and, e.g., by a housing rotating around a stator (e.g., around an axle).
- a stator e.g., in a housing
- a housing rotating around a stator e.g., around an axle
- the intermediate sleeve divides the gap radially into a first gap portion adjoining the sealing surface and a second gap portion adjoining a circumferential surface of the intermediate sleeve remote of the sealing surface, wherein a radial extension of the second gap portion is greater than zero.
- the intermediate sleeve has a flange by means of which the intermediate sleeve is mounted at a flange mounting portion of the stator or rotor so as to be fixed with respect to rotation relative to it.
- This construction of the invention is advantageous particularly with respect to ensuring the smallest possible contact surfaces between the intermediate sleeve and the part (in this case, particularly the stator or the rotor) fastening this intermediate sleeve, while at the same time ensuring that the fastening is sufficiently stable.
- the flange is mounted at the flange mounting portion by detachable fastening means.
- Such fastening means can be, for example, screw connections, rivet connections, clamping connections, etc.
- the detachable connection facilitates the changing of worn intermediate sleeves, for example.
- the flange connection makes it possible to introduce a thermal insulation layer between the flange and the flange mounting portion in a simple manner.
- the flange is arranged at an axial end of the intermediate sleeve so that the flange has, at the axial end, an annular flange surface which contacts a mounting surface of the flange mounting portion so as to be tight against fluid.
- This construction of the invention reliably ensures a seal between the intermediate sleeve and the part fastening this intermediate sleeve to prevent the passage of fluid.
- the rotor is formed by a shaft and the intermediate sleeve is mounted on the rotor so as to be fixed with respect to rotation relative to it so that the sealing surface is formed by an outer circumferential surface of the intermediate sleeve, wherein the brush holder is arranged at the stator so as to be fixed with respect to rotation relative to it.
- An embodiment of the invention of the kind mentioned above can be produced in a particularly simple and dependably operating manner.
- an inner diameter of the intermediate sleeve is greater than an outer diameter of the shaft so that an annular gap is formed between an inner circumferential surface of the intermediate sleeve and an outer circumferential surface of the shaft.
- This construction of the invention achieves a thermally insulating air gap between the intermediate sleeve and the part fastening this intermediate sleeve in a simple and robust manner, this part being formed in this case by the rotor which is constructed as a shaft.
- the fluid flow machine is a turbo machine, particularly a gas turbine or a turbo compressor.
- FIG. 1 is a schematic sectional view of the basic construction of a fluid flow machine constructed as a gas turbine according to the prior art
- FIG. 2 is an enlarged section A from FIG. 1 showing a brush seal of a fluid flow machine according to the prior art
- FIG. 3 an enlarged section A′ from FIG. 1 showing a brush seal of a fluid flow machine according to an embodiment of the present invention.
- a fluid flow machine 1 which is constructed in this instance as a gas turbine has a stator 10 which is constructed in this instance as a gas turbine housing, a rotor 20 which is constructed in this instance as a shaft which is mounted so as to be rotatable relative to the stator 10 , two rotational bearings 30 , 40 which form the rotatable bearing support of the rotor 20 in the stator 10 , and two brush seals 50 ′ which seal a gap S which is formed in a radial direction RR between the stator 10 and rotor 20 so as to be prevent the passage of fluid.
- every brush seal 50 ′ has a brush holder 51 and a plurality of sealing bristles 52 each of which has a first end fastened to the brush holder 51 and a second end contacting a sealing surface D′ so as to form a sealing bristle-on-sealing surface contact zone, the sealing surface D′ being displaceable with respect to rotation, particularly rotatable in this instance, relative to the second ends of the respective sealing bristles 52 .
- the sealing surface D′ is formed by an outer circumferential surface 61 of an intermediate sleeve 60 which is arranged between the stator 10 and rotor 20 and which is mounted on the rotor 20 so as to be fixed with respect to rotation relative to it and so as to divide the gap S radially.
- the brush holder 51 is arranged at the stator 10 so as to be fixed with respect to rotation relative to it.
- the intermediate sleeve 60 divides the gap S radially into a first gap portion adjoining the sealing surface D′ and a second gap portion adjoining an inner circumferential surface D′′ of the intermediate sleeve 60 remote of the sealing surface D′.
- a radial extension of the second gap portion is greater than zero.
- an inner diameter of the intermediate sleeve 60 is greater than an outer diameter of the rotor (shaft) 20 so that an annular gap LS is formed between the inner circumferential surface of the intermediate sleeve 60 and an outer circumferential surface 21 of the rotor 20 .
- an air gap (annular gap) LS is provided between the intermediate sleeve 60 and the rotor 20 fastening the latter, which air gap advantageously ensures a thermal insulation between the intermediate sleeve 60 and the rotor 20 .
- the intermediate sleeve 60 has a flange 62 by means of which the intermediate sleeve 60 is mounted at the flange mounting portion 22 of the rotor 20 so as to be fixed with respect to rotation relative to it.
- the flange 62 is arranged at an axial end of the intermediate sleeve 60 so that the flange 62 has, at the axial end, an annular flange surface 62 ′ which contacts a recessed mounting surface (not designated separately) of the flange mounting portion 22 in a fluid-tight manner.
- a flat seal can be provided for achieving the fluid tightness and a thermal insulation between the annular flange surface of the flange 62 and the recessed mounting surface of the flange mounting portion 22 .
- the flange 62 is mounted at the flange mounting portion 22 of the rotor 20 by detachable fastening means which are realized in this instance in the form of a screw connection.
- the rotor 20 which is constructed in this instance as a shaft is provided with an intermediate sleeve or intermediate bushing 60 according to an embodiment of the invention.
- the intermediate sleeve 60 is connected to the rotor 20 by means of an axial flange 62 and detachable fastening means.
- the sealing bristles or brush wires 52 of the brush seal 50 ′ contact the sealing surface D′ formed by the outer circumferential surface 61 of the intermediate sleeve 60 .
- an uneven deformation of the intermediate sleeve 60 may only aggravate the out-of-true state of the intermediate sleeve 60 because the rotor 20 is only connected to the intermediate sleeve 60 by the connection of its flange mounting portion 22 to the flange 62 so that a direct heating of the rotor 20 caused by heat entering the area of the brush seal 50 ′ is prevented.
- the solution according to the invention can be applied wherever a fluid flow machine, e.g., a gas turbine, is to be sealed with brush seals.
- the invention can be applied, e.g., in disk rotor units, full rotor units and welded rotor units.
- the solution according to the invention can be used to seal a bearing periphery of a fluid flow machine and to seal between individual stages of the fluid flow machine, e.g., compressor stages or turbine stages.
- fastening of the intermediate sleeve to the part which fastens or holds it can also be carried out by means of shrinking or welding or by means of other fastening elements.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Sealing Devices (AREA)
- Sealing Of Bearings (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102009037393.4 | 2009-08-13 | ||
DE102009037393A DE102009037393A1 (de) | 2009-08-13 | 2009-08-13 | Strömungsmaschine |
Publications (1)
Publication Number | Publication Date |
---|---|
US20110038718A1 true US20110038718A1 (en) | 2011-02-17 |
Family
ID=42989218
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/841,317 Abandoned US20110038718A1 (en) | 2009-08-13 | 2010-07-22 | Fluid Flow Machine |
Country Status (5)
Country | Link |
---|---|
US (1) | US20110038718A1 (de) |
EP (1) | EP2284426B1 (de) |
JP (1) | JP5568365B2 (de) |
CA (1) | CA2704349C (de) |
DE (1) | DE102009037393A1 (de) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9793782B2 (en) | 2014-12-12 | 2017-10-17 | Hamilton Sundstrand Corporation | Electrical machine with reduced windage |
EP3293360A1 (de) * | 2016-09-13 | 2018-03-14 | United Technologies Corporation | Dichtungssystem mit primärer und sekundärer dichtungsanordnung |
US20180291755A1 (en) * | 2017-04-06 | 2018-10-11 | United Technologies Corporation | Insulated seal seat |
CN114033500A (zh) * | 2021-11-10 | 2022-02-11 | 北京动力机械研究所 | 一种自适应径流涡轮增压系统转子密封结构 |
US11415062B2 (en) | 2020-11-18 | 2022-08-16 | Raytheon Technologies Corporation | Rotating sleeve controlling clearance of seal assembly of gas turbine engine |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4448425A (en) * | 1981-11-05 | 1984-05-15 | Howaldtswerke-Deutsche Werft Aktiengesellschaft Hamburg Und Kiel | Shaft seal assembly with inflatable annular member |
US5181728A (en) * | 1991-09-23 | 1993-01-26 | General Electric Company | Trenched brush seal |
US6168377B1 (en) * | 1999-01-27 | 2001-01-02 | General Electric Co. | Method and apparatus for eliminating thermal bowing of steam turbine rotors |
US6379117B1 (en) * | 1999-08-23 | 2002-04-30 | Mitsubishi Heavy Industries, Ltd. | Cooling air supply system for a rotor |
US6435514B1 (en) * | 2000-12-15 | 2002-08-20 | General Electric Company | Brush seal with positive adjustable clearance control |
US6669228B2 (en) * | 2001-07-02 | 2003-12-30 | Delphi Technologies, Inc. | Air bag cover of polymeric foam having weakened region |
US6811374B2 (en) * | 2002-10-31 | 2004-11-02 | General Electric Company | Raised rotor platform with an internal breech ring locking mechanism for brush seal application in a turbine and methods of installation |
US20050098957A1 (en) * | 2003-11-07 | 2005-05-12 | The Boeing Company | Inter-fluid seal assembly and method therefor |
US20070120327A1 (en) * | 2003-05-01 | 2007-05-31 | Justak John F | Hydrodynamic brush seal |
US7338252B2 (en) * | 2001-10-22 | 2008-03-04 | Sulzer Pumpen Ag | Pump for the transporting of fluids and of mixtures of fluids |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0417840Y2 (de) * | 1987-01-22 | 1992-04-21 | ||
DE3828363A1 (de) * | 1988-08-20 | 1990-02-22 | Mtu Muenchen Gmbh | Dichtungseinrichtung |
EP0834688B1 (de) | 1996-10-02 | 2003-10-22 | MTU Aero Engines GmbH | Bürstendichtung |
US6575703B2 (en) * | 2001-07-20 | 2003-06-10 | General Electric Company | Turbine disk side plate |
-
2009
- 2009-08-13 DE DE102009037393A patent/DE102009037393A1/de not_active Withdrawn
-
2010
- 2010-04-13 EP EP10159701.1A patent/EP2284426B1/de active Active
- 2010-04-28 JP JP2010103660A patent/JP5568365B2/ja active Active
- 2010-05-17 CA CA2704349A patent/CA2704349C/en active Active
- 2010-07-22 US US12/841,317 patent/US20110038718A1/en not_active Abandoned
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4448425A (en) * | 1981-11-05 | 1984-05-15 | Howaldtswerke-Deutsche Werft Aktiengesellschaft Hamburg Und Kiel | Shaft seal assembly with inflatable annular member |
US5181728A (en) * | 1991-09-23 | 1993-01-26 | General Electric Company | Trenched brush seal |
US6168377B1 (en) * | 1999-01-27 | 2001-01-02 | General Electric Co. | Method and apparatus for eliminating thermal bowing of steam turbine rotors |
US6379117B1 (en) * | 1999-08-23 | 2002-04-30 | Mitsubishi Heavy Industries, Ltd. | Cooling air supply system for a rotor |
US6435514B1 (en) * | 2000-12-15 | 2002-08-20 | General Electric Company | Brush seal with positive adjustable clearance control |
US6669228B2 (en) * | 2001-07-02 | 2003-12-30 | Delphi Technologies, Inc. | Air bag cover of polymeric foam having weakened region |
US7338252B2 (en) * | 2001-10-22 | 2008-03-04 | Sulzer Pumpen Ag | Pump for the transporting of fluids and of mixtures of fluids |
US6811374B2 (en) * | 2002-10-31 | 2004-11-02 | General Electric Company | Raised rotor platform with an internal breech ring locking mechanism for brush seal application in a turbine and methods of installation |
US20070120327A1 (en) * | 2003-05-01 | 2007-05-31 | Justak John F | Hydrodynamic brush seal |
US20050098957A1 (en) * | 2003-11-07 | 2005-05-12 | The Boeing Company | Inter-fluid seal assembly and method therefor |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9793782B2 (en) | 2014-12-12 | 2017-10-17 | Hamilton Sundstrand Corporation | Electrical machine with reduced windage |
EP3293360A1 (de) * | 2016-09-13 | 2018-03-14 | United Technologies Corporation | Dichtungssystem mit primärer und sekundärer dichtungsanordnung |
US20180291755A1 (en) * | 2017-04-06 | 2018-10-11 | United Technologies Corporation | Insulated seal seat |
US10669873B2 (en) * | 2017-04-06 | 2020-06-02 | Raytheon Technologies Corporation | Insulated seal seat |
US11415062B2 (en) | 2020-11-18 | 2022-08-16 | Raytheon Technologies Corporation | Rotating sleeve controlling clearance of seal assembly of gas turbine engine |
CN114033500A (zh) * | 2021-11-10 | 2022-02-11 | 北京动力机械研究所 | 一种自适应径流涡轮增压系统转子密封结构 |
Also Published As
Publication number | Publication date |
---|---|
EP2284426B1 (de) | 2018-10-24 |
CA2704349C (en) | 2014-07-15 |
JP2011038509A (ja) | 2011-02-24 |
EP2284426A3 (de) | 2014-03-12 |
CA2704349A1 (en) | 2011-02-13 |
DE102009037393A1 (de) | 2011-02-17 |
EP2284426A2 (de) | 2011-02-16 |
JP5568365B2 (ja) | 2014-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7637719B2 (en) | Sealing arrangement | |
US20100092279A1 (en) | Sealing means between rotor and housing in a water turbine | |
US7287956B2 (en) | Removable abradable seal carriers for sealing between rotary and stationary turbine components | |
US9587505B2 (en) | L brush seal for turbomachinery application | |
US6565094B2 (en) | Seal arrangement | |
US20080001363A1 (en) | Brush sealing system and method for rotary machines | |
CN100339563C (zh) | 汽轮机转子平台的改进及用密封刷来消除转子弯曲的方法 | |
JP6471090B2 (ja) | 軸方向軸受装置 | |
KR100854193B1 (ko) | 시일 및 증기 글랜드 | |
CN101131101A (zh) | 天使翅膀形耐磨的密封件和密封方法 | |
US20110038718A1 (en) | Fluid Flow Machine | |
KR102095667B1 (ko) | 시일 장치 및 회전 기계 | |
JP2013204818A (ja) | 楕円クリアランスを備えたブラシシールシステム | |
JP2013139874A (ja) | 回転機械で使用するためのコンプライアントプレートシールおよび回転機械を組み立てる方法 | |
US6932347B2 (en) | Device for a non-hermetic seal | |
KR20010112379A (ko) | 자동조심 브러시 실을 포함하는 회전 기계 | |
US6589012B2 (en) | Method and apparatus for eliminating thermal bowing using brush seals in the diaphragm packing area of steam turbines | |
US10683769B2 (en) | Centrifugally activatable seal for a rotary machine and method of assembling same | |
JP2009191850A (ja) | 蒸気タービンエンジンとその組立方法 | |
JP2017160861A (ja) | ターボ機械 | |
JP2017160827A (ja) | 回転機械のシール装置及び回転機械 | |
CN100379948C (zh) | 刷式密封装置的支撑 | |
US5803708A (en) | Damping device for a rotating machine | |
GB2452040A (en) | Brush sealing system using carbon bristles for use with rotary machines | |
JPH07139305A (ja) | ラビリンスシール固定構造 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MAN DIESEL & TURBO SE, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ASCHENBRUCK, EMIL;BLASWICH, MICHAEL;SIGNING DATES FROM 20100616 TO 20100621;REEL/FRAME:024724/0855 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION |
|
AS | Assignment |
Owner name: MAN ENERGY SOLUTIONS SE, GERMANY Free format text: CHANGE OF NAME;ASSIGNOR:MAN DIESEL & TURBO SE;REEL/FRAME:046818/0806 Effective date: 20180626 |