US20100316581A1 - Skin External Preparations - Google Patents

Skin External Preparations Download PDF

Info

Publication number
US20100316581A1
US20100316581A1 US12/745,906 US74590608A US2010316581A1 US 20100316581 A1 US20100316581 A1 US 20100316581A1 US 74590608 A US74590608 A US 74590608A US 2010316581 A1 US2010316581 A1 US 2010316581A1
Authority
US
United States
Prior art keywords
oil
wax
poe
soluble drug
derivatives
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/745,906
Inventor
Eriko Takeoka
Takashi Teshigawara
Kentaro Kusaba
Akira Matsuo
Junko Tamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shiseido Co Ltd
Original Assignee
Shiseido Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shiseido Co Ltd filed Critical Shiseido Co Ltd
Assigned to SHISEIDO COMPANY, LTD. reassignment SHISEIDO COMPANY, LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TAKEOKA, ERIKO, KUSABA, KENTARO, MATSUO, AKIRA, TAMURA, JUNKO, TESHIGAWARA, TAKASHI
Publication of US20100316581A1 publication Critical patent/US20100316581A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • A61K31/3533,4-Dihydrobenzopyrans, e.g. chroman, catechin
    • A61K31/355Tocopherols, e.g. vitamin E
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/045Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates
    • A61K31/07Retinol compounds, e.g. vitamin A
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/365Lactones
    • A61K31/375Ascorbic acid, i.e. vitamin C; Salts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0241Containing particulates characterized by their shape and/or structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/044Suspensions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/39Derivatives containing from 2 to 10 oxyalkylene groups
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/86Polyethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/92Oils, fats or waxes; Derivatives thereof, e.g. hydrogenation products thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/92Oils, fats or waxes; Derivatives thereof, e.g. hydrogenation products thereof
    • A61K8/922Oils, fats or waxes; Derivatives thereof, e.g. hydrogenation products thereof of vegetable origin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/56Compounds, absorbed onto or entrapped into a solid carrier, e.g. encapsulated perfumes, inclusion compounds, sustained release forms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/60Particulates further characterized by their structure or composition
    • A61K2800/65Characterized by the composition of the particulate/core
    • A61K2800/652The particulate/core comprising organic material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/02Preparations for care of the skin for chemically bleaching or whitening the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/08Anti-ageing preparations

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Birds (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Dermatology (AREA)
  • Emergency Medicine (AREA)
  • Dispersion Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Cosmetics (AREA)
  • Medicinal Preparation (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

To provide skin external preparations characterized in that the initial permeation rate of oil-soluble drugs (e.g. retinol and tocopherol acetate) is controlled to achieve their sustained release to thereby reduce skin irritation and that they also possess a fresh feel while featuring high degrees of safety and stability. A skin external preparation which comprises a finely dispersed, oil-soluble drug containing wax composition, the composition containing a solid or semisolid wax, a nonionic surfactant, an aqueous dispersion medium, and an oil-soluble drug, the mass ratio of the nonionic surfactant to the wax being 1.0 or more, and the wax, with the oil-soluble drug contained therein, being finely dispersed in solid or semisolid form in the aqueous dispersion medium.

Description

    TECHNICAL FIELD
  • The present invention relates to skin external preparations that comprise a finely dispersed, oil-soluble drug containing wax composition which is characterized in that wax incorporating an oil-soluble drug is finely dispersed in solid or semisolid form in an aqueous dispersion medium. The present invention particularly relates to skin external preparations that allow the oil-soluble drug to be released at a controlled rate so that the sustained-release effect is sufficiently enhanced to suppress skin irritation and which are safe, feature good use properties (high degree of freshness) and are highly stable.
  • BACKGROUND ART
  • Conventionally, in cases where oil-soluble drugs such as retinol (vitamin A) and its derivatives need be incorporated in skin external preparations, cosmetics and the like, forms of the preparations or cosmetics have been limited to ones of high oil content that are highly viscous and which are liquid at ordinary temperatures. See, for example, Patent Document 1 which describes an oily composition characterized in that a solid phase containing a water-soluble or water-dispersible effective substance is dispersed as fine particles in an oil phase; this reference notes that an oil-soluble effective substance (e.g., tocopherol or vitamin A) may be contained in the oil phase. However, the oily composition of Patent Document 1 has the oil phase (comprising an emulsifying agent and an oily ingredient) incorporated in high proportion and suffers a disadvantage that it fails to provide a fresh feeling during use. If the content of the oil phase in the system is lowered, an improvement is realized to provide a fresh feeling during use, but on the other hand, the relative amount of the oil-soluble drug that is distributed to the skin is increased to cause the problem of skin irritation. To state more specifically, the oil-soluble drugs such as retinol (vitamin A) and its derivatives have an irritating effect on the skin and in systems of low oil content, it is difficult to control their distribution to the oil phase and they tend to permeate into the skin in an excessive amount, producing a concern about increased irritation of the skin, which is not desirable from a safety viewpoint.
  • To eliminate greasiness, glare and other disadvantages that result from the incorporation of wax in cosmetics, the applicant of the subject application has proposed a technology in which wax is finely dispersed in a solvent to make a wax emulsion, thereby producing a finely dispersed wax composition that is not only free from the above-mentioned defects but also characterized by high degrees of stability and safety (see, for example, Patent Documents 2 to 4). However, each of the finely dispersed wax compositions described in Patent Documents 2 to 4 is intended to utilize the performance such as lustering and shape-retaining properties of wax itself so that they can be applied to hair cosmetics such as setting lotions and hair mousses and lustering preparations, and none of these patent documents describe or suggest the idea of the present invention, i.e., controlling the release rate of oil-soluble drugs to enhance their sustained-release property and thereby suppress irritation on the skin.
  • Patent Documents 5 and 6 also describe hair cosmetic compositions comprising microdispersions of wax; however, the technology disclosed in each of these references is also intended to utilize the performance such as lustering and shape-retaining properties of wax itself so that they can be applied to hair cosmetics such as setting lotions and hair mousses and lustering preparations, and none of these patent documents describe or suggest the idea of the present invention, i.e., controlling the release rate of oil-soluble drugs to enhance their sustained-release property and thereby suppress irritation on the skin.
  • Patent Document 1: JP 11-113487 A (e.g., paragraph number [0012])
  • Patent Document 2: JP 10-324617 A
  • Patent Document 3: JP 11-286418 A
  • Patent Document 4: JP 11-263915 A
  • Patent Document 5: JP 4-230616 A
  • Patent Document 6: JP 3-2112 A
  • DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
  • The present invention has been accomplished in light of the above-mentioned problems of the prior art and its object is to provide skin external preparations that are characterized in that the initial permeation rate of oil-soluble drugs is controlled to achieve their sustained release to thereby reduce skin irritation and which also possess a fresh feel while featuring high degrees of safety and stability.
  • Means for Solving the Problems
  • To solve the aforementioned problems, the present inventors made intensive studies and found that by containing an oil-soluble drug within fine wax particles and dispersing them in an aqueous dispersion medium, the oil-soluble drug is “covered” with the wax, with the result that the rate at which the oil-soluble drug of this structure, i.e., being contained in the wax, permeates to the outside of the wax is controlled to achieve sustained release of the oil-soluble drug component, thereby producing compositions that would cause no irritation on the skin and which were safe while possessing a fresh feel; the present invention has been accomplished on the basis of this finding.
  • Thus, the present invention provides a skin external preparation which comprises a finely dispersed, oil-soluble drug containing wax composition, the composition containing a solid or semisolid wax, a nonionic surfactant, an aqueous dispersion medium, and an oil-soluble drug, the mass ratio of the nonionic surfactant to the wax being 1.0 or more, and the wax, with the oil-soluble drug contained therein, being finely dispersed in solid or semisolid form in the aqueous dispersion medium.
  • In a preferred embodiment, the oil-soluble drug is one or more substances selected from among vitamin A and its derivatives, vitamin B2 derivatives, vitamin B6 derivatives, vitamin D and its derivatives, vitamin E and its derivatives, essential fatty acids, ubiquinone and its derivatives, K vitamins, resorcin derivatives, glycyrrhetinic acid and its derivatives, oil-soluble vitamin C derivatives, steroid compounds, benzyl nicotinate, trichlorocarbanilide, trichlorohydroxydiphenylether, stearyl glycyrrhetinate, γ-orizanol, and dibutylhydroxytoluene.
  • In another preferred embodiment, the weight-averaged HLB for all nonionic surfactants in the finely dispersed, oil-soluble drug containing wax composition is in the range of 10-15.
  • In yet another preferred embodiment, one or more substances selected from among polyoxyethylene alkyl ethers, polyoxyethylene-polyoxypropylene alkyl ethers, polyoxyethylene glyceryl ether fatty acid esters, and polyoxyethylene castor oil or polyoxyethylene hydrogenated castor oil and their derivatives are contained as the nonionic surfactant.
  • In still another preferred embodiment, polyoxyethylene alkyl ethers and/or polyoxyethylene-polyoxypropylene alkyl ethers and polyoxyethylene glyceryl ether fatty acid esters are contained as nonionic surfactants.
  • In another preferred embodiment, the polyoxyethylene alkyl ethers and polyoxyethylene-polyoxypropylene alkyl ethers are one or more substances selected from among compounds represented by the following formulas (I) and/or (II):
  • Figure US20100316581A1-20101216-C00001
  • [in the formulas (I) and (II), R represents an alkyl or alkenyl group having 12-24 carbon atoms, m represents a number of 5-30, and n represents a number of 0-5].
  • In yet another preferred embodiment, the finely dispersed, oil-soluble drug containing wax composition is obtained by such a process that a system containing a wax that is solid or semisolid at ordinary temperatures, a nonionic surfactant, an aqueous dispersion medium, and an oil-soluble drug, with the mass ratio of the nonionic surfactant to the wax being 1.0 or more, is heated to a temperature not lower than the melting point of the wax but within the solubilizing temperature range so that the wax becomes solubilized and the system is thereafter cooled to ordinary temperatures.
  • Effects of the Invention
  • According to the present invention, there are provided skin external preparations that allow oil-soluble drugs to be released at a controlled rate so that the sustained-release effect is sufficiently enhanced to suppress skin irritation and which are safe, feature good use properties (high degree of freshness) and are highly stable.
  • BEST MODES FOR CARRYING OUT THE INVENTION
  • Hereinafter, the present invention is described in detail.
  • In the following description, “POE” means polyoxyethylene and “POP” polyoxypropylene.
  • [Finely Dispersed, Oil-Soluble Drug Containing Wax Composition]
  • The finely dispersed, oil-soluble drug containing wax composition which is used in the skin external preparations of the present invention contains a wax that is solid or semisolid at ordinary temperatures, a nonionic surfactant, an aqueous dispersion medium, and an oil-soluble drug, and the wax, with the oil-soluble drug contained therein, being finely dispersed in solid or semisolid form in the aqueous dispersion medium.
  • <Wax>
  • The wax which is used in the present invention assumes a solid or semisolid state at ordinary temperatures and specific examples include, but are not limited to, beeswax, candelilla wax, cotton wax, carnauba wax, bayberry wax, insect wax (wax secreted by Ericerus pela), spermaceti, montan wax, bran wax, lanolin, capok wax, Japan wax, lanolin acetate, liquid lanolin, sugar cane wax, esters of lanolin fatty acids and isopropyl alcohol, hexyl laurate, reduced lanolin, jojoba wax, hard lanolin, shellac wax, beeswax, microcrystalline wax, paraffin wax, POE lanolin alcohol ethers, POE lanolin alcohol acetates, POE cholesterol ethers, esters of lanolin fatty acids and polyethylene glycol, fatty acid glycerides, hydrogenated castor oil, petrolatum, and POE hydrogenated lanolin alcohol ethers.
  • It should be noted that the above-listed waxes may be used in admixture and even if they are mixed with other solid or liquid oil components, the mixtures can be used within the range where they are in solid or semisolid form at ordinary temperatures.
  • Such oil components may include, but are not limited to, the following.
  • Liquid oils and fats include avocado oil, camellia oil, turtle oil, macadamia nut oil, corn oil, mink oil, olive oil, rapeseed oil, yolk oil, sesame oil, persic oil, wheat germ oil, sasanqua oil, castor oil, linseed oil, safflower oil, cottonseed oil, Perilla oil, soybean oil, peanut oil, tea seed oil, Torreya nucifera oil, rice-bran oil, Chinese tung oil, Japanese tung oil, jojoba oil, germ oil, triglycerin, glyceryl trioctanoate, pentaerythritol tetraoctanoate, and glyceryl triisopalmitate.
  • Solid oils and fats include cacao oil, coconut oil, hydrogenated coconut oil, palm oil, palm kernel oil, Japan wax kernel oil, and hardened oils. Hydrocarbon oils include liquid paraffin, ozokerite, squalene, pristane, paraffin, and squalane.
  • The amount of the wax to be used in the present invention preferably ranges from 0.01 to 25 mass %, more preferably from 0.1 to 15 mass %, in the total amount of the finely dispersed, oil-soluble drug containing wax composition. If the wax content is less than 0.01 mass %, it is difficult to contain an adequate amount of the oil-soluble drug in the wax. On the other hand, if the wax is used in an amount greater than 25 mass %, formulations are difficult to prepare.
  • From the viewpoint of imparting a fresh feeling during use, the oil component is preferably contained in an amount of about 0.1 to 5 mass % in the finely dispersed, oil-soluble drug containing wax composition.
  • <Nonionic Surfactant>
  • The nonionic surfactant is not particularly limited as long as it is of types that can generally be used in cosmetics, but in the present invention, it is preferred that the weight-averaged HLB for all the nonionic surfactants in the finely dispersed, oil-soluble drug containing wax composition is in the range of 10-15, more preferably 11-14, and even more preferably 12-13. By using nonionic surfactants providing HLB values within the stated ranges, one can obtain such a clear composition that the wax has been solubilized in a hot state (e.g., within the solubilizing temperature range not lower than the melting point of the wax). HLB can be calculated by the Kawakami Equation represented by the following formula 1:

  • HLB=7+11.7·log(MW/MO)   [Formula 1]
  • (where MW represents the molecular weight of the hydrophilic moiety and MO represents the molecular weight of the lipophilic moiety).
  • In the present invention, the nonionic surfactant that may be used with particular preference is one or more substances selected from among POE alkyl ethers, POE-POP alkyl ethers, POE glyceryl ether fatty acid esters, and POE castor oil or POE hydrogenated castor oil and their derivatives. Among these substances, POE alkyl ethers and POE-POP alkyl ethers are particularly advantageous to use because the prepared fine dispersion of the oil-soluble drug containing wax has such good stability with time that the fine particles of the wax will not agglomerate or otherwise deteriorate over time to cause a change in appearance (lowered transparency) or creaming of the dispersed particles.
  • As will be described later in this specification, the finely dispersed, oil-soluble drug containing wax composition which is used in the present invention is advantageously produced by a process comprising the steps of heating the system until the wax is solubilized and then cooling the system to ordinary temperatures so that the wax becomes finely dispersed. If one or more substances selected from between POE alkyl ethers and POE-POP alkyl ethers are used in combination with POE glyceryl ether fatty acid esters as nonionic surfactants, the rate of wax solubilization can be remarkably increased to achieve an improvement in production efficiency.
  • As the above-mentioned POE alkyl ethers and POE-POP alkyl ethers, one or more substances selected from among compounds represented by the following formulas (I) and/or (II) are preferably used:
  • Figure US20100316581A1-20101216-C00002
  • [in the formulas (I) and (II), R represents an alkyl or alkenyl group having 12-24 carbon atoms, m represents a number of 5-30, and n represents a number of 0-5].
  • Examples of the above-described POE alkyl ethers and POE-POP alkyl ethers include POE lauryl ethers, POE cetyl ethers, POE stearyl ethers, POE oleyl ethers, POE behenyl ethers, POE decyltetradecyl ethers, POE monobutyl ethers, POE 2-decyltetradecyl ethers, POE hydrogenated lanolin, POE glyceryl ethers, POE-POP lauryl ethers, POE-POP cetyl ethers, POE-POP stearyl ethers, POE-POP oleyl ethers, POE-POP behenyl ethers, POE-POP decyltetradecyl ethers, POE-POP monobutyl ethers, POE-POP 2-decyltetradecyl ethers, POE-POP hydrogenated lanolin, and POE-POP glyceryl ethers.
  • Examples of the above-mentioned POE glyceryl ether fatty acid esters include POE glyceryl ether monostearic acid ester, POE glyceryl ether monoisostearic acid ester, and POE glyceryl ether triisostearic acid ester.
  • Examples of the above-mentioned POE castor oil or POE hydrogenated castor oil and their derivatives include POE castor oil, POE hydrogenated castor oil, POE hydrogenated castor oil monoisostearate, POE hydrogenated castor oil triisostearate, POE hydrogenated castor oil monopyroglutamic acid monoisostearic acid diester, and POE hydrogenated castor oil maleate.
  • In the present invention, any nonionic surfactants other than those listed above can also be used, and examples include: POE sorbitan fatty acid esters, such as POE sorbitan monooleate and POE sorbitan tetraoleate; POE sorbitol fatty acid esters, such as POE sorbitol monolaurate, POE sorbitol monooleate, POE sorbitol pentaoleate, and POE sorbitol monostearate; POE fatty acid esters, such as POE monooleate and ethylene glycol distearate; POE alkylphenyl ethers, such as POE octylpyhenyl ether, POE nonylphenyl ether, and POE dinonylphenyl ether; pluronics such as pluronic; tetraPOE-tetraPOP ethylenediamine condensates such as Tetronic; POE beeswax-lanolin derivatives such as POE sorbitol beeswax; alkanol amides, such as coconut oil fatty acid diethanol amides, lauric acid monoethanol amide, and fatty acid isopropanol amides; as well as POE propylene glycol fatty acid esters, POE alkylamines, POE fatty acid amides, sucrose fatty acid esters, POE nonylphenyl formaldehyde condensate, alkylethoxydimethyl amine oxides, and trioleyl phosphate.
  • The proportion of the nonionic surfactant relative to the wax for use in the present invention is 1.0 or more (in mass ratio) in the total amount of the finely dispersed, oil-soluble drug containing wax composition, with 1.1 or more being preferred. If this mass ratio is less than 1.0, a composition of high stability is difficult to obtain. The upper limit of the above-defined mass ratio is not particularly limited but it is preferably not greater than about 5.0, more preferably not greater than about 3.0. If the value of this mass ratio is unduly great, the feeling on use tends to deteriorate.
  • <Aqueous Dispersion Medium>
  • In the present invention, the wax described above is finely dispersed as fine particles in an aqueous dispersion medium. Water may be used alone as the aqueous dispersion medium; alternatively, it may be used as liquid mixtures of water and other substances such as ethanol, glycerin, polyethylene glycol, propylene glycol, dipropylene glycol, 1,3-butanediol, xylitol, sorbitol, maltitol, chondroitin sulfate, mucoitin sulfate, calonic acid, atherocollagen, cholesteryl-12-hydroxystearate, sodium lactate, bile acid salts, short-chain soluble collagens, diglycerin(EO)PO adducts, chestnut rose extract, yarrow extract, and melilot extract. Note that the fine particles of wax (finely divided wax) are preferably dispersed in aqueous solvents as finely divided wax having a particle size of no more than 500 nm.
  • <Oil-Soluble Drug>
  • In the present invention, the oil-soluble drug is contained in the finely divided wax so that it undergoes sustained release for absorption into the skin, and examples include oil-soluble drug components, such as skin lightening agents, humectants, antiinflammatories, antimicrobials, hormone preparations, vitamins, various amino acids and their derivatives, as well as enzymes, antioxidants, hair growth tonics, and UV absorbers. Specific examples include but are not limited to: vitamin A (retinol) and its derivatives (e.g., retinol acetate and retinol palmitate), vitamin B2 derivatives (e.g., riboflavin acetate), vitamin B6 derivatives (e.g., pyridoxine dicaprylate, pyridoxine dipalmitate, and pyridoxine dilaurylate), vitamin D (=calcipherol) and its derivatives (e.g., ergocalcipherol and cholecalcipherol), vitamin E (=tocopherol) and its derivatives [e.g., vitamin E acetate (=tocopherol acetate)], essential fatty acids [e.g., linoleic acid, linolenic acid, arachidonic acid, eicosapentaenoic acid, docosahexaenoic acid, and plant-derived extracts containing these acids (e.g., Biota orientalis)], ubiquinone (=coenzyme Q10) and its derivatives, K vitamins (e.g., phylloquinone, menaquinone, and menadione), resorcine derivatives (e.g., 4-alkylresorcinol derivatives and/or their salts), glycyrrhetic acid and its derivatives (e.g., stearyl glycyrrhetinate), oil-soluble vitamin C derivatives [e.g., vitamin C dipalmitate (=ascorbyl dipalmitate) and ascorbyl stearate], steroid compounds (e.g., estrogen and androgen), benzyl nicotinate (an ingredient in hair growth tonics), trichlorocarbanilide (an ingredient in bactericides), trichlorohydroxydiphenyl ether (an ingredient in antiseptics), γ-orizanol (an ingredient in antioxidants), dibutylhydroxytoluene (an ingredient in antioxidants), and UV absorbers such as octyl methoxycinnamate, 4-(1,1-dimethylethyl)-4′-methoxybenzoylmethane, and octocrylene. The oil-soluble drugs may be used either alone or in combination.
  • The amount of the oil-soluble drug to be used in the present invention preferably ranges from 0.0001 to 10 mass %, more preferably from 0.001 to 5 mass %, in the total amount of the finely dispersed, oil-soluble drug containing wax composition. If the amount of the oil-soluble drug is less than 0.0001 mass %, its efficacy is not fully exhibited; on the other hand, if the oil-soluble drug is used in an amount exceeding 10 mass %, there is no expecting a further improvement in efficacy that is commensurate with the increased amount of its use.
  • <Process for Production>
  • In the finely dispersed, oil-soluble drug containing wax composition that is to be used in the present invention, the wax, with the oil-soluble drug contained in it, is finely dispersed in solid or semisolid form in the aqueous dispersion medium. The process for producing such wax composition is not particularly limited but the following process may be given as an advantageous example.
  • In the process, a system containing the above-described wax, nonionic surfactant, aqueous dispersion medium, and oil-soluble drug is heated to a temperature not lower than the melting point of the wax but within the solubilizing temperature range so that the system is rendered to a solubilized state and is thereafter cooled to ordinary temperatures. A more specific advantageous embodiment may be exemplified by the following: the nonionic surfactant and optionally a polyhydric alcohol are dissolved in ion-exchange water and to the solution being heated to 85-95° C., the wax (e.g., carnauba wax, etc.) is added and the resulting mixture is agitated with a propeller for a period of about 30 minutes to about 2 hours and after confirming that the wax has become solubilized, the oil-soluble drug is added to the solution, which is then ice-cooled to make a finely dispersed, oil-soluble drug containing wax composition. In this process, as mentioned earlier, one or more substances selected from between POE alkyl ethers and POE-POP alkyl ethers may be used in combination with POE glyceryl ether fatty acid esters as nonionic surfactants, whereupon the rate of wax solubilization can be remarkably increased to achieve an improvement in production efficiency. As a result, the finely divided wax is dispersed in the aqueous dispersion medium, with the oil-soluble drug being contained in the wax. Needless to say, the process for producing the finely dispersed, oil-soluble drug containing wax composition is in no way limited to the conditions described in the foregoing specific example.
  • In addition to the production process described above, there is another method that may be employed to prepare the system containing the above-described wax, nonionic surfactant, aqueous dispersion medium, and oil-soluble drug and this method can be performed by using a high-shear emulsifying machine. In the case of using an emulsifying machine capable of imparting a strong shear force, for example, a high-pressure homogenizer, emulsification is preferably performed under a pressure of at least 400 atm but more preferably, it is performed at a temperature not lower than the melting point of the wax under a pressure of at least 600 atm.
  • [Skin External Preparation]
  • The skin external preparation of the present invention contains the finely dispersed, oil-soluble drug containing wax composition described above. Besides the finely dispersed, oil-soluble drug containing wax composition, ingredients that may be commonly added to skin external preparations and other cosmetics may be added, as appropriate for the need, to the skin external preparation of the present invention. Such optional additive ingredients include but are not limited to humectants such as polyhydric alcohols (e.g., glycerin), perfumes, pH modifiers, antiseptics, various kinds of powders, water-soluble polymers (e.g., natural water-soluble polymers, semisynthetic water-soluble polymers, synthetic water-soluble polymers, and inorganic water-soluble polymers), and silicone-based compounds.
  • The skin external preparation of the present invention can advantageously be used as various products that are specifically exemplified by lotions, beauty essences in lotion form, beauty essences in jelly form, and skin-care creams. Advantageous dosage forms may be exemplified by but are not limited to clear to semiclear, finely dispersed lotions and thickened jelly products.
  • Examples
  • The present invention is hereunder described in greater detail by means of the following Examples which are by no means intended to limit the invention. Unless otherwise noted, the amounts in which various components are incorporated are indicated by mass % relative to the system to which they are added.
  • Example 1 Optimum HLB for the Nonionic Surfactant
  • In the basic formula 1 shown below, the HLB of nonionic surfactants was varied as shown in Table 1 and the state of emulsification of the resulting systems was examined to determine optimum HLB values for the nonionic surfactants used.
  • <Basic Formula 1>
  • Carnauba wax  10 mass %
    Retinol  0.1 mass %
    Nonionic surfactant (See Table 1) 13.5 mass % 
    Ion-exchange water bal.
    Total 100 mass %
  • (Test Method)
  • Finely dispersed, oil-soluble drug containing wax compositions were prepared according to the recipes shown in Table 1 below. To be more specific, the surfactant was dissolved in ion-exchange water and to the solution being heated to 85-95° C., carnauba was added and the resulting mixture was agitated with a propeller for about 2 hours. Retinol was then added and the mixture was agitated with a propeller for an additional period of about 10 minutes. Thereafter, the mixture was ice-cooled to prepare the composition.
  • The prepared compositions were allowed to stand at room temperature for an hour and visually observed for their appearance (state of emulsification). The results are also shown in Table 1.
  • TABLE 1
    Nonionic surfactant Amount
    in <Basic formula 1> (mass %) HLB State of emulsification
    POE(10)behenyl ether 13.5 9 Phase separation occurred.
    POE(10)behenyl ether 12.49 10 Creamy
    POE(50)lauryl ether 1.01
    POE(10)behenyl ether 11.14 11 Semiclear one-liquid phase
    POE(50)lauryl ether 2.36
    POE(15)behenyl ether 13.5 12 Clear one-liquid phase
    POE(20)behenyl ether 13.5 13 Clear one-liquid phase
    POE(20)behenyl ether 6.75 14 Semiclear one-liquid phase
    POE(30)lauryl ether 6.75
    POE(30)behenyl ether 13.5 15 Creamy
  • As is clear from the data in Table 1, uniform emulsion systems could be formed with nonionic surfactants having HLB values of at least 10 but not more than 15. It was also confirmed that clear to semiclear systems of one-liquid phase were obtained with nonionic surfactants having HLB values of 11 to 14 and that, in particular, HLB values of 12 to 13 were required to obtain clear systems.
  • Example 2 Types of Nonionic Surfactants and the State of Dispersion of the Resulting Systems
  • In the above-mentioned basic formula 1, POE straight-chain alkyl ethers or POE branched-chain alkyl ethers were used as nonionic surfactants and their HLB values were varied between 9 and 15 by changing the number of moles of adducts in POE; the state of dispersion of the respective systems was evaluated by the criterion defined below. The results are shown in Table 2.
  • (Test Method)
  • The surfactant was dissolved in ion-exchange water and to the solution being heated to 85-95° C., carnauba was added and the resulting mixture was agitated with a propeller for about 2 hours. Retinol was then added and the mixture was agitated with a propeller for an additional period of about 10 minutes. Thereafter, the mixture was ice-cooled to prepare a finely dispersed, oil-soluble drug containing wax composition.
  • The prepared compositions were allowed to stand at room temperature for an hour and visually observed for their appearance. The results are also shown in Table 2.
  • (Evaluation)
    • ◯: A clear one-liquid phase formed.
    • Δ: A semiclear or uniform creamy appearance was seen.
    • ×: Phase separation occurred.
  • TABLE 2
    Nonionic surfactant HLB value
    in <Basic formula 1> 9 10 11 12 13 14 15
    POE straight-chain
    alkyl ether
    C12 (lauryl) x Δ
    n = 5 n = 7 n = 15
    C16 (cetyl) x Δ
    n = 7 n = 9
    C18 (stearyl) x Δ Δ
    n = 8 n = 10 n = 15 n = 20
    C18 (oleyl) x Δ
    n = 8 n = 10 n = 15
    C20 (aralkyl) x
    n = 10 n = 18
    C22 (behenyl) x Δ
    n = 10 n = 15 n = 20 n = 30
    POE branched-chain
    alkyl ether
    C18 (isostearyl) Δ
    n = 10 n = 15 n = 20
    C20 (octyldodecyl) Δ
    n = 10 n = 16 n = 20
    C24 (decyltetradecyl) x Δ Δ
    n = 10 n = 15 n = 20 n = 15
    POE(20)glyceryl ether
    isostearic acid ester n = 20 n = 60
    Combination of
    POE(20)glyceryl ether n = 20
    isostearic acid ester
    and POE(20)straight-
    chain behenyl alkyl
    ether
    (n: Number of moles of adducts in POE)
  • As is clear from the data in Table 2, when the respective nonionic surfactants were used independently, clear systems of one-liquid phase could be formed by adjusting their HLB values to lie at approximately 12-13. It was also confirmed that a plurality of nonionic surfactants could be used in combination.
  • Example 3 Stability with Time
  • In the basic formula 2 shown below, the nonionic surfactant was varied as shown in Table 3 below and the stability of the resulting systems was evaluated by the criterion defined below.
  • <Basic Formula 2>
  • Carnauba wax 10 mass %
    Retinol (For its amount, see Table 3)
    Nonionic surfactant (See under Table 3) 15 mass %
    Ion-exchange water bal.
    Total 100 mass %
  • (Test Method)
  • The surfactant was dissolved in ion-exchange water and to the solution being heated to 85-95° C. carnauba and retinol were added and the resulting mixture was agitated with a propeller for about 2 hours. Thereafter, the mixture was ice-cooled to prepare finely dispersed, oil-soluble drug containing wax compositions which were clear and of one-liquid phase. The compositions (samples 1 to 8) were allowed to stand at 50° C. for a week, visually observed for their state, and had their stability with time evaluated by the criterion defined below. The results are also shown in Table 3.
  • (Evaluation)
    • ◯: No change from the state of the as-prepared sample.
    • ×: Phase separation occurred.
  • TABLE 3
    Sample
    1 2 3 4 5 6 7 8
    Carnauba wax 10 10 10 10 10 10 10 10
    POE(10)behenyl ether 5 12
    POE(15)behenyl ether 12 10 5
    POE(20)behenyl ether 12 5 10 7 9 9
    POE(30)behenyl ether 7
    POE(40) hydrogenated 10 10 3.5
    castor oil
    POE(20)glyceryl ether 6.5
    isostearic acid ester
    POE(4.5)lauryl acetate 1.5 7.5
    ether(ca. 20 mass %
    effective content)
    Stearoylmethyl taurate 0.1 0.5
    Retinol 0.1 0.1 0.1 0.1 0.1 0.1 1.0 0.1
    Ion-exchange water bal. bal. bal. bal. bal. bal. bal. bal.
    Stability X
  • As is clear from the data shown in Table 3, sample 7 in which the mass ratio of the nonionic surfactant to the wax was less than unity experienced phase separation and failed to exhibit good stability.
  • Example 4 Effect of Controlling the Release of Oil-Soluble Drug (Tocopherol Acetate)
  • Finely dispersed, oil-soluble drug containing wax compositions (samples X to Z) were prepared according to the formulas shown in Table 4 below and then evaluated for the amount in which tocopherol acetate permeated through the skin. To evaluate the amount in which tocopherol acetate would permeate through the skin, each sample was applied to the skin and a measurement was performed on the as-prepared sample and then repeated every 5 hr until 20 hours had passed after application. The results are shown in FIG. 1. Note that samples X to Z each had good stability.
  • TABLE 4
    Sample
    X Y Z
    Carnauba wax 10 3
    Carnauba wax 7
    Pentaerythrityl tetraethylhexanoate 10  
    Behenyl alcohol 3.3
    Stearyl alcohol 0.9
    POE(10)behenyl ether 5
    POE(20)behenyl ether 10   10 10 
    POE(20)glyceryl ether isostearic  5
    acid ester
    Tocopherol acetate 0.1   0.1   0.1
    Ion-exchange water bal. bal. bal.
  • As FIG. 1 shows, samples Y and Z of finely dispersed wax were capable of effectively controlling the amount of initial permeation of tocopherol acetate as compared with sample X, or the conventional O/W emulsion in which the oil phase assumed a liquid state at ordinary temperatures, and consequently, the amount of skin permeation of tocopherol acetate was held virtually constant.
  • Examples 5 to 8 and Comparative Examples 1 and 2 Evaluation of Skin Irritation and Use Properties
  • Samples were prepared according to the recipes shown in Table 5 below (Examples 5-8 and Comparative Examples 1 and 2) and applied to the skin of 20 expert panelists who were asked to evaluate the samples for their skin irritating effect and feeling during use according to the criterion defined below. The results are also shown in Table 5. All the samples of Examples 5-8 and Comparative Examples 1 and 2 had good stability.
  • (Evaluation of Skin Irritating Effect)
    • ◯: At least 15 out of the 20 panelists answered “not irritating to the skin”.
    • Δ: Ten to 14 out of the 20 panelists answered “not irritating to the skin”.
    • ×: Not more than 9 out of the 20 panelists answered “not irritating to the skin”.
    (Freshness)
    • ◯: At least 15 out of the 20 panelists answered “fresh”.
    • Δ: Ten to 14 out of the 20 panelists answered “fresh”.
    • ×: Not more than 9 out of the 20 panelists answered “fresh”.
  • TABLE 5
    Compara-
    Example tive Example
    5 6 7 8 1 2
    Carnauba wax 2 2 10 1.5
    Pentaerythrityl tetraethylhex- 10 10
    anoate
    Behenyl alcohol 3.3 3.3
    Stearyl alcohol 0.9 0.9
    POE(20)behenyl ether 2.3 11.5 1.8 10 30
    POEglyceryl ether isostearic 2.3 1.0
    acid ester
    Dipropylene glycol 5.0
    1,3-Butylene glycol 7.0
    Retinol 0.1 0.1 0.1 0.1 0.1 0.1
    Ion-exchange water bal. bal. bal. bal. bal. bal.
    Skin irritating effect X
    Freshness Δ X
  • Example 9 and Comparative Example 3 Solubilizing Rate of Wax
  • According to Table 6 shown below, a surfactant or surfactants and dipropylene glycol were dissolved in ion-exchange water, and to the solution being heated to 85-95° C., carnauba wax added and the resulting mixture was agitated with a propeller and the time it took for the carnauba wax to be solubilized was measured. The results are also shown in Table 6.
  • TABLE 6
    Comparative
    Example 9 Example 3
    Carnauba wax 10 10
    POE(20)behenyl ether 12 18
    POE(20)glyceryl ether isostearic  6
    acid ester
    Dipropylene glycol  6  6
    Ion-exchange water bal. bal.
    Time to wax solubilization (min) 30 60
  • As is clear from the data in Table 6, the time it took for the wax to become solubilized in Example 9 where POE(20)behenyl ether and POE(20)glyceryl ether isostearic acid ester were used in combination as nonionic surfactants could be made considerably shorter than in Comparative Example 3 which used only one kind of nonionic surfactant, i.e., POE(20)behenyl ether.
  • Examples 10 and 11 Percent Residue of Oil-Soluble Drug (Retinol)
  • Samples were prepared according to the recipes shown in Table 7 below and stored at 50° C. for 2 months; thereafter, the percent residue of the oil-soluble drug (retinol) was measured by the following method. The results are also shown in Table 7.
  • (Measurement of Percent Residue of Retinol)
  • Half a gram was precisely weighed from each of the samples of Examples 10 and 11; 5 mL of xylene was added to each aliquot and the mixture was heated on a water bath to achieve dispersion; 30 mL of dibutylhydroxytoluene in acetone solution (0.5%) was added and the mixture was further heated to about 80° C. and then left to cool to ordinary temperatures; an internal standard solution of stearyl glycyrrhizinate (=stearyl glycyrrhizinate that was precisely weighed in 2 g and dissolved in acetone to make a solution that accurately weighed 3000 mL) was accurately weighed to 5 mL, added to the cooled mass, and mixing was done. A 2-μL portion of the liquid mixture was sampled as a test solution; the ratio of the peak area of retinol to that of the internal standard was determined and the mass ratio was determined from a preliminarily prepared calibration curve; the obtained values were substituted into the following equation 2 to determine the amount of retinol (IU/g).

  • Amount of retinol (IU/g)=Mass ratio determined from the calibration curve times the amount of stearyl glycyrrhizinate (mg) in 5 mL of the internal standard solution times the international unit of analytical retinol (IU/g), divided by the amount of a collected sample (g) and multiplied by 1000.   [Equation 2]
  • <Test Conditions>
    • Detector: UV spectrophotometer (measurement wavelength: 280 nm for 0-10 min, and 254 nm thereafter).
    • Column: Stainless steel tube having an inside diameter of 3.0 mm and a length of 50 mm was packed with 3-μm silica gel particles provided with a silicone resin coat to which octadecyl groups were later bonded chemically.
    • Column temperature: Constant temperature near 40° C.
    • Mobile phase A: Water
    • Mobile phase B: Methanol
    • Feeding of the mobile phases: Density gradient control was performed by changing the mixing ratio of two mobile phases A and B as follows:
  • 0 to 5 min after injection: mobile phase A (15→0); mobile phase B (85→100)
  • After the passage of 5 min onward: mobile phase A (0); mobile phase B (100)
  • The flow rate took two constant values; for the period of 0 to 5 minutes after injection, it was near 0.4 mL/min and after the passage of 5 minutes, it was near 0.6 mL.
  • <Constructing a Calibration Curve>
  • A tenth of a gram was precisely weighed from analytical retinol and dissolved in dibutylhydroxytoluene in acetone solution (1→200) to make a solution that accurately weighed 200 mL. The solution was sampled in accurate amounts of 0.1 mL, 0.25 mL, 0.5 mL, and 1 mL; to each aliquot, 5 mL of internal standard solution of stearyl glycyrrhizinate was accurately added and mixed with dibutylhydroxytoluene in acetone solution (1→200) to make 40 mL of a standard solution for constructing a calibration curve. A 5-μL portion of the standard solution for constructing a calibration curve was sampled and tested under the conditions described above; by plotting the peak area ratio (retinol/internal standard) for the resulting chromatogram on the horizontal axis and the mass ratio (retinol/internal standard) on the vertical axis, a calibration curve was constructed.
  • TABLE 7
    Example Example
    10 11
    Dipropylene glycol 5 5
    1,3-Butylene glycol 7 7
    POE(20)behenyl ether 1.8 1.8
    POE(20)glyceryl ether isostearic 1 1
    acid ester
    Carnauba wax 1.5 1.5
    Retinol 0.01 0.1
    Citric acid 0.01 0.01
    Sodium citrate 0.09 0.09
    EDTA•3Na•2H2O 0.02 0.02
    Tocopherol 0.05 0.05
    Dibutylhydroxytoluene 0.05 0.05
    Phenoxyethanol 0.5 0.5
    Ion-exchange waer bal. bal.
    Residual retinol (%) after storage 88 91
    at 50° C. for 2 months
  • As is clear from the data in Table 7, the use of POE(20)behenyl ether and POE(20)glyceryl ether isostearic acid ester in combination as nonionic surfactants led to a satisfactory percent residue of the oil-soluble drug (retinol) even after the storage at 50° C. for 2 months whether it was contained in an amount of 0.01 mass % or 0.1 massa.
  • Set forth below are formulae that can be applied in the present invention.
  • [Compounding Formula 1: Lotion]
  • (Ingredients to be compounded) (Mass %)
    (1) Carnauba wax 1.5
    (2) POE(20)behenyl ether 1.8
    (3) Retinol 0.1
    (4) Dibutylhydroxytoluene 0.05
    (5) Tocopherol acetate 0.05
    (6) Glycerin 5
    (7) Ion-exchange water bal.
    (8) Perfume q.s.
    (9) Phenoxyethanol 0.5
  • (Method of Production)
  • Ingredients (1) to (5) and(8), as well as portions of ingredients (6) and (7) were mixed under stirring at about 95° C. until the mixture became clear; thereafter, it was ice-cooled to make a fine dispersion of the wax; the fine dispersion of the wax was added to a mixture of the remaining portions of (6) and (7) with ingredient (9) to make a lotion.
  • [Compounding Formula 2: Lotion]
  • (Ingredients to be compounded) (Mass %)
    (1) Carnauba wax 1.5
    (2) POE(10)behenyl ether 0.9
    (3) POE(30)behenyl ether 0.9
    (4) POE(30)glyceryl ether isostearic acid ester 0.05
    (5) Candelilla wax 0.5
    (6) Ion-exchange water bal.
    (7) Retinol acetate 0.05
    (8) Isobutyl resorcine 0.3
    (9) Vitamin C dipalmitate 0.05
    (10) Paraben 0.3
    (11) Dipropylene glycol 5
  • (Method of Production)
  • Ingredient (1) as well as portions of ingredients (2)-(4), (6) and (11) were mixed under stirring at about 95° C. until the mixture became clear; thereafter, portions of ingredients (7)-(9) were added and the mixture was ice-cooled to make drug composition A which was a fine dispersion of the wax. In a separate step, ingredient (5), the remaining portions of (2)-(4), and portions of (6) and (11) were mixed under stirring at 95° C. until the mixture became clear; then, the remaining portions of (7)-(9) were added and the mixture was ice-cooled to make drug composition B which was also a fine dispersion of the wax. The remaining portions of (6) and (11) were mixed with ingredient (10), then with drug compositions A and B to make a lotion having different wax contents in A and B.
  • [Compounding Formula 3: Anti-Aging Lotion]
  • (Ingredients to be compounded) (Mass %)
    (1) Carnauba wax 1.5
    (2) POE(10)behenyl ether 0.1
    (3) POE(20)behenyl ether 2
    (4) POE(30)behenyl ether 0.1
    (5) POE(1)POE(15)behenyl ether 0.2
    (6) POE(20)glyceryl ether isostearic acid ester 0.2
    (7) POE(60)hydrogenated castor oil 0.2
    (8) Retinol 0.01
    (9) Retinol acetate 0.01
    (10) Retinol palmitate 0.01
    (11) α-Tocopherol 0.01
    (12) Tocopherol acetate 0.05
    (13) Dibutylhydroxytoluene 0.02
    (14) Sodium ascorbate 0.1
    (15) Ascorbic acid phosphate sodium salt 0.01
    (16) Ascorbic acid 2-glucoside 0.5
    (17) Tranexamic acid 2
    (18) Erythritol 0.01
    (19) Xylitol 0.01
    (20) Glycerin 5
    (21) Dipropylene glycol 5
    (22) POE-POP dimethyl ether 0.5
    (23) Phenoxyethanol 0.5
    (24) Trisodium edentate 0.02
    (25) Citric acid q.s.
    (26) Sodium citrate q.s.
    (27) Potassium hydroxide q.s.
    (28) Methyl polysiloxane 2
    (29) Behenyl alcohol 0.1
    (30) Sodium stearoylmethyl taurate 0.05
    (31) Ethanol 5
    (32) Perfume q.s.
    (33) Ion-exchange water bal.
  • [Compounding Formula 4: Skin-Lightening Jelly]
  • (Ingredients to be compounded) (Mass %)
    (1) Carnauba wax 0.5
    (2) Candelilla wax 0.3
    (3) Rice wax 0.2
    (4) Beeswax 0.1
    (5) Microcrystalline wax 0.1
    (6) Paraffin wax 0.1
    (7) Petrolatum 0.1
    (8) Behenyl alcohol 0.1
    (9) Stearyl alcohol 0.03
    (10) POE(10)behenyl ether 0.1
    (11) POE(20)behenyl ether 1.5
    (12) POE(30)behenyl ether 0.1
    (13) POE(20)glyceryl ether isostearic acid ester 0.1
    (14) Retinol palmitate 0.01
    (15) α-Tocopherol 0.01
    (16) Tetraisopalmitoylascorbyl 0.01
    (=oil-soluble vitamin C)
    (17) Isobutyl resorcine 0.01
    (18) Linoleic acid 0.03
    (19) Linolenic acid 0.02
    (20) Ascorbic acid phosphate sodium salt 0.01
    (21) Ascorbic acid phosphate magnesium salt 0.01
    (22) Ascorbic acid 2-glucoside 2
    (23) Ethyl ascorbate 0.01
    (24) Pantothenylethyl ether 0.01
    (25) Arbutin 0.01
    (26) Methyl tranexamate amide salt 1
    (27) Dipotassium glycyrrhizinate 0.01
    (28) 4-Methoxysalicylic acid salt 1
    (29) Glycerin 1
    (30) Dipropylene glycol 10
    (31) Polyoxyethylene glycol 1
    (32) Paraoxybenzoic acid ester 0.15
    (33) Phenoxyethanol 0.3
    (34) Trisodium edentate 0.02
    (35) Citric acid q.s.
    (36) Sodium citrate q.s.
    (37) Potassium hydroxide q.s.
    (38) Methyl polysiloxane 2
    (39) Phenyl polysiloxane 1
    (40) Sodium stearoylmethyl taurate 0.05
    (41) Carboxyvinyl polymer 2
    (42) Acrylic acid/alkyl(C10-30) acrylate copolymer 0.5
    (43) Hydroxyethyl cellulose 0.1
    (44) Methyl cellulose 1
    (45) 2-Methacryloyloxyethylphosphorylcholine/ 0.1
    butyl methacrylate copolymer
    (46) Ethanol 10
    (47) Perfume q.s.
    (48) Ion-exchange water bal.
  • [Compounding Formula 5: Skin Roughness Ameliorating Cream]
  • (Ingredients to be compounded) (Mass %)
    (1) Carnauba wax 0.8
    (2) Candelilla wax 0.2
    (3) Beeswax 0.1
    (4) Microcrystalline wax 0.1
    (5) Petrolatum 0.1
    (6) Liquid paraffin 0.1
    (7) Squalane 0.1
    (8) POE(20)behenyl ether 2
    (9) POP(1)POE(15)behenyl ether 0.2
    (10) POE(20)glyceryl ether isostearic acid ester 0.8
    (11) α-Tocopherol 0.01
    (12) Tocopherol acetate 0.01
    (13) Stearyl glycyrrhetinate 0.01
    (14) Oil-soluble vitamin B 0.01
    (15) Dibutylhydroxytoluene 0.01
    (16) Benzyl nicotinate 0.01
    (17) Tranexamic acid 0.5
    (18) Methyl tranexamate amide salt 0.1
    (19) 4-Methoxysalicylic acid salt 0.5
    (20) Nicotinic acid 0.01
    (21) Nicotinic acid amide 0.01
    (22) Hydroxyproline 0.01
    (23) Serine 0.01
    (24) Thiotaurine 0.01
    (25) Arginine 0.01
    (26) Trimethylglycine 0.01
    (27) Erythritol 5
    (28) Glycerin 2
    (29) Butylene glycol 5
    (30) Dipropylene glycol 5
    (31) Polyoxyethylene glycol 2
    (32) Phenoxyethanol 0.5
    (33) Trisodium edentate 0.02
    (34) Citric acid q.s.
    (35) Sodium citrate q.s.
    (36) Potassium hydroxide q.s.
    (37) Methyl polysiloxane 2
    (38) Phenyl polysiloxane 1
    (39) Decamethylcyclopentasiloxane 5
    (40) Cetyl 2-ethylhexanoate 1
    (41) Bleached beeswax 1
    (42) Batyl alcohol 1.65
    (43) Behenyl alcohol 0.77
    (44) Sodium stearoylmethyl taurate 0.01
    (45) Polyvinyl alcohol 0.05
    (46) Ethanol 5
    (47) Perfume q.s.
    (48) Ion-exchange water bal.
  • [Compounding Formula 6: Moisturizing Jelly]
  • (Ingredients to be compounded) (Mass %)
    (1) Carnauba wax 0.5
    (2) Rice wax 0.4
    (3) Paraffin wax 0.1
    (4) POE cholesterol ether 0.1
    (5) Glyceryl stearate 0.05
    (6) Hydrogenated castor oil 0.1
    (7) Behenyl alcohol 0.2
    (8) Batyl alcohol 0.05
    (9) Stearic acid 0.05
    (10) Triglycerin 0.05
    (11) Glycerol Trioctanoate 0.05
    (12) Paraffin 0.1
    (13) POE(10)behenyl ether 0.7
    (14) POE(30)behenyl ether 0.8
    (15) POP(1)POE(15)behenyl ether 0.2
    (16) POE(20)glyceryl ether isostearic acid ester 0.01
    (17) POE(60)hydrogenated castor oil 0.5
    (18) Tocopherol acetate 0.01
    (19) Stearyl glycyrrhetinate 0.01
    (20) Ubiquinone 0.01
    (21) β-Carotene 0.01
    (22) Ergocalcipherol (=vitamin D2) 0.005
    (23) Cholecalcipherol (=vitamin D3) 0.005
    (24) γ-Orizanol 0.01
    (25) Ascorbic acid phosphate magnesium salt 1
    (26) Nicotinic acid 0.01
    (27) Urea 2
    (28) Hyaluronic acid 0.001
    (29) Acetylated hyaluronic acid 0.001
    (30) Trehalose 1
    (31) Erythritol 1
    (32) Xylitol 1
    (33) Glycerin 5
    (34) Polyoxyethylene glycol 5
    (35) POE-POP dimethyl ether 1
    (36) Phenoxyethanol 0.5
    (37) Trisodium edentate 0.02
    (38) Citric acid q.s.
    (39) Sodium citrate q.s.
    (40) Potassium hydroxide q.s.
    (41) Methyl polysiloxane 1
    (42) Phenyl polysiloxane 1
    (43) Behenyl alcohol 0.1
    (44) Sodium stearoylmethyl taurate 0.05
    (45) Agar 2.5
    (46) Dimethyl acrylamide/sodium 5
    acryloyldimethyl taurate crosspolymer
    (47) Perfume q.s.
    (48) Ion-exchange water bal.
  • [Compounding Formula 7: UV Preventing Jelly]
  • (Ingredients to be compounded) (Mass %)
    (1) Carnauba wax 0.4
    (2) Beeswax 0.3 0.5
    (3) Paraffin wax 0.1
    (4) POE cholesterol ether 0.1
    (5) Hydrogenated castor oil 0.1
    (6) Behenyl alcohol 0.5
    (7) Batyl alcohol 0.1
    (8) Stearic acid 0.05
    (9) Triglycerin 0.05
    (10) Pentaerythritol tetraoctanoate 0.1
    (11) POE(20)behenyl ether 1.8
    (12) POE(20)glyceryl ether isostearic acid ester 1.5
    (13) POE(60)glyceryl ether isostearic acid ester 0.03
    (14) Tocopherol acetate 0.01
    (15) Stearyl glycyrrhetinate 0.01
    (16) Isobutyl resorcine 0.01
    (17) Octocrylene 0.05
    (18) Octyl methoxycinnamate 0.05
    (19) Tranexamic acid 1
    (20) Methyl tranexamate amide salt 1
    (21) Nicotinic acid amide 0.01
    (22) Hydroxyproline 0.01
    (23) Glycerin 10
    (24) Butylene glycol 5
    (25) Polyoxyethylene glycol 1
    (26) POE-POP dimethyl ether 5
    (27) Paraoxybenzoic acid ester 0.1
    (28) Phenoxyethanol 0.5
    (29) Trisodium edentate 0.02
    (30) Citric acid q.s.
    (31) Sodium citrate q.s.
    (32) Potassium hydroxide q.s.
    (33) Methyl polysiloxane 3
    (34) Phenyl polysiloxane 2
    (35) Carboxyvinyl polymer 5
    (36) Acrylic acid/alkyl(C10-30) acrylate copolymer 0.5
    (37) KELTROL ® 0.05
    (38) Ethanol 5
    (39) Perfume q.s.
    (40) Ion-exchange water bal.
  • BRIEF DESCRIPTION OF THE DRAWING
  • [FIG. 1] A graph showing that the amount of permeation of an oil-soluble drug could be effectively controlled in Example 4.
  • INDUSTRIAL APPLICABILITY
  • The skin external preparations of the present invention are characterized in that the initial permeation rate of oil-soluble drugs is controlled to achieve their sustained release to thereby reduce skin irritation and that they also possess a fresh feel while featuring high degrees of safety and stability.

Claims (10)

1-7. (canceled)
8. A skin external preparation comprising a finely dispersed, oil-soluble drug-containing wax composition, the composition containing a solid or semisolid wax, a nonionic surfactant, an aqueous dispersion medium, and an oil-soluble drug, the mass ratio of the nonionic surfactant to the wax being 1.0 or more, and the wax, with the oil-soluble drug contained therein, being finely dispersed in solid or semisolid form in the aqueous dispersion medium.
9. The skin external preparation of claim 8, wherein the oil-soluble drug is one or more substances selected from the group consisting of vitamin A and its derivatives, vitamin B2 derivatives, vitamin B6 derivatives, vitamin D and its derivatives, vitamin E and its derivatives, essential fatty acids, ubiquinone and its derivatives, K vitamins, resorcin derivatives, glycyrrhetinic acid and its derivatives, oil-soluble vitamin C derivatives, steroid compounds, benzyl nicotinate, trichlorocarbanilide, trichlorohydroxydiphenylether, stearyl glycyrrhetinate, γ-orizanol, and dibutylhydroxytoluene.
10. The skin external preparation of claim 8, wherein the weight-averaged HLB for all nonionic surfactants in the finely dispersed, oil-soluble drug-containing wax composition is in the range of 10-15.
11. The skin external preparation of claim 8, wherein the nonionic surfactant is selected from the group consisting of polyoxyethylene alkyl ethers, polyoxyethylene-polyoxypropylene alkyl ethers, polyoxyethylene glyceryl ether fatty acid esters, and polyoxyethylene castor oil or polyoxyethylene hydrogenated castor oil, and derivatives of the foregoing.
12. The skin external preparation of claim 8, wherein the nonionic surfactants are selected from the group consisting of polyoxyethylene alkyl ethers, polyoxyethylene-polyoxypropylene alkyl ethers, polyoxyethylene glyceryl ether fatty acid esters and combinations thereof.
13. The skin external preparation of claim 11, wherein the polyoxyethylene alkyl ethers and polyoxyethylene-polyoxypropylene alkyl ethers are one or more substances selected from among compounds represented by the following formulas (I) and (II):
Figure US20100316581A1-20101216-C00003
wherein R represents an alkyl or alkenyl group having 12-24 carbon atoms, m represents a number of 5-30, and n represents a number of 0-5.
14. The skin external preparation of claim 12, wherein the polyoxyethylene alkyl ethers and polyoxyethylene-polyoxypropylene alkyl ethers are one or more substances selected from among compounds represented by the following formulas (I) and (II):
Figure US20100316581A1-20101216-C00004
wherein R represents an alkyl or alkenyl group having 12-24 carbon atoms, m represents a number of 5-30, and n represents a number of 0-5.
15. A process of making a finely dispersed oil-soluble drug-containing wax composition comprising:
(a) providing a system comprising:
(i) a wax that is solid or semisolid at ordinary temperatures,
(ii) a nonionic surfactant,
(iii) an aqueous dispersion medium, and
(iv) an oil-soluble drug, wherein the mass ratio of non-ionic surfactant to wax is 1.0 or more,
(b) heating the system to a temperature sufficient to solubilize the wax, but not lower than the wax melting point, and
(c) cooling the system to ordinary temperatures.
16. The finely dispersed oil-soluble drug-containing wax composition made by the process of claim 15.
US12/745,906 2007-12-07 2008-12-05 Skin External Preparations Abandoned US20100316581A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2007-317631 2007-12-07
JP2007317631 2007-12-07
JP2008309771A JP4341983B2 (en) 2007-12-07 2008-12-04 Topical skin preparation
JP2008-309771 2008-12-04
PCT/JP2008/072201 WO2009072629A1 (en) 2007-12-07 2008-12-05 Skin external preparation

Publications (1)

Publication Number Publication Date
US20100316581A1 true US20100316581A1 (en) 2010-12-16

Family

ID=40717807

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/745,906 Abandoned US20100316581A1 (en) 2007-12-07 2008-12-05 Skin External Preparations

Country Status (10)

Country Link
US (1) US20100316581A1 (en)
EP (1) EP2233154A4 (en)
JP (1) JP4341983B2 (en)
KR (1) KR101591672B1 (en)
CN (1) CN101918031A (en)
AU (1) AU2008332297B2 (en)
BR (1) BRPI0821087A2 (en)
RU (1) RU2010128073A (en)
TW (1) TWI438007B (en)
WO (1) WO2009072629A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120164357A1 (en) * 2009-09-17 2012-06-28 Shiseido Company, Ltd. External Preparation
US20120189675A1 (en) * 2009-03-31 2012-07-26 Shiseido Company, Ltd. Skin External Preparations
US9993010B2 (en) 2011-11-18 2018-06-12 Fujifilm Corporation Carotenoid-containing composition and method for producing same
US20180221265A1 (en) * 2014-10-09 2018-08-09 Mediproduce, Inc. Eyelash cleaning agent
JP2018140979A (en) * 2017-02-28 2018-09-13 株式会社ピカソ美化学研究所 Pearl agent and cosmetics having pearl feeling
US11324679B2 (en) 2016-05-12 2022-05-10 Conopco, Inc. Method for stabilizing retinoic acid precursors and a skin benefit composition with stabilized retinoic acid precursors

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI499432B (en) * 2009-09-17 2015-09-11 Shiseido Co Ltd Skin external use
JP5712010B2 (en) * 2010-03-24 2015-05-07 第一三共ヘルスケア株式会社 Cosmetic or pharmaceutical composition with stabilized vitamin D
JP5528875B2 (en) * 2010-03-26 2014-06-25 日本メナード化粧品株式会社 Transparent liquid skin preparation
CN103379893A (en) * 2011-03-30 2013-10-30 富士胶片株式会社 Carotenoid-containing composition and method for producing same
WO2013003803A1 (en) * 2011-06-29 2013-01-03 Avidas Pharmaceuticals Llc Topical formulations including lipid microcapsule delivery vehicles and their uses
JP5865623B2 (en) * 2011-08-01 2016-02-17 昭和電工株式会社 External preparation for skin and method for producing the same
JP5865622B2 (en) * 2011-08-01 2016-02-17 昭和電工株式会社 External preparation for skin and method for producing the same
CN104203205B (en) 2012-03-22 2017-06-23 富士胶片株式会社 Transparency emulsification composition high and transparency cosmetic preparation high
JP6222894B2 (en) * 2012-03-30 2017-11-01 小林製薬株式会社 Epidermis thickener
CN104379122B (en) * 2012-09-28 2018-10-26 富士胶片株式会社 Cosmetics and emulsification composition containing Enoxolone derivative
JP6082981B2 (en) * 2012-12-17 2017-02-22 株式会社トキワ Oil-in-water emulsified solid cosmetic
JP2014122193A (en) * 2012-12-21 2014-07-03 L'oreal Sa Cosmetic composition comprising oil, nonionic surfactant and vitamin b3
JP6592233B2 (en) * 2013-12-25 2019-10-16 ロート製薬株式会社 Skin external composition
EP3099292A1 (en) * 2014-01-28 2016-12-07 Resdevco Research and Development Co. Ltd. Composition comprising xylitol and cholecalciferol for topical treatment of skin and mucous membranes
JP6415156B2 (en) * 2014-07-23 2018-10-31 小林製薬株式会社 Composition for external use
JP6753312B2 (en) * 2014-12-26 2020-09-09 ニプロ株式会社 Topical skin preparation for medical use
JP6498446B2 (en) * 2015-01-13 2019-04-10 日本メナード化粧品株式会社 Transparent cosmetics
JP6574329B2 (en) * 2015-01-29 2019-09-11 株式会社日清製粉グループ本社 Method for producing edible fats and oils
JP6798149B2 (en) * 2015-06-12 2020-12-09 大正製薬株式会社 Taurine-containing composition
JP6639892B2 (en) * 2015-12-15 2020-02-05 オリザ油化株式会社 Gamma-oryzanol solubilized liquid composition
CN105769622A (en) * 2016-04-22 2016-07-20 广西壮族自治区林业科学研究院 Essence oil for dry skin care and preparation method thereof
JP6920031B2 (en) * 2016-06-30 2021-08-18 小林製薬株式会社 Chronic keratinized eczema improving agent
JP6966359B2 (en) * 2017-03-08 2021-11-17 株式会社コーセー Oil-based solid cosmetics
JP6847728B2 (en) * 2017-03-24 2021-03-24 株式会社コーセー Topical skin or cosmetics
GB201712844D0 (en) * 2017-08-10 2017-09-27 Croda Int Plc Emulsifier system, personal care product, method and use
JP2019131524A (en) * 2018-02-01 2019-08-08 株式会社コーセー Cosmetic and skin external preparation
WO2021162074A1 (en) * 2020-02-14 2021-08-19 株式会社コーセー Aqueous cosmetic preparation
CN114939079B (en) * 2022-05-19 2024-04-23 上海奥利实业有限公司 Preparation method and application of retinol and its derivative inclusion

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0868898A1 (en) * 1997-03-21 1998-10-07 Shiseido Company Limited Fine dispension composition of wax, hair cosmetic preparation and glazing agent
US20030078172A1 (en) * 2001-09-20 2003-04-24 L'oreal Foaming cosmetic cream
US20040086470A1 (en) * 2001-01-18 2004-05-06 Claus Nieendick Pearlescent agent
US6761903B2 (en) * 1999-06-30 2004-07-13 Lipocine, Inc. Clear oil-containing pharmaceutical compositions containing a therapeutic agent
US20060116524A1 (en) * 2003-01-08 2006-06-01 Stefan Bruening Wax dispersions
US20080051470A1 (en) * 2004-04-05 2008-02-28 Ulrich Issberner Sensory Wax for Cosmetic and/or Pharmaceutical Formulations
US20100150850A1 (en) * 2007-03-12 2010-06-17 Mildred Estrada Tamor Dispersion, gel and emulsification system

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU87457A1 (en) 1989-02-24 1990-09-19 Oreal USE, AS A COSMETIC COMPOSITION FOR HAIR, OF A WAX MICRODISPERSION, AND METHOD FOR TREATING HAIR WITH SUCH A COMPOSITION
FR2666014B1 (en) 1990-08-23 1994-10-28 Oreal COSMETIC COMPOSITION FOR HAIR CONTAINING A FILM - FORMING POLYMER AND A SILICONE INCORPORATED IN A WAX MICRODISPERSION, AND COSMETIC TREATMENT METHOD.
JP3502762B2 (en) 1997-02-25 2004-03-02 日清オイリオ株式会社 Oily composition and method for producing the same
JP3639715B2 (en) 1997-03-21 2005-04-20 株式会社資生堂 Finely dispersed composition of wax, hair cosmetic and polish
JP3949810B2 (en) 1998-03-18 2007-07-25 株式会社資生堂 Finely dispersed composition of wax, hair cosmetic and polish
JP3600436B2 (en) 1998-03-31 2004-12-15 株式会社資生堂 Oil-in-water hair cosmetics
DE19837191A1 (en) * 1998-08-17 2000-02-24 Henkel Kgaa Aqueous cosmetic or dermatological composition contains lipid-soluble active agent present as component of nanoparticulate wax particles
EP1408924A1 (en) * 1999-07-08 2004-04-21 International Flora Technologies Ltd. Stabilized ascorbic acid, composition, and method of use
US20020168335A1 (en) * 2000-12-12 2002-11-14 Nathalie Collin Cosmetic composition comprising a wax and a polymer
JP2004083437A (en) * 2002-08-23 2004-03-18 Shiseido Co Ltd Solid composition for local anesthesia
JP2007531777A (en) * 2004-04-05 2007-11-08 コグニス・アイピー・マネージメント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Wax mixtures based on partial glycerides and pentaerythritol esters

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0868898A1 (en) * 1997-03-21 1998-10-07 Shiseido Company Limited Fine dispension composition of wax, hair cosmetic preparation and glazing agent
US6761903B2 (en) * 1999-06-30 2004-07-13 Lipocine, Inc. Clear oil-containing pharmaceutical compositions containing a therapeutic agent
US20040086470A1 (en) * 2001-01-18 2004-05-06 Claus Nieendick Pearlescent agent
US20030078172A1 (en) * 2001-09-20 2003-04-24 L'oreal Foaming cosmetic cream
US20060116524A1 (en) * 2003-01-08 2006-06-01 Stefan Bruening Wax dispersions
US20080051470A1 (en) * 2004-04-05 2008-02-28 Ulrich Issberner Sensory Wax for Cosmetic and/or Pharmaceutical Formulations
US20100150850A1 (en) * 2007-03-12 2010-06-17 Mildred Estrada Tamor Dispersion, gel and emulsification system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
makingcosmetic.com (1997) 1 pg *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120189675A1 (en) * 2009-03-31 2012-07-26 Shiseido Company, Ltd. Skin External Preparations
US9839588B2 (en) * 2009-03-31 2017-12-12 Shiseido Company, Ltd. Skin external preparation comprising an aqueous dispersion of finely dispersed wax, nonionic surfactant, and ionic water-soluble thickener
US20120164357A1 (en) * 2009-09-17 2012-06-28 Shiseido Company, Ltd. External Preparation
US9993010B2 (en) 2011-11-18 2018-06-12 Fujifilm Corporation Carotenoid-containing composition and method for producing same
US20180221265A1 (en) * 2014-10-09 2018-08-09 Mediproduce, Inc. Eyelash cleaning agent
US10603266B2 (en) * 2014-10-09 2020-03-31 Mediproduce, Inc. Eyelash cleaning agent
US11324679B2 (en) 2016-05-12 2022-05-10 Conopco, Inc. Method for stabilizing retinoic acid precursors and a skin benefit composition with stabilized retinoic acid precursors
US11826449B2 (en) 2016-05-12 2023-11-28 Conopco, Inc. Method for stabilizing retinoic acid precursors and a skin benefit composition with stabilized retinoic acid precursors
JP2018140979A (en) * 2017-02-28 2018-09-13 株式会社ピカソ美化学研究所 Pearl agent and cosmetics having pearl feeling
JP7182761B2 (en) 2017-02-28 2022-12-05 株式会社ピカソ美化学研究所 Pearl agent and cosmetics having pearl feeling

Also Published As

Publication number Publication date
BRPI0821087A2 (en) 2015-06-16
JP4341983B2 (en) 2009-10-14
EP2233154A4 (en) 2016-01-06
TW200932282A (en) 2009-08-01
KR20100098677A (en) 2010-09-08
KR101591672B1 (en) 2016-02-04
TWI438007B (en) 2014-05-21
AU2008332297A1 (en) 2009-06-11
EP2233154A1 (en) 2010-09-29
CN101918031A (en) 2010-12-15
RU2010128073A (en) 2012-01-20
JP2009155326A (en) 2009-07-16
WO2009072629A1 (en) 2009-06-11
AU2008332297B2 (en) 2015-01-29

Similar Documents

Publication Publication Date Title
US20100316581A1 (en) Skin External Preparations
US9839588B2 (en) Skin external preparation comprising an aqueous dispersion of finely dispersed wax, nonionic surfactant, and ionic water-soluble thickener
JP6010418B2 (en) Emulsified composition
KR101576692B1 (en) Oilinwater emulsion composition and method for producing the same
EP2474296B1 (en) Method for producing o/w emulsion composition
US20120022160A1 (en) Composition for external use on skin
JP2009126791A (en) Oil-in-polyhydric alcohol type emulsified cosmetic
KR20110118844A (en) Sheet-like cosmetic
KR20070002064A (en) Surfactant composition
KR20010006167A (en) Oil-in-water type emulsified compositions
JP2007014866A (en) Method for preparing oil in water microemulsion composition
JP6847827B2 (en) Composition for nanoemulsion emulsification, bicontinuous microemulsion, cosmetics and method for producing them
WO2010086948A1 (en) Liquid cosmetic
JP2006290762A (en) Oil-in-water emulsified composition
JP6133618B2 (en) Water-in-oil emulsion composition
JP2017178904A (en) O/w type emulsifying skin external composition, and method of use thereof
KR20120031879A (en) Emulsion composition
JP5662794B2 (en) Water-in-oil emulsion composition
JP2014019645A (en) Cosmetic
JP5869296B2 (en) Water-in-oil emulsion composition
JP3978611B2 (en) Cosmetic composition
JP2000237570A (en) Emulsifier
EP3960245A1 (en) Adenosine phosphate-containing o/w type emulsion composition having low viscosity
JP6672730B2 (en) Cosmetic comprising nanoemulsion and method for producing the same
JP6296437B2 (en) Emulsified cosmetic and method for producing the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: SHISEIDO COMPANY, LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TAKEOKA, ERIKO;TESHIGAWARA, TAKASHI;KUSABA, KENTARO;AND OTHERS;SIGNING DATES FROM 20100818 TO 20100823;REEL/FRAME:024913/0129

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION